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The effects of anticholinergic 
medications on cognition 
in children: a systematic review 
and meta‑analysis
Erica Ghezzi1,4, Michelle Chan1,4, Lisa M. Kalisch Ellett2, Tyler J. Ross1, Kathryn Richardson3, 
Jun Ni Ho2, Dayna Copley1, Claire Steele1 & Hannah A. D. Keage1*

Cognitive side effects of anticholinergic medications in older adults are well documented. Whether 
these poor cognitive outcomes are observed in children has not been systematically investigated. We 
aimed to conduct a systematic review and meta-analysis on the associations between anticholinergic 
medication use and cognitive performance in children. Systematic review was conducted using 
Medline, PsychInfo, and Embase, identifying studies testing cognitive performance relative to 
the presence versus absence of anticholinergic medication(s) in children. We assessed effects 
overall, as well as relative to drug class, potency (low and high), cognitive domain, and duration of 
administration. The systematic search identified 46 articles suitable for meta-analysis. For the most 
part, random effects meta-analyses did not identify statistically significant associations between 
anticholinergic exposure and cognitive performance in children; the one exception was a small effect 
of anticholinergic anti-depressants being associated with better cognitive function (Hedges’ g = 0.24, 
95% CI 0.06–0.42, p = 0.01). Anticholinergic medications do not appear to be associated with poor 
cognitive outcomes in children, as they do in older adults. The discrepancy in findings with older adults 
may be due to shorter durations of exposure in children, differences in study design (predominantly 
experimental studies in children rather than predominantly epidemiological in older adults), biological 
ageing (e.g. blood brain barrier integrity), along with less residual confounding due to minimal 
polypharmacy and comorbidity in children.

Anticholinergic medications are commonly prescribed1–3 yet a growing body of evidence has demonstrated that 
their use is associated with a higher risk of incident cognitive impairment4–6. This literature has been reviewed 
multiple times in older adults, whereby anticholinergic medications have been consistently associated with cog-
nitive decline and dementia7–9. There has been no systematic synthesis of the cognitive effects of anticholinergic 
medications in children.

There are few population-based studies that have assessed the extent to which children are exposed to anticho-
linergic medicines1. Most studies examining anticholinergic medicines in children have focussed on the use 
of medicine classes for specific indications, for example, asthma or overactive bladder, rather than providing 
population-based estimates for the use of anticholinergic medicines like the studies in older adults. Approxi-
mately 11% of Australian children have a current diagnosis of asthma10 and up to 20% of children experience 
bedwetting11 so there is potential for a high prevalence of use of anticholinergic medicines to treat these condi-
tions in children. One population based study from Slovenia reported that 20% of children using prescription 
medicines were dispensed anticholinergic medicines, most commonly antihistamines1.

Anticholinergic medications refer to a broad class of medicines which block the neurotransmitter 
acetylcholine12. These medications are used in the treatment of many conditions such as depression, vertigo, 
asthma, cardiac arrhythmias and incontinence. High potency anticholinergic medications appear to most det-
rimentally affect cognition in older adults (as compared to low potency)13. Further, the class of anticholiner-
gic medication differentially associates with cognitive decline in late-life, with anti-depressants (amitriptyline, 
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dosulepin, paroxetine), urologicals (oxybutynin, tolterodine), and antiparkinsonian drugs showing the strongest 
associations with incident dementia4. Neurobiologically, the cholinergic system primarily mediates attentional 
processes14–17 and therefore could be expected to be primarily impaired by anticholinergic medications, although 
cognitive domain specific effects have not been investigated.

The current study aims to quantitively synthesise the literature on associations between anticholinergic medi-
cations and cognitive performance in children. Findings from this review will inform medical practitioners 
of any risks (or lack thereof) associated with anticholinergic use in children, and subsequently help to inform 
the safe prescribing of anticholinergics. It is critical to identify whether anticholinergics should be prescribed 
with restraint in children. We hypothesise that in children (1) exposure to anticholinergic medications will be 
significantly negatively associated with performance on cognitive tests, and that associations will be strongest 
for (2) antidepressant and urological drug classes (as compared to other drug classes), (3) high-potency anticho-
linergics (as compared to low-potency), (4) those exposed long-term (as opposed to short-term) and (5), within 
the cognitive domain of attention.

Methods
Search strategy.  This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (see Supplementary Table 1 for PRISMA Checklist)18,19. A systematic literature 
search was conducted in December 2019 using the electronic databases Medline, PsychInfo, and Embase. The 
search strategy used a combination of keywords for anticholinergic medications (see Supplementary Material), 
cognition terms (cognit* OR neuropsych* OR learn* OR memory OR "executive function" OR "executive func-
tions") and demographic terms (children OR childhood OR youth* OR teen*). No published review protocol 
exists for the current study.

Anticholinergic medications were defined as medicines with clinically significant anticholinergic properties 
as listed in a systematic review by Duran et al.12. Medications assessed by the Duran systematic review to be of 
either high or low anticholinergic potency, but not ambiguous potency, were included. Studies were screened 
and assessed for eligibility by two independent reviewers, first by title and abstract, then by full text, according 
to inclusion and exclusion criteria described below (MC, TJR, DC, CS and JNH). Any conflicts were resolved 
through consensus.

Inclusion and exclusion criteria.  Studies of either within- or between-groups design were included if 
they reported at least one cognitive outcome for both children exposed and unexposed to anticholinergic medi-
cations; reported data for a sample of children (< 18 years old); were published in English; and were published in 
peer-reviewed journal articles. Studies from all publication years were accepted. “On” medication participants 
included children exposed to at least one anticholinergic medication. “Off ” medication participants included 
matched controls unexposed to any other medication, participants treated with placebo, participants undergo-
ing withdrawal from the medication, or the baseline measurements of the exposed group. To be eligible for inclu-
sion, studies needed to report cognitive outcomes based on objective cognitive measures; subjective behavioural 
reports were not included (e.g. self, parent or teacher reports of cognitive functioning). Studies were excluded if 
the control group did not share the same disorder or symptom (i.e. healthy control group) of the experimental 
group. Studies which only compared the effects of anticholinergic medication versus non-anticholinergic medi-
cation, rather than anticholinergic medication versus no medication, were excluded. Studies were also excluded 
if they involved non-human (animal) participants; if they assessed in-utero anticholinergic exposure; or if they 
were a case report, case series, thesis or conference abstract.

Data extraction.  Data were extracted from eligible studies independently by one reviewer (EG, MC, TJR) 
and then checked by a second reviewer, with any discrepancies resolved through discussion or checked again (by 
a third reviewer). Extracted data include country of publication, study design, sample size (and number of male/
female participants), age, diagnoses of sample, name of medication, duration of administration, and cognitive 
domains assessed. The extracted medication name was then classified by potency and drug class by an academic 
pharmacist (LE). Data required for meta-analysis were also extracted. This included any data for which an effect 
size (standardised mean difference) could be calculated for differences between on and off medication groups 
(e.g., means and standard deviations, Cohen’s d and confidence intervals (CIs), sample size and correlation sta-
tistic, means and correlation statistic, or means and p-value).

Quality assessment.  A quality assessment tool was developed for this study, adapted from a critical 
appraisal tool for randomised controlled trials from the Joanna Briggs Institute20, see Supplementary Material—
Quality Assessment Tool. The Joanna Briggs Institute is a highly regarded organization with recommended21 and 
well-used critical appraisal checklists22–24. The quality assessment tool comprised an eight-point checklist. All 
studies were screened using this tool by two independent reviewers (MC and TJR) and any conflicts in scoring 
were resolved through discussion.

Statistical approach.  Some included studies reported data for both within- and between-groups designs. 
For example, they may include two groups: one that experiences a period of on and off medication, and one 
non-medicated control group. In these cases, the between-group design (i.e. medication versus control) was 
preferentially selected in order to minimise the effect of cognitive development (over time). Where one study 
reported both within- and between-group comparisons for two distinct participant samples (i.e. one group both 
on and off medication, along with a second group on medication and a third no-medication control group) both 
within- and between-groups data were extracted. In cases where one study reported both (within and between) 
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comparisons over multiple time-points, within-groups data were extracted for any time-points where between-
groups data were unavailable.

All outcome measures were standardised using Hedges’ g for difference between on- and off-medication 
groups. A positive Hedges’ g represents a better cognitive score for the on-medication group compared to the 
off-medication group, regardless of the direction of the original cognitive test. Small, medium, and large effect 
sizes were classified using the Hedges and Olkin25 method, as 0.20, 0.50, and 0.80 respectively. Comprehensive 
Meta-Analysis software (version 3) was used to calculate effect sizes, where calculations of Hedge’s g are depend-
ent on study design (within- or between-groups). Statistical analyses were conducted using the meta package26 
for R (Version 4.0.2). Dependency was present in analyses due to included studies reporting multiple cognitive 
outcomes or time-points for follow-up based on the same, or largely overlapping, participant samples. This was 
accounted for by averaging across effect sizes within studies, so one effect size was used per study within each 
analysis. The data and script associated with this analysis are publicly available (https​://githu​b.com/erica​ghezz​
i/antic​holin​ergic​_med_metaa​nalys​is).

Outcomes across studies were pooled using a random-effects model. The commonly used DerSimonian 
and Laird27 estimator of between-study variance has been criticised due to its propensity to underestimate true 
between-study variance, leading to narrow CIs and potential false-positive estimations28,29. Hence, we followed 
the recommendation of Veroniki et al.30 and employed the Paule and Mandel31 method, which has been shown 
to be less biased29,32 when estimating between-study variance. Sensitivity analyses revealed no substantial dif-
ferences in outcomes when analyses were run using common between-groups estimators. The Hartung-Knapp 
method for random effects meta-analysis33,34 was also applied to all analyses. A result was considered statistically 
significant when p < 0.05. We considered this an exploratory study and did not correct for multiple comparisons. 
Between-study variance was quantified using τ2. The proportion of between-study heterogeneity out of total vari-
ance was assessed using the I2 statistic. Values of I2 were classified as low (25%), moderate (50%), or high (75%)35.

Subgroup analysis.  Subgroup analyses were stratified by anticholinergic potency, cognitive domain, drug 
class, and duration of medication administration. Anticholinergic potency was classified as low or high accord-
ing to Durán et al.12. Cognitive domain was based on Lezak et al.36: attention, psychomotor functioning, concept 
formation and reasoning, perception, memory, executive function, language, and intelligence. The anticholin-
ergic drugs administered were categorised by class as antiepileptics (WHO Anatomical Therapeutic Chemical 
code N03), antiparkinsonian medicines (N04B), antipsychotics (N05A), antidepressants (N06A), respiratory 
medicines (R), opioid analgesics (N02A), or urological medicines (G04B). Only one study37 reported results 
based on an antiparkinsonian anticholinergic, so subgroup meta-analysis of this medication class was not con-
ducted (note: the study was included in the overall meta-analysis). Total volume of exposure or dose has been 
shown to be important in assessing risk of cognitive impairment associated with use of anticholinergic medi-
cines in adults; however, dose was inconsistently reported, or not reported at all, in many of the studies included 
in the meta-analysis. Duration of exposure, which was consistently reported in the studies, was therefore ana-
lysed. Duration of medication administration was categorised as either (1) current and long-term (> 1-month), 
(2) current and acute (≤ 1-month) and (3) historical administration. Each subgroup analysis was based on a ran-
dom-effects model, where calculations of within-subgroup variance and comparisons between subgroups were 
both made using a random-effects model. Fixed effects comparisons of differences between subgroups were not 
made due to the risk of false positives38. The Q statistic was calculated as a test of between subgroups differences.

Publication bias. Funnel plots of effect size versus standard error for the primary outcome were visually 
examined for symmetry to assess for bias across studies due to the small-study effect39. As the whole meta-
analysis contained at least 10 studies, small-study effect was formally tested using Egger’s test of the intercept40. 
If evidence of asymmetry was found (one-tailed p < 0.1 on the Egger’s test), Duval and Tweedie’s41 trim and fill 
method would have been used to quantify the magnitude of potential bias.

Results
Summary of studies.  A total of 7,645 articles were identified, of which 6,283 were screened by title and 
abstract following duplicate removal. Full-text review was conducted on 323 articles, and 46 of these were 
included for final review and meta-analysis (Fig. 1). The 46 included studies were published across 6 decades, 
with 1, 2, 7, 10, 13, and 13 studies published in ascending decades from the 1960s. Of the included studies, 37 
were conducted in developed countries, 7 in developing countries, and 2 included children from both develop-
ing and developed countries (classified according to the UN42). For a complete overview of the characteristics of 
included studies, see Table 1.

Overall cognition.  Overall, the 46 studies included reported a total of 536 effect sizes. The pooled effect size 
of the difference between cognition on and off medication across the 46 studies was negligible and non-signifi-
cant (g = 0.05, 95% CI − 0.02 to 0.11, p = 0.16; see Fig. 2), with no heterogeneity between studies (τ2 = 0, I2 = 0%, 
Q = 42.36). The funnel plot did not reveal significant asymmetry (Egger’s intercept = − 0.5, p = 0.14; see Fig. 3).

Subgroup analyses.  Pooled estimates for subgroup analyses by anticholinergic drug class, potency, length 
of administration and cognitive domain are presented in Table 2. The number of studies within individual sub-
analyses ranged from 2 to 37. Varying levels of heterogeneity were present across analyses, ranging from null to 
high (τ2 range: 0–0.13, I2 range: 0–76.2, Q = 0.18–54.70).

No significant differences between subgroups were revealed through a test of between-subgroup differences 
using the random-effects model (see Table 2). The pooled effect size for cognitive outcomes on antidepressant 
medications was small and statistically significant (see Table 2 and Fig. 4), with negligible heterogeneity between 

https://github.com/ericaghezzi/anticholinergic_med_metaanalysis
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studies (τ2 = 0, I2 = 13.2%, Q = 6.91). Notably, this effect was not significant in a sensitivity analysis (Supple-
mentary Table 3) which included only studies of high quality. Pooled estimates were non-significant across the 
remaining anticholinergic drug class (see Fig. 4), potency (see Fig. 5), length of administration (see Fig. 6), and 
cognitive domain (see Fig. 7) subgroup analyses. All null results were replicated within the sensitivity analysis 
of high-quality studies, except the memory cognitive domain analysis, which had a small positive significant 
effect (g = 0.09, 95% CI 0.01–0.17, p = 0.02).

Discussion
We quantified the effects of anticholinergic medications on cognition in children systematically across the litera-
ture. We report that, unlike older adult samples7–9, anticholinergic medications are not associated with cognitive 
impairments in children. This finding was regardless of the classification approach used: drug class, potency, 
duration of use, and cognitive domain. The discrepancy between child and older adult samples may be due to 
shorter lengths of exposure in children, higher rates of polypharmacy in older adults88, residual confounding, 
study design, or biological ageing processes.

Older adults have the opportunity for years or decades of anticholinergic exposure88, with polypharmacy com-
mon, whereas studies included here from child samples typically had short exposure durations (6 months or less 
in most studies) and little polypharmacy. It may be that the detrimental effect of anticholinergic medications on 
cognition in late-adulthood is driven by long exposure and polypharmacy89,90, factors not observed in children. 
Further, in late-life, the class of antidepressant appears to differentially affect cognition, with anti-depressants, 
urologicals, and antiparkinsonian drugs showing the strongest associations with incident dementia risk4. We did 
not see this pattern of effects in children. It may be that duration of exposure and polypharmacy again drives this 
difference, however residual confounding in late-life samples cannot be ruled out. It may be that incontinence and 
mood symptoms, for which anticholinergic medications are prescribed, are early clinical indicators of dementia-
related neuropathologies4 (which accrue decades prior to a dementia diagnosis91) and that early, undiagnosed 
dementia is driving the associations between use of anticholinergic medicines and poor cognition in adults.

Interestingly, all study designs included in this review were experimental, whereas those included in reviews 
of older adults are typically longitudinal epidemiological cohort studies7–9. Standards of reporting cognitive 
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Author Year Country Design

Sample Anticholinergic medication

N (M/F)
Age in 
years* Diagnoses Name Potency

Class/
function

Length of 
administration

Medication 
duration

Cognitive 
domain(s)

Aldenkamp 
et al.43 1993 Sweden NRCT 

(Within) 83 (47/36) 12.8 (2.4) Epilepsy Carbamaz-
epine Low Antiepileptic Long > 1 year Att., PM

Aman et al.44 2008 USA RCT 
(Between**) 38 (29/9) 9.4 (3.0)

Autism + Severe 
behavioural distur-
bance

Risperidone Low Antipsy-
chotic Acute, Long 4 weeks, 8 

weeks
Att., CF + R, 
Mem., Perc., 
PM,

Aman et al.45 2009 USA RCT (Crosso-
ver) 16 (14/2) 8.6 (2.6) DBD/ADHD/High-

functioning autism Risperidone Low Antipsy-
chotic Acute 2 weeks Att., PM

Barrickman 
et al.46 1991 USA NRCT 

(Within) 19 (16/3) 11.0 (2.3) ADHD Fluoxetine Low Antidepres-
sant Long 6 weeks Att., EF, Int

Beers et al.37 2005 USA RCT 
(Between**) 13 11.9 (3.0) TBI Amantadine Low Antiparkin-

sonian Long 12 weeks Att., CF + R, 
EF

Bender and 
Milgrom47 2004 USA RCT (Between) 60 [8–17] SAR Loratadine Low Respiratory Acute 2 weeks Att., Mem

Bender et al.48 1991 USA NRCT 
(Between) 63 11.7 (2.1) Asthma Theophylline Low Respiratory Acute

1 week, 1 
month, 3 
months, 6 
months

Att

Carlson et al.49 1992 USA NRCT 
(Crossover) 11 (8/3) 8.7 (2.4)

CD with manic 
symptoms/CD 
with family BPD 
history/Aggressive 
behaviour

Lithium Low Antipsy-
chotic Acute, Long 4 weeks, 8 

weeks
Att., EF + R, 
Mem

Chen et al.50 2001 Taiwan NRCT 
(Within) 25 (13/12) 11.2 (2.0) Epilepsy Carbamaz-

epine Low Antiepileptic Long  > 1 year Int

de Graaf et al.51 2011 Netherlands RCT (Between) 90 (51/39)
 < 3d at 
exposure; 5 
at follow up

Pain Morphine Low Opioid 
analgesic History NR Int., PM

de Graaf et al.52 2013 Netherlands RCT (Between) 89 (56/33)
 < 3d at 
exposure; 
8 – 9 at 
follow-up

Pain Morphine Low Opioid 
analgesic History NR Att., CF + R, 

EF, Int., PM

Donati et al.53 2007 Europe (7 
countries) RCT (Within) 83 (37/46) 10 [6–16] Partial seizures

Oxcarbaz-
epine,
Carbamaz-
epine

Low Antiepileptic Long 6 months Att., Mem, 
Perc., PM

Erickson et al.54 1984 USA RCT (Within) 11 14.2 
(12.9–18.6)

Schizophrenia/
Schizophreniform 
disorder

Thiori-
dazine, 
Thiothixene

High Antipsy-
chotic Long 35 days Att

Eun et al.55 2012a South Korea RCT (Within) 41 (24/17) 8.3 (2.1) Epilepsy Carbamaz-
epine Low Antiepileptic Long 32 weeks Int

Eun et al.56 2012b South Korea NRCT 
(Within) 168 (98/70) 8.4 (2.7) Epilepsy Oxcarbaz-

epine Low Antiepileptic Long 26–32 weeks
Att., Int., 
CF + R, Lan., 
PM

Farmer et al.57 2017 USA RCT (Between) 165 (128/3) 8.9 (2.0) ADHD + Severe 
physical aggression Risperidone Low Antipsy-

chotic Acute 3 weeks Att

Ferguson et al.58 2012 USA RCT (Between) 19 (12/7)
Neonate 
exposure; 
6.2 (0.3) at 
follow-up

Pain Morphine Low Opioid 
analgesic History  ≤ 14 days Att., CF + R, 

Int., Lan

Forsythe et al. 59 1991 UK RCT (Within) 14 (7/7) 10 Epilepsy Carbamaz-
epine Low Antiepileptic Acute, Long

1 month, 6 
months, 12 
months

Att., Mem

Freibergs et al.60 1968 Canada RCT 
(Between**) 36 (36/0) 8.7 (6–12) Hyperactivity Chlorprom-

azine High Antipsy-
chotic Long 74.8 days CF + R

Giramonti 
et al.61 2008 USA RCT (Crosso-

ver) 14 (9/5) 7.7 (2.0) Incontinence Oxybutynin, 
Tolterodine High Urological Acute 2 weeks Att., Mem

Gualtieri and 
Evans 62 1988 USA RCT (Crosso-

ver) 9 (6/3) 9.5 (1.3) ADHD Imipramine High Antidepres-
sant Acute 2–3 days Att., PM

Gualtieri et al.63 1991 USA RCT (Crosso-
ver) 12 (11/1) [6–12] ADHD Desipramine High Antidepres-

sant Acute 2–3 days Att., Mem, 
PM

Gunther et al.64 2006 Germany NRCT 
(Within) 23 (21/2) 11.9 (2.1) ADHD + DBD Risperidone Low Antipsy-

chotic Acute 4 weeks Att., EF

Jung et al.65 2015 South Korea RCT (Within) 40 [4–16] Epilepsy Carbamaz-
epine Low Antiepileptic Long 52 weeks Int

Klein66 1990 USA RCT (Within 
& Between) 36 (33/3) 8.5 (1.6) ADHD + Hyper-

activity Thioridazine High Antipsy-
chotic Acute, Long 4 weeks, 12 

weeks
Att., CF + R, 
EF, Int., Lan., 
Mem., PM

Kwon et al.67 2013 South Korea NRCT 
(Between**) 29 (17/15) 8.4 (2.3) Epilepsy Oxcarbaz-

epine Low Antiepileptic Long 6 months Att., CF + R, 
EF, Int

O’Dougherty 
et al.68 1987 USA NRCT 

(Within) 11 (4/7) 9.8 (3.1) Epilepsy Carbamaz-
epine Low Antiepileptic Long 3 weeks–

10  months
Att., Mem, 
PM

Operto et al.69 2020 Italy NRCT 
(Within) 46 (16/20) 9.8 (2.3) Epilepsy

Oxcar-
bazepine, 
Carbamaz-
epine

Low Antiepileptic Long 9 months Comp

Continued
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performance also differ between children and adults. Cognitive performance in children is typically reported as 
test scores on a continuum, while in adults (especially those in late-life), a dichotomous classification of Neuro-
cognitive Disorders is primarily used (e.g. presence versus absence of mild cognitive impairment or dementia). 
Study designs and differences in classification of cognition therefore may also underlie differences in the patterns 
of effects observed in children versus older adults, including the finding that anticholinergic antidepressants dis-
played a positive association with cognition (albeit with a small effect size, which was not significant when only 
high-quality studies were included). This small positive effect may be due to the short-term nature of the studies 
included here and is consistent with a meta-analysis of randomised control trials in adult samples92. We do not 

Author Year Country Design

Sample Anticholinergic medication

N (M/F)
Age in 
years* Diagnoses Name Potency

Class/
function

Length of 
administration

Medication 
duration

Cognitive 
domain(s)

Pandina et al.70 2009
Europe (6 
countries), 
Israel, South 
Africa

RCT (Within 
& Between) 284 (248/36) 10.8 (2.9) DBD Risperidone Low Antipsy-

chotic Long 6 weeks, 6 
months Att., Mem

Piccinelli et al.71 2010 Italy NRCT 
(Within) 43 (21/22) 10.4 (3.1) Epilepsy Carbamaz-

epine Low Antiepileptic Long 12 months CF + R, Int

Platt et al.72 1981 USA RCT 
(Between**) 30 (28/2) 9.0 

(5.8–12.9) CD Haloperidol, 
Lithium Low Antipsy-

chotic Acute 4 weeks Att., EF

Platt et al.73 1984 USA RCT 
(Between**) 61 (57/4) 9.0 

(5.2–12.9) CD Haloperidol, 
Lithium Low Antipsy-

chotic Acute 4 weeks Att., EF

Rappaport 
et al.74 1989 USA RCT (Crosso-

ver) 17 (11/6) [6–12] Asthma Theophylline Low Respiratory Acute 3.5 days Att., EF, 
Mem., PM

Robles et al.75 2011 Spain RCT (Within) 49 (38/11) 15.9 (1.4) Psychosis Quetiapine, 
Olanzapine Low Antipsy-

chotic Long 6 months
Att., CF + R, 
Comp., EF, 
Mem., Perc., 
PM

Schlieper et al.76 1991 Canada RCT (Crosso-
ver) 31 (21/10) 9.8 (1.6) Asthma Theophylline Low Respiratory Acute 10 days Att., EF Mem

Seidel and 
Mitchell77 1999 USA NRCT 

(Crossover) 10 (6/4) 9.7 (2.0) Epilepsy Carbamaz-
epine Low Antiepileptic Long

2.2 
months–2.1 
years

Att., CF + R, 
Int., Lan., 
Mem., PM

Shehab et al.78 2016 Lebanon NRCT 
(Within) 24 (8/16) 14.8 (1.6) MDD Fluoxetine Low Antidepres-

sant Long 6 weeks, 12 
weeks Att., EF

Sommer et al.79 2005 USA NRCT 
(Between**) 25 (11/14) 7.2 (1.8) Incontinence Oxybutynin High Urological Acute 4 weeks Att., Mem

Stevenson 
et al.80 2002

Europe (12 
countries), 
Brazil, 
Canada

RCT (Between) 165 2.92 Dermatitis Cetrizine Low Respiratory Long 8 weeks Comp

Tonnby et al.81 1994 Sweden NRCT 
(Within) 100 (56/44) 12.5 (2.1) Epilepsy Carbamaz-

epine Low Antiepileptic Long Approx. 3.7 
years

Att., Mem., 
PM

Troost et al.82 2006 Netherlands RCT (Within) 24 (22/2) 9.3 (2.6) PDD Risperidone Low Antipsy-
chotic Acute, Long

4 weeks, 8 
weeks, 24 
weeks

Att

Tzitiridou 
et al.83 2005 Greece NRCT 

(Within) 70 (45/25) 8.4 (1.2) Epilepsy Oxcarbaz-
epine Low Antiepileptic Long 18 months Att, CF + R, 

Lan., PM

Werry et al.84 1975 New Zealand RCT (Crosso-
ver) 21 (21/0) 8.7 (1.7) Incontinence Imipramine High Antidepres-

sant Acute 3 weeks Att

Wilson and 
Staton85 1984 USA NRCT 

(Within) 75 (55/20) 10.8 
(5.5–16.0) MDD

Amitripty-
line, Imipra-
mine

High Antidepres-
sant Long  > 3 months

Att., CF + R, 
EF, Int., Lan., 
PM

Yepes et al.86 1977 USA RCT (Crosso-
ver) 22 (21/1) 9.2 

(7.3–12.3)
Hyperactivity/
aggressive behav-
iour

Amitripty-
line High Antidepres-

sant Acute 2 weeks Att., EF

Yuan et al.87 2018 China RCT 
(Between**) 124 (85/39) 6.5 (2.0) ID Lithium Low Antipsy-

chotic Long 3 months Int

Table 1.   Demographic, sample, anticholinergic medication and cognitive outcome characteristics for included 
studies within meta-analysis for cognitive outcomes on and off anticholinergic medication. *Age reported as 
mean (SD or range) or median [range]. **Sufficient data available for both within- and between-groups design. 
Selection was made using protocol outlined in “Methods”. Studies without description of gender split did not 
report this information in their original study. ADHD attention deficit hyperactive disorder, Att. attention, BPD 
bipolar disorder, CD conduct disorder, CF + R concept formation and reasoning, Comp. composite score, DBD 
disruptive behaviour disorder, EF executive function, ID intellectual disability, Int. intelligence, IQ intelligence 
quotient, Lan. language, MDD major depressive disorder, Mem. memory, NRCT​ non-randomized controlled 
trial, NR not reported, PDD pervasive developmental disorder, Perc. perception, PM psychomotor functioning, 
RCT​ randomized controlled trial, SAR seasonal affective rhinitis, TBI traumatic brain injury.
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Figure 2.   Forest plot for overall cognition analysis.

Figure 3.   Funnel plot for overall cognition analysis.
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know the effects of the long-term use anticholinergic antidepressants in children. Notably, a small positive effect 
of anticholinergic medication on memory was found when only including studies of high quality. Whether this 
is a true effect, which is counter to that found in adults93, needs to be replicated in future studies. Lastly, there 
are important biological differences between children and adults that would modify the psychopharmacological 
effects of anticholinergic medications, particularly blood brain permeability94,95.

This study is not without limitations. The included studies were biased in terms of geographical representa-
tiveness. Fourteen studies were excluded at the full-text stage as they were not in English (of 323) and we do 
not know if any would have met inclusion criteria; although, given the low number, they would unlikely have 
changed the conclusions. Authors of papers were contacted, but we either had no response or the author was 
unable to provide us with the necessary data where it was not presented in text. We assessed the effect of duration 
of exposure on cognitive outcomes, when total dose or volume of exposure may have been more appropriate. 
However, this information was inconsistently reported or not reported at all in many of the studies. Therefore, 
duration of use was used as the best proxy for volume of exposure, with the assumption that longer duration of 
use would equate to higher volume of exposure. Only 21 of the 100 high- or low-potency anticholinergics identi-
fied in a systematic review of anticholinergic medications by Duran et al.12 were used in the studies included in 
this meta-analysis. It may be that different results would be seen had children been exposed to a wider range of 
anticholinergic medicines. Positively, the vast majority of studies (all but two) utilised valid and reliable cognitive 
outcome measures, as catalogued specifically or adapted from those detailed in Lezak et al.96.

Conclusion
By pooling effects across previous literature, anticholinergic medications do not appear to detrimentally affect 
cognitive function in children. In fact, there may be a small positive cognitive benefit of anticholinergic anti-
depressants, at least in the short-term. Our findings appear to conflict with reviews in older adults, and future 
studies will have to disentangle the reasons for this.

Table 2.   Pooled estimates for subgroup analyses by anticholinergic drug class, potency, length of 
administration and cognitive domains.

Subgroup analysis

Pooled estimate Heterogeneity
Test of between-
subgroups differences

k g 95% CI p value Tau2 I2 Q Q df p value

Drug class 9.98 5 0.08

Antiepileptic 14 − 0.03 − 0.17–0.11 0.63 0 9.67 14.39

Antipsychotic 14 0.06 − 0.03–0.16 0.19 0 0 7.44

Antidepressant 7 0.24 0.01–0.47 0.04 0 13.22 6.91

Respiratory 5 0.02 − 0.15–0.19 0.75 0 0 1.48

Opioid analgesic 3 − 0.18 − 0.79–0.44 0.34 0 0 1.84

Urological 2 − 0.13 − 1.83–1.58 0.52 0 0 0.18

Potency 0.71 1 0.40

Low 36 0.02 − 0.05–0.09 0.50 0 0 27.40

High 10 0.11 − 0.11–0.33 0.29 0.01 28.02 12.50

Length of administration 2.62 2 0.27

Current and long-term 29 0.07 − 0.03–0.17 0.19 0.01 23.39 36.55

Current and acute 20 0.05 − 0.04–0.14 0.25 0 0 8.06

Historical 3 − 0.18 − 0.79–0.44 0.34 0.00 0 1.84

Cognitive domain 5.59 7 0.59

Attention 37 0.04 − 0.04–0.12 0.32 0 0 35.49

Psychomotor functioning 17 − 0.10 − 0.32–0.11 0.32 0.10 63.24 43.52

Concept formation and reasoning 13 0.14 − 0.02–0.30 0.08 0.01 15.96 14.28

Perception 3 0.25 − 0.90–1.39 0.45 0.11 50.18 4.01

Memory 16 0.04 − 0.06–0.14 0.40 0 0 9.05

Executive function 15 − 0.01 − 0.27–0.24 0.91 0.12 48.50 27.19

Intelligence 14 0.08 − 0.18–0.33 0.53 0.13 76.23 54.70

Language 6 0.11 − 0.07–0.29 0.17 0 0 4.54
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Figure 4.   Forest plot for medication class sub-analysis.
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Figure 5.   Forest plot for anticholinergic potency sub-analysis.
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Figure 6.   Forest plot for length of administration sub-analysis.
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Figure 7.   Forest plot for cognitive domain sub-analysis.
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