1 CoronaHiT: High throughput sequencing of SARS-CoV-2

2 genomes

3	Dave J. Baker ^{1,*} , Alp Aydin ^{1,*} , Thanh Le-Viet ¹ , Gemma L. Kay ¹ , Steven Rudder ¹ ,			
4	Leonardo de Oliveira Martins ¹ , Ana P. Tedim ^{1,2} , Anastasia Kolyva ^{1,3} , Maria Diaz ¹ ,			
5	Nabil-Fareed Alikhan ¹ , Lizzie Meadows ¹ , Andrew Bell ¹ , Ana Victoria Gutierrez ¹ ,			
6	Alexander J. Trotter ^{1,4} , Nicholas M. Thomson ¹ , Rachel Gilroy ¹ , Luke Griffith ⁴ , Evelien			
7	M. Adriaenssens ¹ , Rachael Stanley ³ , Ian G. Charles ^{1,4} , Ngozi Elumogo ^{1,3} , John Wain ^{1,4} ,			
8	Reenesh Prakash ³ , Emma Meader ³ , Alison E. Mather ^{1,4} , Mark A. Webber ^{1,4} , Samir			
9	Dervisevic ³ , Andrew J. Page ^{1,*,+} and Justin O'Grady ^{1,4,*,+}			
10				
11	1 Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.			
12	2 Grupo de Investigación Biomédica en Sepsis - BioSepsis. Hospital Universitario Rio			
13	Hortega/Instituto de Investigación Biomédica de Salamanca (IBSAL),			
14	Valladolid/Salamanca, Spain.			
15	3 Norfolk and Norwich University Hospital, Colney Lane, Norwich, NR4 7UY, UK.			
16	4 University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.			
17	*Contributed equally			
18	⁺ Corresponding authors: <u>andrew.page@quadram.ac.uk</u> (bioinformatics);			
19	justin.ogrady@quadram.ac.uk (sequencing)			
20	Keywords: SARS-CoV-2, Nanopore, Sequencing, NGS, Genome, Genetic, multiplexing,			
21	ARTIC			

22 Abstract

23 The COVID-19 pandemic has spread to almost every country in the world since it started 24 in China in late 2019. Controlling the pandemic requires a multifaceted approach 25 including whole genome sequencing to support public health interventions at local and 26 national levels. One of the most widely used methods for sequencing is the ARTIC 27 protocol, a tiling PCR approach followed by Oxford Nanopore sequencing (ONT) of up 28 to 96 samples at a time. There is a need, however, for a flexible, platform agnostic, 29 method that can provide multiple throughput options depending on changing 30 requirements as the pandemic peaks and troughs. Here we present CoronaHiT, a method 31 capable of multiplexing up to 96 small genomes on a single MinION flowcell or >384 32 genomes on Illumina NextSeq, using transposase mediated addition of adapters and PCR 33 based addition of barcodes to ARTIC PCR products. We demonstrate the method by 34 sequencing 95 and 59 SARS-CoV-2 genomes for routine and rapid outbreak response 35 runs, respectively, on Nanopore and Illumina platforms and compare to the standard 36 ARTIC LoCost nanopore method. Of the 154 samples sequenced using the three 37 approaches, genomes with \geq 90% coverage (GISAID criteria) were generated for 64.3% 38 of samples for ARTIC LoCost, 71.4% for CoronaHiT-ONT, and 76.6% for CoronaHiT-39 Illumina and have almost identical clustering on a maximum likelihood tree. In 40 conclusion, we demonstrate that CoronaHiT can multiplex up to 96 SARS-CoV-2 41 genomes per MinION flowcell and that Illumina sequencing can be performed on the 42 same libraries, which will allow significantly higher throughput. CoronaHiT provides 43 increased coverage for higher Ct samples, thereby increasing the number of high quality

44	genomes that pass the GISAID QC threshold. This protocol will aid the rapid expansion
45	of SARS-CoV-2 genome sequencing globally, to help control the pandemic.

46 Introduction

47	The COVID-19 pandemic caused by the SARS-CoV-2 virus began late 2019 in Wuhan,
48	China and has now spread to virtually every country in the world, with tens of millions of
49	confirmed cases and millions of deaths (Dong, Du, and Gardner 2020). Key to the control
50	of the pandemic is understanding the epidemiological spread of the virus at global,
51	national and local scales (Shu and McCauley 2017). Whole genome sequencing of
52	SARS-CoV-2 is likely to be the fastest and most accurate method to study virus
53	epidemiology as it spreads. We are sequencing SARS-CoV-2 as part of the COVID-19
54	Genomics UK (COG-UK) consortium, a network of academic and public health
55	institutions across the UK brought together to collect, sequence and analyse whole
56	genomes to fully understand the transmission and evolution of this virus
57	(https://www.cogconsortium.uk/). The SARS-CoV-2 genome was first sequenced in
58	China using a metatranscriptomic approach (Wu et al. 2020). This facilitated the design
59	of tiling PCR approaches for genome sequencing, the most widely used of which is the
60	ARTIC Network (https://artic.network) protocol. Consensus genome sequences are
61	typically made publicly available on GISAID (Elbe and Buckland IMerrett 2017). This
62	has enabled real-time public health surveillance of the spread and evolution of the
63	pandemic through interactive tools such as NextStrain (Hadfield et al. 2018). The ARTIC
64	network protocol was designed for nanopore technology (Oxford Nanopore
65	Technologies), enabling rapid genome sequencing for outbreak response. The method

66	was originally capable of testing only 23 samples plus a negative control on a flowcell,
67	however, with the recent release of the Native Barcoding Expansion 96 kit by ONT, 11-
68	95 samples plus a negative control can be sequenced on a flowcell using the ARTIC
69	LoCost V3 method (Quick, 2020). A platform agnostic method is required to provide
70	flexible throughput on Illumina or nanopore that allows low-cost sequencing of 10s to
71	100s of viral genomes depending on (1) changing requirements as the pandemic peaks
72	and troughs and (2) the turnaround time required e.g. routine weekly vs rapid outbreak
73	sequencing. Here we describe a flexible protocol, Coronavirus High Throughput
74	(CoronaHiT), which allows for up to 95 samples, plus a negative control to be
75	multiplexed on a single MinION flowcell or alternatively, by switching barcodes, over
76	384 samples on Illumina. We demonstrate CoronaHiT's performance on 95 and 59
77	SARS-CoV-2 genomes on MinION and Illumina NextSeq for routine and rapid outbreak
78	response runs, respectively, and compare to the ARTIC LoCost protocol.
79	
80	
81	
82	
83	
84	

86 Methods

87 Patient samples and RNA extraction

- 88 Samples from cases with suspected SARS-CoV-2 were processed using five different
- 89 diagnostic platforms over four laboratories in East Anglia the Cytology Department and
- 90 Microbiology Departments, NNUH, Norwich, UK, the Bob Champion Research &
- 91 Education Building (BCRE), University of East Anglia, Norwich, UK and Ipswich Public
- 92 Health Laboratory, Ipswich, UK.
- 93 The Cytology Department processed samples using the Roche Cobas® 8800 SARS-CoV-
- 94 2 system (www.who.int/diagnostics_laboratory/eul_0504-046-
- 95 00_cobas_sars_cov2_qualitative_assay_ifu.pdf?ua=1) according to the manufacturer's
- 96 instructions (n=95). The Microbiology Department processed samples using either the
- 97 Hologic Panther System Aptima® SARS-CoV-2 assay
- 98 (www.fda.gov/media/138096/download) (n=25) or Altona Diagnostics RealStar® SARS-
- 99 CoV-s RT-PCR Kit 1.0 (altona-diagnostics.com/files/public/Content%20Homepage/-
- 100 %2002%20RealStar/MAN%20-%20CE%20-%20EN/RealStar%20SARS-CoV-2%20RT-
- 101 PCR%20Kit%201.0_WEB_CE_EN-S03.pdf) according to the manufacturer's
- 102 instructions (n=3). At the BCRE, RNA was extracted using the MagMAXTM
- 103 Viral/Pathogen II Nucleic Acid Isolation kit (Applied Biosystems) according to the
- 104 manufacturer's instructions and the KingFisher Flex system (ThermoFisher). The
- 105 presence of SARS-CoV-2 was determined using the 2019-nCoV CDC assay
- 106 (https://www.fda.gov/media/134922/download) on the QuantStudio 5 (Applied

- 107 Biosystems) (n=7). Ipswich Public Health Laboratory processed samples using the
- 108 AusDiagnostics SARS-CoV-2, Influenza and RSV 8-well panel
- 109 (www.ausdx.com/qilan/Products/20081-
- 110 r01.1.pdf;jsessionid=5B2099CAE4D0D152C869A190D0032D71) (n=24). RNA was
- 111 extracted from swab samples using either the AusDiagnostics MT-Prep (AusDiagnostics)
- 112 or QIAsymphony (Qiagen) platforms according to the manufacturer's instructions before
- 113 being tested by the AusDiagnostics assay.
- 114
- 115 Viral transport medium from positive swabs (stored at 4°C) was collected for all samples

116 run on the Roche Cobas®, Hologic Panther System and Altona RealStar®. In all other

117 cases excess RNA was collected (frozen at -80°C). Excess positive SARS-CoV-2

- 118 inactivated swab samples (200µl viral transport medium from nose and throat swabs
- 119 inactivated in 200 µl Zymo DNA/RNA shield and 800 µl Zymo viral DNA/RNA buffer)
- 120 were collected from Cytology and the Microbiology Departments. SARS-CoV-2 positive

121 RNA extracts (~20 µl) were collected from Ipswich Public Health Laboratory and the

- 122 BCRE as part of the COG-UK Consortium project (PHE Research Ethics and
- 123 Governance Group R&D ref no NR0195). RNA was extracted from inactivated swab
- samples using the Quick DNA/RNA Viral Magbead kit from step 2 of the DNA/RNA
- 125 purification protocol (Zymo) (files.zymoresearch.com/protocols/_r2140_r2141_quick-
- 126 dna-rna_viral_magbead.pdf).

128	The lower of the cycle thresholds (Ct) produced by the two SARS-CoV-2 assays in the
129	Roche, AusDiagnostics, Altona Diagnostics and CDC assays were used to determine
130	whether samples required dilution before sequencing according to the ARTIC protocol.
131	The Aptima SARS-CoV-2 assay on the Hologic Panther System does not provide a Ct
132	value but rather a combined fluorescence signal for both targets in relative light units
133	(RLUs), therefore all samples tested by the Hologic Panther were processed undiluted in
134	the ARTIC protocol.

136 ARTIC SARS-CoV-2 multiplex tiling PCR

- 137 cDNA and multiplex PCR reactions were prepared following the ARTIC nCoV-2019
- 138 sequencing protocol V3 (LoCost) (Quick, 2020). Dilutions of RNA were prepared when
- required based on Ct values following the guidelines from the ARTIC protocol.
- 140 V3 CoV-2 primer scheme (<u>https://github.com/artic-network/artic-</u>
- 141 <u>ncov2019/tree/master/primer_schemes/nCoV-2019/V3</u>) were used to perform the
- 142 multiplex PCR for SARS-CoV-2 according to the ARTIC protocol (Quick, 2020). For the
- 143 ARTIC multiplex PCR, 65°C was chosen as the annealing/extension temperature, and
- 144 due to variable Ct values, all samples were run for 35 cycles in the two multiplex PCRs.

145

146 CoronaHiT-ONT library preparation

147	Libraries were prepared using a novel modified Illumina DNA prep tagmentation			
148	approach (formerly called Nextera DNA Flex Illumina Library Prep) (Rowan et al. 2019;			
149	Beier et al. 2017). Primers with a 3' end compatible with the Nextera transposon insert			
150	and a 24bp barcode at the 5' end with a 7 bp spacer were used to PCR barcode the			
151	tagmented ARTIC PCR products. The barcode sequences are from the PCR Barcoding			
152	Expansion 1-96 kit (EXP-PBC096, Oxford Nanopore Technologies). Symmetrical dual			
153	barcoding was used, i.e. the same barcode added at each end of the PCR product and up			
154	to 96 samples could be run together using this approach or 95 if a negative control is			
155	included (Supplementary Table 4).			
156	ARTIC PCR products were diluted 1.5 (2.5 µl Pool 1. 2.5 µl Pool 2 and 20 µl PCR grade			
157	water) Tagmentation was performed as follows: 0.5 µl TB1 Tagmentation Buffer 1.0.5			
158	ul BLT Bead-Linked Transposase (both contained in Illumina® DNA Prep. (M)			
159	Tagmentation Catalogue No 20018704) and 4 µl PCR grade water was made as a master			
160	mix scaled to sample number. On ice, 5 µl of tagmentation mix was added to each well of			
161	a chilled 96-well plate. Next, 2 µl of diluted PCR product was pipette mixed with the 5 µl			
162	tagmentation mix. This plate was sealed and briefly centrifuged before incubation at			
163	55°C for 15 minutes in a thermal cycler (heated lid 65° C) and held at 10°C.			
164	PCR barcoding was performed using Kapa 2G Robust PCR kit (Sigma Catalogue No.			
165	KK5005) as follows: 4 µl Reaction buffer (GC), 0.4 µl dNTP's, 0.08 µl Kapa 2G Robust			
166	Polymerase and 7.52 μ l PCR grade water per sample were mixed and 12 μ l was added to			
167	each well in a new 96-well plate. 1 μ l of the appropriate barcode pair (Supplementary			
168	Table 4) at 10 μ M was added to each well. Finally, the 7 μ l of Tagmentation mix was			

added, making sure to transfer all the beads. PCR reactions were run at 72°C for 3
minutes, 95°C for 1 minute, followed by 14 cycles of 95°C for 10 seconds, 55°C for 20
seconds and 72°C for 1 minute. Following PCR, 2 µl of each sample was pooled and 40
μl of this pool was bead washed with 36 μl (0.8X) AMPure XP beads (2 washes in 200 μl
70% ethanol) for the routine samples. For the rapid response run, 100 μl of the pool was
washed with 60 μ l (0.6X) AMPure XP. Pools were eluted in 20 μ l of EB (Qiagen
Catalogue No. 19086). The barcoded pool was quantified using Qubit High Sensitivity kit
(Catalogue No. Q32851).
A nanopore sequencing library was then made, largely following the SQK-LSK109
protocol. The end-prep reaction was prepared as follows: 7 μ l Ultra II end prep buffer, 3
μ l Ultra II end prep enzyme mix, 40 μ l nuclease free water and 10 μ l of washed barcoded
pool from the previous step (final volume 60 μ l). The reaction was incubated at room
temperature for 15 mins and 65°C for 10 mins, followed by a hold at 4°C for at least 1
min. This was bead-washed using 60 μl of AMPure Beads (1X) and two 200 μl 70%
ethanol washes and eluted in 61 μ l nuclease free water. The end-prepped DNA was taken
forward to the adapter ligation as follows: 30 μ l end-prepped pool from previous step
(~60 ng), 30 µl nuclease free water, 25 µl LNB (ONT), 10 µl NEBNext Quick T4 Ligase
and 5 μl AMX (ONT) was mixed and incubated at room temperature for 20 minutes.
After the incubation, the full volume was washed with 40 μl AMPure XP beads and 2
consecutive 250 μ l SFB (ONT) washes with resuspension of beads both times and this
was eluted in 15 μ l of EB (ONT). The final library was quantified with Qubit High

190 Sensitivity and size checked on a Tapestation with D5000 tape. 12 µl (~30-50 ng) was

used for flowcell loading, with the addition of $37.5 \,\mu$ l SQB and $25.5 \,\mu$ l LB.

192

193 CoronaHiT-Illumina library preparation

194 PCR products were tagmented and barcoded as described for the CoronaHiT-ONT library 195 preparation, however, standard Nextera XT Index Kit indexes were used (Sets A to D for 196 up to 384 combinations, Illumina Catalogue No's FC-131-2001, FC-131-2002, FC-131-197 2003 and FC-131-2004). The PCR master mix was adjusted and water removed to add 2 198 µl each of the P7 and P5 primers. Five microliters of each barcoded sample was pooled 199 (without quantification) and 100 μ l of the library pool was size selected with 0.8X 200 AMPure XP beads (80 µl), with final elution in 50 µl EB (10mM Tris-HCl). The 201 barcoded pool was sized on a Agilent Tapestation D5000 tape and quantified using 202 QuantiFluor® ONE dsDNA System (Promega, WI, USA) and the molarity calculated. 203 The Illumina library pool was run at a final concentration of 1.5 pM on an Illumina 204 Nextseq500 instrument using a Mid Output Flowcell (NSQ® 500 Mid Output KT v2 205 (300 CYS) Illumina Catalogue FC-404-2003) following the Illumina recommended 206 denaturation and loading recommendations which included a 1% PhiX spike (PhiX 207 Control v3 Illumina Catalogue FC-110-3001).

209 ARTIC LoCost protocol Nanopore library preparation

210	After ARTIC multiplex PCR, library preparation was performed using the nCoV-2019
211	sequencing protocol v3 (LoCost) V3 (Quick, 2020). Briefly, PCR Pool 1 and 2 were
212	pooled for each sample and diluted 1 in 10 (2.5 μl Pool 1, 2.5 μl Pool 2 and 45 μl
213	nuclease free water), and end-prepped as follows: 1.2 μl Ultra II end prep buffer, 0.5 μl
214	Ultra II end prep enzyme mix, 3.3 μl PCR dilution from previous step and 5 μl nuclease
215	free water (final volume 15 μ l). The reaction was incubated at room temperature for 15
216	min and 65°C in a thermocycler for 15 min and incubated on ice for 1 min. Native
217	barcode ligation was prepared in a new plate: $0.75 \ \mu l$ end-prepped DNA, $1.25 \ \mu l$ native
218	barcode, 5 μ l Blunt/TA Ligase Master Mix, 3 μ l nuclease free water, (final volume 10
219	μ l). The reaction was incubated at room temperature 20 min and 65°C in a thermocycler
220	for 10 min and incubated on ice for 1 min. Amplicons were pooled together (2 μl for 95
221	samples and 5 μl for 59 samples) and underwent a 0.4X AMPure bead wash with two 250
222	μl SFB washes and one 70% ethanol wash. DNA was eluted in 30 μl of Qiagen EB.
223	Adapter ligation was performed on the full volume (30 μ l barcoded amplicon pool, 5 μ l
224	Adapter Mix II (ONT), 10 μ l NEBNext Quick Ligation Reaction Buffer (5X), 5 μ l Quick
225	T4 DNA Ligase). The ligation reaction was incubated at room temperature for 20 min
226	and 1X bead washed (50 μl AMPure XP beads) with 250 μl SFB two times. The library
227	was eluted in 15 μ l of elution buffer (ONT) and quantified. 15 ng of the adapted library
228	was used for final loading.
220	

229

230 Nanopore sequence analysis

231	Basecalling was performed using Guppy v.4.2.2 (Oxford Nanopore Technologies) in high
232	accuracy mode (model dna_r9.4.1_450bps_hac), on a private OpenStack cloud at
233	Quadram Institute Bioscience using multiple Ubuntu v18.04 virtual machines running
234	Nvidia T4 GPU.
235	
236	The CoronaHiT-ONT sequencing data were demultiplexed using guppy_barcoder
237	(v4.2.2) with a custom arrangement of the barcodes as described at
238	https://github.com/quadram-institute-bioscience/coronahit_guppy, with the option
239	'require_barcodes_both_ends' and a score of 60 at both ends to produce 95 FASTQ files
240	(94 SARS-CoV-2 samples and 1 negative control) and 61 FASTQ files (59 SARS-CoV-2
241	samples and 2 negative control) for the routine and rapid response runs, respectively. The
242	ARTIC ONT sequencing data were demultiplexed using guppy_barcoder (v4.2.2) with
243	the option 'require_barcodes_both_ends' and a score of 60 at both ends to produce 95
244	FASTQ files (94 SARS-CoV-2 samples and 1 negative control) and 61 FASTQ files (59
245	SARS-CoV-2 samples and 2 negative control) for the routine and rapid response runs,
246	respectively.
247	

The downstream analysis was performed using a copy of the ARTIC pipeline (v1.1.3) as
previously described (Loman, Rowe, and Rambaut 2020) to generate a consensus
sequence for each sample in FASTA format. The pipeline includes the following main
steps: The input reads were filtered based on reads length (ARTIC: 400-700; CoronaHiT:

252	150-600), and mapped to the Wuhan-Hu-1 reference genome (accession MN908947.3)
253	using minimap2 (v 2.17-r941). The mapped bases in BAM format were trimmed off in
254	primer regions by the ARTIC subcommand align_trim for ARTIC LoCost data. For
255	CoronaHiT-ONT data, we used the subcommand samtools ampliconclip (v 1.11) at the
256	primer trimming step (https://github.com/quadram-institute-
257	bioscience/fieldbioinformatics/tree/coronahit). The trimmed reads were then used for
258	variant calling with medaka (v 1.2.0) and longshot (v 0.4.1). The final consensus was
259	generated from a filtered VCF file and a mask file of positions with either a depth of
260	coverage lower than 20 or a SNP in an amplifying primer site. The consensus sequences
261	were uploaded to GISAID and the raw sequence data was uploaded to the European
262	Nucleotide Archive under BioProject PRJEB41737. The accession numbers for each
263	sample are available in Supplementary Table 1. The metrics and results of all
264	experiments are available in Supplementary Table 2 and are summarised in Table 1.

265

266 Illumina sequence analysis

267 Additional samples, not reported in this study, were included on Illumina NextSeq runs.

268 The raw reads were demultiplexed using bcl2fastq (v2.20) (Illumina Inc.) to produce 311

269 FASTQ files for the run with the routine samples (112 SARS-CoV-2 samples and 3

270 negative controls) and the run with the rapid response samples (247 SARS-CoV-2

samples, 4 negative controls, and 2 positive controls) with only the relevant samples

analysed in this paper. The reads were used to generate a consensus sequence for each

- sample using an open source pipeline adapted from <u>https://github.com/connor-</u>
- 274 <u>lab/ncov2019-artic-nf</u> (
- 275 <u>https://github.com/quadram-institute-bioscience/ncov2019-artic-nf/tree/qib</u>). Briefly, the
- 276 reads had adapters trimmed with TrimGalore
- 277 (https://github.com/FelixKrueger/TrimGalore), were aligned to the Wuhan-Hu-1
- 278 reference genome (accession MN908947.3) using BWA-MEM (v0.7.17) (Li 2013), the
- ARTIC amplicons were trimmed and a consensus built using iVAR (v.1.2.3) (Grubaugh
- et al. 2019).

281

282 **Quality Control**

283 The COG-UK consortium defined a consensus sequence as passing COG-UK quality

control if greater than 50% of the genome was covered by confident calls or there was at

least 1 contiguous sequence of more than 10,000 bases and with no evidence of

contamination. This is regarded as the minimum amount of data to be phylogenetically

useful. A confident call was defined as having a minimum of 10X depth of coverage for

288 Illumina data and 20X depth of coverage for Nanopore data. If the coverage fell below

these thresholds, the bases were masked with Ns. Low quality variants were also masked

290 with Ns. The QC threshold for inclusion in GISAID was higher, requiring that greater

than 90% of the genome was covered by confident calls with no evidence of

292 contamination.

294 **Phylogenetic analysis**

295	For each sam	ple sequenced	l in 3 se	parate experiments	(CoronaHiT-ONT	. CoronaHiT-
					(<i>y</i>

- 296 Illumina, ARTIC-ONT), a phylogeny was generated from all of the consensus genomes
- 297 (n=216 for the routine samples and n=132 for the rapid response samples) passing
- 298 GISAID QC over all experiments (n=72 out of 95, and n=44 out of 59). A multiple
- 299 FASTA alignment was created by aligning all samples to the reference genome
- 300 MN908947.3 with MAFFT v7.470. A maximum likelihood tree was estimated with
- 301 IQTREE2 (v2.0.4) (Minh et al. 2020) under the HKY model (Hasegawa, Kishino, and
- 302 Yano 1985), collapsing branches smaller than 10^{-7} into a polytomy. SNPs in the multiple
- 303 FASTA alignment were identified using SNP-sites (v2.5.1) (Page et al. 2016) and the tree

304 was visualised with FigTree (v1.4.4) (<u>https://github.com/rambaut/figtree</u>).

305

306 **Results**

307 A novel library preparation method, CoronaHiT, was developed for SARS-CoV-2

308 genome sequencing, which combines a cheap transposase-based introduction of adapters

309 (Illumina Nextera) with symmetric PCR barcoding of up to 96 samples (or 95 samples

310 with a negative control) on a MinION. Alternatively, if higher throughput is needed, the

311 barcodes can be switched for Illumina sequencing. For ONT sequencing, Nextera adapter

312 complementary primer sequences were added to ONT PCR barcodes and used to barcode

- 313 ARTIC PCR products (Figure 1) as described in the methods. For Illumina sequencing,
- the method is a streamlined and cheaper version of standard Illumina library preparations.
- 315 CoronaHiT does not require individual sample washes and allows samples to be

316 processed uniformly without quantification or normalisation as with the ARTIC LoCost317 method.

318

319	The CoronaHiT method was tested by multiplexing 95 SARS-CoV-2 routine COG-UK
320	samples plus a blank (hereinafter referred to as the Routine Samples) on a MinION
321	flowcell and on an Illumina NextSeq run. Another 59 samples, including 18 query
322	outbreak samples, plus blanks (hereinafter referred to as the Rapid Response samples)
323	were rapidly sequenced (within 24 hrs of receipt, with results available the following day)
324	on a second flowcell, as well as on Illumina NextSeq. All samples were also sequenced
325	using the ARTIC LoCost library preparation protocol on the MinION for comparison.
326	For the routine samples, 30 hours of sequencing data was used for both CoronaHiT-ONT
327	and ARTIC LoCost, and for the rapid response set, 18 hours was used; the full dataset
328	was used for both CoronaHiT-Illumina runs. The different methods produced different
329	amounts of demultiplexed data. For the routine samples, CoronaHiT-ONT yielded 9.6
330	Gbases of sequence data, ARTIC LoCost sequencing produced 8.0 Gbases of data, and
331	CoronaHiT-Illumina yielded 15.7 Gbases giving on average 1145X, 1719X and 4649X
332	coverage per sample (Table 1). For the rapid response dataset, CoronaHiT-ONT
333	produced 5.7 Gbases, ARTIC LoCost 4.5 Gbases, and CoronaHiT-Illumina 7.3 Gbases
334	resulting in 1104X, 1421X, and 3010X coverage per sample respectively. Both
335	CoronaHiT-ONT runs had less variation in coverage between samples compared to the
336	ARTIC LoCost runs, with lower standard deviation relative to the mean (Table 1). The
337	lower coverage for CoronaHiT-ONT compared to ARTIC is related to the shorter read

338 lengths and the increased proportion of barcode/adapter sequence in each read and,

hence, the reduced mappable region of each read.

340

341	Taking all the genomes which passed COG-UK QC, the CoronaHiT-Illumina sequencing
342	runs produced the shortest mappable mean read length at 135 and 131 bases for the
343	routine samples and rapid response samples respectively, just short of the maximum 150
344	bases for the PE 151 chemistry; ARTIC LoCost produced 386 and 384 bases, and
345	CoronaHiT-ONT sequencing produced mappable mean read lengths of 205 and 241
346	bases. The shorter read lengths for CoronaHiT are related to the use of bead-linked
347	transposases for tagmentation, resulting in the removal of the ends of the ARTIC PCR
348	products. The introduction of a 0.6X bead wash for the rapid response CoronaHiT-ONT
349	run (instead of the 0.8X bead wash for the routine run) resulted in the longer mapped
350	reads and contributed to a reduction in the difference in average coverage between
351	CoronaHiT and ARTIC (from 1145x vs 1719x in routine run dropping to 1104X vs
352	1421X in the rapid response run, with similar ratios of raw data produced by the methods
353	in the two runs).
354	

355 The demultiplexing steps for CoronaHiT-ONT were different from those used for ARTIC

356 ONT sequencing as described in the methods section. Comparing the nanopore

357 sequencing methods for the routine samples, 74.7% and 81.9% of reads were

demultiplexed successfully for CoronaHiT-ONT and ARTIC LoCost respectively when

359 only reads with a PHRED (quality) score above Q7 are considered; for the rapid response

360 set, 69.6% and 71.6% were demultiplexed for CoronaHiT-ONT and ARTIC LoCost. The

361	rest of the reads were unassigned, due to an inability to detect the barcode sequences at
362	both ends of the reads. The negative controls contained zero mapping reads to SARS-
363	CoV-2 for all nanopore datasets. The Illumina routine dataset had mapped reads,
364	however, the vast majority were primers dimers (range of 0-4 SARS-CoV-2 reads >40bp
365	mapped out of the 3 negative controls).
366	
367	Poor quality consensus genomes were generally associated with a lower SARS-CoV-2
368	viral load in the clinical samples i.e. higher RT-qPCR Ct values (generally above Ct 32)
369	were more likely to fail COG-UK and GISAID quality control thresholds. For all
370	methods the number of Ns increased significantly in samples with a Ct above 32, which
371	equates to approx 100 viral genome copies in the PCR reaction (Figure 2).
372	Supplementary Figures 1a-f show the Ns (missing or masked bases) within the consensus
373	genomes - the three ARTIC PCR primer dropout areas (Benjamin Farr et al. 2020) are
374	clearly visible. Comparing the routine samples with a Ct of 32 or below (n=65; Cts for
375	most rapid response samples were unknown), the mean (median) number of Ns was 815
376	(121) for ARTIC LoCost, 111 (47) for CoronaHiT-Illumina, and 682 (339) for
377	CoronaHiT-ONT. If all samples are included for the routine set (including higher Ct
378	samples) then the number of Ns increases substantially to a mean (median) of 1635 (121)
379	bases for ARTIC LoCost, 688 (53) for CoronaHiT-Illumina and 1504 (359) for
380	CoronaHiT-ONT.
381	
382	The number of samples passing the COG-UK QC criteria was 73 for ARTIC LoCost, 76

383 for CoronaHiT-ONT and 78 for CoronaHiT-Illumina in the routine set and 44 for ARTIC

384	LoCost, and 48 for both CoronaHiT-ONT and CoronaHiT-Illumina in the rapid response
385	set. The stricter GISAID QC criteria reduces the number of samples passing QC, with the
386	CoronaHiT method outperforming ARTIC LoCost. For the routine samples, 59 samples
387	passed for ARTIC LoCost, 66 passed for CoronaHiT-ONT and 74 passed for CoronaHiT-
388	Illumina and for the rapid response set 40 passed for ARTIC LoCost, and 44 passed for
389	both CoronaHiT-ONT and CoronaHiT-Illumina. Overall, the pass rate was 64.3% for
390	ARTIC LoCost, 71.4% for CoronaHiT-ONT and 76.6% for CoronaHiT-Illumina. When
391	considering higher viral load samples with a known Ct of 32 or below, the pass rate for
392	both GISAID and COG-UK QC was higher, with 89.2% passing for ARTIC LoCost and
393	95.2% and 97.6% passing for CoronaHiT-ONT and CoronaHiT-Illumina, respectively
394	(full details are shown in Table 2). CoronaHiT-ONT had a higher pass rate compared to
395	ARTIC LoCost even though the average coverage was lower, this related to more even
396	coverage across samples on the flowcell (lower standard deviation between samples
397	relative to the mean - Table 1).
398	
399	To assess the impact of data quality differences on clustering of lineages, we built
400	maximum likelihood trees for both the routine and rapid response runs with each of the
401	72 and 44 consensus genomes that passed QC from the ARTIC LoCost, CoronaHiT-ONT
402	and CoronaHiT-Illumina sequencing experiments. When the consensus genomes were
403	placed on a phylogenetic tree for the routine set, CoronaHiT-Illumina, ARTIC LoCost,
404	CoronaHiT-ONT showed the same clustering for most samples, except for three cases
405	(EB1DB, EC741 and EC644) where we note that their ARTIC LoCost consensus show
406	an increased number of ambiguous bases. All variant differences between the samples are

407	noted in Supplementary Table 3, together with the sequence length (discounting
408	ambiguous bases whenever there is a difference). Out of all samples in both datasets,
409	there were only two SNP discrepancies, one in sample F04F8 between CoronaHiT-ONT
410	and CoronaHiT-Illumina, with ARTIC LoCost calling the SNP ambiguous, and in sample
411	F0A23 with CoronaHiT-ONT disagreeing with the other methods (Supplementary Table
412	3). The SNP differences did not affect the classification (i.e. closest sequence in the
413	database), and there were no SNP differences between ARTIC-ONT and CoronaHiT-
414	Illumina. The main other source of variation between the samples is that the Illumina
415	genomes allow IUPAC (IUPAC-IUB Comm. on Biochem. Nomenclature (CBN) 1970)
416	symbols for "partially" ambiguous bases. These data show that CoronaHiT provides
417	highly accurate lineage calling compared to ARTIC LoCost.
418	
419	The average number of SNPs between the Wuhan-Hu-1 reference genome and the
420	consensus genomes varied between 7.99 SNPs for and 11.00 SNPs for the routine
421	samples, and 18.2 and 20.4 SNPs for the rapid response samples across all methods (see
422	Table 2 and Supplementary Table 2). The mean number of SNPs in CoronaHiT-Illumina
423	was higher compared to the two ONT sequencing methods (Table 2) due to ambiguous
424	bases in the Illumina dataset being regarded as SNPs in these calculations (Table 2).
425	
426	The reagent cost per sample for CoronaHiT-ONT was £8.46 when sequencing 95
427	samples and a negative control on a MinION flowcell, marginally cheaper but similar to

428 ARTIC sequencing at £9.75 per sample (cost breakdown in Supplementary Table 5). If

429 384 samples are sequenced on an Illumina NextSeq Mid output run with the CoronaHiT

430 library preparation method, the per sample cost is $\pounds 5.62$.

431

432 **Discussion**

433 Rapid viral genome sequencing during outbreaks is changing how we study disease

434 epidemiology (Kafetzopoulou et al. 2019; Joshua Quick et al. 2016). The recent SARS-

435 CoV-2 global pandemic has again highlighted the use of sequencing in the control of the

436 spread of the disease. Nanopore technology is particularly suited to outbreak sequencing

437 as it is portable, does not require expensive machinery and is accessible throughout the

438 world (Faria et al. 2016). We present a novel platform agnostic method, CoronaHiT, for

439 flexible throughput, cost effective and low complexity sequencing of SARS-CoV-2

440 genomes to respond to the pandemic at the local and national level.

441

442 The ARTIC LoCost protocol (Quick, 2020) has been widely adopted for SARS-CoV-2

443 genome sequencing and allows up to 95 samples (plus a negative control) to be

sequenced at a time on a MinION. CoronaHiT is just as cheap, simple and fast, but the

445 combination of transposase introduction of adapters with PCR based barcoding allows for

446 more even coverage between multiplexed samples, resulting in a higher proportion of

447 samples passing QC. It is also designed to be platform agnostic, simply switching

448 barcodes to move to Illumina. This allows the user to flexibly sequence low or high

throughput depending on rapidly changing requirements in the pandemic (Bayliss et al.

450 2017; Josh Quick 2020). With the use of asymmetric barcode primers described in Perez-

451	Sepulveda et al. 2020, it is possible to sequence SARS-CoV-2 at very high throughput on
452	Illumina; in fact we have recently sequenced over 1000 SARS-CoV-2 genomes on a
453	single Illumina NextSeq High Output run using this approach (data not shown). The
454	CoronaHiT-Illumina library preparation method is cheaper (reduced reaction volumes)
455	and significantly more streamlined (no sample washing or quantification before pooling,
456	no use of stop solution, no clean-up after tagmentation and no clean-up of barcoded PCR
457	products) than standard Illumina library preparation.
458	
459	Tiling PCR approaches, such as ARTIC, are prone to high genome coverage variation
460	due to variable primer efficiency in multiplex reactions. Some regions of the SARS-CoV-
461	2 genome have hundreds of times higher coverage than adjacent regions using ARTIC,
462	therefore average coverage of at least 1000X is required to obtain at least 20X coverage
463	of the difficult regions of the genome. We demonstrate that we can achieve >1000X
464	SARS-CoV-2 genome coverage in ~20 minutes per sample using CoronaHiT-ONT on
465	MinION, with a full set of 95 samples taking ~30 hours). While the CoronaHiT-ONT
466	runs described here are very consistent, sequencing yield depends on flowcell quality. We
467	recommend aiming for at least 100 Mbases of estimated sequencing yield per sample to
468	provide sufficient data for >1000X coverage/sample (average across flowcell) using
469	CoronaHiT-ONT.
470	

471 Results demonstrate that all methods are unreliable at producing high quality consensus
472 genomes from positive clinical samples with diagnostic RT-qPCR Cts above 32 (approx.
473 100 viral genome copies), however, CoronaHiT performs better in these samples (Figure

474	2), producing fewer Ns, likely due to the additional rounds of PCR during barcoding.
475	Below or equal to Ct 32, CoronaHiT-ONT, CoronaHiT-Illumina and ARTIC LoCost
476	produce similar results. While more samples pass both QC measures with CoronaHiT-
477	ONT and CoronaHiT-Illumina compared to ARTIC LoCost, primer dropout regions can
478	be more pronounced in these methods (Supplementary Figure 1). For higher quality
479	consensus genomes, sequencing may be run for longer. Additionally, a reduction in
480	ARTIC PCR annealing temperature from 65°C to 63°C may help improve coverage
481	across these regions (Benjamin Farr et al. 2020). However, data produced from
482	CoronaHiT was sufficient to provide accurate consensus genomes that result in the same
483	lineages and on the same branches on the phylogenetic tree as ARTIC LoCost (Figure 3).
484	Therefore, we have demonstrated high quality, multiplexed SARS-CoV-2 genome
485	sequencing of 95 samples on a single flowcell. If the ARTIC PCR step is optimised to
486	even the coverage of the amplicons (as demonstrated in the Sanger COVID-19 ARTIC
487	Illumina protocol (Benjamin Farr et al. 2020)), less overall coverage will be required per
488	genome and more samples can be multiplexed using all methods.
489	
490	In conclusion, we demonstrate that CoronaHiT can be used to sequence 96 SARS-CoV-2
491	samples on a single MinION flowcell, with the option of higher throughput on Illumina.
492	This platform agnostic method is simple, rapid and cheap and results in more samples
493	passing QC than ARTIC LoCost while providing almost identical phylogenetic results.

- 494 CoronaHiT can help scientists around the world sequence SARS-CoV-2 genomes with
- 495 highly flexible throughput, thereby increasing our understanding, and reducing the

496 spread, of the pandemic.

497

498 Ethical approval

499 The COVID-19 Genomics UK Consortium has been given approval by Public Health

500 Englands Research Ethics and Governance Group (PHE R&D Ref: NR0195).

501

502 Acknowledgements

503 Thanks to George Taiaroa and Torsten Seemann from the Microbiological Diagnostic

504 Unit Public Health Laboratory at the University of Melbourne for their advice and

solution assistance, to Niamh Tumelty from the University of Cambridge for assistance and to

506 Darren Heavens from the Earlham Institute for his advice on library preparation. Thanks

507 to the COG-UK Consortium Study Group for their contributions.

508

509 **Funding statement**

- 510 The authors gratefully acknowledge the support of the Biotechnology and Biological
- 511 Sciences Research Council (BBSRC); this research was funded by the BBSRC Institute
- 512 Strategic Programme Microbes in the Food Chain BB/R012504/1 and its constituent
- 513 projects BBS/E/F/000PR10348, BBS/E/F/000PR10349, BBS/E/F/000PR10351, and
- 514 BBS/E/F/000PR10352. DJB, NFA, TLV and AJP were supported by the Quadram
- 515 Institute Bioscience BBSRC funded Core Capability Grant (project number
- 516 BB/CCG1860/1). EMA was funded by the BBSRC Institute Strategic Programme Gut

517	Microbes and Health BB/R012490/1 and its constituent project(s) BBS/E/F/000PR10353
518	and BBS/E/F/000PR10356. The sequencing costs were funded by the COVID-19
519	Genomics UK (COG-UK) Consortium which is supported by funding from the Medical
520	Research Council (MRC) part of UK Research & Innovation (UKRI), the National
521	Institute of Health Research (NIHR) and Genome Research Limited, operating as the
522	Wellcome Sanger Institute. The author(s) gratefully acknowledge the UKRI
523	Biotechnology and Biological Sciences Research Council's (BBSRC) support of The
524	Norwich Research Park Biorepository. LG was supported by a DART MRC iCASE and
525	Roche Diagnostics. APT was funded by Sara Borrell Research Grant CD018/0123 from
526	ISCIII and co-financed by the European Development Regional Fund (A Way to Achieve
527	Europe program) and APT QIB internship additionally funded by "Ayuda de la SEIMC".
528	The funders had no role in study design, data collection and analysis, decision to publish,
529	or preparation of the manuscript.

531 Financial declaration

LG received a partial support for his PhD from Roche. The use of Roche technology fordiagnostics in NNUH is coincidental.

534

535 Author contributions

All authors have read this manuscript and consented to its publication. The CoronaHiT
method was developed by DJB and AA. The study was designed and conceived by DJB,

- 538 JOG, AJP. Paper writing was by DJB, AA, AJP, JOG, GLK, APT, TLV, SR, LM.
- 539 Sequencing and library preparation was performed by DJB, AA, SR, GLK, APT, AB,
- 540 AJT, NMT, RG, JOG. Bioinformatics analysis and informatics were performed by TLV,
- 541 LOM, NFA, AJP. Clinical diagnostics and extractions were managed by AK, SD, RP,
- 542 NE, EM. Samples and metadata were collected by LG, AB, AVG, EMA, AK and MD
- 543 and biobanked by RS, RNA was extracted by AB, AJT. Risk assessments were by GLK,
- 544 JW. Project management and oversight was by GLK, JOG, AJP, LM, MW, AEM, JW.
- 545 Funding for the project was secured by JOG, AJP, IGC.

References

- AusDiagnostics. 2020. 'SARS-COV-2, INFLUENZA AND RSV 8-WELL'. 20081. https://www.ausdx.com/qilan/Products/20081-r01.1.pdf.
- Bayliss, Sion C., Vicky L. Hunt, Maho Yokoyama, Harry A. Thorpe, and Edward J. Feil. 2017. 'The Use of Oxford Nanopore Native Barcoding for Complete Genome Assembly'. *GigaScience* 6 (3). https://doi.org/10.1093/gigascience/gix001.
- Beier, Sebastian, Axel Himmelbach, Christian Colmsee, Xiao-Qi Zhang, Roberto A. Barrero, Qisen Zhang, Lin Li, et al. 2017. 'Construction of a Map-Based Reference Genome Sequence for Barley, Hordeum Vulgare L.' Scientific Data 4 (1): 170044. https://doi.org/10.1038/sdata.2017.44.
- Benjamin Farr, Diana Rajan, Emma Betteridge, Lesley Shirley, Michael Quail, Naomi Park, Nicholas Redshaw, et al. 2020. 'COVID-19 ARTIC v3 Illumina Library Construction and Sequencing Protocol', May. https://doi.org/10.17504/protocols.io.bgq3jvyn.
- Dong, Ensheng, Hongru Du, and Lauren Gardner. 2020. 'An Interactive Web-Based Dashboard to Track COVID-19 in Real Time'. *The Lancet Infectious Diseases* 0 (0). https://doi.org/10.1016/S1473-3099(20)30120-1.
- Elbe, Stefan, and Gemma Buckland Merrett. 2017. 'Data, Disease and Diplomacy: GISAID's Innovative Contribution to Global Health'. *Global Challenges* 1 (1): 33–46. https://doi.org/10.1002/gch2.1018.
- Grubaugh, Nathan D., Karthik Gangavarapu, Joshua Quick, Nathaniel L. Matteson, Jaqueline Goes De Jesus, Bradley J. Main, Amanda L. Tan, et al. 2019. 'An Amplicon-Based Sequencing Framework for Accurately Measuring Intrahost Virus Diversity Using PrimalSeq and IVar'. *Genome Biology* 20 (1): 8. https://doi.org/10.1186/s13059-018-1618-7.
- Hasegawa, Masami, Hirohisa Kishino, and Taka-aki Yano. 1985. 'Dating of the Human-Ape Splitting by a Molecular Clock of Mitochondrial DNA'. *Journal of Molecular Evolution* 22 (2): 160–74. https://doi.org/10.1007/BF02101694.
- IUPAC-IUB Comm. on Biochem. Nomenclature (CBN). 1970. 'Abbreviations and Symbols for Nucleic Acids, Polynucleotides, and Their Constituents'. *Biochemistry* 9 (20): 4022–27. https://doi.org/10.1021/bi00822a023.
- Kafetzopoulou, L. E., S. T. Pullan, P. Lemey, M. A. Suchard, D. U. Ehichioya, M. Pahlmann, A. Thielebein, et al. 2019. 'Metagenomic Sequencing at the Epicenter of the Nigeria 2018 Lassa Fever Outbreak'. *Science (New York, N.Y.)* 363 (6422): 74–77. https://doi.org/10.1126/science.aau9343.
- Li, Heng. 2013. 'Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM'. *ArXiv:1303.3997 [q-Bio]*, March. http://arxiv.org/abs/1303.3997.
- Loman, Nicholas J., Will Rowe, and Andrew Rambaut. 2020. 'NCoV-2019 Novel Coronavirus Bioinformatics Protocol'. v1.1.0. https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html.
- Minh, Bui Quang, Heiko A. Schmidt, Olga Chernomor, Dominik Schrempf, Michael D. Woodhams, Arndt von Haeseler, and Robert Lanfear. 2020. 'IQ-TREE 2: New

Models and Efficient Methods for Phylogenetic Inference in the Genomic Era'. *Molecular Biology and Evolution*, February. https://doi.org/10.1093/molbev/msaa015.

- Page, Andrew J., Ben Taylor, Aidan J. Delaney, Jorge Soares, Torsten Seemann, Jacqueline A. Keane, and Simon R. Harris. 2016. 'SNP-Sites: Rapid Efficient Extraction of SNPs from Multi-FASTA Alignments'. *Microbial Genomics* 2 (4): e000056. https://doi.org/10.1099/mgen.0.000056.
- Perez-Sepulveda, B.M., Heavens, D., Pulford, C.V., Predeus, A.V., Low, R., Webster, H., Schudoma, C., Rowe, W., Lipscombe, J., Watkins, C., et al. (2020). An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. BioRxiv 2020.07.22.200840.
- Quick, Josh. 2020. 'NCoV-2019 Sequencing Protocol V2', April. https://doi.org/10.17504/protocols.io.bdp7i5rn.
- Quick, Joshua. 2020b. 'NCoV-2019 Sequencing Protocol V3', August, 2020. https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locostbh42j8ye.
- Quick, Joshua, Nicholas J. Loman, Sophie Duraffour, Jared T. Simpson, Ettore Severi, Lauren Cowley, Joseph Akoi Bore, et al. 2016. 'Real-Time, Portable Genome Sequencing for Ebola Surveillance'. *Nature* 530 (7589): 228–32. https://doi.org/10.1038/nature16996.
- Rowan, Beth A., Darren Heavens, Tatiana R. Feuerborn, Andrew J. Tock, Ian R. Henderson, and Detlef Weigel. 2019. 'An Ultra High-Density Arabidopsis Thaliana Crossover Map That Refines the Influences of Structural Variation and Epigenetic Features'. *Genetics* 213 (3): 771–87. https://doi.org/10.1534/genetics.119.302406.
- Shu, Yuelong, and John McCauley. 2017. 'GISAID: Global Initiative on Sharing All Influenza Data – from Vision to Reality'. *Eurosurveillance* 22 (13): 30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494.

Tables

Table 1: Summary statistics for each sequencing experiment. Sample specific metrics are available in Supplementary Table 2. (*The CoronaHiT-Illumina total yield includes non-relevant samples on the sequencing run, while the deplexed yield only relates to relevant samples).

	Routine samples			Rapid Response samples			
	CoronaHiT -ONT	ARTIC LoCost	CoronaHit -IIIumina	CoronaHiT -ONT	ARTIC LoCost	CoronaHiT -IIIumina	
No. of samples	95	95	95	59	59	59	
Run time (h)	30	30	25.4	18	18	24.4	
Yielded bases (Gb)	10.3	8.5	43.9*	6.3	4.8	48.6*	
Bases deplexed (Gb)	9.6	8.0	15.7	5.7	4.5	7.3	
Reads sequenced (>Q7)	24,764,627	15,733,3 49	113,756,31 2	13,044,532	8,824,4 69	53,678,322	
Average PHRED score	13.47	13.11	33.15	13.2	12.98	33.48	
Average coverage (X)	1145X	1719X	4649X	1104X	1421X	3010X	
Standard deviation of coverage (X)	698X	1683X	4352X	439X	1145X	3496X	
Average read length (bases)	374	448	135	413	457	135	
Average (Median) mapped length	205.24 (195)	386 (386)	134.63 (150)	241.25 (244)	383.88 (385)	131.43 (150)	

Samples	66	59	74	44	40	44
passing GISAID QC						

Table 2: The number of consensus genomes passing and failing the different QC

thresholds for each experiment. Extended data are available in Supplementary Table 2.

	Routine samples			Rapid Response samples			
	CoronaHiT -ONT	ARTIC LoCost	CoronaHiT -Illumina	CoronaHiT- ONT	ARTIC LoCost	CoronaHiT- Illumina	
No. of samples sequenced	95	95	95	59	59	59	
Consensus genomes	98.95% (94)	96.84% (92)	100% (95)	96.61% (57)	91.53% (54)	100% (59)	
Passing COG- UK QC	80.00% (76)	76.84% (73)	82.11% (78)	81.36% (48)	74.58% (44)	81.36% (48)	
Passing GISAID QC	69.47% (66)	62.11% (59)	77.89% (74)	74.58% (44)	67.80% (40)	74.58%(44)	
Failing COG-UK QC	20.00% (19)	23.16% (22)	17.89% (17)	18.64% (11)	25.42%(15)	18.64% (11)	
Failing GISAID QC	30.53%(29)	37.89% (36)	22.11% (21)	25.42%(15)	32.20% (19)	25.42% (15)	
Avg (Median) Ns of COG-UK passed	1504 (354)	1635 (121)	688 (53)	977 (606)	1101 (339)	911 (292)	
Avg SNPs of COG-UK passed	7.99	7.99	11.0	18.3	18.2	20.4	
No. of samples with known Ct ≤32	65	65	65	18	18	18	

Consensus genomes	100% (65)	100% (65)	100% (65)	100% (18)	100% (18)	100% (18)
Passing COG- UK QC	98.46% (64)	98.46% (64)	98.46% (64)	100%(18)	94.44% (17)	100% (18)
Passing GISAID QC	95.38% (62)	89.23% (58)	98.46% (64)	94.44% (17)	88.89% (16)	94.44% (17)
Failing COG-UK QC	1.54% (1)	1.54% (1)	1.54% (1)	0% (0)	5.56% (1)	0% (0)
Failing GISAID QC	4.62% (3)	10.77% (7)	1.54% (1)	5.56% (1)	11.11% (2)	5.56% (1)
Avg (Median) Ns of COG-UK passed	682 (339)	815 (121)	111 (47)	895 (339)	911 (121)	1064 (514)
Avg SNPs of COG-UK passed	8.19	8.17	10.2	18.8	18.9	20

Figures

Figure 1: Workflow of CoronaHiT-ONT library preparation.

(a)

(b)

Figure 2: Ct value of the SARS-CoV-2 positive RNA samples sequenced using all three sequencing methods vs total number of Ns in the consensus sequence for the (a) routine sample set (b) and the rapid response sample set.

(b)

Figure 3: Maximum likelihood tree of the consensus genomes from each sequencing methods, showing agreement between methods for the (a) routine samples and (b) rapid response samples.