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Abstract

I propose a Bayesian approach to identify vector autoregressive (VAR)

models via proxies in a data-rich environment. The setup augments a small-

scale VAR model with latent factors. It allows to trace out the responses of

disaggregated series in a unified model while controlling for broad economic

conditions. The posterior sampler accounts for the estimation uncertainty

in these latent factors as well as the measurement precision of the proxy. In

a first application to monetary policy, I extract factors from a wide range of

real and financial series and find that the effects of monetary policy shocks

vary along the yield curve. In a second application to oil market shocks I

add disaggregated US series to a standard model of the global oil market. I

find that negative news about future oil supply have adverse effects on the

US economy.
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1 Introduction

Proxy vector-autoregressive (Proxy-VAR) models are widely used to study the dynamic

impact of structural shocks on the economy. Their popularity stems from the fact that

they avoid the use of potentially non-credible timing restrictions implicit in conventional

recursive identification schemes. However, typical Proxy-VAR models include only a

small number of variables. This has two potential disadvantages: First, it is difficult

to examine the impact of structural shocks at a disaggregated level in a single, unified

model. Second, broad economic concepts need to be measured using individual, often

narrowly defined, variables. These considerations motivate a transition to a data-rich

environment.

A natural approach to summarise the information in rich datasets is provided by

factor-augmented VAR (FAVAR) models. FAVAR models augment small-scale VARs

with latent factors extracted from a large number of series. In so doing, they allow for

a disaggregated analysis in a single, unified model. At the same time, FAVARs offer

a way of controlling for abstract economic concepts such as “output”, “price level”, or

“financial conditions”. They avoid having to associate these concepts to single, somewhat

arbitrarily-chosen data-series. Instead, the approach employs information from a large

number of series related to these concepts, e.g. financial spreads with different maturities,

and summarises their joint behaviour in latent factors.

The first contribution of this paper is to propose a Bayesian Proxy Factor-augmented

VAR (BP-FAVAR) model. This model offers a unified framework to combine a rich

dataset with an identification strategy based on a proxy. It extends the approach pro-

posed by Caldara and Herbst (2019) to allow for latent factors and accounts for their

estimation uncertainty in a consistent Bayesian framework. The second contribution

of the paper is to investigate the properties of the BP-FAVAR in a simulation exercise

and in two applications for which the inclusion of factors is particularly natural and for

which proxies are available.

The first application investigates the effects of monetary policy shocks. Caldara

and Herbst (2019) revisit the question of which variables central banks’ policy decisions

were based on during the Great Moderation in a small-scale Proxy VAR model. They

rely on a high-frequency identification scheme and make the observation that central

banks base their policy decisions not just on deviations of output, unemployment and

inflation from their targets but also on financial conditions. In order to measure finan-

cial conditions, Caldara and Herbst (2019) include a corporate bond yield spread, the
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Baa spread, as an additional variable.1 They show that when including this variable,

monetary policy shocks have large and persistent effects on real activity and prices.

However, Baa-rated debt accounts for less than half of total corporate debt, making the

Baa spread a potentially too narrow measure of financial tightness.2 This narrow defini-

tion could potentially lead to the model being non-fundamental for the shock of interest

and restricts the analysis of the effects of monetary policy to this measure. Therefore,

the inclusion of a broader measure of financial conditions is warranted. This need for

a broader measure of financial conditions (and other economic concepts) leads me to

transition to the framework by Bernanke et al. (2005) using a single observable factor,

the policy rate, and extract factors from a large number of informational series, avoid-

ing the need to measure abstract economic concepts using narrowly-defined variables. I

exploit the BP-FAVAR model setup to investigate the reaction of financial spreads with

different maturities to monetary policy shocks. I find that monetary policy shocks have

an effect that varies substantially across the yield curve, especially in the the medium

run.

I then apply the model to oil market shocks. I revisit Känzig (2019) who proposes

a new proxy to investigate the effects of shocks in the global oil market on the US

economy. Employing a small-scale Proxy VAR model, the author identifies oil supply

news shocks in the global oil market and makes the observation that oil supply news

shocks differ from conventional oil supply shocks in their effect on oil inventories. He

then traces out the reactions of various US variables by estimating separate small-scale

Proxy VAR models including various US variables of interest. This procedure omits

cross-correlations among these US variables given that they enter in distinct models.

For this reason, instead of estimating various distinct models, I propose to model the US

variables jointly in the BP-FAVAR by adding latent factors from a large number of US

series to an otherwise standard VAR model of the global oil market. I investigate the

reactions of various US variables to the identified oil supply news shocks. I qualitatively

confirm the findings in Känzig (2019) about the adverse effects of negative news about

future oil supply on US industrial production and unemployment rate. In addition, the

data-rich BP-FAVAR allows to conclude that, consistent with economic intuition, the

subcomponent of US industrial production related to fuel is most strongly affected and

1They employ Moody’s seasoned Baa corporate bond yield relative to the yield on 10-year
treasury constant maturity.

2In 2018, 303 firms were rated Baa, issuing 41% of total debt of rated compa-
nies. See https://www.moodys.com/research/Moodys-Baa-rated-companies-nearly-double-in-
the-decade-to–PBC 1171751.
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that US stock markets drop and rebound following an adverse oil supply news shock.

This study relates firstly to Bayesian FAVAR models such as Bernanke et al. (2005)

who introduce the FAVAR model, Belviso and Milani (2006) who provide a structural

interpretation of the latent factors, and Amir-Ahmadi and Uhlig (2015) who employ sign

restrictions in FAVAR models. In addition, it broadly relates to early applications of

Bayesian factor models such as Kose et al. (2003). Secondly, this study relates to the

Bayesian Proxy VAR literature, most directly to the small-scale Bayesian Proxy VAR

model by Caldara and Herbst (2019). Other studies employing external instruments in

the Bayesian paradigm are Drautzburg (2016) who estimates a narrative DSGE-VAR

model, Bahaj (2020) who applies high-frequency identification in a multi-country frame-

work, and Arias et al. (2018) who propose a Proxy VAR framework amenable to an

importance sampler. More generally, Stock and Watson (2012) combine factor models

and proxies in a frequentist setting and Kerssenfischer (2019) investigates the relation

between factor models and proxy identification. In parallel work to mine, Miescu and

Mumtaz (2019) develop a Bayesian FAVAR model identified via a proxy and study its

potential to address deficient information in small-scale models. Their model setup dif-

fers from mine along three main dimensions: First, they operate within a non-stationary

factor model, while I employ data which are transformed to be stationary. Second, while

I estimate latent factors using a Kalman filter, they use Principal Components (PC)

analysis. Third, their focus is on the effect of latent factors on informational insufficieny

issues of small-scale models. My focus is on an extension of the estimation algorithm, the

choice of priors and a new posterior sampler. Mumtaz and Theophilopoulou (2019) apply

a Baysian Proxy FAVAR to trace out the effects of UK monetary policy on disaggregated

wealth inequality.

One challenge using factor-augmented VAR models is how to account for the es-

timation uncertainty of latent factors. This is technically challenging using bootstrap

techniques in the popular frequentist approach of estimating factors via PC (see for

example Yamamoto, 2019). In addition, there are no asymptotic results justifying the

use of such techniques, as pointed out by Kilian and Lütkepohl (2017). To address this

issue, I exploit the state-space representation of the model and employ the algorithm

by Carter and Kohn (1994). This fully parametric approach treats the latent factors

as random variables and samples from their posterior distribution. This procedure is

included as an additional Gibbs step in the Metropolis-within-Gibbs sampler of Caldara

and Herbst (2019).

The remainder of this paper is organised as follows: Section 2 introduces the model,
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section 3 discusses the algorithm, priors, starting values, and a Monte Carlo exercise,

section 4.1 shows the monetary policy application and section 4.2 discusses the oil market

application. The last section concludes.

2 The Proxy FAVAR

In this section I introduce the Bayesian Proxy FAVAR model, which consists of three

equations: The observation equation, the transition equation and the proxy equation. I

then show how identification is achieved.

First, consider the observation equation, which shows how latent and observable

factors map into informational series:

xt = Λff t + Λzzt + ξt (1)

ξt ∼ N(0,Ω) (2)

where xt is a N × 1 vector of observable series, f t is a R × 1 vector of latent factors,

and zt is a K × 1 vector of observable factors. Importantly, xt does not contain any of

the observable factors in zt. Λf is a N × R matrix of factor loadings for latent factors

and Λz is a N ×K matrix of coefficients for the observable factors. ξt is a N × 1 vector

of idiosyncratic errors. In general, these idiosyncratic ξt can be serially correlated, i.e.

Cov(ξt, ξt−1) 6= 0, but they are uncorrelated across series, i.e. V ar(ξt) = Ω is assumed

to be diagonal.

The latent factors ft and the factor loadings Λf and Λz require additional nor-

malisations. For the latent factors, I follow Stock and Watson (2016) in imposing the

normalisation that Λf ′Λf = I and V ar(ft) is diagonal with decreasing elements. For Λz

I follow Bernanke et al. (2005) and impose that the upper R×K block is an zero matrix.

These normalisations do not affect the space spanned jointly by the latent factors which

is the object of interest in this study.

Next, consider the transition equation, which shows the dynamic evolution of the

factors. It writes as a VAR(P) of the following form:

yt = Πwt + ut (3)

ut ∼ N(0,Σ), (4)
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where yt =

[
f t

zt

]
stacks latent and observable factors in a vector. The coefficient matrix

Π = [Π1, ...,ΠP ] of dimension (R + K) × (P (R + K) + 1) contains the autoregressive

parameters of the VAR. wt = [1(R+K)×1;yt−1, ...,yt−P ] stacks a constant and P lags

of yt. The (R + K) × 1 vector of reduced form errors, ut, is serially uncorrelated, i.e.

Cov(ut,ut−p) = 0 ∀t = 1, ..., T , ∀p = 1, ...,∞. ut are uncorrelated with all leads and

lags of the idiosyncratic errors, ξt, i.e. Cov(utξt−j) = 0 ∀j, ∀t = 1, ..., T .

I impose structure on the on-impact effects of structural shocks by assuming that

the reduced form errors map into structural shocks as:

ut = Bεt (5)

εt ∼ N(0, IR+K), (6)

where B is a (R + K) × (R + K) matrix containing the on-impact effects of the struc-

tural shocks. Their variances are normalised to one, and they are contemporaneously

uncorrelated. This implies the following relation between the reduced form covariance

matrix and the matrix of on-impact effects: Σ = BB′

As is well known, further restrictions beyond those implied by the covariance matrix

are needed to identify B. The reason is that the data cannot discriminate between

observationally equivalent representations: All B such that BB′ = Σ yield the same

likelihood.

In order to identify the first column of B, which I denote by b, I augment the model

by a “Proxy Equation”, as in Caldara and Herbst (2019).3 This equation shows the

relation between structural shock and instrument and is given as:

mt = βε1,t + σννt (7)

νt ∼ N(0, 1), (8)

where mt is a scalar instrument correlated with the shock of interest, ε1,t. The shock of

interest is ordered first, without loss of generality. β captures the structural relationship

between instrument and shock, while νt captures any noise contained in the instrument.

3Unlike their case, however, identification focuses on the on-impact effects of the shocks rather
than on the contemporaneous relations of the variables included in the model. Put differently,
the model imposes structure on B, rather than on B−1. Caldara and Herbst (2019) estimate a
so-called A-model (see Kilian and Lütkepohl, 2017 for a discussion). The A-model specification
is appropriate given their aim of identifying a monetary policy equation. In the present context,
however, interest lies on the on-impact effects of structural shocks.
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The higher its variance, σ2
ν , the less information the instrument contains about the shock

of interest. Furthermore, mt is contemporaneously uncorrelated with all other shocks,

ε−1,t, i.e. E(mtε−1,t) = 0 ∀t, where ε−1,t stands for a vector containing all but the

first shock. In other words, the instrument needs to be both relevant and exogenous in

order to be appropriate for identification. A further, implicit, assumption is that mt is

uncorrelated with leads and lags of all structural shocks, i.e. E(mtεt+j) = 0 ∀j 6= 0.

For j > 0 this assumption is not restrictive given that structural shocks are defined as

unexpected innovations to the process, as pointed out by Stock and Watson (2018). The

absence of correlation with lags of the structural shocks (i.e. for j < 0) could in theory

be relaxed by adding lags of yt to the right-hand-side of (7). In addition, one could allow

for auto-correlation in the instrument by adding lags of mt. Neither extension would

affect identification and, in line with Caldara and Herbst (2019), I restrict attention to

the baseline case given in (7).

3 Bayesian Inference

The parameters of the BP-FAVAR model are estimated via a Metropolis-within-Gibbs

sampler while the latent factors are drawn using the algorithm by Carter and Kohn

(1994). In this section, I discuss the choice of priors and sketch an algorithm to generate

draws from the posterior distribution.

3.1 Priors and Starting Values

Block 1: Observation Equation For the parameters of the observation equation,

Λ = [Λf Λz] and Ω, I employ equation-by-equation normal-inverse Gamma priors of

the form

ωii ∼ IG(sc∗, sh∗) (9)

λi|ωii ∼ N(µ∗λ,i,ωiiM
∗−1
i ), (10)

where λi is the i-th row of Λ and ωii is the i-th diagonal element of Ω. The prior

parameters sc∗, sh∗,µ∗λ,i, and M∗−1
i are chosen to imply diffuse priors (see Appendix

A.2 for details). The algorithm starts from the Principal Components estimates for Λ

and F = [f1, ...,fT ] and OLS-based estimates for Ω.

Block 2: Transition Equation Given a draw of factors, yt follows a standard

7

                  



V AR(P ) model. Therefore, one can employ a version of the Minnesota/ Litterman prior

and specify independent normal-inverse Wishart priors:

vec(Π) ∼ N(µ∗Π, V
∗

Π) (11)

Σ ∼ IW (S∗, τ∗), (12)

where vec(·) is the vectorisation operator that stacks the columns of a matrix one un-

derneath the other into a vector. I set the prior mean for the autoregressive coefficients,

µ∗Π = 0, implying shrinkage towards white noise processes. This choice is motivated by

the stationarity transformations of both zt and xt. I set the prior variance of vec(Π), V ∗Π,

in line with Del Negro and Schorfheide (2011). Lastly, I set the priors S∗ = 0.0001·IK+R

and τ∗ = K +R, implying a flat prior in the dimension of Σ (see Appendix A.3).

Block 3: Proxy Equation The parameters of the proxy equation are sampled

conditional on the parameters of the transition equation and follow Caldara and Herbst

(2019) closely. For β I employ a normal distribution

β ∼ N(µ∗β, σ
∗2
β ) (13)

with µ∗β = 0 and σ∗β = 1.

For σ2
ν I consider two types of priors: First, I set an uninformative inverse Gamma

distribution using

σ2
ν ∼ IG(sc∗ν , sh

∗
ν) (14)

with sc∗ν = 2 and sh∗ν = 0.02. Second, to the extent that the econometrician is confident

in the relevance of the proxy, she can employ what Caldara and Herbst (2019) refer to

as the “high-relevance” prior and set

σν = 0.5std(mt), (15)

implying the dogmatic view that half the standard deviation of the proxy (a quarter of

the variance) can be explained by measurement error, while the remaining variation is

explained by movements in the structural shock itself (see Appendix A.5).

The prior for b is implicit in the above priors on Σ, β and σν .

8

                  



3.2 Sketch of the Algorithm

Inference requires generating draws from the joint posterior distribution of latent factors

and parameters given the informational series, the observable factors and the instrument:

p(Π,Σ,Λf ,Λz,Ω, β, σν , b, F |X,Z,m). (16)

Instead of attempting to draw directly from this potentially highly non-linear and irreg-

ularly shaped distribution, draws are generated from blocks of conditional distributions

in the following steps:

Step 1 Draw from the conditional posterior of F

In order to generate draws from

p(F |Π,Σ,Λf ,Λz,Ω, β, σν , b;X,Z,m), (17)

I employ the Carter-Kohn algorithm described in Carter and Kohn (1994) and

Frühwirth-Schnatter (1994) (see Appendix A.1).

Step 2 Draw from the conditional posterior of {Λf ,Λz,Ω}

To generate draws from

p(Λf ,Λz,Ω|F,Π,Σ, β, σν , b;X,Z,m), (18)

one can exploit the fact that, given a draw of the latent factors, F , the observation

equation (1) is a system of independent linear equations. Therefore, the parame-

ters can be estimated using well-established results on single-equation models (see

Appendix A.2).

Step 3 Draw from the conditional posterior of Π,Σ

To generate draws from

p(Π,Σ|Λf ,Λz,Ω, F, β, σν , X, Z,m), (19)

I employ a Metropolis-Hastings step. First, note that, conditional on a draw

of the factors, the model can be considered a variant of Caldara and Herbst

(2019). The conditional posterior in (19) differs from standard reduced form
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Bayesian VAR models given that m is part of the conditioning set. To ad-

dress this challenge, I proceed in two steps: First, I generate proposal draws

from p(Π,Σ|Λf ,Λz,Ω, F, β, σν , X, Z) (m is not part of the conditioning set) us-

ing well-established results on independent normal-inverse Wishart distributions.

In a second step, these proposal draws are mapped into the target distribution

(19) via a Metropolis-Hastings step (see Appendix A.4). In practice, the proposal

distribution is highly similar to the target distribution, leading to an acceptance

rate close to 1. This high acceptance rate does not imply a weak instrument, but

rather indicates that the instrument does not contain much information about the

reduced form parameters, a result also found in Caldara and Herbst (2019).

Step 4 Draw from the conditional posterior of b

To generate draws from

p(b|Λf ,Λz,Ω, F,Π,Σ, β, σν ;X,Z,m), (20)

I use a second Metropolis-Hastings step, adapting the procedure by Caldara and

Herbst (2019) to my setting. First, I generate proposal draws bcand as the first col-

umn of chol(Σ)Qcand, whereQcand is an orthogonal matrix such thatQcandQcand′ =

I. I then map this candidate draw into a draw from the target distribution (20)

via a second Metropolis-Hastings step (see Appendix A.4).

Step 4 Draw from the conditional posterior of β, σν

Lastly, to generate draws from

p(β, σν |b,Λf ,Λz,Ω, F,Π,Σ;X,Z,m) (21)

I employ well-established results on linear regression models for the proxy equation

(7). The structural shock can be generated as ε1,t = chol(Σ)Qut.

Compared to the framework in Caldara and Herbst (2019), there are three main

differences: First, the above approach includes latent factors and accounts for their

estimation uncertainty in a consistent Bayesian setup, thereby allowing the factors to

affect the dynamics of Z. Second, the BP-FAVAR allows for inference on a large number

of potentially disaggregated series, X, through the mapping from factors to informational

series. Third, this approach employs the proxy in order to identify the on-impact effects

of structural shocks, b, rather than the contemporaneous relations among variables, as

10

                  



in Caldara and Herbst (2019). Further extensions, such as handling missing data, using

multiple instruments for multiple shocks and/or multiple instruments for a single shock

are in general feasible, but beyond the scope of this paper.

Compared to the common approach of replacing F by their Principal Components

estimates (see Stock and Watson, 2016 for a review), this approach has two advantages:

First, it captures the sampling uncertainty of factors within a coherent Bayesian frame-

work, rather than treating them as observed data. Popular bootstrap inference as in

Yamamoto (2019) is far from trivial and lacks asymptotic justification. A Bayesian ap-

proach, on the other hand, offers a unified way of summarising the uncertainty of the

model, as pointed out by Huber and Fischer (2018). The joint posterior summarises

estimation uncertainty in both the parameters and the latent factors. Second, this ap-

proach allows for Bayesian shrinkage of the parameter space of the transition equation.

This might seem unnecessary given that the factors already reduce the dimensionality

of the estimation problem. However, if, as is often the case in empirical applications,

the number of observable factors, K, or the lag length, P , is large, dimensionality issues

still arise and can be alleviated using Bayesian shrinkage.

3.3 Numerical Illustration

To verify the performance of the algorithm, this section presents a numerical illustration.

Datasets are generated from a Proxy-FAVAR, an exercise similar in spirit to Lopes

and West (2004). I generate 50 datasets, each containing 200 observations, a sample

size commonly encountered in macroeconomic applications. 9 observational series are

generated from a process with one lag, 3 latent factors, and one observable factor. The

first data-generating process (DGP1) uses the first structural shock itself as a proxy for

identification, while the second (DGP2) introduces some contamination in the proxy.

This distinction is also used in Miescu and Mumtaz (2019). The details of both DGPs

and additional results are presented in Appendix C.

Figure 1 shows the impulse responses of the informational series together with the

true impulse response. Overall, the algorithm is well-centred around the true impulse

response. Introducing measurement error in the proxy leads to a widening of the bands

due to additional identification uncertainty (see figure 12 in Appendix C).

11

                  



5 10 15
0

0.5
1

5 10 15
00.20.40.60.8

5 10 15
-0.2

0
0.2

5 10 15

-1
-0.5

0

5 10 15
0

0.5
1

5 10 15

-1
-0.5

0

5 10 15
0

0.5
1

5 10 15
-0.8
-0.6
-0.4
-0.2

0

5 10 15
0

0.5
1

Figure 1: Numerical Illustration: Impulse Responses (DGP1). Posterior draws of the

impulse responses of informational series and corresponding true values for DGP1. The shaded

area shows 80% quantiles of posterior draws pooled across simulations. The dashed line is the

posterior median, while the solid line is the true impulse response.

4 Two Applications

Having presented the model setup and the algorithm in a generic framework, this section

applies the BP-FAVAR to two classical questions: (i) What are the effects of monetary

policy shocks? (ii) What are the effects of shocks in the global oil market? Both questions

have been addressed using small-scale Proxy VAR models (see Caldara and Herbst,

2019 and Känzig, 2019 respectively). I show how the BP-FAVAR can be employed to

broaden the analysis along two dimensions. First, it allows to trace out the effect of

the identified shocks on disaggregated series in a single unified model. Second, it avoids

having to measure broad economic concepts such as “output”, “price level”, or “financial

conditions” using a single, narrowly defined variable.
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4.1 Monetary policy shocks

A first example for the use of Proxy VAR models is the identification of monetary policy

shocks using identification based on high-frequency data. This identification scheme has

been employed, among others, by Gertler and Karadi (2015) and, more recently, by

Caldara and Herbst (2019). I revisit the question of how monetary policy shocks affect

the economy during the Great Moderation using the proxy proposed by Caldara and

Herbst (2019). I broaden their analysis using the BP-FAVAR model. This larger model

setup allows to control for broad economic conditions and to trace out the effects of

monetary policy shocks on various spread measures.

R DIC

1 -445.52
2 -774.16
3 -15,731.83
4 -20,805.97
5 -16,949.75
6 -17,397.76
7 -12,164.10
8 -12,778.51

Table 1: Deviance Information Criterion (Monetary policy application). Deviance

Information Criterion (DIC) by Spiegelhalter et al. (2002). The preferred model minimises the

DIC. The sampler is run Rmax = 8 times for 20,000 draws, discarding the first 2,000 draws. See

Appendix B for details.

I estimate the BP-FAVAR using for zt the average effective federal funds rate over

the last week of the month, as Caldara and Herbst (2019). I extract latent factors

from xt which contains 128 variables from the monthly FRED dataset by McCracken

and Ng (2016) (see Table 9 in Appendix D for a detailed description).4 This model

setup with a single observed factor is taken from Bernanke et al. (2005). As a proxy I

use the surprises in the current federal funds future rate around Federal Open Market

Committee (FOMC) meetings, as computed by Caldara and Herbst (2019). Figure 13

in Appendix D plots the proxy. The sample length is constrained by this proxy and

runs from 1992M1 to 2007M6. The lag length is P = 7 months, following one of the

specifications in Bernanke et al., 2005.

4Data set available at https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Figure 2: Monetary Policy Application (Caldara and Herbst, 2019): Instrument

Relevance. Top panel: Update of β and σ2
ν . The prior for β is standard normal, while the

prior for σ2
ν follows an inverse Gamma distribution. Bottom panel: Update of the signal-to-noise

ratio, β/σν .

The choice of the number of factors is based on the Deviance Information Criterion

(DIC). To compute the DIC, the sampler is run 8 times in an initial step, varying R

between 1 and 8. Table 1 shows the associated values of the DIC, which takes its

minimum at 4, suggesting to set R = 4. Figure 14 in Appendix D shows the posterior

median and 90% bands of the latent factors estimated using a Kalman filter together

with the PC estimate. The posterior distribution of the latent factors differs from the PC

estimate, especially for the first factor, suggesting that taking into account estimation

uncertainty in the factors is important for the model dynamics.

Figure 2 shows the updating of β, σ2
ν , and of the signal-to-noise ratio (SNR), β/σν .

The SNR measures how much information the instrument contains about the shock of

interest compared to its noise, as pointed out by Caldara and Herbst (2019). I employ

the uninformative inverse-Gamma prior for σ2
ν and a standard-normal prior for β. Fig-

ure 2 shows that the data updates the prior belief on β and σν (top panel) and that
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the instrument is informative about the shock of interest given that the posterior prob-

ability mass of the SNR is away from 0 and centred around 0.4 (bottom panel). This

assessment of instrument relevance could be considered a Bayesian adaptation of the

weak-instrument diagnostics developed in Olea et al. (forthcoming). Given the evidence

for instrument relevance there is no a priori need for conducting weak-instrument robust

inference. The choice of the prior for σν is important to incorporate prior information

about the informativeness of the proxy. Following Caldara and Herbst (2019) I explore

the implications of using their “high-relevance” prior described in the previous section.

Figure 16 in Appendix D confirms that this alternative prior leads to a higher poste-

rior SNR centred around 0.8, but leaves the main results unchanged (see Figure 17 in

Appendix D).

Figure 3 shows the updating of b, the impact effect of a one standard deviation

monetary policy shock on the latent and observable factors. The prior distribution is

not available in closed form but is implicit in the prior distributions of Σ, β and σν . In

order to gauge the informativeness of the instrument, I impose the prior mean for β, i.e.

setting β = 0, so that all rotation vectors, Q·,1, are accepted with equal probability and

the instrument is not employed for identification. A draw from the prior of b|β = 0 is

computed as follows:

• Draw Σprior from its prior inverse Wishart distribution

• Draw Qprior·,1 as the first column of a draw from the uniform Haar distribution

• Compute bprior = chol(Σ)Q·,1.

As pointed out by Baumeister and Hamilton (2015), a uniform prior on Q·,1 does

not necessarily imply a uniform distribution over the structural parameters of interest,

which in this case are the elements of b. The prior of b|β = 0 implicit in the specification

covers the relevant parameter space well and is updated by the data, suggesting that

non-zero posterior effects are driven primarily by information from the data and the

instrument. A one standard deviation monetary policy shock moves the federal funds

rate by roughly 10 basis points, while the scale of the response of factors does not have

a direct interpretation.

Figure 4 shows the impulse responses to a monetary policy shock normalised to

generate a 25 basis points increase in the federal funds rate.5 The median impact effect

5Following Caldara and Herbst (2019), posterior bands are computed based on point-wise
quantiles. Extensions to joint inference such as Montiel Olea and Plagborg-Møller (2019) and
Inoue and Kilian (2020) are generally feasible.
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Figure 3: Monetary Policy Application (Caldara and Herbst, 2019): Updating of b.

Priors (solid line) and posterior (histogram) of b. Prior draws are computed from the distribution

implicit in the priors for Σ, β and σν .

on government bond spreads over the federal funds rate is stronger in the medium run

the longer the maturity of the underlying treasury bill. In the medium run, the drop in

spreads of longer maturity, as well as that of corporate bonds, is more pronounced and

reaches up to -40 basis points. This drop in the term premium of long term bonds is

consistent with the findings in Rudebusch and Swanson (2012) and Crump et al. (2017)

and explained by investor’s increased willingness to invest in longer-term bonds following

a monetary tightening.

Miranda-Agrippino and Ricco (2018) argue that market-based proxies for monetary

policy shocks such as the ones in Gertler and Karadi (2015) and Caldara and Herbst

(2019) combine an exogenous policy shock with additional information about the state of

the economy revealed by the central bank through their statement. Miranda-Agrippino

and Ricco (2018) propose a proxy that addresses this rigid information issue by pro-

jecting market-based monetary surprises on their own lags, and on Greenbook forecasts.

When employing this proxy, I find that it has a lower posterior SNR centred around

0.2 (see figure 20 in Appendix D), suggesting that this proxy is weaker than the one

by Caldara and Herbst (2019). Figure 22 in Appendix D shows the impulse responses

when employing this proxy. While the estimated impact effects are slightly changed, the

medium-term drop in the 5-year, the 10-year and the corporate bond spreads, remains
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Figure 4: Monetary Policy Application (Caldara and Herbst, 2019): Impulse Re-

sponse Functions of informational series. Point-wise median impulse responses (solid

line) with 68% bands. The model includes R = 4 latent factors. The impact effect is normalised

to generate a 0.25% increase in the observable factor. The spread is computed with respect to the

federal funds rate (see table 9 in Appendix D). The proxy by Caldara and Herbst (2019) is used

for identification.

and is quantitatively similar, suggesting robustness of the results with respect to the

choice of proxy.

4.2 Oil market shocks

The second example for the use of Proxy VAR models is a study of the effects of global

oil prices on the US economy. Estimating this causal effect is difficult given the two-way

feedback between oil prices and the US economy. That is why several studies introduce

narrative information about the global oil market in order to achieve identification.

Examples are Kilian (2008), Caldara et al. (2019), and, more recently, Känzig (2019).

I revisit the issue of the effects of oil supply news shocks on the US economy using

the proxy proposed by Känzig (2019). I augment the baseline model by latent factors

extracted from US series and trace out the effects of oil supply news on various US
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series in a unified model. In addition, I reproduce the result that exogenous negative

news about future oil supply leads to a drop in oil prices and a a fall in world economic

activity.

The data contained in zt are four series commonly used for modelling the global oil

market (see Kilian, 2009, Baumeister and Hamilton, 2019, Känzig, 2019): World oil pro-

duction, world industrial production, the WTI oil spot price, and world oil inventories.

All variables enter in log levels, as in Känzig (2019). I use a lag length of P = 13, follow-

ing Känzig (2019). The vector of observational series, xt, contains 128 monthly series

from the FRED dataset by McCracken and Ng (2016) (see Appendix D for a detailed

description).
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Figure 5: Oil market application: Instrument Relevance. Top panel: Update of β and

σ2
ν . The prior for β is standard normal, while the prior for σ2

ν follows an inverse Gamma

distribution. Bottom panel: Update of the signal-to-noise ratio, β/σν .

As an instrument I employ the Känzig (2019) narrative measure of oil supply news

shocks. It is motivated by the oil market having one big player, the Organization of the

Petroleum Exporting Countries (OPEC) which accounts for 44 percent of the world’s
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crude oil production. The OPEC makes regular announcements about its production

plans. These announcements influence the highly liquid futures market for crude oil,

allowing to apply the Gertler and Karadi (2015) high-frequency identification strategy

to the oil market: Surprise oil market news shocks are measured as jumps in West

Texas Intermediate (WTI) crude oil market futures in tight windows around OPEC

announcements. Assuming that global economic conditions are priced into WTI crude

oil futures before the announcement and assuming that OPEC announcements are the

only drivers of prices within this window, this measure arguably captures changes in

oil price expectations caused by OPEC announcements. Therefore it can be considered

exogenous to the global oil market. Figure 23 in Appendix D plots the instrument.6
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Figure 6: Oil market Application: Updating of b. Priors (solid line) and posterior

(histogram) of b. Prior draws are computed from the distribution implicit in the priors for Σ, β

and σν .

I augment the baseline model by R = 3 latent factors, based on the DIC (see Table

7 in Appendix A.1). Figure 24 in Appendix D shows the latent factors estimated via the

6The proxy is non-zero for the majority of time-periods, lending support to the use of a normal
distribution in equation 7 as an approximation.
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Carter-Kohn procedure employed in the BP-FAVAR model together with a Principal

Components estimate. The Principal Components estimate fails to take into account

the estimation uncertainty in the latent factors, treating them as observed data in the

transition equation. Thereby using Principal Components yields a skewed view of the

overall estimation uncertainty.

Figure 5 shows the updating of β and σ2
ν . There is evidence that the uninformative

priors for both are updated by the data (top panel) with a posterior of β centred around

0.3 and a posterior of σ2
ν centred around 1.3. This finding translates into a posterior

SNR centred around 0.18 (bottom panel), suggesting that the proxy by Känzig (2019)

is informative about oil supply news shocks. Employing a high-relevance prior increases

the posterior mean of the SNR to 0.4, but leaves the main results unchanged (see Figures

26 and 27 in Appendix D).
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Figure 7: Impulse Response Functions of observable variables and latent factors

(Oil market application). Point-wise median impulse responses (solid line) with 68% bands.

The model includes R = 3 latent factors. The impact effect is normalised to generate a 7%

increase in the WTI spot price. The proxy by Känzig (2019) is used for identification
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Figure 6 shows the update of the impact effect of a one standard deviation oil supply

news shocks on latent and observable factors. The implicit prior on b, calculated as

in the previous section, is clearly updated by the data, suggesting that a one standard

deviation shock increases the WTI spot price (b7) by roughly 6 per cent, while the impact

effects of the remaining factors are centred around 0.
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Figure 8: Impulse Response Functions of informational series (Oil market appli-

cation). Point-wise median impulse responses (solid line) with 68% bands. The model includes

R = 3 latent factors. The impact effect is normalised to generate a 7% increase in the WTI spot

price. The proxy by Känzig (2019) is used for identification.

Figure 7 shows the posterior impulse responses of latent and observable factors to

an oil supply news shock normalised to generate a 7 per cent increase in the WTI spot

price.7 There is evidence that an oil supply news shock, which increases oil prices, leads

to a decrease in median world oil production and a decrease in median world industrial

production after 18 months of 0.3% and 0.8 %, respectively. These results qualitatively

confirm the findings in Känzig (2019). The effect on oil inventories is not distinguishable

7This normalisation is chosen for camparability with Känzig (2019).
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from 0.

Figure 8 shows the associated impulse responses of selected informational series.

US industrial production decreases up to 0.4%, while the subcomponent related to fuel

production decreases more strongly, up to 0.8% following an oil supply news shock. US

unemployment tends to increase up to 0.1%. The S&P 500 stock market index drops by

0.2% in the medium run and then rebounds within 4 years. These results confirm the

adverse effects of negative news about future oil supply on the US real economy and US

stock markets found in Känzig (2019).

5 Conclusion

This paper proposes a Bayesian approach to investigate the dynamic causal effects of

structural shocks identified via proxies in a data-rich environment. Adding latent factors

to standard small-scale VAR models has two advantages: It allows controlling for broad

economic concepts, avoiding measuring these concepts using narrowly defined variables.

Second, the reaction of disaggregated series can be traced out within a single, unified

model.

In a first application to monetary policy I find that monetary policy shocks identified

using high-frequency proxies yield effects which differ across the yield curve. In a second

application to global oil market shocks I find that negative news about future oil supply,

identified via OPEC announcements, have sizeable adverse effects on the US economy.
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Frühwirth-Schnatter, S. (1994), ‘Data augmentation and dynamic linear models’, Jour-

nal of time series analysis 15(2), 183–202.

Gertler, M. and Karadi, P. (2015), ‘Monetary policy surprises, credit costs, and economic

activity’, American Economic Journal: Macroeconomics 7(1), 44–76.

Geweke, J. (1992), ‘Evaluating the accuracy of sampling-based approaches to the calcu-

lation of posterior moments’, Bayesian Statistics 4, 169–193.

Huber, F. and Fischer, M. M. (2018), ‘A Markov switching factor-augmented VAR model

for analyzing US business cycles and monetary policy’, Oxford Bulletin of Economics

and Statistics 80(3), 575–604.

Inoue, A. and Kilian, L. (2020), ‘Joint bayesian inference about impulse responses in

VAR Models’, manuscript, Federal Reserve Bank of Dallas .

Känzig, D. R. (2019), ‘The macroeconomic effects of oil supply shocks: New evidence

from OPEC announcements’, Available at SSRN 3185839 .

24

                  



Kerssenfischer, M. (2019), ‘The puzzling effects of monetary policy in VARs: Invalid

identification or missing information?’, Journal of Applied Econometrics 34(1), 18–

25.

Kilian, L. (2008), ‘Exogenous oil supply shocks: how big are they and how much do they

matter for the US economy?’, The Review of Economics and Statistics 90(2), 216–240.

Kilian, L. (2009), ‘Not all oil price shocks are alike: Disentangling demand and supply

shocks in the crude oil market’, American Economic Review 99(3), 1053–69.

Kilian, L. and Lütkepohl, H. (2017), Structural vector autoregressive analysis, Cambridge

University Press.

Kose, M. A., Otrok, C. and Whiteman, C. H. (2003), ‘International business cycles:

World, region, and country-specific factors’, american economic review 93(4), 1216–

1239.

Lopes, H. F. and West, M. (2004), ‘Bayesian model assessment in factor analysis’, Sta-

tistica Sinica pp. 41–67.

McCracken, M. W. and Ng, S. (2016), ‘Fred-md: A monthly database for macroeconomic

research’, Journal of Business & Economic Statistics 34(4), 574–589.

Miescu, M. S. and Mumtaz, H. (2019), Proxy structural vector autoregressions, infor-

mational sufficiency and the role of monetary policy, Technical report, Queen Mary

University of London, School of Economics and Finance.

Miranda-Agrippino, S. and Ricco, G. (2018), The transmission of monetary policy

shocks, Technical report, CEPR Discussion Papers.

Montiel Olea, J. L. and Plagborg-Møller, M. (2019), ‘Simultaneous confidence bands:

Theory, implementation, and an application to SVARs’, Journal of Applied Econo-

metrics 34(1), 1–17.

Mumtaz, H. and Surico, P. (2012), ‘Evolving international inflation dynamics: world and

country-specific factors’, Journal of the European Economic Association 10(4), 716–

734.

25

                  



Mumtaz, H. and Theophilopoulou, A. (2019), Monetary policy and wealth inequality

over the great recession in the uk an empirical analysis, Technical report, Queen

Mary University of London, School of Economics and Finance.

Olea, J. L. M., Stock, J. H. and Watson, M. W. (forthcoming), ‘Inference in structural

VARs with External Instruments’, Journal of Econometrics .

Primiceri, G. E. (2005), ‘Time varying structural vector autoregressions and monetary

policy’, The Review of Economic Studies 72(3), 821–852.

Raftery, A. and Lewis, S. (1992), ‘How many iterations in the Gibbs sampler?’, Bayesian

Statistics 4, 763–773.

Rubio-Ramirez, J. F., Waggoner, D. F. and Zha, T. (2010), ‘Structural vector autoregres-

sions: Theory of identification and algorithms for inference’, The Review of Economic

Studies 77(2), 665–696.

Rudebusch, G. D. and Swanson, E. T. (2012), ‘The bond premium in a dsge model

with long-run real and nominal risks’, American Economic Journal: Macroeconomics

4(1), 105–43.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002), ‘Bayesian

measures of model complexity and fit’, Journal of the royal statistical society: Series

b (statistical methodology) 64(4), 583–639.

Stock, J. H. and Watson, M. W. (2012), ‘Disentangling the channels of the 2007-2009

recession’, NBER Working paper 18094 .

Stock, J. H. and Watson, M. W. (2016), ‘Dynamic factor models, factor-augmented vec-

tor autoregressions, and structural vector autoregressions in macroeconomics’, Hand-

book of macroeconomics 2, 415–525.

Stock, J. H. and Watson, M. W. (2018), ‘Identification and estimation of dynamic

causal effects in macroeconomics using external instruments’, The Economic Jour-

nal 128(610), 917–948.

Yamamoto, Y. (2019), ‘Bootstrap inference for impulse response functions in factor-

augmented vector autoregressions’, Journal of Applied Econometrics 34(2), 247–267.

26

                  



Yu, J. and Meyer, R. (2006), ‘Multivariate stochastic volatility models: Bayesian esti-

mation and model comparison’, Econometric Reviews 25(2-3), 361–384.

27

                  



A Posterior Inference

A.1 Conditional posterior of F

The procedure to generate posterior draws of latent factors, F , differs from generating

draws of parameters, in that one has to generate the whole dynamic evolution of factors

for each t = 1, ..., T . For this to be feasible I exploit the Markov property of the system

described in equation (3) as follows:

p(

[
Y

m

]
|X, θ) = p(

[
yt

mt

]
|X, θ)

T−1∏

t=1

p(

[
yt

mt

]
|
[
yt+1

mt+1

]
, X, θ). (22)

First note that (22) describes the posterior of

[
Y

m

]
, which contains both latent and

observable factors and the proxy. The reason for including the observable factors and

the proxy is the dynamic interdependence between latent and observable factors and

the proxy, which needs to be accounted for. Given that the observable factors and the

proxy are non-random, their distribution has a zero variance.8 Second, note that this is

a product of (R + K + 1)-dimensional conditional distributions. Given the assumption

of Gaussianity of ξt and ut, this representation can be combined with the observation

equation (1) and is amenable to the Carter-Kohn algorithm described in Carter and

Kohn (1994) and Frühwirth-Schnatter (1994).

A.1.1 State-space form

Start by rewriting observation equation (1) and transition equation (3) as



xt

zt

mt


 = HBt +Wt (23)

Bt = FBt−1 + Vt (24)

V ar(Wt) = R (25)

V ar(Vt) = Q (26)

8Here, I refer to the variance across draws. The variance across time is, of course, non-zero.
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where

H =




Λf Λz 0 ... 0

0 I 0 ... 0

0 0 1 ... 0


 ; Bt =

[
b′t b′t−1 ... b′t−p

]′
; bt =



f t

zt

mt




Wt =



ξt

0

0


 ; F =




Π1 0 Π2 0 ... Πp 0

0

I 0


 ; Vt =



ut

mt

0




R =

[
Ω 0

0 0

]
; Q =




Σ chol(Σ)Qβ 0

β′Q′chol(Σ)′ β′β + σ2
ν 0

0 0 0


 ,

where β = [β 0]′.

Then consider the following factorisation:

p(B1:T |X,θ) = p(BT |x1:T ,θ)
T−1∏

t=1

p(Bt|Bt+1, X, θ) (27)

Given the linear Gaussian form of the state space model we have that

BT |x1:T , θ ∼ N(BT |T ,PT |T ) (28)

Bt|T |Bt+1|T ,x1:T , θ ∼ N(Bt|t,Bt+1|T ,Pt|t,Bt+1|T ) (29)

with

BT |T = E(BT |x1:T ,θ) (30)

PT |T = Cov(BT |x1:T ,θ) (31)

Bt|t,Bt+1|T = E(Bt|Bt|t,Bt+1|t,θ) (32)

Pt|t,Bt+1|T = Cov(Bt|Bt|t,Bt+1|t,θ) (33)

A.1.2 Carter-Kohn algorithm

In a first step, we can run a Kalman filter to obtain a series of Kalman-filtered draws

of the state variable Bt Bt|t for t = 1, ...T . To initialise, we set B1|0 = 0 and P1|0 = I.
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Then, iterate forward as:

Bt|t = Bt|t−1 + κt|t−1ηt|t−1 (34)

where ηt|t−1 = Bt−FBt|t−1 denotes the forecast error, ft|t−1 = HPt|t−1H′+R its variance

and κt|t−1 = Pt|t−1Hf−1
t|t−1 the ”Kalman-gain”

Pt|t−1 = FPt−1|t−1F ′ +Q (35)

Then, conditioning on the last of these Kalman-filtered draws, BT |T and PT |T , we can

run the filter backwards to obtain a series Bt|t+1 for t = 1, ..., T − 1 as follows:

B∗t|t,Bt+1|T = Bt|t + Pt|tF∗
′
J−1
t+1|tψt+1|t (36)

P∗t|t,Bt+1|T = Pt|t − Pt|tF∗
′
J−1
t+1|tF

∗Pt|t (37)

where ψt+1|t = B∗t+1−F∗Bt|t and Jt+1|t = F∗Pt|tF∗
′
+Q∗. Note that Q∗ refers to the top

R×R block of Q and that F∗ and B∗ denote the first R rows of F and B, respectively.

This is required because Q is singular given the presence of observable factors.

Plugging these draws into (27) results in an unconditional posterior draw of the state

variable, B1, ...,BT . Its top R + K block represents an unconditional posterior draw of

factors, yt.

A.2 Conditional posterior of {Λ,Ω}
This section discusses conditional posterior inference on {Λ,Ω}. It draws partially on

Bernanke et al. (2004). Restate the observation equation for convenience

xt = Λff t + Λzzt + ξt (38)

ξt ∼ N(0,Ω) (39)

with Λ = [λf λz]. Given a draw of the latent and observable factors, yt = [f ′t z′t]
′,

and under the assumption that Ω is diagonal, (38) amounts to N independent linear

regressions.
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Assuming (conjugate) normal-inverse Gamma priors of the form

ωii ∼ IG(sc∗, sh∗) (40)

λi|ωii ∼ N(µ∗λ,i,ωiiM
∗−1
i ), (41)

delivers posterior distributions of the form

ωii ∼ IG(sc, sh) (42)

λi|ωii ∼ N(µλ,i,ωiiM
−1
i ), (43)

with

sh = sc∗ + T

sc = sc∗ + ξ̂iξ̂i
′
+ (λ̂i − µ∗λ,i)′(M∗−1

i + (YiY
′
i )−1)(λ̂i − µ∗λ,i)

Mi = M∗i + YiY
′
i

µλ,i = M−1
i (M∗i µ

∗
λ,i + YiY

′
i )λ̂i,

where ξ̂i are the fitted errors from the i-th regression and λ̂i is the OLS estimate of λi,

and Yi are the regressors of the i-th equation. Note that employing uninformative priors

centred around zero, i.e. setting sc∗ = 0, sh∗ = 0, µ∗λ,i = 0, and M∗−1
i = 0 collapses the

posterior towards the OLS estimate:

sh = T

sc = ξ̂iξ̂i
′

Mi = YiY
′
i

µλ,i = λ̂i,

A.3 Conditional posterior of {Σ,Π}
This section discusses conditional posterior inference on {Σ,Π}. It proceeds in two steps:

First, generate candidate draws {Πcand,Σcand} from

p(Π,Σ|Λf ,Λz,Ω, F, β, σν , X, Z)
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(note that m is not part of the conditioning set). Second, map these candidate draws

into draws from the conditional target distribution,

p(Π,Σ|Λf ,Λz,Ω, F, β, σν , b, X, Z,m)

(note that m is now part of the conditioning set).

For the first step, the derivations can be found, for example, in Kilian and Lütkepohl

(2017). Restate the transition equation for convenience

yt = Πwt + ut (44)

ut ∼ N(0,Σ), (45)

Given a draw of latent and observable factors, yt, equation (44) is a standard VAR(P)

model. Therefore, employing independent normal-inverse Wishart priors of the form

vec(Π) ∼ N(µ∗Π, V
∗

Π) (46)

Σ ∼ IW (S∗, τ∗), (47)

delivers posterior distributions of the form

vec(Π)|Σ ∼ N(µΠ, VΠ) (48)

Σ|Π ∼ IW (S, τ), (49)

where

VΠ = (V ∗−1
Π + (WW ′ ⊗ Σ−1))−1 (50)

µΠ = VΠ(V ∗−1
Π + (W ⊗ Σ−1)vec(Y )) (51)

S = S∗ + (Y −ΠW )(Y −ΠW )′ (52)

τ = τ∗ + T (53)

I follow Caldara and Herbst (2019) in setting the hyperparemters of the Minnesota

prior as in Del Negro and Schorfheide (2011) as λ = [0.5; 3; 1; 0.5; 0.5; 1]. Unlike their

case, I implement an independent prior in order to facilitate incorporation into the Gibbs

sampler. This setup is not amenable to implementation via dummy observations as in

Caldara and Herbst (2019).
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In a second step, {Πcand,Σcand} are mapped into draws from the conditional target

distribution via a Metropolis-Hastings step. At iteration j of the sampler, this involves

setting

{Πj ,Σj} =




{Πcand,Σcand} with probability α

{Πj−1,Σj−1} with probability (1− α)
, (54)

where

α = min(
p(Πcand,Σcand|Λf,j ,Λz,j ,Ωj , F j , βj , σjν , b

j , X, Z,m)

p(Πj−1,Σj−1|Λf,j ,Λz,j ,Ωj , F j , βj , σjν , b
j , X, Z,m)

, 1) (55)

A.4 Conditional posterior of b

This section re-parametrises Caldara and Herbst (2019) to allow for identification of im-

pact effects. For the posterior sampler, we will need to be able to evaluate the conditional

likelihood of mt given yt.

Write transition and proxy equation in stacked form for convenience and compute

the unconditional variance:

[
yt

mt

]
=

[
Π 0

0 0

][
wt

mt−1

]
+

[
B β

β′ σν

][
εt

νt

]
(56)

V ar(

[
yt −Πwt

mt

]
) =

[
Σ Bβ

β′B′ β′β + σ2
ν

]
, (57)

where β = [β 0]′

The likelihood is invariant to observationally equivalent rotations of B. Therefore

we can replace B = BcQ, where Bc is, for example, the lower-triangular Cholesky

decomposition of Σ.

V ar(

[
yt −Πwt

mt

]
) =

[
Σ BcQβ′

βQ′Bc′ β′β + σ2
ν

]
(58)

Then, using the rules for the conditional mean of multivariate normal distributions, we
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obtain the conditional likelihood

mt|yt,Π,Σ, b, β, σν ∼ N(µm|Y , Vm|Y ), (59)

µm|Y = βQ′Bc′Σ−1ut (60)

= βε1,t (61)

Vm|Y = bb′ + σ2
ν − bQ′Bc′Σ−1BcQb′ (62)

= σ2
ν (63)

Note that the conditional likelihood of mt does not depend on the full matrix B, but

only on its first column, b because the model is partially identified. Therefore, we can

rewrite (59) as

mt|yt,Π,Σ, b, β, σν ∼ N(µm|Y , Vm|Y ), (64)

Next, we can use the above result in a Metropolis step to generate a draw of b: given

a draw of Π,Σ, draw Qcand·,1 as the first column of an orthogonal matrix form a uniform

Haar distribution using the algorithm by Rubio-Ramirez et al. (2010). Set Q·,1 = Qcand·,1
with probability α and Q·,1 equal to the previous draw, Qj−1

·,1 , otherwise.

α = min(
p(m|Y,Π,Σ, Qcand·,1 )

p(m|Y,Π,Σ, Qj−1
·,1 )

, 1)

Compute structural errors ε1,t = (chol(Σ)Q·,1)−1U .

A.5 Conditional posterior of β, σν

Given a draw of structural shocks, ε1,t, the proxy equation is a linear equation. I consider

two types of priors: a flat and a “high-relevance” prior. Restate the proxy equation for

convenience

mt = βε1,t + σννt (65)

νt ∼ N(0, 1), (66)

First, for the flat prior, results from appendix A.2 apply and the normal-inverse
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Gamma priors of the form

β ∼ N(µ∗β, σ
∗2
β ) (67)

σ2
ν ∼ IG(sc∗ν , sh

∗
ν) (68)

map into posteriors of the form

β|σν ∼ N(µβ, σ
2
β) (69)

σ2
ν |β ∼ IG(scν , shν) (70)

with (assuming zero-centred un-informative priors)

µβ = β̂ (71)

σ2
β = σ2

ν(ε1ε
′
1)−1 (72)

scν = T (73)

shν = ν̂ν̂ ′, (74)

where ν̂ are the fitted errors from equation (65) and β̂ is the OLS estimate of β.

Second, for the “high-relevance” prior, the posterior of β is unaffected. σν , however,

is not updated and stays at σν = 0.5std(mt) throughout the sampler.

A.6 Convergence of the Posterior Sampling Algorithm

The convergence properties of the reduced form parameters of a Bayesian FAVAR model

are discussed in detail in Amir-Ahmadi and Uhlig (2015). They show that a Gibbs

sampling procedure, similar to the one employed for the reduced form parameters here,

converges for appropriate lengths of the sampler. The convergence properties of the

structural parameters, however, need to be assessed. In particular the first column of B

containing the on-impact effects of the shock of interest are of importance. In order to

do so, I follow Amir-Ahmadi and Uhlig (2015) and employ the convergence diagnostic

proposed by Geweke (1992). In addition, I compute inefficiency factors and the criterion

by Raftery and Lewis (1992). A detailed discussion of these convergence diagnostics can

be found, for example, in Cowles and Carlin (1996).
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A.6.1 Geweke (1992)

The diagnostic by Geweke (1992) assesses the convergence of each element ηi of param-

eter vector, η. The assessment is based on a comparison of means across different parts

of this chain. If the means are close to each other, the procedure detects convergence.

In a first step, extract from each (univariate) posterior draw {ηi} the following sub-

series: η1i, ..., η0.1D,i, i.e. the first 10 % of draws for parameter i, and η0.6D+1,i, ..., ηD,i,

i.e. the last 40% of draws, where D is the length of the MCMC chain. Compute µ̂first

and µ̂last, the mean, as well as σ̂first and σ̂last, the standard deviation, of these subseries.

Then the test statistic is

CD =
µ̂first − µ̂last
σ̂first√

0.1D
+ σ̂last√

0.4D

(75)

Under the conditions mentioned in Geweke (1992), CD has an asymptotic standard

normal distribution

The final output is a p-value indicating whether or not we can reject the Null hy-

pothesis of convergence, i.e. equality of mean across the chain, at a given significance

level.

A.6.2 Inefficiency Factors

Inefficiency factors are the inverse of the relative numerical efficiency measure (RNE)

by Geweke (1992). The RNE assesses how many Gibbs draws should be used based

on the autocorrelation of these draws. The RNE is computed noting that the posterior

mean of a parameter ηi, E(ηi) = 1
N

∑N
j=1 ηi,j would variance E(ηi)

N if the draws were

generated independently. However, Gibbs draws are auto-correlated. That is why a

variance estimate, which takes this auto-correlation into account, S(0)/N (where S(0)

is the spectral density at frequency 0), will differ from E(ηi)
N . The RNE is therefore given

by:

RNE =
̂V ar(ηi)
S(0)

(76)

and inefficiency factors are defined as its inverse:

IF = RNE−1. (77)

A value of IF below 20, according to Primiceri (2005) indicates that the degree of auto-

correlation is sufficiently low to indicate convergence of the posterior chain.
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A.6.3 Raftery and Lewis (1992)

The approach by Raftery and Lewis (1992) investigates the quantiles of the probability

distribution for the parameter ηi. The method assesses if the chain is long enough to

get precise estimates of quantiles of this distribution.

To define the notion of closeness, three values have to be specified by the user: s, q

and r. If the interest lies in qi,0.025, the 0.025 quantile of the posterior of a parameter θi,

then q = 0.025. If one exerts 95% of the posterior draws to lie in an interval of +/- 0.0125

around the true 0.025 quantile, then s = 0.95 and r = 0.0125. These specifications are

standard for output from an MCMC chain. The implementation of the algorithm for

each parameter j proceeds in 4 steps:

1. transform {ηi,d}Dd=1 into a dichotomous random variable Zd:

Zd =





1 if ηi,d < q0.025,

0 otherwise;
(78)

2. write the matrix of transition probabilities for Zd conditioning on the previous

state,

P =

[
1− α α

β 1− β

]
,

with α = P (Zd+1 = 1|Zd = 0) and β = P (Zd+1 = 0|Zd = 1). The unconditional

probabilities of being in one state or another are

π0 = P (ηi,d < q0.025) = P (Zd = 0) =
β

α+ β
(79)

π1 = P (ηi,d ≥ q0.025) = P (Zd = 1) = 1− π0 =
α

α+ β
(80)

3. approximate the probability that a draw of the parameter is smaller than the

quantile of interest as

P (ηi,d < q0.025) ≈ Z̄D,i =
1

D

D∑

d=1

Zd. (81)

As shown by Raftery and Lewis (1992), Z̄D is approximately normally distributed

with mean q0.025 and variance 1
D

(2−α−β)αβ
(α+β)3

;

4. compute the optimal length of the chain as the length that ensures P (q − r ≤
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Z̄D ≤ q + r) using

n∗ =
(2− α− β)αβ

(α+ β)3

{Φ−1(1
2(s+ 1))

r

}2
(82)

The key statistic of the test is n∗, which has an intuitive interpretation: it is the

minimum number of draws we need for the desired level of accuracy of the quantile q

(given by r and s). If the number of draws, D, is lower than n∗, this suggests that the

chain length needs to be increased.
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B Deviance Information Criterion

This section lays out how to employ the deviance information Criterion (DIC) by Spiegel-

halter et al. (2002) to determine the number of latent factors, R, used in the analysis. I

employ the DIC rather than measures of marginal data densities (MDD) since, as pointed

out by Chan and Eisenstat (2018), the MDD, while having an intuitive interpretation,

tends to be more sensitive to the choice of priors and comes with a heavy computational

burden. The DIC is given as:

DIC = D(θ) + pD, (83)

where

D(θ) = −2Eθ,F (log p(Z|θ, F )|Z) (84)

is the posterior mean deviance, interpreted as the residual information in the data con-

ditional on θ (see e.g. Chan and Eisenstat, 2018 for a discussion) and p(Z|θ, F ) is the

likelihood conditional on latent factors. It is calculated by averaging −2log p(Z|θ, F )

across posterior draws. Next,

pD = D(θ)−D(θ̃) (85)

is the effective number of parameters in the model, a measure of shrinkage of the posterior

estimates towards the prior means (Chan and Eisenstat, 2018). θ̃ is chosen as the

posterior mean of parameters and the Principal Components estimate of latent factors.

The preferred model is the one with the minimum DIC value.

The DIC in this paper is based on a measure of the conditional likelihood, p(Z|θ, F ),

rather than the full-data likelihood p(Z|θ). Monte Carlo evidence by Chan and Grant

(2016) suggests that this variant of the DIC tends to favour complex models. However,

this procedure is widely used in applied work (see e.g. Mumtaz and Surico, 2012, Yu

and Meyer, 2006) since the conditional likelihood is often available in closed form and

therefore straightforward to implement.
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C Numerical Illustration

This section lays out the simulation design in section 3.3 of the paper.

C.1 Data Generating Process

Data are generated from a Proxy-FAVAR using two data generating processes (DGP).

The parameters are given in table 2. DGP1 uses a non-contaminated proxy to abstract

from the challenges of measurement errors in the proxy. DGP2 introduces a contamina-

tion, lowering βtrue and increasing σν,true.

βtrue σν,true R K N T repl. draws burn-in

DGP1 1 0
3 1 9 200 50 25,000 5,000

DGP2 0.5 1

Table 2: Numerical Illustration: DGP. Parameters used to generate artificial data.

The remaining parameters are set as follows:

Λtrue =




1.20 0.30 0.10 0.00

0.54 2.21 −1.04 0.00

0.41 0.52 2.29 0.00

−1.19 −0.92 0.23 0.50

1.19 −0.12 0.31 0.30

−1.14 0.13 0.43 0.00

1.14 −0.96 0.25 0.00

−0.67 1.28 1.41 0.00

1.08 −0.56 0.52 0.00




, Ωtrue = diag(




0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01




), btrue =




1

0.1

−0.2

0.3




Πtrue =




0.8 0 0 0

0 0.75 0 0

0 0 0.7 0

0 0 0 0.5




, Σtrue =




0.92 0.06 0.01 0.09

0.06 1.23 −0.14 −0.12

0.01 −0.14 1.13 0.08

0.09 −0.12 0.08 0.95




The parameter values chosen for Λtrue ensure that Λf ′trueΛ
f
true = IR, and the top

(R ×K) block of Λtrue is zero, satisfying the normalisation used for factors and factor

loadings (see section 2). The data are generated using the following steps:
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Data Generating Process (DGP)

1. Draw 2T reduced form shocks ut from N(0, Σ̃true).

2. Generate factors yt recursively using Πtrue and ut, starting from y1 = 0. Discard

the first T observations to limit the effect of starting values.

3. Set the non-normalised latent factors to f̃ t,true = yt,1:R. Recover the normalised

factors, f t,true, with cov(f t) diagonal with decreasing elements. Set the observable

factor to zt = yt,R+1. Recover ut = [f t,true zt]
′ − Πtrue[f t−1,true zt−1]′ and

Σtrue =
∑T

t=1 utut
′/T .

4. Recover ε1,t = b′trueΣ
−1
trueut/(b

′
trueΣ

−1
truebtrue) and generate the proxymt = βtrueε1,t+

νt, with νt ∼ N(0, σ2
ν,true)

5. Generate informational series x̃t = Λtrue[f t,truezt]
′ + ξt, where ξt ∼ N(0,Ωtrue).

Standardise the informational series, setting xt = (x̃t −
∑T

t=1 x̃t/T )/std(x̃t).

50 data sets are generated. For each data set, 25,000 posterior draws from the

BP-FAVAR model are generated, discarding the first 5,000. The parameter draws are

pooled across simulations. While the posterior draws of parameters can be compared to

their true values, the true factors differ for each simulation so that their posterior draws

cannot be compared to their true counterpart.
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D Additional Figures and Tables

D.1 Sampler Specification

Mon. Pol. Mon. Pol.
DGP1 DGP2 (1) (2) Oil Mkt.

Total nb of draws 25,000 25,000 100,000 100,000 100,000
burn-in 5,000 5,000 10,000 10,000 10,000

acc. red. form 0.995 0.802 0.976 0.941 0.975
acc. Q 0.02 0.182 0.046 0.153 0.076

Table 3: Sampler Specification. Effective number of draws are the total number minus the

burn-in sample. The reduced form acceptance rate refers to the Metropolis-Hastings step in step

3 of the sampler. The acceptance rate for Q refers to the Metropolis-Hastings step in step 4 of

the sampler. DGP1 and DGP2 refer to the two data-generating processes used in the numerical

application Mon. Pol. (1) and (2) refer to the application to monetary policy shocks using the

proxy by Caldara and Herbst (2019) and Miranda-Agrippino and Ricco (2018), respectively. The

last column refers to the oil market application.

D.2 Additional Results for Numerical Illustration

DGP1 DGP2

G1992 RL1991 Ineff.Fac. G1992 RL1991 Ineff.Fac.

f1 0.19 16,656.41 7.80 0.14 32,412.42 11.16
f2 0.00 9,881.11 16.93 0.39 17,610.89 13.35
f3 0.34 5,618.40 13.14 0.94 12,704.67 13.12
z 0.06 4,767.12 12.30 0.13 8,034.91 10.94

Table 4: Numerical Illustration: Convergence. Convergence criteria for the impact

effect of factors, b. G1992 is the p-value of the criterion by Geweke (1992). A p-value above

0.01 suggests that the Null hypothesis of convergence cannot be rejected at the 1% confidence

level. RL1992 is the minimum number of draws required for convergence as proposed by Raftery

and Lewis (1992). Ineff. Fac. are inefficiency factors, as in Primiceri (2005). A value below 20

suggests convergence. The sampler ran for 25,000 draws, discarding the first 5,000 draws as a

burn-in sample.
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Numerical Illustration: Posterior Draws. Draws from the posterior of b for DGP1 (top

panel) and DGP2 (bottom panel). Draws after the burn-in sample are plotted.
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(c) Numerical Illustration: β and σ2
ν. Posterior draws of β and σν and true values for

DGP1 (top panel) and DGP2 (bottom panel)
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(a) DGP1

(b) DGP2

Figure 11: Numerical Illustration: Impact Effects. Posterior draws of the impact effects

of informational series, Λpostbpost and corresponding true values for DGP1 (top panel) and DGP2

(bottom panel) 45
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Figure 12: Numerical Illustration: Impulse Responses (DGP2). Posterior draws of the

impulse responses of informational series, and corresponding true values for DGP2. The shaded

area shows 80% quantiles of posterior draws pooled across simulations. The dashed line is the

posterior median, while the solid line is the true impulse response.
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D.3 Additional Results for Monetary Policy Application

D.3.1 Baseline: Caldara and Herbst (2019) Proxy

b G1992 RL1991 Ineff. Fac.

1 0.76 53,713.33 25.50
2 0.51 15,121.60 11.45
3 0.52 11,831.04 9.02
4 0.06 12,557.33 9.29
5 0.84 17,486.08 11.13

Table 5: Monetary Policy Application (Caldara and Herbst, 2019): Convergence.

Convergence criteria for the impact effect of factors, b. G1992 is the p-value of the criterion by

Geweke (1992). A p-value above 0.01 suggests that the Null hypothesis of convergence cannot be

rejected at the 1% confidence level. RL1992 is the minimum number of draws required for con-

vergence as proposed by Raftery and Lewis (1992). The last column reports inefficiency factors,

as in Primiceri (2005). A value below 20 suggests convergence. The sampler ran for 100,000

draws.
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Figure 13: Proxy for monetary policy shocks. Monetary policy surprises associated with

FOMC announcements. The methodology uses the price of federal funds future contracts traded

at the Chicago Board of Trade. See Caldara and Herbst (2019) for details.
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Figure 14: Posterior of latent factors (monetary policy application). Median posterior

draw of latent factors estimated via Kalman filter (solid line). 90% bands (dotted) and Principal

Components estimate (dashed).
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Figure 15: Monetary Policy Application (Caldara and Herbst, 2019): Posterior

Draws. Draws from the posterior of b. Draws after the burn-in sample are plotted.
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D.3.2 High-relevance Prior
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Figure 16: Monetary Policy Application (High-relevance prior): Instrument Rele-

vance. Top panel: Update of β and σ2
ν . The prior for β is standard normal, while the prior for

σ2
ν imposes σν = 0.5std(mt). The proxy by Caldara and Herbst (2019) is used for identification.
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Figure 17: Monetary Polcy Application (High-relevance prior): Impulse Response

Functions of informational series. Point-wise median impulse responses (solid line) with

68% bands. The model includes R = 4 latent factors from real and financial series. The impact

effect is normalised to generate a 0.25% increase in the observable factor. The proxy by Caldara

and Herbst (2019) is used for identification. The prior for σν imposes σν = 0.5std(mt).
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D.3.3 Miranda-Agrippino and Ricco (2018) Proxy

b G1992 RL1991 Ineff. Fac.

1 0.48 21,267.04 11.59
2 0.77 14,844.15 20.45
3 0.79 12,525.05 3.26
4 0.35 12,240.15 3.59
5 0.83 9,861.97 3.55

Table 6: Monetary Policy Application (Miranda-Agrippino and Ricco, 2018): Con-

vergence. Convergence criteria for the impact effect of factors, b. G1992 is the p-value of the

criterion by Geweke (1992). A p-value above 0.01 suggests that the Null hypothesis of convergence

cannot be rejected at the 1% confidence level. RL1992 is the minimum number of draws required

for convergence as proposed by Raftery and Lewis (1992). The last column reports inefficiency

factors, as in Primiceri (2005). A value below 20 suggests convergence. The sampler ran for

100,000 draws.
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Figure 18: Monetary Policy Application (Miranda-Agrippino and Ricco, 2018):

Proxy. Monetary policy surprises accounting for informational rigidities. See Miranda-

Agrippino and Ricco (2018) for details.
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Figure 19: Monetary Policy Application (Miranda-Agrippino and Ricco, 2018):

Posterior Draws. Draws from the posterior of b. Draws after the burn-in sample are plotted.
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Figure 20: Monetary Policy Application (Miranda-Agrippino and Ricco, 2018):In-

strument Relevance. Top panel: Update of β and σ2
ν . The prior for β is standard normal,

while the prior for σ2
ν follows an inverse Gamma distribution. Bottom panel: Update of β/σν .
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Figure 21: Monetary Policy Application (Miranda-Agrippino and Ricco, 2018):

Updating of b. Priors (solid line) and posterior (histogram) of b. Prior draws are computed

from the distribution implicit in the priors for Σ, β and σν .
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Figure 22: Monetary Policy Application (Miranda-Agrippino and Ricco, 2018): Im-

pulse Response Functions of informational series. Point-wise median impulse responses

(solid line) with 68% bands. The model includes R = 4 latent factors from real and financial

series. The impact effect is normalised to generate a 0.25% increase in the observable factor.

The proxy by Miranda-Agrippino and Ricco (2018) is used for identification
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D.4 Oil Market Application

R DIC

1 5497.12
2 -4942.12
3 -67,529.90
4 -14,996.23
5 -20,457.62
6 -9032.89
7 -12,198.27
8 -14,238.08

Table 7: Deviance Information Criterion (Oil application). Deviance Information

Criterion (DIC) by Spiegelhalter et al. (2002). The preferred model minimises the DIC. The

sampler is run Rmax = 8 times for 20,000 draws, discarding the first 2,000 draws. See Appendix

B for details.

b G1992 RL1991 Ineff. Fac.

1 0.47 28,163.69 11.89
2 0.34 25,312.01 12.50
3 0.89 20,636.16 9.82
4 0.60 24,538.90 12.29
5 0.55 25,391.44 11.62
6 0.55 17,991.59 17.34
7 0.33 22,339.00 10.90

Table 8: Oil market application: Convergence. Convergence criteria for the impact

effect of factors, b. G1992 is the p-value of the criterion by Geweke (1992). A p-value above

0.01 suggests that the Null hypothesis of convergence cannot be rejected at the 1% confidence

level. RL1992 is the minimum number of draws required for convergence as proposed by Raftery

and Lewis (1992). The last column reports inefficiency factors, as in Primiceri (2005). A value

below 20 suggests convergence. The sampler ran for 100,000 draws, discarding the first 10,000

draws.
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Figure 23: Proxy for oil supply news shocks. Percent variation in WTI oil price futures

around OPEC announcements, see Känzig (2019).
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Figure 24: Posterior of latent factors (oil market application). Median posterior draw

of latent factors estimated via Kalman filter (solid line). 90% bands (dotted) and Principal

Components estimate (dashed).
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Figure 25: Oil market Application: Posterior Draws. Draws from the posterior of b.

Draws after the burn-in sample are plotted.

60

                  



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Figure 26: Oil Market Application (high relevance prior): Instrument Relevance.

Top panel: Update of β and σ2
ν . The prior for β is standard normal, while the prior for σ2

ν

imposes σν = 0.5std(mt).
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Figure 27: Impulse Response Functions of informational series (Oil market appli-

cation, high relevance prior). Point-wise median impulse responses (solid line) with 68%

bands. The model includes R = 3 latent factors. The impact effect is normalised to generate a

7% increase in the WTI spot price. The proxy by Känzig (2019) is used for identification. The

prior for β is standard normal, while the prior for σ2
ν imposes σν = 0.5std(mt).

62

                  



Table 9: Data

Output and Income

id tcode fred description

1 5 RPI Real Personal Income
2 5 W875RX1 Real personal income ex transfer receipts
6 5 INDPRO IP Index
7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies
8 5 IPFINAL IP: Final Products (Market Group)
9 5 IPCONGD IP: Consumer Goods
10 5 IPDCONGD IP: Durable Consumer Goods
11 5 IPNCONGD IP: Nondurable Consumer Goods
12 5 IPBUSEQ IP: Business Equipment
13 5 IPMAT IP: Materials
14 5 IPDMAT IP: Durable Materials
15 5 IPNMAT IP: Nondurable Materials
16 5 IPMANSICS IP: Manufacturing (SIC)
17 5 IPB51222s IP: Residential Utilities
18 5 IPFUELS IP: Fuels
19 1 NAPMPI ISM Manufacturing: Production Index
20 2 CUMFNS Capacity Utilization: Manufacturing

63

                  



Labor Market

id tcode fred description

21* 2 HWI Help-Wanted Index for United States
22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed
23 5 CLF16OV Civilian Labor Force
24 5 CE16OV Civilian Employment
25 2 UNRATE Civilian Unemployment Rate
26 2 UEMPMEAN Average Duration of Unemployment (Weeks)
27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks
28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks
29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over
30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks
31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over
32* 5 CLAIMSx Initial Claims
33 5 PAYEMS All Employees: Total nonfarm
34 5 USGOOD All Employees: Goods-Producing Industries
35 5 CES1021000001 All Employees: Mining and Logging: Mining
36 5 USCONS All Employees: Construction
37 5 MANEMP All Employees: Manufacturing
38 5 DMANEMP All Employees: Durable goods
39 5 NDMANEMP All Employees: Nondurable goods
40 5 SRVPRD All Employees: Service-Providing Industries
41 5 USTPU All Employees: Trade, Transportation & Utilities
42 5 USWTRADE All Employees: Wholesale Trade
43 5 USTRADE All Employees: Retail Trade
44 5 USFIRE All Employees: Financial Activities
45 5 USGOVT All Employees: Government
46 1 CES0600000007 Avg Weekly Hours : Goods-Producing
47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing
48 1 AWHMAN Avg Weekly Hours : Manufacturing
49 1 NAPMEI ISM Manufacturing: Employment Index
127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing
128 6 CES2000000008 Avg Hourly Earnings : Construction
129 6 CES3000000008 Avg Hourly Earnings : Manufacturing
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Housing

id tcode fred description

50 4 HOUST Housing Starts: Total New Privately Owned
51 4 HOUSTNE Housing Starts, Northeast
52 4 HOUSTMW Housing Starts, Midwest
53 4 HOUSTS Housing Starts, South
54 4 HOUSTW Housing Starts, West
55 4 PERMIT New Private Housing Permits (SAAR)
56 4 PERMITNE New Private Housing Permits, Northeast (SAAR)
57 4 PERMITMW New Private Housing Permits, Midwest (SAAR)
58 4 PERMITS New Private Housing Permits, South (SAAR)
59 4 PERMITW New Private Housing Permits, West (SAAR)

Consumption, Orders and inventories

3 5 DPCERA3M086SBEA Real personal consumption expenditures
4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales
5* 5 RETAILx Retail and Food Services Sales
60 1 NAPM ISM : PMI Composite Index
61 1 NAPMNOI ISM : New Orders Index
62 1 NAPMSDI ISM : Supplier Deliveries Index
63 1 NAPMII ISM : Inventories Index
64 5 ACOGNO New Orders for Consumer Goods
65* 5 AMDMNOx New Orders for Durable Goods
66* 5 ANDENOx New Orders for Nondefense Capital Goods
67* 5 AMDMUOx Unfilled Orders for Durable Goods
68* 5 BUSINVx Total Business Inventories
69* 2 ISRATIOx Total Business: Inventories to Sales Ratio
130* 2 UMCSENTx Consumer Sentiment Index
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Money and Credit

id tcode fred description

70 6 M1SL M1 Money Stock
71 6 M2SL M2 Money Stock
72 5 M2REAL Real M2 Money Stock
73 6 AMBSL St. Louis Adjusted Monetary Base
74 6 TOTRESNS Total Reserves of Depository Institutions
75 7 NONBORRES Reserves Of Depository Institutions
76 6 BUSLOANS Commercial and Industrial Loans
77 6 REALLN Real Estate Loans at All Commercial Banks
78 6 NONREVSL Total Nonrevolving Credit
79* 2 CONSPI Nonrevolving consumer credit to Personal Income
131 6 MZMSL MZM Money Stock
132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding
133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding
134 6 INVEST Securities in Bank Credit at All Commercial Banks

Interest Rates and Exchange Rates

84 2 FEDFUNDS Effective Federal Funds Rate
85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate
86 2 TB3MS 3-Month Treasury Bill:
87 2 TB6MS 6-Month Treasury Bill:
88 2 GS1 1-Year Treasury Rate
89 2 GS5 5-Year Treasury Rate
90 2 GS10 10-Year Treasury Rate
91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield
92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield
93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS
97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS
98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS
99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS
100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS
101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies
102* 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate
103* 5 EXJPUSx Japan / U.S. Foreign Exchange Rate
104* 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate
105* 5 EXCAUSx Canada / U.S. Foreign Exchange Rate
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Prices

id tcode fred description

106 6 WPSFD49207 PPI: Finished Goods
107 6 WPSFD49502 PPI: Finished Consumer Goods
108 6 WPSID61 PPI: Intermediate Materials
109 6 WPSID62 PPI: Crude Materials
110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing
111 6 PPICMM PPI: Metals and metal products:
112 1 NAPMPRI ISM Manufacturing: Prices Index
113 6 CPIAUCSL CPI : All Items
114 6 CPIAPPSL CPI : Apparel
115 6 CPITRNSL CPI : Transportation
116 6 CPIMEDSL CPI : Medical Care
117 6 CUSR0000SAC CPI : Commodities
118 6 CUUR0000SAD CPI : Durables
119 6 CUSR0000SAS CPI : Services
120 6 CPIULFSL CPI : All Items Less Food
121 6 CUUR0000SA0L2 CPI : All items less shelter
122 6 CUSR0000SA0L5 CPI : All items less medical care
123 6 PCEPI Personal Cons. Expend.: Chain Index
124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods
125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
126 6 DSERRG3M086SBEA Personal Cons. Exp: Services

Stock Market

80* 5 S&P 500 S&P’s Common Stock Price Index: Composite
81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials
82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield
83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio
135* 1 VXOCLSx VXO
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