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Abstract 

Large infrastructures like electricity supply networks are widely presumed to be 

crucial for the functioning of societies as they create conditions for essential economic 

activities. There has always been a continuing concern and complexity around risks 

in the field of energy security and particularly power grids within energy supply chain. 

Drawing on this complexity and a need for useful tools, this research contributes to 

developing and utilising proper decision-making tools (i.e. methods and models) to 

deal with the risk identification and mitigation in the UK energy supply chain as a 

compound networked system.  

This thesis is comprised of four study phases (Figure I.A.). It is aimed at 

developing decision-making tools for risk identification, risk interdependency 

analysis, risk prioritisation, and long-term risk mitigation strategy recommendations. 

The application of the tools has focused on the UK power supply chain. The five new 

tools which are introduced and applied in this thesis are: (1) Proposed Expert Selection 

Model (ESM) and its application under hesitant fuzzy environment (i.e. HESM), (2) 

Proposed Neutrosophic Revised Decision-Making Trial and Evaluation Laboratory 

(NR-DEMATEL) method, (3) Proposed hybrid Spanning Trees Enumeration and 

Best-Worst Method (STE-BWM), (4) Proposed Neutrosophic Enhanced BWM (NE-

BWM), and (5) Proposed stratified model of game of chance involving risk. 

In this thesis, the applied decision analysis tools not only are theoretically 

improved but also implemented in the UK power supply chain risk management to 

validate their effectiveness. The utilised tools can provide helpful models and methods 

to illuminate and solve managerial problems by enhancing decision making and policy 

setting.  
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Figure I.A Phases of the research 

Phases I and II: 

In Phase I, a framework is proposed containing 12 risk dimensions, and 5 

classification perspectives. The 12 risk dimensions include Climate Change (CC), 

Natural Disasters (ND), Environmental and Health Safety (EHS), Technical 

Reliability (TR), Operational Safety (OS), Disease Outbreak (DO), Political 

Instability (PI), Industrial Action (IA), Sabotage and Terrorism (ST), Resource 

Availability (RA), Market Failure (MF), and Affordability (AF). The five 
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classification perspectives are context-based, position-based, temporal, origin-based, 

and hybrid classification. Then, in Phase II, the NR-DEMATEL has been applied in 

order to analyse the 12 identified risk dimensions based on the causal 

interrelationships and interdependencies among them, which has been missing in the 

current electricity risk management practices. Additionally, a novel Hesitant Expert 

Selection Model (HESM) to systematically assist researchers with the expert selection 

process is also proposed. The proposed HESM along with scenario analysis would 

provide a basis for the expert selection and weight assignment process. Findings have 

suggested the six most significant risk dimensions are ND, CC, IA, AF, PI and ST. 

Phase III: 

Besides the interrelationships between risks, it is important to know the ranking of 

identified risks which motivated the development and application of the BWM, by 

highlighting some weaknesses in the original BWM and contributing to the theoretical 

development. The NE-BWM and STE-BWM are introduced to enhance the efficiency 

of the original BWM in dealing with uncertainty in experts’ subjective judgements. 

The application results have highlighted that CC and ND are two most critical risk 

dimensions.  

Phase IV: 

A novel generic stratified decision-making model is introduced. It is based on Concept 

of Stratification (CST), game theory and Shared Socio-economic Pathway (SSP) to 

deal with long-term risk mitigation planning for the most critical identified risks (i.e. 

CC, and ND). The model is applied in the region of Highland and Argyll in Scotland 

based on the primary data obtained from experts to prioritise flooding risk mitigation 

strategies which were recommended by the Scottish Environment Protection Agency 

(SEPA). The model takes into account both UK socio-economic situations and 

flooding risk impacts for the long-term decision making (5 to 20-year time frame). 

The findings indicate that the most important strategies which can provide long-term 

benefit in mitigating flooding risk impact in the area of Highland and Argyll in 

Scotland are flood forecasting, awareness raising, emergency plans/response, 

planning policies, maintenance, and self help, respectively. 
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Chapter 1 Introduction 

Energy security is generally associated with various concepts and realms of studies 

such as political science, economics and engineering but its fundamental characteristic 

is indubitably risk management. Efficiently assessing risks of an energy supply chain 

cannot be achieved without thoroughly identifying risks via reliable methods. 

Knowing that the disruption concern is quite substantial in electric power network 

particularly with growing global demand for electricity. Risk identification by 

considering all levels of the power supply chain from upstream to downstream prior 

to risk mitigation phase is a highly important task. Hence, risks have to be identified 

first. In this study, this goal can be achieved by introducing an all-inclusive risk 

identification framework and then using proper quantitative methods to assess risks. 

An overview on the energy security literature led this study to comprehend a need of 

a framework for identifying risks in energy supply chain and then their analysis based 

on their interrelationships. The reason is that, risks usually act in close interconnection 

to each other and barely act independently; that means there would be causal relations 

among them that occurrence of one risk would cause the other one. Thus, it is surmised 

that analysing these interrelationships can provide insightful understanding about the 

links and relations between risks that can guide to find out what risks are key factors 

in leading to other risks. This helps also with the risk mitigation strategy suggestion 

to focus more on these vital risks especially via a proactive perspective which looks 

more into future status of the system. In subsequent studies, identified risks are 

prioritised by proposed quantitative tools and risk mitigation analysis for the most 

critical ones are discussed. In this chapter, an overview of the research including some 

definitions, aims and objectives, as well as the structure of thesis are explained. 

1.1 Background 

1.1.1 Energy tri-lemma 

The notion of energy tri-lemma balances between the demands for low emissions, 

affordable and secure energy supply (Figure 1.1) (Winzer, 2012). It requires that a 

sustainable energy system should be able to balance between three factors of 

emissions, cost and security. Design of an energy system which balances all the three 

elements is a challenging task. It is believed that the security aspect of a sustainable 

energy system is not isolated from cost and environmental issues. In other words, there 

would be an interrelationship between energy security and emissions. For instance, 
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emissions can be stabilised by handling energy risks such as environmental health 

safety risk, via effective risk mitigation process. The same thing can happen for the 

cost side by mitigating the risks of market failures as an example. Thus, security is a 

crucial factor of a sustainable system with mutual relations with emissions and cost 

(Figure 1.1).  

 

 

Figure 1.1 Sustainable energy system tri-lemma (Winzer, 2012)  

 

Thus, under the spectrum of energy security, risk analysis in energy systems 

exploring the whole energy supply chain from upstream to downstream would be of 

paramount importance. This risk assessment cannot be reached successfully without 

thoroughly addressing and identifying risks ideally based on a compelling framework.  

1.1.2 Energy supply chain 

Supply chain vulnerability is a critical issue because a single disruption can lead to 

the collapse of the entire supply chain (Habermann et al., 2015; Kern et al., 2012). 

Furthermore, it is crucial for supply chain managers to know where networks are most 

vulnerable to allocate necessary resources (Chopra and Sodhi, 2004). Globalisation 

and outsourcing have raised the severity and frequency of supply chain disruptions 

(Zhao and Freeman, 2019). Potential severe repercussions resulting from supply chain 

risk uncertainty have led to growing interest in supply chain risk research (Hult et al., 

2010; Kumar and Park, 2019; Yildiz et al., 2016). Basole and Bellamy (2014) 

indicated that supply chain risk identification and mitigation is a complicated task due 

to supply chains’ progressively global, complex and intertwined nature. Klinke and 

Renn (1999) suggested that to deal with risks rationally one should be able to 

characterise them as well as to recognise the tools for designing proper responses. It 
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has been realised that an integrated risk management approach in supply chains is 

necessary which takes into account multiple characteristics of supply chain risks 

noting that supply chain management has a multidisciplinary nature (Heckmann et al., 

2015; Sanders et al., 2013).  

Energy supply chain can be separated technically into three levels. In the 

upstream of the energy supply chain, the generation or supply of energy sources is 

considered. It can be either primary such as oil, gas and solid fuels or secondary such 

as electricity. Midstream or network, manages distribution and transmission of the 

energy sources. Downstream or demand side of the energy supply chain is where 

energy is delivered to consumers that can be in transport, domestic, service or 

industrial sectors. In Figure 1.2 adapted from Hammond and Waldron (2008) a 

simplified illustration of the UK energy supply chain is depicted to show various 

elements of this socio-technical energy system.   

 

 

Figure 1.2 Simplified UK energy supply chain (adapted from Hammond and Waldron, 

2008) 
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1.1.3 Risks, accidents, and incidents 

To get an idea about what it is meant by risk, it should be referred to the Perrow’s 

(1999) work where he introduced the Normal Accident Theory (NAT). He divided 

each system like an energy system into four levels:  

1) Part: It is defined as the smallest and easily identifiable element of a system; an 

example of this can be a valve.  

2) Unit: It is defined as a collection of parts which are functionally linked to each 

other; a steam generator can be an example for a Unit.  

3) Subsystem: It constitutes a number of units. The secondary cooling system can be 

an example which includes condensate polishers and associate motors, pumps, and 

piping.  

4) System: like a whole nuclear plant as an example.  

Beyond these four levels, the environment is positioned. The disruptions to the third 

and fourth levels are named as accidents, while disruptions to the first and second 

levels are called incidents. In this study, all the potential incidents and accidents in an 

energy system are named risks. For complex systems such as nuclear plants which lie 

within the energy supply chain, accidents can cause disruption to the whole supply 

chain.  

In the supply chain literature, risks or disruptions are unplanned and unforeseen 

events which disrupt the normal flow of goods within a supply chain. Subsequently, 

they impose operational and financial risks on stakeholders within the supply chain 

and can have both short-term and long-term effects. Supply chain risks can be grouped 

into two levels: operational risks and disruption risks. Operational risks are linked to 

the daily management of supply chains whereas on the other hand, disruption risks are 

basically associated with natural or man-made catastrophes like floods, terrorism and 

so on (Blackhurst et al., 2011; Craighead et al., 2007; Hendricks and Singhal, 2003; 

Kleindorfer and Saad, 2009; Kouvelis et al., 2009; Sodhi et al., 2012; Stauffer, 2003). 

Bhattacharya et al. (2013) defined excursion event as an unpredictable event with large 

negative impact on the performance of at least one component of a system for a 

comparatively long timescale.   
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1.2 Aims and Objectives 

Large infrastructures like electricity supply networks are widely presumed to be 

crucial for the functioning of societies as they create conditions for essential economic 

activities. Electric power outages have been recognised as a national security issue by 

many governments like the US and more than 20 other countries including the UK 

(Brunner and Suter, 2008; Silvast, 2017). Aware of the importance of disruptions, the 

UK Government has been publishing National Risk Registers (UK Cabinet Office, 

2017) that outline significant risks ranging from coastal flooding to widespread 

electricity failure, pandemic influenza, and attacks on infrastructures. The 2017 

edition of this governmental publication has highlighted that widespread electricity 

supply failure has been classified with a severity of high impact and with a moderate 

likelihood of occurrence in the next five years, which confirms its importance. As 

declared by UK government report (UK Cabinet Office, 2017), the high impact 

severity of electricity supply failure in the UK, coupled with moderate likelihood of 

its occurrence between 2017-2022 exist. Thus, it is an interesting topic which is worth 

exploring within a broader context of energy supply chain. Furthermore, there is a 

need for a framework that clearly deals with the identification and classification of 

risks surrounding energy supply chain risks. Drawing on the complexity within the 

energy supply chain and a need for useful tools, this research contributes to the risk 

management body of knowledge (i.e. risk identification and mitigation) in energy 

supply chains as a compound networked system by proposing proper decision-making 

tools. Hence, this study’s research aim is to develop decision-making tools (i.e. 

methods and models) based on various theories and methods. Theories such as game 

theory, graph theory, uncertainty theories, Concept of Stratification (CST), Shared 

Socio-economic Pathway (SSP) and methods such as Multiple Criteria Decision 

Making (MCDM) methods including Decision-Making Trial and Evaluation 

Laboratory (DEMATEL) and Best-Worst Method (BWM) which are used in order to 

show their applications for dealing with risks in the UK power supply chain. This 

research intends to have significant theoretical contribution to the MCDM and 

decision analysis realms by developing quantitative tools as well as providing 

valuable information for policy and decision makers in the UK power supply chain. 
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1.2.1 Research questions 

This thesis aimes to answer the following Research Questions (RQs): 

RQ 1. What are the critical risks in the UK power supply chain?  

RQ 2. What are the causal relationships among the critical risks? 

RQ 3. How are these risks ranked and prioritised? 

RQ 4. How can policy makers deal with mitigating the most critical risks in the longer 

timeframe by taking into account socio-economic situations? 

RQ 5. What are the most appropriate risk mitigation strategies in response to the most 

critical risks?  

1.2.2 Research objectives 

The Research Objectives (ROs) are listed as follows: 

1. To provide a comprehensive framework for risk identification focusing on the UK 

energy supply chain. A risk identification framework will be proposed by scrutinising 

energy supply chain risks in the energy security literature. It is tried to incorporate all 

three aspects of a sustainable energy system (security, cost and emissions) in the 

power supply chain (Figure 1.1) (Chapter 5). 

2. To analyse causal interrelationships between identified risks by proposing 

Neutrosophic Revised Decision-Making Trial and Evaluation Laboratory (NR-

DEMATEL). Knowing that risks usually act in close interconnection to each other 

and barely act independently that means there would be causal relations among them 

that occurrence of one risk cause the other one. Hence, it is absolutely vital to take 

advantage of a method to analyse this type of interrelationships as well as dealing 

effectively with subjective judgements of experts in the UK energy supply chain 

(Chapter 5). 

3. To develop and apply two extensions of the Best-Worst Method (BWM) to 

prioritise the most significant energy risks obtained from the interrelationship 

analysis. The two extensions of the BWM are Neutrosophic Enhanced BWM (NE-

BWM) and hybrid Spanning Trees Enumeration and BWM (STE-BWM) (Chapter 6). 

4. To introduce a novel stratified decision-making model in order to deal with long-

term risk mitigation planning for the most critical identified risks (Chapter 7).  
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1.3 Thesis Structure and Summary 

In this part, I will explain briefly the thesis structure and summary of each chapter in 

order to make the comprehension of the studies easier for the reader. The thesis is 

structured in eight chapters and the research is carried out in four phases (Phases I to 

IV as shown in Figure I.A).  

Chapter 1: “Introduction”: In this chapter, the background of energy supply 

chain, definition of risks, aims and objectives including research objectives, and 

research questions are provided.  

Chapter 2: “Literature Review”: This chapter consists of a number of 

subsections including the literature discussion of decision analysis methods in energy 

and risk (Section 2.2), energy security (Section 2.3), twelve identified energy supply 

chain risks (Section 2.4), various classifications of energy supply chain risks (Section 

2.5). The knowledge gap is also discussed at the end of this chapter (Section 2.6). 

Chapter 3: “Theories and Preliminaries”: This chapter explains all necessary 

theories, concepts or logics which are used in this thesis and helps readers understand 

the methodology and analysis parts in the later chapters. MCDM and weighting 

methods are described in Section 3.2, and Section 3.3, respectively. Uncertainty 

theories including fuzzy logic (Fuzzy Set (FS), Hesitant Fuzzy Set (HFS), and 

Intuitionistic Fuzzy Set (IFS)), grey systems, and neutrosophic logic (Neutrosophic 

Set Theory (NST)), are explained in Section 3.4 and Appendix A. In addition, graph 

theory, Concept of Stratification (CST), and game theory are described in Section 3.5 

and Appendix B, Section 3.6, and Section 3.7, respectively.   

Chapter 4: “Proposed Decision-Making Tools”: In this chapter all the novel 

applied tools including methods and models in the thesis are presented. The five new 

methods which are introduced and applied are as follows: 

1) Proposed Expert Selection Model (ESM) (Section 4.2). The ESM provides a 

basis for the expert selection process in the similar decision-making problems where 

subject expert selection is necessary. In fact, it offers a reliable model that helps 

decision makers decide who can be an expert based on their credentials and experience 

as well as assigning each expert a relative importance weight. Chapter 5 illustrates an 

application of the proposed ESM as Hesitant Expert Selection Model (HESM).  
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2) Proposed NR-DEMATEL method (Section 4.3). The Battelle Memorial 

Institute launched a DEMATEL method project between 1972 and 1976 through its 

Geneva Research Centre in order to deal with complex issues. The original 

DEMATEL was utilised to solve fragmented and antagonistic issues of world 

societies. In this section, the revised-DEMATEL (Lee et al., 2013) is developed and 

enhanced under NST in order to capture uncertainty of Decision Makers’ (DMs) 

subjective judgements. The method then is applied to understand the interrelationships 

between energy supply chain risks as presented in Chapter 5.  

3) Proposed hybrid STE-BWM (Section 4.4). In the original BWM, DMs are 

required to offer with certainty the best and worst criteria. However, in real-world 

decision-making settings it would be simplistic to regard that DMs are able to choose 

one criterion as either the best or the worst with full confidence. In other words, there 

might be a set of best and a set of worst criteria instead of just one single best or worst 

criterion. The original BWM does not suggest any solution in this case and expect a 

DM to offer only one criterion. The STE-BWM deals with this issue and its 

applicability is verified and discussed within the energy supply chain risk 

prioritisation in Chapter 6. 

4) Proposed NE-BWM (Section 4.5). In the original BWM, the degree of a 

DM’s confidence on the best-to-others preferences and others-to-worst preferences 

has been overlooked by giving equal importance to them. This issue generated the 

motivation to improve the BWM by introducing the NE-BWM. The application of the 

proposed NE-BWM is presented in the energy supply chain risk prioritisation in 

Chapter 6. 

5) Proposed stratified decision-making model (Section 4.6). A novel model is 

proposed based on the integration of CST (Section 3.6) and game theory (game of 

chance involving risk) (Section 3.7) for long-term decision-making planning. The 

novelty lies within the fact that in some games like games of chance (i.e. one-player 

game against nature), the dynamic change of various states of a system in a long-term 

decision-making time frame is overlooked. In the games of chance, the current state 

of the system has been considered unchanged during the decision-making timescale. 

This feature of fixed state of the game, makes the obtained decision useful in a longer 

time frame if only the current state at the time of arriving a decision persists which 
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barely occurs. The reason for this shortcoming might be due to lack of a proper theory 

to formulate dynamic change of states throughout a longer decision-making period. 

This encouraged the development of the proposed stratified decision-making model. 

The application of the model is verified in risk mitigation strategy selection in Chapter 

7. 

The other five applied tools which are already introduced in previous studies in 

the literature are explained in Appendices C, D, and H as follows:  

1) Maximum Mean De-Entropy (MMDE) algorithm (Appendix D), 

2) BWM (Appendix E), 

3) Gray code algorithm for generating all spanning trees (Appendix C), 

4) Enumerating All Spanning Trees (EAST) (Appendix H), 

5) Geometric Mean of All Spanning Trees (GMAST) (Appendix H).  

Chapter 5: “Risk Analysis by NR-DEMATEL”: Energy supply chain risk 

identification (phase 𝐼) and causal interrelationship analysis of the 12 risk dimensions 

(phase 𝐼𝐼) are both presented in this chapter. This study proposes a comprehensive 

framework for risk identification focusing on the UK power supply chain. It is based 

on scrutinising energy supply chain risks in the energy security literature via 

consolidating information from various fields such as engineering, social sciences and 

natural sciences. The framework helps identify the most significant risks to the UK 

power supply chain. The 12 risk dimensions are identified and then by incorporating 

their interdependencies and causal influences, the most significant risks can be dealt 

with. The NR-DEMATEL is tailored and used in this chapter which makes it possible 

to analyse interrelationships between risks as well as dealing effectively with 

subjective judgements of experts. 

Chapter 6: “Prioritisation of Risks”: Prioritisation of the six risk dimensions 

obtained from phase 𝐼𝐼 is explored in Chapter 6 (phase 𝐼𝐼𝐼). The applications of STE-

BWM and NE-BWM are shown in evaluating identified energy supply chain risk 

dimensions from NR-DEMATEL. Additionally, in two case studies from the literature 

the applicability of the proposed NE-BWM are also verified. 
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Chapter 7: “Risk Mitigation Analysis”:  In Chapter 7 (i.e. phase 𝐼𝑉) the flooding 

risk mitigation strategies are evaluated in the Highland and Argyll in Scotland. The 

aim is to deal with the most significant climate change risk to UK infrastructure (i.e. 

flooding) for the long-term policy making (between 5 to 20 years) with reference to 

the UK socio-economic status. 

Chapter 8: “Conclusions”: Conclusions obtained from all analyses (Chapter 5, 

Chapter 6, and Chapter 7) are provided in this chapter. Moreover, research 

contributions, implications, limitations of the studies as well as suggestions for future 

research directions are discussed.  

At the end, Glossary of Terms, Appendices A to I, and References are provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

Chapter 2 Literature Review 

2.1 Introduction  

Understanding energy supply chain risks from supply, network, and demand sides 

necessitates a review of the related literature from transdisciplinary fields such as 

energy security and supply chain mangement. This would then help systematically 

identify risks within a comprehensive framework which is one of the aims of this 

thesis. Futrthermore, it is of paramount importance to recognise what similar decision-

making methods are already in place in order to highlight the research gaps.  

In this chapter the related literature is reviewed. First, in Section 2.2, 

applications of decision analysis methods such as MCDM in energy planning and risk 

management literature are reviewed. In Section 2.3, the related research on energy 

security literature is explored. In Section 2.4, energy supply chain risks containing 12 

subsections that each one is discussing one of the identified energy risk dimensions 

via a systematic literature review. Five identified energy supply chain risk 

classification perspectives are described by providing literature support in Section 2.5. 

Finally, knowledge gap is discussed in Section 2.6.    

2.2 Decision Analysis Methods in Energy Planning and Risk 

Management  

In this section, literature on application of decision analysis methods mainly MCDM 

and game theory in energy planning and risk management is summarised. Energy 

planning is comprised of broad application areas, such as renewable energy planning, 

energy resource allocation, transportation energy systems, and electric utility 

planning. MCDM is one of the common methodologies in decision analysis. There 

are a number of studies that reviewed the literature on energy and MCDM which are 

briefly explained from the oldest to the most recent ones in the following paragraphs. 

Huang et al. (1995) reviewed the literature on decision analysis in energy 

modelling and identified that energy planning and policy analysis was the most 

popular application field. They also realised that decision-making under uncertainty 

was the most common practised methodology. In another review of more than 90 

articles on application of MCDM techniques to sustainable energy planning in seven 

application areas by Pohekar and Ramachandran (2004), it was identified that 

Analytic Hierarchy Process (AHP), Preference Ranking Organisation Method for 
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Enrichment Evaluations (PROMETHEE), and Elimination and Choice Expressing 

Reality (ELECTRE) were the most favoured methods. Loken (2007) reviewed energy 

planning literature. It is indicated that energy planning is a suitable field for the Multi 

Criteria Decision Analysis (MCDA) applications. His findings revealed that more 

research is required on local energy systems with multiple energy carriers (i.e. 

electricity, hydrogen, and natural gas). Wang et al. (2009) reviewed MCDA methods 

corresponding to each decision-making stage for sustainable energy and recognised 

that AHP is the most favoured method. They also summarised evaluation criteria for 

energy supply systems from technical, economic, environmental, and social 

perspectives. The results revealed that investment cost followed by carbon-dioxide 

emission are the most critical criteria. Suganthi et al. (2015) reviewed applications of 

fuzzy-based models in Renewable Energy (RE) systems and found out that site 

assessment for installing PV/wind farms was among popular application areas. Elena 

Arce et al. (2015) reviewed the energy systems literature which applied Grey 

Relational Analysis (GRA). They realised that technical criterion and energy systems’ 

efficiency have been the most-utilised criterion and sub-criterion, respectively. 

Strantzali and Aravossis (2016) provided a review on decision-making methods 

applied in RE literature. Ioannou et al. (2017) provided a review of risk-based 

quantitative and semi-quantitative methods for sustainable energy system planning. 

Kumar et al. (2017) reviewed the applied MCDM methods in RE applications. 

Leimeister and Kolios (2018) reviewed the literature of risk and reliability analysis 

methods in the offshore wind industry. Kaya et al. (2018) reviewed the literature on 

both RE and non-RE energy alternatives spanning from 1986 to 2017.  

Apart from literature review papers, in  other research, Ali et al. (2019) 

evaluated renewable energy technologies (i.e. solar, wind, biomass, biogas, solar-

wind battery hybrid) in southern region of Bangladesh considering economic, 

technical, environmental, and socio-political criteria by Evaluation based on Distance 

from Average Solution (EDAS) method. Lin et al. (2018) identified risk elements of 

the New Energy Power System (NEPS) in China and analysed their internal influence 

relations based on D numbers and DEMATEL. Wu et al. (2018) evaluated RE power 

sources in China applying a fuzzy AHP method and a cumulative prospect theory. 

Okoro and Kolios (2018) developed and applied a multiple criteria risk assessment 

framework in a complex oil and gas support structure. Okoro et al. (2017) introduced 

a new multiple criteria risk assessment framework based on Technique for Order 
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Preference by Similarity to Ideal Solution (TOPSIS) and showed its applicability in 

an offshore wave energy converter case study. Kolios et al. (2016) utilised TOPSIS 

and weighted sum methods in order to rank risks in tidal energy developments. 

Bolsover (2015) employed Bayesian Network (BN) in order to monitor risks in real-

time which would lead to a more efficient decision making in an offshore drilling rig. 

Chou and Ongkowijoyo (2014) proposed a risk-based approach to compare alternative 

RE schemes. They applied a hybrid graphical matrix approach with Monte Carlo 

simulation. Maxim (2014) prioritised 13 power generation technologies considering 

10 criteria using a weighted sum multi-attribute utility approach. Bhattacharya et al. 

(2013) proposed stochastic dynamic decision-making tools in order to design a 

resilient shock absorber for disrupted supply chain networks. Aplak and Sogut  (2013) 

used game theory to evaluate decision-making process of the industry and the 

environment as two players by the scope of energy management. The strategies were 

analysed using MCDM methods to calculate performance efficiency values. Ren et al. 

(2009) studied the causal interrelationships between risk elements in offshore 

installation operations using a Fuzzy Bayesian Network (FBN). Afgan and Carvalho  

(2002) assessed new and renewable energy power plants using multi-criteria 

evaluation considering analysis of parameters based on the information deficiency 

method. Matos (1999) showed the application of Fuzzy Filtering Method (FFM) in a 

planning problem in the field of power distribution systems.   

After reviewing the applied decision analysis methods in the literature, in the 

next section, the literature on the the energy security and its relation to energy risk is 

discussed. The reason is that energy risk and energy security are closely connected, 

so it is beneficial to understand energy risks which is the application context of the 

current thesis from the lens of energy security.     

2.3 Energy Security 

The energy security literature is characterised by continuing concerns about risks. 

Although there is no universally accepted definition of energy security, there appears 

to be a consensus on security’s connection to risks (Chalvatzis and Ioannidis, 2017a; 

Chalvatzis and Rubel, 2015; Rutherford et al., 2007; Wright, 2005). 

Sustainable production and use of energy at affordable prices have been 

considered as a country’s objective for energy security which focuses on three pillars: 
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efficiency, diversification of supplies, and price volatility (The World Bank Group, 

2005). In another definition, four A’s of energy security have been realised as: (1) 

Availability (geological elements); (2) Accessibility (geopolitical elements); (3) 

Affordability (economic elements); and (4) Acceptability (environmental and societal 

elements). There is a complex interplay between these categories and they are by no 

means isolated (Asia Pacific Energy Research Centre, 2007; Kruyt et al., 2009). Based 

on the International Energy Agency (IEA) the security definition of energy supply is 

when it is adequate, affordable and reliable. Energy security is context-dependent such 

as a country’s level of economic development, risk perceptions, energy system’s 

robustness and prevailing geopolitical issues (Ang et al., 2015). It is indicated that 

there are three distinct perspectives on energy security as sovereignty (intentional 

actions by malevolent agents), robustness (predictable natural and technical factors) 

and resilience (diverse and partially unpredictable factors) perspectives. These 

perspectives have their roots in political science, natural science, and engineering and 

economics/complex systems analysis, respectively (Cherp and Jewell, 2014, 2011). 

Energy security has been linked to securing of access to oil supplies considering 

impending fossil fuel depletion. On the other hand, with a rise in natural gas use, the 

security concept has widened to cover other fuels and primary energy supply 

(Chalvatzis and Ioannidis, 2017a) such as gas or even electricity (Chalvatzis and 

Rubel, 2015) and is not limited to oil anymore.  

Disruptions can happen at any position within the supply chain thus, energy 

conversion and transport are regarded in connection to energy security. The political 

instability of producer and transit countries is another subject of discussion in the 

energy sector that takes geopolitical elements into consideration (Kruyt et al., 2009). 

As a result, the energy security concept has widened and developed over time.  

The IEA developed an exhaustive perspective on energy security to analyse all 

dimensions of energy system that goes beyond oil. The IEA Model of Short-term 

Energy Security (MOSES) has focused on short-term energy security dealing with 

vulnerabilities which can cause physical disruptions of few days or weeks (Jewell, 

2011). Chevalier (2006) indicated dimensions of time, space, and social for Security 

of Supply (SOS). Chester (2010) presented a couple of aspects related to energy 

security such as energy security as risk management concept.  
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Energy security in comparison with SOS is considered as a broader concept which 

covers all elements of an energy supply chain including supply, network and demand 

sectors from upstream to downstream. Hence, SOS should be regarded as a 

subcategory of energy security. 

2.4 Energy Supply Chain Risks  

In previous studies, Bode and Macdonald (2017) applied the organisational 

information-processing viewpoint to empirically study the decision-making process 

leading to rapid responses in supply chain disruptions. The outcome contributed to a 

deeper realisation of the decision stages role in mitigating supply chain perturbations. 

It was also confirmed that information processing speed and positive cooperation 

between stages influence supply chain performance. Bode and Wagner (2015) 

explored the frequency of supply chain disruptions by focusing on an upstream supply 

chain. Hammond and Waldron (2008) identified and ranked major risks concerning 

the UK electricity sector by taking into account various stakeholder groups and 

quantifying risks by multiplication of the likelihood of each risk and its consequences. 

Silvast (2017) studied the electricity infrastructures and interruptions from the social 

science perspective and tried to answer how people and organisations react to these 

interruptions. Moreover, he explained how interruptions to the electricity 

infrastructures can be anticipated and how risks can be managed. Klinke and Renn 

(1999) suggested a set of eight criteria to evaluate risks in general terms, not 

exclusively in an energy context. The authors discussed various methodologies to 

analyse risks, identified six different risk types and for each type developed special 

risk management strategies. Hunt et al. (2013) proposed a decision support framework 

tool based on MCDA for complex prediction of decision-making processes in the UK 

energy sources. Bhattacharya et al. (2013) defined an “excursion event” as “an 

unpredictable event that effectively shuts down or has a relatively large negative 

impact on the performance of at least one member of a system for a relatively long 

amount of time.” They classified excursion events in supply chain networks into two 

main groups: natural and forced disruptions. Natural disruptions such as natural 

calamities, infectious diseases, psychological panic among customers, market 

fluctuations, and economic recession. Forced disruptions included terrorism, 

organisational issues, contamination of raw materials, accidents due to negligence, 

and delivery failure. Staid and Guikema (2015) provided an overview of the risks 
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encountered by an offshore wind farm in US where they put emphasis on this point 

that an integrated framework for risks is needed in this area of wind farm electricity 

generation. They considered their work as a preliminary starting point for such a 

framework within offshore windfarms.  

As discussed in the research aims and objectives, this thesis intends to provide 

a comprehensive perspective towards macro-level energy risks including all energy 

sources through the entire UK energy supply chain. That is why it requires taking a 

thorough approach and avoiding a limited vision. For example, this overarching 

approach not only focuses on risks which are related to specific energy supply risk but 

also is aimed at including all risks from supply, demand, and network positions. More 

details about the protocol of the systematic literature review leading to the following 

energy supply chain risks is provided in Section 5.2 where the energy supply chain 

risk identification framework is described.  

2.4.1 Climate change 

Climate Change (CC) is a long-term alteration in the climate mainly driven by 

manmade Green-House Gas (GHG) emissions. These elements are expected to impact 

energy systems at all levels. Changes in power generation are resulted from changes 

in precipitation. A long-term alteration in the climate can change weather patterns and 

threaten renewable energy supply or capability for cooling thermal power stations. 

The transformation and transportation of electricity could be affected due to extreme 

weather events occurrence. Mideksa and Kallbekken (2010) stated that there is a 

surprisingly scant number of research on the effects of climate change on the energy 

sector. Intergovernmental Panel on Climate Change (IPCC) indicated that energy is 

“an example of an industrial sector particularly sensitive to climate change” 

(Intergovernmental Panel on Climate Change, 2007). Based on a scientific 

assessment, IPCC declared with very high confidence that humans are having a 

critical influence on the global warming. The policy response is likely to be the most 

significant challenge to climate change (Hammond and Waldron, 2008). Considine 

(2000) indicated that changes in weather have influence on electricity and natural gas 

demand. Wilbanks et al. (2008) in a review of US energy system indicated that for a 

1◦C rise in temperature, energy consumption would change within the range of 5%. 

Linnerud et al. (2011) explored the effect of climate change on electricity generation 

through thermal cooling.  
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2.4.2 Natural disasters 

Natural Disasters (ND) are calamitous events with atmospheric, geologic, or 

hydrologic origins. They can have rapid or slow development and can disrupt the 

supply chain or the operation of power stations. They can have rapid or slow onset 

with worrying health, social, and economic consequences (Watson et al., 2007). They 

include storms, hurricanes, floods, earthquakes, droughts, tsunami, landslides, 

volcanic eruptions, and wildfires which can cause great damage or loss of life. 

It is important to notice that natural disasters can be related to climate change 

(CC) but, not all of natural disasters are caused by climate change. Dealing with 

climate change means considering the root and cause of many natural disasters 

because climate change can increase the likelihood of weather-related natural disasters 

such as droughts which can be caused largely by global warming (Gallina et al., 2016; 

Van Aalst, 2006).  However, in some cases natural disasters may be triggered by other 

causes, even by other natural disasters. For instance, in eastern Taiwan, slow 

earthquakes triggered by typhoons or for example the Fukushima disaster begun by 

an earthquake which triggered a tsunami, which resulted in a nuclear meltdown (Liu 

et al., 2009). It should be noted that many natural disasters rather than being global 

threats are specific to certain systems or regions. For instance, droughts are more 

common in France rather than in Canada. 

Liu et al. (2000) identified natural calamities and animal triggered failures as 

one of the potential sources of system vulnerability. In the recent decade, there have 

been many natural disasters caused blackouts such as 2005 hurricane Katrina, 2011 

Japan earthquake, 2012 hurricane Sandy and 2017 hurricane Irma. Hurricane Irma in 

Florida, USA, for example, caused one of the largest natural disaster-related power 

outages in the US history (Daileda, 2017). Roughly, 679 power cuts were reported in 

the US between 2003 and 2012 each impacting at least 50,000 customers as a result 

of weather events. In the previous decades, analysing methods of natural disaster-

related issues in power systems considerably developed and owing to the complexity 

of the issue and its interdisciplinary characteristic, research is carried out across a 

broad range of fields (Wang et al., 2016). Two strong storms in December 1999 

striked over the southern and northern parts of France, repectively and resulted in 

severe blackouts for more than 3.5 million households (Chevalier, 2006). Wang et al. 

(2016) reviewed the applicable and relevant models and methods to natural disaster 
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scenarios particularly forecast models and restoration techniques. Extraction of shale 

gas by hydraulic fracturing or fracking was observed that could cause low-intensity 

earthquakes (measuring 2.3 and 1.5 on the Richter scale) in 2011 in North West 

England which resulted in shale gas extraction suspension nationally (Stamford and 

Azapagic, 2014).  

2.4.3 Environmental and health safety 

The energy system can potentially threaten the health of the public and can have 

negative impacts on the environment. Environmental and Health Safety (EHS) risk 

can then consequently pose a threat to the security of the energy supply chain by social 

pressure or legislation leading to stricter environmental laws. As a typical example, 

nuclear waste disposal is one of the constraints that challenges public health and the 

environment. Generally, these impacts can be categorised into radiological and non-

radiological impacts and could be caused by accidents or even routine operations 

(Ramana, 2009). Tsoutsos et al. (2005) studied environmental impacts from the solar 

energy technologies (Photovoltaics (PV), solar thermal, solar power). It is indicated 

that considerable environmental benefits are provided from them compared to 

conventional energy sources. However, there would be potential negative 

environmental implications in their wide scale deployment. Aman et al. (2015) 

presented an overview of solar energy technologies and explored their Safety, Health 

and Environmental (SHE) effect to broader sustainability along with 

recommendations to control the potential negative impacts of widespread use of solar 

energy technologies. Fthenakis and Kim (2009) presented the normalised land 

requirements during the life cycles of conventional and RE alternatives. It was 

concluded that PV and biomass cycles need the least and largest amount of land 

among renewables, respectively. However, the estimates differ based on regional and 

technological conditions.  

Carbon Dioxide (CO2) is the most critical GHG and is produced, for instance, 

when fossil fuels are burnt. It is measured by the gCO2eq/kWh that is grams of CO2 

equivalent per kilowatt-hour of electricity generated. Other GHGs like methane are 

quantified as equivalent amounts of CO2. This is carried out by calculating their global 

warming potential in respect to CO2 over a specified time frame, normally 100 years, 

with the aim of minimising long-term climate change (Parliamentary Office of 

Science and Technology, 2011).  
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2.4.4 Technical reliability  

Technical Reliability (TR) risks usually concern system failure due to low capital 

investment or poor condition of the energy system. Asset maintenance also falls in 

this risk dimension. Poor maintenance or lack of asset replacement is a leading cause 

of incidents for instance cable failures which past their projected lifetime (Winzer, 

2012). Therefore, this risk type is about shortcomings in the operation of power plants 

that hinder the proper operation and energy production. These risks are particularly 

significant for electricity generation from renewables, coal, and nuclear production 

(Checchi et al., 2009). In 2003, technical vulnerability caused 18 nuclear plants in 

Japan to be knocked out of service for several months (Chevalier, 2006). Faults in 

energy supply systems such as power outages resulted from accidents or human error 

led to malfunction of grid or generation plant (Ölz et al., 2007).  

2.4.5 Operational safety 

Operational Safety (OS) risk discusses the occurrence possibility of devastating 

damage concerned with a specific type of power generation not during normal 

operation but during accidents. This risk dimension differs from environmental and 

health safety in the sense that environmental and health safety concerns are caused by 

normal operations that would lead to environmental or health issues such as water or 

land contamination and air pollution. However, operational safety focuses on the risk 

of the energy system which causes damage during abnormal and accidental events. 

Beyond the affected power system boundaries, operational safety has knock-on effects 

via regulatory action. Nuclear power stations are regarded as the most dangerous one 

from operational safety perspective (Chalvatzis, 2012). For example, the Fukushima 

event started by the earthquake and subsequent tsunami which were natural disasters 

and disrupted the operation of the local power station. The immediate indirect impact 

was the Japanese policy decision to shut down all nuclear power reactors in the 

country which has caused significantly larger power supply disruption in Japan. One 

further indirect impact was regulatory decisions in Germany and more recently in 

Switzerland to accelerate shutting down of their nuclear energy sectors (Boston, 2013; 

Ranjan and Hughes, 2014; Reuters, 2017). Visschers and Siegrist (2013) conducted a 

longitudinal study to know how a serious accident impacts people’s acceptance of 

nuclear power as well as determinants of acceptance. 
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2.4.6 Disease outbreak 

Disease Outbreak (DO) refers to the disruption in energy generation due to an 

unexpected spread of a disease that can threaten personnel health in a specific region. 

Chevalier (2006) grouped an outbreak of a disease like Severe Acute Respiratory 

Syndrome (SARS) as an unexpected event among world energy uncertainties which 

can potentially lead to a disruption. This disruption can occur for instance by 

unwanted employees’ sickness leave which results in a shortage of staff or by 

fluctuations in global energy carrier prices. As another example, in December 2019, 

a new coronavirus (COVID-19) was identified in Wuhan, China among patients with 

a form of viral pneumonia. The virus spread internationally very fast that numerous 

countries declared confirmed cases which put severe threat on lives and businesses 

(Peeri et al., 2020). It shows the severity of a disease outbreak and pandemic at 

regional and global level can suspend regular operations of businesses. It can 

potentially pose risk on energy supply which hence needs further urgent risk 

considerations.   

2.4.7 Political instability 

Political Instability (PI) refers to social unrest or geopolitical changes which would 

impact the security of the energy supply chain and would cause disruption. Political 

instability can impact on all aspects of energy supply chain including supply, network, 

and demand. It has been regarded as one of the causes of resource unavailability on 

the supply side of the energy supply chain. Varigonda (2013) studied the link between 

energy insecurity and state stability in India. Political challenges and conflicts can be 

a major burden on developing the transmission system. As an example Huda and 

McDonald (2016) explored energy cooperation in South Asia and explained the 

political impediments in implementing transnational pipelines and electricity grids by 

interviewing government officials, scholars, and other experts in Bangladesh, Nepal, 

Pakistan, and India. This point that energy industries are not functioning in a 

competitive market framework in the majority of supplier countries due to 

government interference will cause concern that energy would be utilised as a political 

weapon. Moreover, political instability such as civil wars, local conflicts, and 

terrorism in the supplier countries will threaten the security of supply (Checchi et al., 

2009). Political decision is considered as one of the causes of sudden disruptions in 

oil markets (Correljé and van der Linde, 2006). It is indicated that further collusion 
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between oil producer countries considering growing attention to oil reserves and 

generation could impact on export prices and delay new investments by adopting wait-

and-see strategies (Costantini et al., 2007). A study by Asia Pacific Energy Research 

Centre (APERC) studied the geopolitical risks in the Middle East after the emergence 

of Islamic State and its impact on the energy supply in Asia (Japan Institute of Energy 

Economics, 2016). It is also indicated that there are a few studies that have tried to 

quantify the qualitative element of political stability for SOS measurement (Kruyt et 

al., 2009). The IEA (Blyth and Lefèvre, 2004; International Energy Agency, 2007) 

applied the average of two World Bank’s worldwide governance indicators as political 

stability, absence of violence and regulatory quality for this aim. Jansen et al. (2004) 

quantified the measure of long-term socio-political stability on the United Nations 

Development Programme’s (UNDP) Human Development Indicator (HDI). 

2.4.8 Industrial action 

Industrial Action (IA) is regarded as one of the major causes of disruptions in the 

energy supply and electricity generation. According to Varigonda (2013), industrial 

action is categorised as the social instability. The electricity sector as a state-controlled 

legacy has connections with powerful labour unions. These unions may be regarded 

as main barriers in the way of power sector’s liberalisation and privatisation which is 

underway in many countries. Hence, the threat of coordinated industrial actions is 

often present. It should be noted that disruptions caused by industrial actions are 

considered as short-term or medium-term shocks (depending on the definition) 

(Chalvatzis, 2012). As an example, in the oil market, the Venezuelan industrial action 

in 2002 − 3 also known as oil strike or oil lockout resulted in a gross peak supply 

loss of 2.6 mb/d (million barrels per day) and is regarded as one of the five most 

important disruptions of the past decades (Löschel et al., 2010).  

2.4.9 Sabotage and terrorism 

Sabotage and Terrorism (ST) makes the electricity supply chain confront a serious 

challenge of how to provide more security without compromising the inbuilt 

productivity benefits in highly complicated and interconnected power networks. A 

disruption of electricity supplies can have catastrophic impacts on national security. 

Power systems can never be safeguarded against a determined attack because the 

assets are widely dispersed.  
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Amin (2002) categorised terrorist attacks into three groups as follows:  

1) Attacks upon the power system: the main target is the electricity infrastructure 

and as a result, outages rippling into the customer side. A single component such as a 

critical substation might be regarded as the point of attack or it might be a 

simultaneous, multi-pronged attack to disrupt the whole regional grid.  

2) Attacks by the power system: the final aim is the population by utilising parts 

of the infrastructure as an armament. For example, terrorists may plan to crash an 

airplane on a nuclear power station causing significantly larger damage than just loss 

of power supply of that specific power station. As another example, terrorists may 

take advantage of power plant cooling towers to disperse chemical agents.  

3) Attacks through the power system: the aim is the civil infrastructure such as 

utility networks. Setréus et al. (2012) identified components which are critical to 

system reliability and vulnerability and importance of each are quantified for two 

scenarios in a model of Britain’s Power Transmission System (PTS). In the study of 

Gjerde et al. (2011), sabotage has identified as one of the threats to the security of the 

system. Tranchita et al. (2009) presented a methodology to evaluate the power system 

security with respect to the likelihood of terrorist acts, regarding the uncertainties 

related to load and generation.  

One of the capabilities of smart grids is that it autonomously or by controlling 

from remote locations allows distribution systems to be largely automated as well as 

letting transmission systems be monitored at the regional scale. The goals of smart 

grid are always improving efficiency of delivery and enhancing availability of power. 

Achieving these goals is not simple and involves dealing with many likely risks and 

vulnerabilities such as increased vulnerability to cyber-attacks (Clements and 

Kirkham, 2010). Cyber-attackers can be grouped into five categories (Flick and 

Morehouse, 2011):  

1) Non-malicious attackers who look at the system security as a puzzle to be solved.  

2) Consumers driven by vengeance towards other consumers causing them to perceive 

ways to shut down their home’s power.  

3) Terrorists.  
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4) Disgruntled or ill-trained employees.  

5) Competitors for the aim of financial gain.  

Moreover, cyber-attacks can also be grouped into three major sets: (1) component-

wise (2) protocol-wise, and (3) typology-wise (Aloul et al., 2012).  

2.4.10 Resource availability 

Resource Availability (RA) is relevant to both fossil fuels and renewable energy 

sources. The lack of resources to generate power can pose a significant risk to power 

networks. This risk dimension can be discussed in a broad range of contexts as there 

are various kinds of primary resources such as renewables or non-renewables. Here, 

it is discussed under two categories of fossil fuels and renewable energy as follows: 

2.4.10.1 Fossil fuels 

With regards to fossil fuels, Correljé and van der Linde (2006) distinguished three 

types of oil market disruptions:  

1) Sudden disruptions: which may occur due to a political decision of not offering oil 

on the market, an international armed forces conflict or even technical/operational 

issues. 

2) Slowly emerging supply gaps: they are caused by either lagging investments in 

production and/or transport capacity.  

3) Ideological choices of oil producing governments.  

Horsnell (2000) analysed the probability of oil market disruptions with an 

emphasis on the Middle East. He identified two types of discontinuities (policy and 

fundamental discontinuity) and three types of disruptions (force majeure, export 

restriction, and embargo) (Correljé and van der Linde, 2006). The international oil and 

gas markets have recently experienced a resource abundance period mainly as a result 

of shale oil and gas exploration which has increased US production to unprecedented 

level (Kilian, 2016). Exploitation of shale gas in the UK is at an early stage but its 

reserves and potential resources could be substantial. There is an ongoing debate on 

the way that shale gas can contribute to fossil fuel consumption reduction and 

hazardous climate change prevention (Stamford and Azapagic, 2014).  
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2.4.10.2 Renewable energy 

For electricity generation, Renewable Energy (RE) (including hydropower) is 

growing very fast compared to natural gas and nuclear energy within the timescale of 

2018 to 2050, by an average rate of 3.6% per year. While for non-hydropower RE, 

the average yearly increase during the same time frame is 5.7% (US Energy 

Information Administration, 2019). Renewables reached a record of nearly 3% of the 

global primary energy consumption. Moreover, renewable energy in power generation 

increased by 15.2% in 2015 slightly lower than 10-year average growth rate (British 

Petroleum, 2016). The renewable share of total electricity generation is expected to 

grow from 22% in 2012 to 29% (with US CPP1 30%) in 2040. Hydropower and 

wind make up the two main contributors to the rise in global electricity generation 

from renewable energy sources. They account for nearly 67% of the total increment 

from 2012 to 2040. The produced global electricity in 2004 was around 17450 TWh 

and estimated to be about 31657 TWh in 2030 (Dincer, 2011; Güler, 2009; Yu and 

Qu, 2010). Net electricity generation worldwide grows by 1.9% a year on average 

from 2012 to 2040. The corresponding number in OECD2 nations is 1.2% per year 

where infrastructures are more mature and population growth is fairly sluggish or 

decreasing (US Energy Information Administration, 2019). As electricity is a 

secondary energy carrier and relies on primary energy sources, availability of primary 

resources (renewable or non-renewable) is absolutely essential for power generation 

(Chalvatzis, 2012).  

RE technologies potentially have a lower risk profile in comparison with regular 

energy sources but they yet may be susceptible to technological, financial, and 

regulatory risk exposures. Johansson (2013) analysed energy security aspects of 

renewable energy systems in accordance with a wide typology on energy and security. 

Dependence on variable flowing resources and competition for hard to find land 

resources can be some causes of concern for energy security based on renewables. 

The intermittency of renewables that impacts on energy quality can be associated with 

resource availability. Sovacool (2009) explored the intermittency of renewables in the 

US and after conducting many interviews, concluded that intermittency of renewables 

can be foreseen and managed. Grave et al. (2012) explored the secured electricity 

 
1 US Clean Power Plan 
2 Organisation for Economic Cooperation and Development 
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generation capacity of intermittent renewable energy sources for Germany until 2030 

in the short and long terms. 

2.4.11 Market failure 

Market Failure (MF) relates to the reliable market operation regarding smooth 

contracting and dispatching of energy. Market failures relating to the price, supply, 

and demand of energy sources in different markets can threaten energy security. As 

electricity cannot be stored, there is a necessity for immediate supply and demand to 

be in balance; otherwise the integrity of the system might be affected (Eydeland and 

Wolyniec, 2003). Price works as a balancing mechanism for demand and supply in a 

well-functioning market. Price can signal scarcity but is also influenced by other 

factors such as speculation, strategic communication and short-term shortages (Kruyt 

et al., 2009). High volatility of oil prices is the result of structural inflexibility on the 

oil market because of high fixed production costs, and low substitution elasticity, 

respectively (Costantini et al., 2007). The APERC (Koyama et al., 2016) explored the 

impact of the crude oil price drop on the world energy market. Market liquidity is also 

linked to price elasticity (Kruyt et al., 2009). Kilian (2016) studied how the increased 

availability of shale oil has affected US oil and gasoline prices. The process of 

electricity liberalisation and deregulation in Europe is causing new uncertainties for 

investors. Making a single electricity market should bring about more 

interconnections and less possibility for any disruption. However, in practice, capacity 

margins are inclined to lower new generating capacities. Furthermore, priority 

interconnected transmissions are not constructed at the right moment (due to many 

different reasons such as change or environmental resistance) (Chevalier, 2006). 

Fisher and Rothkopf (1989) explored various types of market failures which are 

significant in energy. Additionally, they studied the efficient allocation of resources 

and finally in case of market failure and distortion occurrence what remedies can be 

carried out. Liu et al. (2000) identified vulnerability in a competitive electricity market 

environment such as lack of incentives to construct transmission reinforcement and 

also to replace worn out control, protection, and generation equipment. Sensfuß 

(2008) analysed the effect of renewable electricity generation on the electricity market 

in Germany. Sáenz de Miera et al. (2008) tried to empirically explore the neglected 

benefit which is the reduction in the wholesale price of electricity due to more RE 

generation.  



43 

 

2.4.12 Affordability 

Affordability (AF) refers to the price of energy and the capacity of domestic and 

business users to afford it.  It demonstrates that availability of energy is not enough if 

energy is available at very high prices. It is related to vulnerable consumers who may 

not be able to meet their basic energy needs leading to what is known as energy 

poverty. At the same time, business and industrial consumers can be threatened by 

high prices since they impact on their profitability and may prevent investment and 

competitiveness. State owned electricity sectors have tried to address affordability by 

government controlled tariffs (Chalvatzis, 2012, 2009). The social dimension of SOS 

is important because SOS has a cost and in case of a price shock certain types of 

consumers who are exposed to volatile prices may not be able to afford supply of 

energy (Chevalier, 2006).  

2.5 Energy Supply Chain Risk Classifications 

Based on the literature review, it is revealed that there are five different perspectives 

for risk classifications as context-based, position-based, temporal, origin-based, and 

hybrid classifications. Context-based classification studies focus on the nature, 

context, discipline or occurrence realm of risks. For instance, physical, economic, 

social, and environmental risks defined by European Commission (2000) or 

geological, technical, economic, geopolitical, and environmental risks defined by 

Checchi et al. (2009) can be two typical examples. In position-based classification, 

risks are categorised in accordance with their position in the energy supply chain 

which can be upstream (generation), midstream (network), and downstream 

(demand). In temporal-based classification, researchers categorised risks on the basis 

of their timescales over which they operate that can be long, medium, or short time 

frames. Some risks have their origins inside the national border or energy system 

which can be regarded as internal, being related to production, transformation, and 

distribution of energy within national borders. Whereas on the other hand, many risks 

are related to imported energy that can be viewed as external. This kind of 

classification is discussed in the provenance-based attitude towards energy supply 

chain risk classification. Finally, there are hybrid classifications that consolidate two 

or more other classifications and provide a hybrid perspective of various dimensions. 

In the following sections, each classification is discussed and analysed within its 

respective literature.  
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2.5.1 Context-based classification 

This type of risk classifications has been a recurring theme in the literature. Here, it is 

called context-based classification as the focus is on the context, nature, discipline or 

occurrence realms of risks. Bearing in mind that various risk categories are usually 

analysed in totally separate disciplines. For instance, studies regarding natural 

disasters (such as earthquakes, floods, storms) or studies about supply intermittency 

discuss the natural risk sources (Skea et al., 2008; van Kooten, 2010). Engineering 

studies of system reliability take into account the analysis of technical risk sources’ 

impact (Billinton and Allan, 1996; Guo et al., 2009; Li, 2014, 2005; Makarov and 

Moharari, 1999). Table 2.1  summarises the context-based energy risk classifications. 

Table 2.1 An overview of context-based classifications  

Reference Risk classifications 

European Commission (2000) physical, economic, social, environmental 

Chevalier (2006) climate change and environmental policies, 

geopolitical, regulatory, unexpected 

Ölz et al.  (2007) energy market instabilities, technical failures, 

physical actions 

Checchi et al. (2009) geological, technical, economic, geopolitical, 

environmental 

Cherp and Jewell  (2011) robustness, resilience, sovereignty 

Winzer (2012) technical, human, natural 

Global Energy Institute (2019) geopolitical, economic, reliability, environmental 

 

European Commission (2000) categorised risks of energy supply into the 

following four groups: 

I) Physical risks: include permanent or temporary disruptions. Permanent 

physical disruption happens when an energy source is exhausted, or production is 

halted. The temporary disruptions can be brought about due to an industrial action, a 

geopolitical crisis, or a natural calamity. 

II) Economic risks: include erratic energy products price fluctuations on the 

European and global energy market. 



45 

 

III) Social risks: the instability of energy supplies caused either by unpredictable 

fluctuations in prices or physical disruptions which may lead to consequential social 

disruption. Industrial actions fall in this category.  

IV) Environmental risks: the damage to the environment resulted from energy 

supply chain. It may be regarded as accidental events such as oil spills/slicks, nuclear 

accidents, and methane leaks. It might also be originated from polluting emissions 

such as urban pollution and GHG emissions. Global warming is another cause of 

concern that is why the Kyoto Protocol set targets of declining GHG emissions for 

EU.  

Chevalier (2006) identified four categories of uncertainties which are 

surrounding the world energy scene: 

I) Climate change and environmental policies uncertainties: predicting the 

short, medium, and long-term effects of climate change is quite difficult in a way that 

determining what actions should be performed based on specific policies. 

II) Geopolitical uncertainties: raising amount of imported fuel in Europe from 

producer/transit countries with unstable or potentially unstable political and social 

situations would give rise to geopolitical uncertainty. Thus, it emphasises on the 

significance of diversified energy sources and would lead to higher prices, tight 

market and price volatility. 

III) Regulatory uncertainties: energy market liberalisation aimed at having 

competition and liquidity to motivate fuel substitution and as a result improving SOS. 

Hence, new forms of interactions between market mechanisms and public regulatory 

interventions must be applied in order to overcome the complexity of reaching 

competition. Additionally, for energy investors, threat of regulatory changes should 

be regarded.  

IV) The unexpected: there are a wide variety of unexpected events which are 

completely or almost unpredictable and pose risks on the energy security. Examples 

are terrorist attacks, civil unrest, wars, heat waves, hurricanes, earthquakes, tsunami, 

and pandemic diseases such as SARS and COVID-19. 
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Ölz et al. (2007) categorised energy security risks as the following three groups: 

I) Energy market instabilities: came about by unpredicted changes in 

geopolitical or other external factors such as trade embargoes and supply disruption 

on international oil price fluctuations. 

II) Technical failures: faults in energy supply systems such as power outages 

resulted from accidents or human error led to malfunction of grid or generation plant.  

III) Physical security threats (physical actions): acts of terrorism, sabotage and 

also natural disasters can impact on any section of energy supply chain. 

Checchi et al. (2009) identified the following five types of risks: 

I) Geological risks: level of global energy consumption is growing, and the 

majority of global fossil-fuel reserves are governed by government firms in the Middle 

East and Eurasia, while fossil-fuel reserves in the EU are decreasing. All these reasons 

cause concern for the long-term availability of resources. 

II) Technical risks: they concern system failures due to weather, low capital 

investment or weak status of the energy system. These risks are particularly significant 

for electricity generation. 

III) Economic risks: include unpredictable fluctuations in the market price of 

energy products.  

IV) Geopolitical risks: this point that energy industries are not functioning in a 

competitive market framework in the majority of supplier countries due to 

government interference will cause concern that energy would be utilised as a political 

weapon. Moreover, political instability such as civil wars, local conflicts, and 

terrorism in the supplier countries will threaten the security of supply. 

V) Environmental risks: define the potential environmental effects for instance 

from oil spills, or nuclear accidents.  

Cherp and Jewell (2011) proposed three perspectives on energy security as 

sovereignty, robustness, and resilience. They categorised threats by each perspective 

as follows: 
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I) Robustness: it has its roots in natural science and engineering and consists of 

threats such as failures of energy infrastructure, and extreme natural events, just to 

name a few. 

II) Resilience: it stems from economics and complex systems analysis and 

includes threats such as technology changes, variations of climate, market volatility, 

and regulatory changes. 

III) Sovereignty: it has its roots in political science and its related threats are 

sabotage and terrorist attacks, and political embargoes, just to name a few.  

Winzer (2012) recommended three main sources of risks as technical, human, 

and natural risk sources as follows: 

I) Technical risk sources: failure of infrastructure components such as 

transmission lines, or transformers due possibly to mechanical, thermal or 

communication network failures, or unintentional human error. 

 II) Human risk sources: sabotage and terrorism, political instability, and 

geopolitical risks (such as wars and economic sanctions), just to name a few examples. 

III) Natural risk sources: this category consists of examples such as 

intermittency of RE supplies, decline in fossil fuels stocks, or even natural disasters. 

The 2019 edition of index of the US energy security risk which employs 37 

distinct measures of energy security risk and covers the time frame from 1970 to 

2040 is made up of the following four sub-indexes that determine the main categories 

of risk to the US energy security (Global Energy Institute, 2019): 

I) Geopolitical: oil and natural gas are considerably becoming globally-traded 

commodities while are fairly well concentrated in a handful of countries which have 

uncertain political stability or are reluctant business partners with the US. Thus, 

dependence on these energy sources incurs political and military risks. 

II) Economic: price volatility may have severe negative effect which can put 

more pressure on family budgets and idle manufacturing facilities. 

III) Reliability: disruptions to energy supplies are considered costly. Long-

distance supply chains are susceptible to accidents and sabotage. Oil and natural gas 

fields geographically situated in weather-sensitive regions can get out of service. Lack 
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of sufficient electricity generation or refinery capacity may result in outages and 

blackouts. Outdated and inadequate electrical grids may overload and fail. 

IV) Environmental: Combusting these fuels would result in releasing GHG 

emissions such as carbon dioxide and correspondingly climate change poses risks on 

the economy and energy market.   

It is evident that there are close interrelations between some categories of each 

individual classification perspective. For instance, based on the European 

Commission (2000), a temporary physical disruption caused by an industrial action 

grouped into the physical risks while industrial action itself has fallen into social risks. 

It demonstrates particularly when it comes to the roots or causes of each risk category, 

the interconnections between risk categories will play a crucial role for an effective 

explanation. Moreover, it is also clear that there are many common risk categories 

shared in accordance with distinct context-based classifications. For example, 

economic risk category is similar among other classifications with just different names 

such as resilience (Checchi et al., 2009; Cherp and Jewell, 2011; European 

Commission, 2000; Global Energy Institute, 2019). Thus, it goes clearly that some 

risk categories based on different perspectives may appear with various names but 

nearly similar definition.  

The main drawback of the majority of context-based perspectives in the 

literature is that they lack thoroughness. It means they are not capable of covering all 

types of risks and there would be sometimes a few missing risk dimensions. The other 

negative aspect is lack of proper definition for each risk classifications. Mainly based 

on the work of Cherp and Jewell (2011) and considering other perspectives in the 

literature the following six classifications for the context-based classification are 

proposed: (1) Engineering science; (2) Economics; (3) Environmental science; (4) 

Sociology; (5) Politics; (6) Health sciences. This proposed classification is thought to 

be more comprehensive compared to other attitudes as it covers most relevant fields. 

It should be noted that some risk dimensions may belong to more than one group. For 

example, resource availability can be involved with many contexts such as economics, 

politics or sociology depending on which associated risk elements are being studied 

under the resource availability. Therefore, it is clear that certain risk dimensions will 

have to be considered under a definitional discussion in order to clarify their scope.    
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2.5.2 Position-based classification  

Based on this classification, risks are classified in terms of position in the system 

which can be upstream (generation), midstream (network) and downstream (demand). 

In the upstream, the generation or supply of energy sources which can be either 

primary such as oil or secondary such as electricity is considered. Midstream or 

network manages transformation (transport/storage and refining/conversion) and 

distribution/transmission of the energy sources. Downstream or demand side of the 

energy supply chain is where energy/electricity is delivered to consumers. Climate 

change is a risk dimension which has effect on all levels of the system (generation, 

network and demand). It implies that risk dimensions are not limited to merely one 

position and may act simultaneously on various levels. Gracceva and Zeniewski 

(2014) considered the positions in the energy supply chain that risks may occur in any 

position (see Figure 1.2). 

2.5.3 Temporal classification 

Stirling (2014) indicated that vulnerabilities can be mitigated only via looking at their 

dynamics over time (expressed as temporality). Chevalier (2006) regarded the time 

dimension of SOS as very important. Egenhofer et al. (2004) also held the view that 

risks or threats to physical supply vary across short, medium, and long-term 

perspectives.  

2.5.3.1 Short timescale 

Those risks that threaten security in the short-term are shocks to the system. They are 

threats to security that generally operate over less than an hour. In the short term, risks 

are usually related to disruptive effects of a price shock or an unpredicted lack of 

supply.  

2.5.3.2 Medium timescale 

Medium-term risks are threats to security that generally occur and develop between a 

few days up to a few months.  In the medium timescale, SOS may be threatened by 

enduring political or social turmoil, shortage of available resources or even delay/lack 

of investment in productive capacity, transmission, and storage.   

2.5.3.3 Long timescale 

Long-term risks are threats to security that generally operate over years and even 

decades. In the long timescale, the concern is more about the stability and 
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sustainability of economic development which will be facilitated by the availability 

of sufficient energy supply. It may also include long-term changes in weather patterns 

which impact on renewable energy generation.  

2.5.4 Origin-based classification 

Chevalier (2006) elaborated dimensions such as space, time, and social for the SOS. 

The space dimension of SOS states that disruption in supply of energy can have local, 

national, and international causes and implications, and in this sense associates with 

geography. Here, origin reflects whether the risks have external or internal cause. 

Some elements of supply are external like world oil price or storms and some 

components are internal which are linked, for instance, to the organisation of energy 

industries, safety standards, and storage obligations. Liu et al. (2000) indicated that 

vulnerability sources are either internal or external to the infrastructure constituting 

the power system. 

2.5.4.1 Internal events 

Internal events can be controlled which means there is a freedom to select strategies 

which would have impact on reducing the likelihood of the threats (Checchi et al., 

2009).  

2.5.4.2 External events 

Elements grouped into external risks are linked to energy imports dependency 

(Checchi et al., 2009). The major strategy available in the case of external events is 

responsive capacity development. It means maintaining the quality of energy services 

or improving the system’s capacity to conform to events (e.g. by expanding the storage 

to enhance short-term flexibility) (Gracceva and Zeniewski, 2014).  

2.5.5 Hybrid classification 

This classification incorporates two or three previously indicated perspectives. It is 

divided into two major groups as  

a) Two-dimensional which deals with two axes of temporality and position; 

temporality and origin; or position and origin. 

b) Three-dimensional that involves temporality, position, and origin together.  

Boston (2013) presented a hybrid classification by considering two dimensions 

of temporality and position in the system (Figure 2.1). For instance, loss of expertise 
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is a long timescale risk that is positioned in both generation and network levels. 

Gracceva and Zeniewski (2014) categorised energy security risks based on three main 

dimensions including position, temporality, and origin. 

 

Figure 2.1 Risks in two dimensions (position and timescale) (adapted from Boston, 2013) 
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2.6 Knowledge Gap 

After reviewing literature, firstly, there has been no comprehensive risk identification 

framework to help categorise energy supply chain risks in the UK (see RQ 1). 

Secondly, this thesis takes the view that there is some degree of interconnection 

between risks; that is, there should be causal relations among them, which indicates 

that the occurrence of one risk could lead to exposure to another.  Based on the 

literature, there are just a limited number of studies in the supply chain risk 

management literature that have addressed interactions between risks (Babu et al., 

2020; Chaudhuri et al., 2016; Qazi et al., 2017; Ritchie and Brindley, 2007; Wei et al., 

2010). This is even less explored in the energy risk management literature, particularly 

when focusing on the UK power supply chain. Thus, it is critical to take advantage of 

a method that can analyse these types of interrelationships as well as effectively deal 

with subjective judgments of experts such as a combined NR-DEMATEL and then 

understand how these risks are ranked and prioritised (see RQs 2 and 3). Thirdly, there 

was a need for a specific study to aid policymakers in the UK power supply chain to 

effectively realize significant risk dimensions and risk mitigation strategies 

considering the identified risks based on causal interrelationships among them. It can 

be quite useful in the risk mitigation stage in the long-term by taking into account UK 

socio-economic situations (see RQs 4 and 5). 
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2.7 Conclusions 

In this chapter, it was aimed at reviewing the literature on four main topics including 

(1) decision analysis methods in energy planning and risk management; (2) energy 

security; (3) energy supply chain risks; and (4) energy supply chain risk 

classifications.  

The review of decision analysis methods and energy security revealed that there 

is a need for analysing interrelationships between energy risks as they inherently are 

linked together and there would be causal relations between them. After recognising 

this gap in the literature, it is important to come up with a framework to identify and 

classify energy risks. To this end, 12 energy supply chain risk dimensions were 

explained based on a systematic literature review search protocol (Table 5.1). 

Additionally, various energy supply chain risk classifications were also identified and 

elaborated drawing upon the literature in Section 2.5. The proposed risk identification 

framework is introduced later in Chapter 5 (Section 5.2).  

It is surmised that the provided literature review can construct a basis for a 

comprehensive perspective towards energy risks by encompassing all energy risks 

throughout the entire UK energy supply chain. The framework and studies in response 

to research questions regarding outlined research aims and objectives are provided in 

Chapters 5, 6 and 7.  
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Chapter 3 Theories and Preliminaries  

3.1 Introduction 

In this chapter, some basic definitions, theories, and preliminaries are described. 

Understanding them is required to better grasp the idea behind the methods in Chapter 

4 as well as analysis parts in Chapters 5, 6, and 7.  

This chapter is comprised of seven sections including Multiple Criteria Decision 

Making (MCDM), weighting methods, uncertainty theory, graph theory, Concept of 

Stratification (CST), and game theory, respectively. As it was discussed in Chapter 1, 

the research aim is to develop decision-making tools based on various theories and 

methods. Thus, the main link that connects these tools to each other is the fact they 

are all related to decision analysis parts carried out in the next chapters of this thesis. 

Readers should refer to this chapter in order to understand the concept behind 

implementation steps of the utilised tools in the next chapters.  

 

3.2 Multiple Criteria Decision Making 

Multiple Attribute Decision-Making (MADM) methods are developed to select a 

suitable alternative from a pre-defined discrete set of alternative courses of action. As 

it is commonly seen in the literature, the terms MADM, MCDM, and Multi Criteria 

Decision Analysis (MCDA) are often used interchangeably (Govindan and Jepsen, 

2016). MCDM methods aim to select a suitable course of action, choice, policy, or 

strategy in decision problems with multiple and often conflicting qualitative and/or 

quantitative criteria under certainty or uncertainty (Kuo, 2017; Srinivasa Raju and 

Nagesh Kumar, 2010). The main goal in MADM is to provide a number of attribute 

aggregation methods which make model development possible based on Decision 

Makers’ (DMs’) or subject experts’ preferential system and judgement policy 

(Doumpos and Zopounidis, 2002; Tavana and Hatami-Marbini, 2011). The number of 

published applications of MADM has grown rapidly over the last two decades (Huang 

et al., 2011; Marttunen et al., 2017) considering a large number of available MADM 

methods (Mulliner et al., 2016, 2013).  
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3.3 Weighting Methods 

In decision making, in order to obtain the relative importance of each criterion or 

factor under study, generally a rank-order weighting method can be used where 

weights of criteria are distributed as Equation (3.1), where ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 

 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛 ≥ 0 (3.1) 

The rank-order weighting methods are also categorised into three groups (Wang et al., 

2009): 

1. Subjective weighting methods such as Analytic Hierarchy Process (AHP) and Best-

Worst Method (BWM). 

2. Objective weighting method such as Entropy method. 

3. Combination weighting method such as additive synthesis. 

Three elements are recognised in order to calculate weights (Wang et al., 2009) 

including (1) the variance degree; (2) the independence; and (3) the subjective 

preference of DMs. 

3.4 Uncertainty Theory 

Uncertainty in MADM has close relation with uncertainty theories. Booker and Ross 

(2011) stated that uncertainty could be defined as what is not known precisely, though, 

Zimmermann (2000) indicated that he had not been successful in finding any general 

definition for uncertainty. Since the introduction of Fuzzy Sets (FS) by Zadeh (1965), 

probability theory was challenged. The reason was that probability theory had been 

the sole representation for uncertainty. Subsequently, developments in mathematical 

uncertainty theories have been proposed such as the possibility theory in 1988 (Dubois 

and Prade, 2012), Dempster-Shafer evidence theory that has been developed by 

Dempster (1968), and then by Shafer (1976) to model belief or evidence (Kämpke, 

1988), imprecise probability theory (Walley, 1991), and random intervals (Joslyn and 

Booker, 2004). Smarandache introduced a non-classical logic, which has roots in 

philosophy as an alternative to the existing logical systems, namely neutrosophic logic 

to offer mathematical insight about uncertainty (Smarandache, 2002, 1999). 

Smarandache (1999) proposed Neutrosophic Sets (NS) which show fuzzy information 

utilising the functions of truth, indeterminacy and falsity like Intuitionistic Fuzzy Sets 

(IFS). Atanassov (1986) introduced IFS as an enhancement of the Fuzzy Set Theory 
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(FST) of Zadeh (1965) to improve it via offering the concept of non-membership 

degree (Vafadarnikjoo et al., 2018). Independency of the indeterminacy function from 

the truth and falsity functions in NS, differentiates it from IFS (Ji et al., 2018). The 

IFS was generalised to the NS, so as to present valuable information on how a DM 

would effectively deal with uncertainty within subjective judgements (Vafadarnikjoo 

et al., 2018). Levary and Wan (1998) indicated that there are two types of 

uncertainties. First, uncertainty related to the prospective traits of the decision-making 

environment characterised by a set of scenarios. Second, uncertainty regarding the 

decision-making judgement associated with pairwise comparisons. This research 

deals with the second type of uncertainty. In the literature, apart from uncertainty 

theories, various decision support tools have been proposed to deal with uncertainty. 

An example is the work of Baudry et al. (2018) that proposed a new framework to 

support participatory decision-making under uncertainty. This trend reinforces the 

importance of decision-making under uncertainty where the focus is to produce 

reliable solutions for complex real-world problems. Temur (2016) also emphasised 

this growing trend in the integration of uncertainty theories with MADM methods in 

handling uncertainty. Please see Appendix A for detailed definitions on utilised 

uncertainty theories.  

3.5 Graph theory 

Graph theory is an area of mathematics. The definition of graph 𝐺 = (𝑉, 𝐸) is a finite 

non-empty set 𝑉 of objects (vertex set) and a set 𝐸 (edge set-includes two-element 

subsets of  𝑉). Sometimes the vertex and edge sets of graph 𝐺 is represented as 𝑉(𝐺) 

and 𝐸(𝐺) , respectively (Benjamin et al., 2015). In Figure 3.1, graph 𝐺, is shown as 

an example where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} , and 𝐸 = {𝑎𝑏, 𝑏𝑐, 𝑏𝑒, 𝑎𝑐, 𝑎𝑒, 𝑐𝑒, 𝑐𝑑}. Please 

see Appendix B for detailed definitions on graph theory. 

 

Figure 3.1 A graph 𝐺 
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3.6 Concept of Stratification 

The Concept of Stratification (CST) as an innovative version of stratification has been 

introduced by Zadeh (2016). In CST, a number of states should be traversed by a 

system in order to reach the target set (i.e. a desired state). Inputs and outputs of any 

state are incrementally stratified on the basis of their distance from the target set 

(Asadabadi, 2018; Rajabi Asadabadi et al., 2018). The CST is a very similar concept 

to Dynamic Programming (DP), while being much more straightforward to 

comprehend and then apply. As an example, knowing the population of Washington 

is 658,000 then the stratified count can provide more informative information. Given 

the area around Washington is partitioned into nested strata 𝑆1, 𝑆2, … , 𝑆𝑛 centring on 

downtown Washington. Stratified count is the collection (𝑆1, 𝑃1),… , (𝑆𝑛, 𝑃𝑛) where 

𝑃𝑖 is the population of Stratum 𝑆𝑖. The population might be stratified on the basis of 

gender, career, race, and so on. It is also indicated that stratified polls can be a highly 

important tool for politicians who run for office (Zadeh, 2016). The following 

concepts are identified in CST (Rajabi Asadabadi et al., 2018):  

System: It is defined as a set of objects which traverse states towards a state in 

the target set. 

State: 𝑆𝐸𝑡  signifies 𝑡𝑡ℎ state and is characterised by the values of its related 

variables which are determined by experts. The system would transition from one state 

to the other by changing values of variables.  

State-transition function: moves the system from 𝑖𝑡ℎ state to (𝑖 + 1)𝑡ℎ  state as 

Equation (3.2).   

 𝑆𝐸(𝑡+1) = 𝑓(𝑆𝐸𝑡 , 𝑢𝑡) (3.2) 

          

If the system is situated at state 𝑡(𝑆𝐸𝑡), by receiving an input 𝑢𝑡, it transitions from 

𝑆𝐸𝑡   to 𝑆𝐸𝑡+1     

Inputs and outputs: Many inputs (𝑢𝑡) might exist for 𝑆𝐸𝑡 . Equation (3.3) shows 

the relation between each input and an output (𝑣𝑡). 

 𝑣𝑡 = 𝑔(𝑆𝐸𝑡 , 𝑢𝑡) (3.3) 

           Target state: The goal of the system is to reach the target set. 
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Target set: It is defined when there are multiple target states. 

Stratum: Stratum 𝑁 is defined as a set of states from which a system can get the 

target state in 𝑁 or less than 𝑁 steps. 

Reachability: It exists when there would be a path between two states.  

Incremental enlargement process would equip CST with high dynamicity. The 

primary goal of enlargement is identifying possible paths towards the target where 

reaching the target is costly; consumes excessive resources or is presently vague and 

gets obvious at coming times (Asadabadi et al., 2018).  

The foundation of CST is a model called Finite-State Machine (FSM) which is 

a discrete-time, discrete-state dynamical system. The importance of FSM lies in the 

fact that by using granulation and/or quantisation nearly any type of systems can be 

approximated to by a finite state system. Target set reachability plays a central role in 

FSM. Reachability includes moving or transitioning from a state 𝑆𝐸𝑡  to a state in the 

target set 𝑇0 within a least number of steps (Zadeh, 2016). In Figure 3.2, the target set 

(𝑇0) is at the bottom and comprises two states. Then by absorbing two states via 

enlargement process, the first stratum (𝑇1) is recognised by four states. Similarly, all 

states are stratified with respect to their distances from target states (Rajabi Asadabadi 

et al., 2018).  

 

Figure 3.2 Target set, stratum, and state in CST 

 



59 

 

3.7 Game Theory  

Since publication of The Theory of Games and Economic Behaviour by Von Neumann 

and Morgenstern (1947), game theory has been extensively utilised as a logical 

approach in various research realms such as economics and management. In this 

section, a basic model of game theory is explained. 

3.7.1 A general model of game of chance 

Generally, there are three types of games including games of skill; games of chance; 

and games of strategy. Apart from games of skill which are one-player games, the 

other two groups of games involve at least two players. Games of strategy involve two 

or more players, not including nature, each of whom has partial control over the 

outcomes (Kelly, 2003). Games of chance are grouped as either involving risk or 

involving uncertainty and are one-player games against nature (Table 3.1). Games of 

chance have been also called individual decision making under risk or uncertainty. In 

spite of being one-person games, they are modelled in terms of two players, thus they 

can be recognised within the field of game theory. In the game of chance involving 

risk, although the player does not know with certainty what moves will be made by 

nature, the player is aware of the meaningful probability of responses of nature, and 

thus realises the success probability of each of their strategies or actions. The expected 

monetary/utility value (EMV) can be utilised to reach a decision in this type of games 

(Colman, 1982).  

Additionally, games of chance involving uncertainty, are one-player games 

against nature and probabilities of nature's responses are unknown. Three principles 

for making a decision in such circumstances have been suggested:  

1) The maximax principle (super-optimistic approach) recommends that the 

player chooses the strategy that contains the greatest pay-off. 

2) The maximin principle (super-pessimistic risk-averse strategy approach) 

recommends that a player avoids the worst possible pay-off. In other words, the player 

should choose the strategy that offers the best worst-case scenario.  

3) The minimax principle (a good balance between the super-optimistic and the 

super-pessimistic; greatest regret avoidance) recommends that a player avoids the 

strategy of greatest regret. Utilising this approach, the payoff matrix must first be 

transformed into a regret matrix (Kelly, 2003).  
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Table 3.1 General game of chance model 

PLAYER 1  PLAYER 2 

(NATURE) 

  

 OUTCOME 1 OUTCOME 2 … OUTCOME 𝑀 

CHOICE 1 𝑃𝐹11 𝑃𝐹12 … 𝑃𝐹1𝑀 

CHOICE 2 𝑃𝐹21 𝑃𝐹22 … 𝑃𝐹2𝑀 

 …
 

…
 … 

…
 

CHOICE 𝑵 𝑃𝐹𝑁1 𝑃𝐹𝑁2 … 𝑃𝐹𝑁𝑀 

 

 

3.8 Conclusions 

A number of theories which are connected to the applied methodologies in Chapters 

4, 5, 6 and 7, and are necessary to understand the methods and analyses were described 

in the current chapter.  

The aim was to provide a brief guideline for readers to become familiar with 

these theories which would help them understand the methods, models, theoretical 

contributions, analysis and consequently results which are presented later on in 

Chapters 5, 6 and 7. However, in the later chapters, readers are often referred to these 

theories, so as to acquire essential and basic information to understand the used 

technical terms and implementation steps. This understanding would make the later 

chapters less complicated to read and follow. In the next chapter, the proposed 

decision-making tools are explained in detail.  
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Chapter 4 Proposed Decision-Making Tools 

4.1 Overview 

In this chapter, proposed decision-making tools in the thesis are discussed. They are 

novel tools including methods and models which have theoretical contributions to the 

body of knowledge. The reasons why these tools are proposed and applied are 

explained in the related chapters in detail. In general, MCDM methods are considered 

as valid and reasonable methods to deal with causal relationships between risks and 

for risks prioritisation. This point was also confirmed in the literature as discussed in 

Loken (2007) who reviewed energy planning literature and indicated that energy 

planning is a suitable field for the MCDM applications. Also, in a study by Lin et al. 

(2018) who identified risk elements of the New Energy Power System (NEPS) in 

China and analysed their internal influence relations based on a MCDM method (i.e.  

D numbers and DEMATEL). However, there are other methods in the literature such 

as Bayesian Networks (BNs) which can deal with risks by analysing occurrence 

probability of risks. But in this study as it was explained, the identified risks based on 

the proposed framework are recognised as risk dimensions which are of macro-level 

nature such as climate change or natural disasters. It is believed that BNs can be more 

helpful in dealing with risk elements which are of micro-level nature and are 

positioned at the lowest level of the proposed framework. The reason is that obtaining 

occurrence probabilities for risk elements can be more straightforward and meaningful 

compared to macro-level risk dimensions such as climate change.   

In this chapter, the application procedure for each one is described step by step. 

Furthermore, a brief background of their applications drawing upon the literature is 

also provided for some tools where it could benefit understanding of their importance 

in practical research contexts. The five new tools which are explained in this chapter 

are as follows: 

1) Proposed Expert Selection Model (ESM) (Section 4.2). 

2) Proposed Neutrosophic Revised Decision-Making Trial and Evaluation Laboratory 

(NR-DEMATEL) method (Section 4.3). 

3) Proposed Hybrid Spanning Trees Enumeration and Best-Worst Method (STE-

BWM) (Section 4.4). 
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4) Proposed Neutrosophic Enhance Best-Worst Method (NE-BWM) (Section 4.5). 

5) Proposed stratified model of game of chance involving risk which is named as 

stratified decision-making model (Section 4.6). 

4.2 Proposed Expert Selection Model 

In many Multi Attribute Group Decision Making (MAGDM) problems there is a need 

to establish a number of subject experts or specialists to obtain their opinions or elicit 

information. The process deals with subjectivity, validity, and criteria fixing  

(Mediouni et al., 2019). In previous studies, the task of experts’ weights determination 

was carried out in a relatively subjective, and unstructured way. Here, an Expert 

Selection Model (ESM) is proposed to facilitate this process while providing a 

profound logic to explain the overall process. It also helps get the importance weight 

of each expert which is useful to evaluate the chosen experts’ assessments. The 

proposed versatile model can be applied in any similar decision-making situation. It 

is comprised of the following three steps: 

Step 1: Initial Screening 

An initial list of experts in the context of the study including both practitioners 

and scholars is drawn up. All the practitioners and academics in the field of study who 

can be regarded as potential experts and directly contactable are included in the list.  

Step 2: Expert Eligibility Screening 

In this phase, the Expert Eligibility Value (EEV) is calculated for each expert 

either practitioner or academic. The EEV for the chosen experts in this phase should 

be greater than or equal to a predefined inclusion value of 𝛼 (𝐸𝐸𝑉 ≥ 𝛼). Four 

inclusion value ranges have been proposed which are measured in years as follows: 

Undemanding inclusion (𝛼 < 3) 

Acceptable inclusion (3 ≤ 𝛼 < 10)  

Favourable inclusion (10 ≤ 𝛼 < 20)  

Solid inclusion (𝛼 ≥ 20) 

Note that, the inclusion value can be changed based on stakeholders’ opinion 

and the specific circumstances of the study. Nonetheless, defining such a value to filter 
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out some potential experts can be cumbersome especially in specific fields that having 

access to experts is challenging. The EEV is calculated in close connection to years 

of experience influenced by other factors like education, level of experience, 

professional qualifications, and professional associations affiliation. The EEV for 

practitioners and academics can be calculated using Equation (4.1) and (4.2), 

respectively. 

 𝐸𝐸𝑉 = [∑(𝑌𝑖 × 𝐿𝑖)

3

𝑖=1

] × 𝐸𝑗 ×∏𝑄𝑚
𝑘

𝑝

𝑘=1

× 𝐴𝑙  (4.1) 

 

 𝐸𝐸𝑉 = [∑(𝑌𝑖 × 𝐿𝑖)

3

𝑖=1

] ×∏𝑄𝑚
𝑘

𝑝

𝑘=1

× 𝐴𝑙  (4.2) 

Where, 

Variable: 

 𝑌𝑖 : Years of experience at each level of experience 𝑖 

Parameters: 

 𝐿𝑖 :  The importance weight of experience at each level of experience 𝑖 

 𝐸𝑗 : The importance weight of the highest level of achieved education (𝑗 = 1,2,3,4) 

 𝑄𝑚
𝑘  : The importance weight based on holding (𝑚 = 1) or not holding (𝑚 = 2) of 

𝑘𝑡ℎ  professional qualifications; equal importance weight for various 

qualifications is assumed for simplicity, 𝑄1
𝑘  is shown as 𝑄1 and also for 𝑄2

𝑘  

as 𝑄2 (𝑝 is the number of professional qualifications that an expert holds) 

 𝐴𝑙  : The importance weight according to the highest-ranked professional association 

where an expert is a member of (𝑙 = 1,2,3)  

In the EEV calculations for practitioners, 𝐿, 𝐸, 𝑄𝑘  and 𝐴 can take on values 

based on Equation (4.3) to (4.6), respectively. 

 𝐿 = {

𝑈𝑝𝑝𝑒𝑟 − 𝑙𝑒𝑣𝑒𝑙 𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑠 𝐿1
𝑀𝑖𝑑 − 𝑙𝑒𝑣𝑒𝑙 𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑠 𝐿2
𝐹𝑖𝑟𝑠𝑡 − 𝑙𝑒𝑣𝑒𝑙 𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑠 𝐿3

 (4.3) 
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 𝐸 = {

𝑃ℎ𝐷 𝐸1
𝑀𝑆𝑐/𝑀𝐴 𝐸2
𝐵𝑆𝑐/𝐵𝐴 𝐸3

𝐵𝑒𝑙𝑜𝑤 𝐵𝑆𝑐/𝐵𝐴 𝐸4

 (4.4) 

 

 𝑄𝑘 = {
𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑘𝑡ℎ 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑄1

𝑘 = 𝑄1
𝑁𝑜 𝑘𝑡ℎ 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑄2

𝑘 = 𝑄2 = 1
 (4.5) 

 

 𝐴 = {

𝐶ℎ𝑎𝑟𝑡𝑒𝑟𝑒𝑑 𝐴1
𝑁𝑜𝑛 − 𝐶ℎ𝑎𝑟𝑡𝑒𝑟𝑒𝑑 𝐴2
𝑁𝑜 𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝐴3

 (4.6) 

 

In EEV calculations for academics, 𝐸 is not considered for academics as they all 

presumed to have been awarded doctorates (PhD) or equivalent degrees. Secondly, 𝐿 

for academics is the general academic hierarchy at universities which is shown in 

Equation (4.7) and can differ among various higher education settings. 𝑄 and 𝐴 for 

academics are calculated in the same way as for practitioners.  

 𝐿 = {
𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟   𝐿1

𝑆𝑒𝑛𝑖𝑜𝑟 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟  𝐿2
𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟   𝐿3

 (4.7) 

 

Step 3: Importance Weights Normalisation 

The calculated EEV values are transformed into the scale between 0 and 1 to 

act as importance weights calculated by Equation (4.8), where 𝑒 indicates the 

maximum number of experts who were involved in the study. 

 𝑤𝑖 =
𝐸𝐸𝑉𝑖

∑ 𝐸𝐸𝑉𝑖
𝑒
𝑖=1

 (4.8) 
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4.3 Proposed Neutrosophic Revised DEMATEL Method 

The DEMATEL method is built based on the graph theory (i.e. digraph) which enables 

analysts to analyse and solve problems by the visualisation method. These graphs are 

more helpful than undirected graphs because they can show the directed relationships 

of sub-systems (Gabus and Fontela, 1973, 1972; Vafadarnikjoo et al., 2015; Wu and 

Lee, 2007). This method puts all factors into two distinct categories called (1) cause; 

and (2) effect, by applying impact values between factors. In DEMATEL, factors are 

elements that a researcher is keen on determining their interrelationships by 

constructing a pair-wise relation matrix. Lee et al. (2013) proposed a revised 

DEMATEL that is applied in the current thesis. In the proposed NR-DEMATEL 

method, the revised DEMATEL is integrated with Neutrosophic Set Theory (NST). 

However, in other neutrosophic DEMATEL methods in the literature, the original 

DEMATEL was used. For instance, Kilic and Yalcin (2020) utilised neutrosophic 

DEMATEL and TOPSIS for the evaluation of environmental sustainability 

performance. Abdel-Baset et al. (2019b) showed application of neutrosophic 

DEMATEL and TOPSIS for project selection. F. Liu et al. (2018) proposed SVNN-

DEMATEL and applied it in transport service provider selection problem. Tian et al. 

(2018) applied single-valued neutrosophic DEMATEL for market segment evaluation 

and selection. Abdel-Baset et al. (2018) used neutrosophic DEMATEL in order to 

develop supplier selection criteria.  

Steps of the NR-DEMATEL are revised and elaborated as follows (Govindan et 

al., 2016; Vafadarnikjoo et al., 2016) (In this thesis, factors are considered as risk 

dimensions):  

Step 1: Subject experts and factors identification 

In this initial step, it is required to identify a set of factors that should be 

evaluated by an appropriate number of experts who have rich knowledge and 

experience in the subject matter. Note that experts may not necessarily be eligible for 

evaluation of all of the factors and they may choose to evaluate one or more factors 

that they can provide proper evaluation for. Moreover, assigning importance weights 

to each expert’s opinion is another crucial part that should be handled in a systematic 

way. The Hesitant Expert Selection Model (HESM) is explained in Section 5.4 to 

facilitate this expert selection and importance weight allocation process. The weight 
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of 𝑘𝑡ℎ expert is represented as 𝑤𝑘 in a way that 0 ≤ 𝑤𝑘 ≤ 1 and ∑ 𝑤𝑘
𝐻
𝑖=1 = 1 given 

𝐻 is the total number of experts providing their opinions.    

Step 2: The initial direct-relation matrix 𝐵 construction 

The pairwise comparison matrix (𝐵𝑛×𝑛) is generated by pairwise comparisons 

between the 𝑛 factors being explored. It is carried out by experts who were asked to 

indicate the degree to which, factor 𝑖 affects factor 𝑗. The influence of factor 𝑖 on 

factor 𝑗 indicates how changes in factor 𝑖 can result in variations in factor 𝑗. The 

pairwise comparison between the 𝑖𝑡ℎ, and 𝑗𝑡ℎ factor given by the 𝑘𝑡ℎ expert is 

represented as 𝑏𝑖𝑗
(𝑘)

 that takes on integers based on the seven-grade Likert scale 

ranging from 0 to 6 (Table 4.1). The provided scores will construct a 𝑛 × 𝑛 non-

negative matrix 𝐵(𝑘) = [𝑏𝑖𝑗
(𝑘)
]
𝑛×𝑛

 with 1 ≤ 𝑘 ≤ 𝐻. Thus 𝐵(1), 𝐵(2), … , 𝐵(𝐻) are the 

matrices of 𝐻 experts. The diagonal elements of each matrix 𝐵(𝑘) are zero (Lee et al., 

2013). Some rows of the matrix can have missing values in case that an expert is not 

well-qualified to evaluate the specific factor. In this case, missing values have been 

treated by the deletion method.       

Step 3: The initial neutrosophic-based direct-relation matrix 𝑆 construction 

The Single-Valued Trapezoidal Neutrosophic Numbers (SVTNN) as revealed 

in Table 4.1 are utilised to substitute the influence scores in the direct relation matrix 

𝐵. The 𝑛 × 𝑛 non-negative neutrosophic matrix 𝑆(𝑘) = [𝑠𝑖𝑗
(𝑘)
]
𝑛×𝑛

 where 1 ≤ 𝑘 ≤ 𝐻 

is constructed by replacing the 𝑏𝑖𝑗
(𝑘)

 values in 𝐵(𝑘) with the corresponding SVTNN 

values as shown in Table 4.1.  

Step 4: The initial weighted average matrix 𝐴 construction  

In order to deal with the less complex calculation in the later computational 

steps, the corresponding crisp values (𝑐𝑠𝑖𝑗
(𝑘)

) of SVTNN values as shown in Table 4.1, 

are considered to generate the weighted crisp matrix 𝑉(𝑘) = [𝑣𝑖𝑗
(𝑘)
]
𝑛×𝑛

where  𝑣𝑖𝑗
(𝑘)
=

𝑐𝑠𝑖𝑗
(𝑘)
× 𝑤𝑘. To compute the crisp amount of SVTNN, the described score function in 
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Equation (A.34) has been applied. The 𝑛 × 𝑛 weighted average matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛
 

is then generated where 𝑎𝑖𝑗 =
∑ 𝑣𝑖𝑗

(𝑘)𝐻
𝑘=1

∑ 𝑤𝑘
𝐻
𝑘=1

  

 Table 4.1 Linguistic scale of SVTNN 

Linguistic Phrase Influence 

score 

SVTNN Crisp 

Value 

No Influence (NI) 0 〈(0.0,0.0,0.0,0.0); 0.0,0.0,0.0〉 0.00 

Low Influence (LI) 1 〈(0.2,0.3,0.4,0.5); 0.6,0.2,0.2〉 0.26 

Fairly Low Influence 

(FLI) 
2 

〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉 0.38 

Medium Influence 

(MI) 
3 

〈(0.4,0.5,0.6,0.7); 0.8,0.0,0.1〉 0.50 

Fairly High 

Influence (FHI) 
4 

〈(0.7,0.8,0.9,1.0); 0.8,0.2,0.2〉 0.68 

High Influence (HI) 5 〈(1.0,1.0,1.0,1.0); 0.9,0.1,0.1〉 0.90 

Absolutely High 

Influence (AHI) 
6 

〈(1.0,1.0,1.0,1.0); 1.0,0.0,0.0〉 1.00 

 

Step 5: The normalised initial direct-relation matrix 𝐷 construction 

The normalised initial direct-relation matrix 𝐷 = [𝑑𝑖𝑗]𝑛×𝑛
is generated by 

normalising the weighted average matrix 𝐴 using Equations (4.9) and (4.10) where 𝜀 

is a very small positive value like 10−5 (Lee et al., 2013). ∑ 𝑎𝑖𝑗
𝑛
𝑗=1  is the total direct 

effect that the factor 𝑖 gives to other factors and ∑ 𝑎𝑖𝑗
𝑛
𝑖=1  is the total direct effect 

received by factor 𝑗.  

 𝑝 = 𝑚𝑎𝑥 (max
1≤𝑖≤𝑛

∑𝑎𝑖𝑗

𝑛

𝑗=1

, 𝜀 + max
1≤𝑗≤𝑛

∑𝑎𝑖𝑗

𝑛

𝑖=1

) (4.9) 

 

 𝐷 =
𝐴

𝑝
 (4.10) 

Step 6: The total relation matrix 𝑇 construction 

The total relation matrix is produced by Equation (4.11) in which 𝐼 is the identity 

matrix. 

 𝑇 = 𝐷(𝐼 − 𝐷)−1 (4.11) 
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Step 7: The impact-relations map (IRM) construction 

In the DEMATEL literature, the IRM (Lee et al., 2013) is also named as 

influence-relations map (Wang et al., 2012), causal diagram (Govindan et al., 2015), 

network relation map (Hsu et al., 2012), impact digraph map (Tzeng et al., 2007), and 

cause-effect diagram (Tzeng, 2014). An IRM is generated by applying Equation 

(4.12)-(4.14) as follows.  

 𝑇 = [𝑡𝑖𝑗]𝑛×𝑛
𝑖, 𝑗 = 1,2,… , 𝑛 (4.12) 

 

 𝑐 = [∑𝑡𝑖𝑗

𝑛

𝑖=1

]

1×𝑛

= [𝑡.𝑗]1×𝑛
= [𝑐𝑗]1×𝑛

 (4.13) 

 

 𝑟 = [∑𝑡𝑖𝑗

𝑛

𝑗=1

]

𝑛×1

= [𝑡𝑖.]𝑛×1 = [𝑟𝑖]𝑛×1 (4.14) 

 

Sum of rows (𝑟) and sum of columns (𝑐) are calculated according to matrix 𝑇. 

The 𝑟𝑖 is the sum of the 𝑖𝑡ℎ row of the matrix 𝑇 and represents the total effect, both 

direct and indirect, given by the factor 𝑖 to other factors. And 𝑐𝑖 is the sum of the 𝑖𝑡ℎ 

column of the matrix 𝑇 and presents the total effect, both direct and indirect received 

by the factor 𝑖 from other factors (Lee et al., 2013).  

The (𝑟𝑖 + 𝑐𝑖) is on the horizontal axis of IRM while (𝑟𝑖 − 𝑐𝑖) makes the vertical 

axis of IRM. The (𝑟𝑖 + 𝑐𝑖) represents the total sum of the effects given and received 

by the factor 𝑖. It is also named Prominence because it indicates the relative 

importance of each factor 𝑖. The (𝑟𝑖 − 𝑐𝑖) is named Relation and represents the net 

effect that the factor 𝑖 contributes to the system. In general, we have: 

If (𝑟𝑖 − 𝑐𝑖) > 0 →     the factor i is a member of cause group or a net causer 

If (𝑟𝑖 − 𝑐𝑖) < 0 →     the factor i is a member of effect group or is a net receiver 
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Cause factors impact on the entire system and their performance can influence the 

overall goal. Moreover, a factor belonging to a cause group should receive more 

attention. Effect factors tend to be easily impacted by other factors (Lin, 2013).  

Step 8: Setting threshold value 

Based on the total relation matrix (𝑇), each element 𝑡𝑖𝑗 of matrix 𝑇, provides 

information about how factor 𝑖 impacts on factor 𝑗. If all the information in matrix 𝑇 

converts to IRM then the map would be hardly conducive to appropriate decision 

making as it is too complicated to reveal any necessary information. This is 

particularly the case when there are numerous factors being explored. To obtain a 

proper IRM, researchers must set a threshold value for the impact level. Only factors 

with influence levels higher than the threshold value in matrix 𝑇 can be chosen and 

converted into IRM (Tzeng et al., 2007). In the literature, the threshold value is 

determined in various ways. Si et al. (2018) indicated a number of them such as the 

brainstorming technique (Azadeh et al., 2015), the average of all elements in the 

matrix 𝑇  (Sara et al., 2015), the maximum value of the diagonal elements of the matrix 

𝑇 (Tan and Kuo, 2014). In this study, the MMDE method (Lee and Lin, 2013; Li and 

Tzeng, 2009) is utilised which is explained in Appendix D. The reason is owing to its 

compelling rationale and logic as well as its capability in efficiently discovering strong 

relationships.   

Step 9: The net influence matrix 𝑁 construction   

After depicting the intricate causal relationships among factors using the IRM 

and MMDE,  Wang et al. (2014, 2012) further developed the net influence matrix 𝑁 =

[𝑁𝑒𝑡𝑖𝑗]𝑛×𝑛
 to assess the strength impact of a factor on another where 𝑁𝑒𝑡𝑖𝑗 = 𝑡𝑖𝑗 −

𝑡𝑗𝑖  
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4.4 Proposed Hybrid Spanning Trees Enumeration and BWM 

In the original BWM, a DM (i.e. expert) must be able to provide one decision-making 

criterion as the best and another decision-making criterion as the worst with certainty 

with no room for hesitancy. In the real-world decision-making process applying the 

original BWM dealing with subjective judgements of human beings, it is not always 

that straightforward for DMs to choose only one criterion as either the best or the 

worst without any level of hesitancy. What if a DM has two or more criteria in mind 

as equal, yet as the most important (i.e. the best) or as equally the least important (i.e. 

the worst)? In other words, there might be a set of best and a set of worst criteria 

instead of just one single best/worst criterion. The original BWM does not suggest 

any solution in this case and expect a DM to offer only one criterion as the best and 

one criterion as the worst criterion. The BWM can only recognise one criterion as the 

best and one criterion as the worst and is unable to handle more than one criterion for 

each of the best and the worst group.  

In order to deal with this type of uncertainty and capture the hesitancy of DMs, 

I propose the hybrid use of STE and the BWM. The STE can be accomplished by 

either EAST (Siraj et al., 2012) or GMAST (Lundy et al., 2017) which are explained 

in Appendix H. In the proposed approach, the following two additional steps (steps 

2.1 and 2.2) shall be added to the original BWM which are explained in detail as 

follows (see Appendix E for the steps in the original BWM): 

Step 1: Identifying set of decision-making criteria (in this thesis, risk dimensions or 

simply risks). The identified risks can be signified as shown in Equation (4.15).  

 𝑁 = {𝐶1,𝐶2, … , 𝐶𝑛} (4.15) 

 

Step 2.1: Determining the best set of risks (i.e., the most critical or most important 

group of risks), and the worst set of risks (i.e., the least critical or least important group 

of risks). The best and worst set of risks are denoted by Θ and Γ which are identical 

subsets of 𝑁 as represented in Equation (4.16) and (4.17), respectively.  

 Θ = {𝑀1,𝑀2, … ,𝑀𝑚}       Θ ⊂ 𝑁,Θ ≠ Γ (4.16) 

 Γ = {𝐿1,𝐿2, … , 𝐿𝑛−𝑚}       Γ ⊂ 𝑁, Γ ≠ Θ (4.17) 
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Step 2.2: Applying STE to obtain the best risk 

In this step, by applying STE (EAST or GMAST) the weights of each combination of 

the best and the worst risks is calculated and the maximum weight in Θ determines 

the best and the minimum weight in Γ determines the worst risk.  

The maximum number of calculations equals to 𝑚 × (𝑛 −𝑚) because of |Θ| = 𝑚 

and |Γ| = 𝑛 −𝑚. For instance, if |Θ| = 2 , and |Γ| = 3 , then 2 × 3 = 6 times, the 

STE calculations should be carried out. 

Then the rest of the analysis should be followed from Step 3 in the original 

BWM which are explained in the Appendix E. The analysis applying the proposed 

STE-BWM is represented in Chapter 6 , Section 6.2.2. 

4.5 Proposed Neutrosophic Enhanced BWM 

The original BWM was described in Rezaei (2016, 2015) and follows a five-step 

approach. The Non-Linear model (NL-BWM) was proposed in Rezaei (2015) and the 

Linear model (L-BWM) was explained in Rezaei (2016). The proposed Neutrosophic 

Enhanced BWM (NE-BWM) is constructed based on the NL-BWM model and has 

two additional steps, which are explained as follows (In this thesis, criteria are risk 

dimensions): 

Step 1: Decision criteria 

A set of decision criteria (𝑁) should be established in order to make a decision 

and do the analysis as shown in Equation (4.15).  

Step 2:  The best and worst criteria 

A DM determines the best criterion (i.e. the most favourable one) and the worst 

criterion (i.e. the least favourable one). 

Step 3: Best-to-others vector 

As shown in Table E.1, a DM expresses their preference of the best criterion 

over all other criteria using a scale from 1 to 9 (Ishizaka, 2012; Rezaei, 2015; Saaty, 

2005, 1977). The resulting vector is represented by 𝐴𝐵 = (𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛)  where 

𝑎𝐵𝑗  signifies the preference of the best criterion 𝐵  over criterion 𝑗. It is also obvious 

that 𝑎𝐵𝐵 = 1.   



72 

 

Step 4: Others-to-worst vector 

A DM determines the preference of all criteria over the worst criterion using a 

scale from 1 to 9 (Table E.1). The resulting vector is represented by 𝐴𝑊 =

(𝑎1𝑊, 𝑎2𝑊, … , 𝑎𝑛𝑊)  where 𝑎𝑗𝑊  indicates the preference of the criterion 𝑗  over the 

worst criterion 𝑊. Clearly, 𝑎𝑊𝑊 = 1.  

The following two steps are uniquely introduced for the proposed NE-BWM: 

Step 5: DM’s uncertain confidence on the best-to-others preferences 

A DM is asked to provide their confidence on the best-to-others preferences, 

which would inherently include the uncertainty of their choice on the best criterion. 

Note that a DM is required to indicate their confidence using linguistic phrases 

presented in Table 4.2. Appendix F (Table F.1-Q1) presents a sample question used to 

acquire a DM’s uncertainty on their best-to-others preferences. The neutrosophic 

value of the DM’s confidence on the best-to-others preferences (𝜌+) is a SVTNN, 

which is then substituted for the provided verbal term (Table 4.2). It reveals the degree 

of DM’s confidence on Separation 𝐼. The crisp values in Table 4.2 are calculated based 

on Equation (A.34). 

Table 4.2 The confidence rating scale 

Linguistic Phrase Score SVTNN Crisp Value 

No Confidence 0 〈(0.0,0.0,0.0,0.0); 0.0,0.0,0.0〉 0.00 

Low Confidence 1 〈(0.2,0.3,0.4,0.5); 0.6,0.2,0.2〉 0.26 

Fairly Low Confidence 2 〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉 0.38 

Medium Confidence 3 〈(0.4,0.5,0.6,0.7); 0.8,0.0,0.1〉 0.50 

Fairly High Confidence 4 〈(0.7,0.8,0.9,1.0); 0.8,0.2,0.2〉 0.68 

High Confidence 5 〈(1.0,1.0,1.0,1.0); 0.9,0.1,0.1〉 0.90 

Absolutely High Confidence 6 〈(1.0,1.0,1.0,1.0); 1.0,0.0,0.0〉 1.00 

 

Step 6: DM’s uncertain confidence on others-to-worst preferences 

A DM is asked to provide their confidence on their others-to-worst preferences, 

which inherently include the uncertainty of their choice on the worst criterion. Note 

that a DM is required to indicate their confidence using linguistic phrases as 

represented in Table 4.2. Appendix F (Table F.1-Q2) presents a sample question used 
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to acquire the DM’s uncertainty on others-to-worst preferences. The neutrosophic 

value of the DM’s confidence on the others-to-worst preferences (𝜌−) is a SVTNN 

which is then substituted for the verbal term (Table 4.2). It reveals the degree of DM’s 

confidence on Separation 𝐼𝐼.  

Step 7: Optimal weights 

Model (4.18) (i.e. a non-linear model) was proposed in the original BWM and 

then transformed to Model (4.19) which provides the optimal weights (Rezaei, 2015). 

The proposed Model (4.20) can be established by applying 𝜌+ and 𝜌− in the objective 

function of Model (4.18) where 0 < 𝜌+ ≤ 1  and 0 < 𝜌− ≤ 1.  
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Model (4.20), is then transformed into Model (4.21) and (4.22). 
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Finally, by solving Model (4.22) the criteria weights are obtained. 
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4.5.1 Consistency ratio 

There are two types of consistency: cardinal and ordinal consistency (Siraj et al., 

2015). The current Consistency Ratio (CR) values of BWM only measure cardinal 

and output-based consistency  (Liang et al., 2019). Liang et al. (2019) proposed 

consistency thresholds for BWM on the basis of both input and output-based 

consistency measurement. The consistency thresholds are based on combination of 

(1) number of criteria, and (2) maximum grade values (i.e. scales) (Table 4.3). 

Table 4.3 Consistency thresholds (adapted from Liang et al. (2019)) 

    Criteria    

Scales 3 4 5 6 7 8 9 

𝟑 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087 

𝟒 0.1581 0.2352 0.2738 0.2928 0.3102 0.3154 0.3273 

𝟓 0.2111 0.2848 0.3019 0.3309 0.3479 0.3611 0.3741 

𝟔 0.2164 0.2922 0.3565 0.3924 0.4061 0.4168 0.4225 

𝟕 0.2090 0.3313 0.3734 0.3931 0.4035 0.4108 0.4298 

𝟖 0.2267 0.3409 0.4029 0.4230 0.4379 0.4543 0.4599 

𝟗 0.2122 0.3653 0.4055 0.4225 0.4445 0.4587 0.4747 

 

 The CR for the proposed NE-BWM is described in this section. The lower the 

CR the higher the consistency of evaluations. Given 𝑎𝐵𝑊  is the preference of the best 

criterion over the worst criterion, then, a comparison is fully consistent when 

𝑎𝐵𝑗 × 𝑎𝑗𝑊 = 𝑎𝐵𝑊. The minimum consistency of a comparison is calculated as 

follows: 

 Consider 𝑎𝑖𝑗 ∈ {1,… , 𝑎𝐵𝑊}  and that the highest possible value of  𝑎𝐵𝑊  is 9. 

Consistency decreases when 𝑎𝐵𝑗 × 𝑎𝑗𝑊 ≠ 𝑎𝐵𝑊 and the highest inequality occurs 

when 𝑎𝐵𝑗 = 𝑎𝑗𝑊 = 𝑎𝐵𝑊  . Given the highest inequality as a result of assigning the 

maximum value by 𝑎𝐵𝑗 and 𝑎𝑗𝑊 then, Model (4.22) can be used to calculate the 

consistency ratio based on Equation (4.23).  

 Bj jW BWa a a
   
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As for the minimum consistency, 𝑎𝐵𝑗 = 𝑎𝑗𝑊 = 𝑎𝐵𝑊,  we can then obtain Equation 

(4.24). 

 BW BW BWa a a
   


   

− +

+ − − +

      +
−  − = +       

      
 (4.24) 

Based on Equation (4.24), Equation (4.25) can then be obtained. 

 
( )

( )2 21
0

BW

BW BW

a
a a

   


   

+ − + −

+ − + −

 + + + 
 − + − = 
    

 (4.25) 

 

𝑎𝐵𝑊 can take on values {1,… ,9} (Table E.1) and based on Table 4.2, 

 0.26,0.38,0.50,0.68,0.90,1.00
+
  and  0.26,0.38,0.50,0.68,0.90,1.00

−
= .  It is 

assumed that 𝜌+ and 𝜌− could not be 0, as the evaluation of a DM with no confidence 

on their opinion could be easily dismissed. The maximum possible value of   can be 

calculated solving Equation (4.25). The obtained values are recognised as the 

consistency index (𝐶𝐼) values and are represented in Appendix G. After solving Model 

(4.22), the 𝜀∗ would be obtained and then the 𝐶𝑅 can be calculated by Equation (4.26). 

 𝐶𝑅 =
𝜀∗

𝐶𝐼
 (4.26) 

 

4.5.2 Confidence difference 

The Confidence Difference (CD) is proposed to measure the output of the NE-BWM. 

It is the difference between the confidence degree on separations 𝐼 and 𝐼𝐼 as shown in 

Equation (4.27).  

 𝐶𝐷 = |𝜌+ − 𝜌−| (4.27) 
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4.6 Proposed Stratified Decision-Making Model 

The stratified game theory model comprised of 𝑁 status (𝑆𝑆) and 𝑀 outcome (𝑂𝐶) 

while under each 𝑆𝑆𝑖   there are 𝑛𝑖 strategies that result in various payoff (𝑃𝐹) values 

under different nature’s outcomes. As the model is game of chance involving risk, 

there would be a probability about each nature’s move or outcomes (Section 3.7). In 

Table 4.4, the payoff matrix of the model, and in Table 4.5 the states are presented.  

4.6.1 Notations 

𝑃: status transition probability matrix 

𝑄: outcome transition probability matrix 

𝑆: state transition probability matrix 

𝑝𝑖𝑗: the probability of transition from status 𝑖 (𝑆𝑆𝑖) to status 𝑗 (𝑆𝑆𝑗)    

𝑞𝑖𝑗: the probability of transition from outcome 𝑖 (𝑂𝐶𝑖) to outcome 𝑗 (𝑂𝐶𝑗)    

𝑠𝑖𝑗: the probability of transition from state 𝑖 (𝑆𝐸𝑖) to state 𝑗 (𝑆𝐸𝑗)    

𝑃𝐹𝑖𝑗𝑘: the payoff value under 𝑆𝑆𝑖 , strategy 𝑗 and 𝑂𝐶𝑘 

𝑂𝑃𝑘: the occurrence probability of 𝑂𝐶𝑘  (𝑘 = 1,… ,𝑀)  
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Table 4.4 The payoff values in the stratified game table  

PLAYER 

1 

  PLAYER 2 

(NATURE) 

  

  OUTCOME 1 OUTCOME 2 … OUTCOME M  

STATUS 

1 

Strategy 1 

111PF  112PF  … 
11MPF  

 Strategy 2 
121PF  122PF  … 

12MPF  

 

…
 

…
 

…
 

… 

…
  Strategy 1n  1

1n 1PF  1
1n 2PF  … 

1
1n MPF  

STATUS 

2 

Strategy 1 
211PF  212PF  … 

21MPF  

 Strategy 2 
221PF  222PF  … 

22MPF  

 

…
 

…
 

…
 

… 

…
  Strategy 2n  2

2n 1PF  2
2n 2PF  … 

2
2n MPF  

…
 

…
 

…
 

…
 

… 

…
 STATUS 

N  

Strategy 1 
N11PF  N12PF  … 

N1MPF  

 Strategy 2 
N 21PF  N 22PF  … 

N 2MPF  

 

…
 

…
 

…
 

… 

…
  Strategy 

Nn  

N
Nn 1PF  N

Nn 2PF  … 
N

Nn MPF  
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Table 4.5 The states in the stratified game table 

PLAYER 

𝟏 

  PLAYER 𝟐 

(NATURE) 

  

  OUTCOME 1 OUTCOME 2 … OUTCOME 𝑀 

STATUS 

𝟏  

Strategy 1 

STATE 1 STATE 2 … STATE 𝑀 
 Strategy 2 

 

…
  Strategy 𝑛1 

STATUS 

𝟐 

Strategy 1 

STATE 𝑀 + 1 STATE 𝑀 + 2 … STATE 2𝑀 
 Strategy 2 

 

…
  Strategy 𝑛2 

…
 

…
 

…
 

…
 

… …
 

STATUS 

𝑵 

Strategy 1 

STATE 

 𝑁𝑀 −𝑀 + 1 

STATE  

𝑁𝑀 −𝑀 + 2 
… STATE 𝑁𝑀 

 Strategy 2 

 

…
  Strategy 𝑛𝑁 

 

4.6.2 Status transition probability matrix 

There are N  status in the model and given the probability of transitions between iSS  

and jSS  as
ij
p , the status transition probability matrix P  can be shown as Equation 

(4.28) 

 P =
N´N

ijp
é
ëê

ù
ûú

 (4.28) 
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For instance, 
11
p , is the probability of persistence at the current 1SS . In Figure 4.1, 

status transitions are depicted. 

 

Figure 4.1 Graphical representation of status transitions and respective probabilities 

 

4.6.3 Outcome transition probability matrix 

There are M outcomes and given the probability of transition from iOC  to jOC  as

ij
q , the outcome transition probability matrix Q can be shown as Equation (4.29) 

 Q =
M´M

ijq
é
ëê

ù
ûú

 (4.29) 
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For instance, 
11
q , is the probability of persistence at the current 1OC . In Figure 4.2, 

outcome transitions are depicted. 

 

Figure 4.2 Graphical representation of outcome transitions and respective probabilities 

 

4.6.4 State transition probability matrix 

There are N M  states as represented in Table 4.5. Given ijs , the probability of 

transition from state i  ( iSE ) to state j  ( jSE ), then state transition probability matrix 

𝑆 can be represented as Equation (4.30) 

 S =
N´M

ijs
é
ë

ù
û

 (4.30) 

For instance, 𝑠11 is the probability that 1SE  persists which means 1SS  and 1OC  

persist that can be calculated as 𝑠11 = 𝑝11 × 𝑞11. Given N = 3 and M = 4 the twelve 

states in the stratified game table are shown schematically in the Table 4.6. As such, 

in Appendix I (Table I.1), the 𝑆 matrix is represented. It is clear that as the dimensions 

of the matrix ( N andM ) increase, the computational time would rise dramatically.  
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Table 4.6 Twelve states in the stratified game table for N=3 and M=4 

PLAYER 𝟏   PLAYER 𝟐 

(NATURE) 

  

  
1OC  

2OC  
3OC  

4OC  

1SS  Strategy 1 

1SE  
2SE  

3SE  
4SE  

 Strategy 2 

 

…
  Strategy 𝑛1 

2SS  Strategy 1 

5SE  
6SE  

7SE  
8SE  

 Strategy 2 

 

…
  Strategy 𝑛2 

3SS  Strategy 1 

9SE  
10SE  

11SE  
12SE  

 Strategy 2 

 
…

  Strategy 𝑛3 

 

The pseudo code for calculating the matrix 𝑆 is represented in Table 4.7, and state 

transitions and respective probabilities are shown graphically in Figure 4.3. 
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Figure 4.3 Graphical representation of state transitions and respective probabilities 

 

4.6.5 Model assumptions  

In the proposed model, it is assumed that the following assumptions are in place: 

1) The same strategies exist under various status of the model meaning  

1n = 2n = ...= Nn = B  

2) The payoff values all acquire the benefit nature meaning their maximisation is the 

aim (𝑍 = 𝑚𝑎𝑥𝑃𝐹𝑖𝑗𝑘). Payoff values can also be represented as utility values in 

situations where obtaining monetary values is difficult or they are more based on the 

DMs’ perceptions and evaluations rather than tangible monetary values (𝑍 =

𝑚𝑎𝑥𝑈𝑖𝑗𝑘). Utility value is a dimensionless number between 0 and 1.  

3) It is presumed that payoff/utility values stay constant throughout the state change.  

4) The summation of all status transition probabilities is 1, and also the same is correct 

for outcome transition probabilities as shown in Equation (4.31) and (4.32). 
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∑𝑝𝑖𝑗

𝑁

𝑗=1

= 1         ∀𝑖 = 1, … , 𝑁 
(4.31) 

 

          

∑𝑞𝑖𝑗

𝑀

𝑗=1

= 1         ∀𝑖 = 1, … ,𝑀 

 

(4.32) 

 

Table 4.7 Pseudo code for the calculation of the state transition probability matrix 

Input 

N = number of status 

M = number of outcomes 

P =
N´N

ijp
é
ëê

ù
ûú

 

Q =
M´M

ijq
é
ëê

ù
ûú

 

Output 

ijs = the probability of transition from state i  to state j  

for 1l =  to N  

        for 1k =  to N   

               for 1i kM M= − + to kM   

                           for 1j lM M= − + to lM   

                                        
( )( )ij kl i kM M j lM M

p qs − + − +
=     

                            end 

               end 

       end 

end 
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4.6.6 Model solving 

Given the assumptions, considering the current state of the system is 𝑥 then by using 

Equation (4.33), the value of strategy 𝑏 (
b

x
V ) given 1,...,b B=  can be obtained (𝑁𝑀 =

𝑁 ×𝑀). Knowing that 𝑘 = 1 if 𝑗 = {1,𝑀 + 1, 2𝑀 + 1,… , 𝑁𝑀 −𝑀 + 1}, 𝑘 = 2 if 

𝑗 = {2,𝑀 + 2, 2𝑀 + 2,… ,𝑁𝑀 −𝑀 + 2},…, 𝑘 = 𝑀 if 𝑗 = {𝑀, 2𝑀, 3𝑀,… , 𝑁𝑀}. In 

case that utility values are used then Equation (4.34) is utilised.   

𝑉𝑏
𝑥 =∑ ∑ 𝑠𝑥𝑗𝑃𝐹𝑖𝑏𝑘

𝑖𝑀

𝑗=𝑖𝑀−𝑀+1

𝑁

𝑖=1

    

∀𝑏 = 1,… , 𝐵,∀𝑥 = 1, … ,𝑁𝑀, 𝑘 = {1,2,… ,𝑀} 

    

(4.33) 

 𝑉𝑏
𝑥 = ∑ ∑ 𝑠𝑥𝑗𝑈𝑖𝑏𝑘

𝑖𝑀
𝑗=𝑖𝑀−𝑀+1

𝑁
𝑖=1    

∀𝑏 = 1,… , 𝐵,∀𝑥 = 1, … ,𝑁𝑀 , 0 ≤ 𝑈𝑖𝑏𝑘 ≤ 1, 𝑘 = {1,2, … ,𝑀} 

(4.34) 

Then, the after-transition payoff/utility decision matrix would be obtained as shown 

in Table 4.8. If the current state (before-transition state) of the system is known, then 

the corresponding column of that state in Table 4.8 is only considered, otherwise it is 

needed to give probability to those states for which there is uncertainty. Then, by 

calculating the EMV of each strategy the final strategy can be resulted (throughout 

this thesis, the same term EMV is used for both Expected Monetary Value and 

Expected Utility Value). 

Table 4.8 The after-transition payoff/utility decision matrix 

STRATEGY  STATE   

 STATE 1 STATE 2 … STATE 𝑁𝑀 

STRATEGY 𝟏 
1

1
V  

1

2
V  … 

1

NM
V  

STRATEGY 𝟐 
2

1
V  

2

2
V  … 

2

NM
V  

 

…
 

…
 

… 

…
 STRATEGY 𝑩 

B

1
V  

B

2
V  … 

B

NM
V  

For example, the EMV of each strategy 𝑏 (
b

EMV ) considering equal probabilities 

can be calculated as Equation (4.35).  

 𝐸𝑀𝑉𝑏 =
∑ 𝑉𝑏

𝑖𝑁𝑀
𝑖=1

𝑁𝑀
      ∀𝑏 = 1, … , 𝐵 (4.35) 
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4.7 Conclusions 

All the methods applied in Chapters 5, 6, and 7 were explained in detail in the current 

chapter. The reason why each specific method is required and their importance in this 

thesis a long with their computational steps were described. A number of tools are 

novel and have theoretical contributions including ESM (Section 4.2), NR-

DEMATEL (Section 4.3), hybrid STE-BWM (Section 4.4), NE-BWM (Section 4.5), 

and stratified decision-making model (Section 4.6).  

In group decision-making where numerous experts with different levels of 

experience and knowledge are involved, it is important to assign a proper importance 

weight to each expert. In previous studies, the task of experts’ weights determination 

was carried out in a relatively subjective, and unstructured way. In this thesis, a unique 

model named ESM was proposed to facilitate this process while providing a profound 

logic to explain the overall process. The proposed ESM is generalisable and can be 

used in other decision-making problems where experts’ importance weights 

assignment is required. The application for the ESM is discussed in Hesitant ESM 

(HESM) in Section 5.4.  

The NR-DEMATEL is tailored for the specific intention of this thesis which is 

exploring the causal interrelationships between identified macro-level energy risk 

dimensions. The proposed NR-DEMATEL has a theoretical contribution as it uses the 

revised DEMATEL rather than the original DEMATEL as it is discussed in Lee et al. 

(2013). The other advantage of the NR-DEMATEL is the integration with the 

Neutrosophic Set Theory (NST) which has considerable merits over most uncertainty 

theories such as Fuzzy Set Theory (FST) (see Appendix A). In this thesis, the 

subjective judgements of experts must be gathered and analysed and as there is always 

a degree of ambiguity in subjective opinions of humans (i.e. experts), this integration 

can help capture this ambiguity and vagueness in experts’ opinions more efficiently. 

The application of the NR-DEMATEL is presented in Section 5.5. 

For the ranking and prioritisation of the final most critical risk dimensions, 

hybrid STE-BWM and NE-BWM are developed as two extensions of the original 

BWM. In the original BWM (see Appendix E), an expert or Decision Maker (DM) 

has to provide a criterion as the best and a criterion as the worst with certainty, 

assuming there is no hesitancy. To improve the BWM, the hybrid STE-BWM is 
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proposed by applying spanning trees enumeration which offers an opportunity for 

DMs (i.e. experts) to suggest more than one best or worst criteria. Additionally, in the 

original BWM (see Appendix E), two vectors of pairwise comparisons including best-

to-others and others-to-worst vectors are treated with the same level of importance. In 

other words, the degree of a DM’s confidence on the best-to-others preferences and 

others-to-worst preferences have been overlooked by giving equal importance to them 

in the original BWM. This observed feature was the motivation to propose NE-BWM. 

The application of NE-BWM and STE-BWM are presented in Chapter 6. 

Ultimately, for risk mitigation analysis, a novel stratified decision-making 

model is proposed. It is based on Concept of Stratification (CST), game theory and 

Shared Socio-economic Pathway (SSP) to deal with long-term risk mitigation 

planning for the most critical identified risks (i.e. CC, and ND). The model is applied 

in the region of Highland and Argyll in Scotland to prioritise flooding risk mitigation 

strategies which were suggested by the Scottish Environment Protection Agency 

(SEPA). The model takes into account both UK socio-economic situations and 

flooding risk impacts for the long-term decision making (5 to 20-year time frame). 

Chapter 7 illustrates the application of the proposed stratified decision-making model. 
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Chapter 5 Risk Analysis by NR-DEMATEL 

5.1 Introduction 

In this chapter, the causal relationship between risks is studied, indicating that the 

occurrence of one risk could lead to exposure to the other one.  Based on the literature 

review, there is just a limited number of studies in the supply chain risk management 

literature that have addressed cause-effect interrelations between risks (Chaudhuri et 

al., 2016; Ritchie and Brindley, 2007). This is even less explored in the energy risk 

management literature, particularly when focusing on the energy supply chain macro-

level risk dimensions. Thus, it is critical to take advantage of a method that can analyse 

these types of interrelationships between energy risk dimensions. The selected input 

for this analysis is coming from experts’ opinions (more details to follow) and 

therefore NR-DEMATEL is selected to provide a means to effectively deal with their 

subjective judgements. Few methods such as Interpretive Structural Modelling (ISM) 

and DEMATEL are suitable to analyse the interrelationships among multiple criteria. 

The DEMATEL is preferred over ISM because ISM cannot analyse the strength of 

interrelationships between multiple criteria.  For this reason, ISM is often used in 

conjunction with other methods such as Matrice d’Impacts Croisés Multiplication 

Appliquée à un Classement (MICMAC) also known as “cross impact matrix 

multiplication applied to classification”. The combination of ISM and MICMAC often 

adds another layer of complexity to the solution procedure. The DEMATEL method 

is widely used to rank related factors while considering the causal relationships among 

them (Feng et al., 2018). In summary, the main advantage of DEMATEL is its ability 

to uncover the causal relationships and interdependencies between various risks while 

utilising minimal data. As it was explained in Section 4.3, the proposed NR-

DEMATEL has a theoretical contribution as it uses the revised DEMATEL rather than 

the original DEMATEL as it is discussed in Lee et al. (2013). Additionally, it is aimed 

at understanding causal relationships between macro-level energy risk dimensions 

within the UK which was less explored in the literature.   

The Neutrosophic Set Theory (NST) provides a considerable advantage over the 

Fuzzy Set Theory (FST) and the Intuitionistic Fuzzy Set (IFS) theory in processing 

experts’ subjective judgements. The NST, unlike the FST, can quantify the rejection 

information derived from the falsity-membership function. In addition, the NST, 

unlike the IFS theory, can define the hesitancy function values independently from 



90 

 

the falsity and truth-membership function values (more details are provided in Section 

3.4 and Appendix A).      

An Expert Selection Model (ESM) is also proposed in this study, which provides 

a basis for the selection process in similar decision-making problems, where subject 

expert selection is required. In other words, it provides a reliable model that helps 

researchers decide who can be an expert or DM based on their credentials and 

experience. It is also useful in assigning on each expert a relative importance weight 

(for more information regarding ESM please see Section 4.2). This model is integrated 

with Hesitant Fuzzy Set (HFS) theory and named the Hesitant Expert Selection Model 

(HESM) in the study. In this chapter, the two first phases of the whole research are 

carried out as shown in Figure 5.1  

 

Figure 5.1 Phases I and II of the whole research carried out in this chapter  

In Figure 5.2, the research steps for causal risk interrelations analysis in the applied 

method are illustrated. 
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Figure 5.2 Research steps for causal risk interrelations analysis   

The research in this chapter offers methodological and practical implications for both 

academics and practitioners. The research contributions in this chapter are fourfold as 

follows:   

(I) Presenting a simple framework for risk identification and classification 

which can be used in strategic risk mitigation analysis resulted from systematic 

literature review and experts’ feedback. 

 (II) Proposing a NR-DEMATEL method to analyse risk dimensions based on 

the causal interrelationships and interdependencies among them, which has been 

missing in the current energy risk management practices. 

 (III) Introducing a HESM to systematically assist researchers with the expert 

selection process. 

(IV) Aiding policy makers in the UK energy supply chain to recognise most 

critical risks efficiently. 
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5.2 Energy Supply Chain Risk Identification Framework 

An energy risk identification framework is proposed in this section (Figure 5.3). It 

facilitates the risk identification and classification process in the energy supply chain 

and further possible utilisation in the later process of risk management such as risk 

mitigation. The risk identification framework is comprised of three main sections as 

follows:  

1) Risk classifications  

2) Risk dimensions  

3) Risk elements 

Risk classifications essentially present the discipline and framing of risks 

aiming to position them within the wider risk literature. Risk classifications can help 

understand and analyse risk dimensions properly from various perspectives such as 

position and origin within the UK power supply chain. The framework identified 

context-based, position-based, temporal, origin-based and hybrid classifications. The 

context-based classification concentrates on the risk discipline and includes 

economics, politics, sociology, health, engineering and environmental science 

(Checchi et al., 2009; Cherp and Jewell, 2011; Chevalier, 2006; Winzer, 2012) (see 

Section 2.5.1). In position-based classification, risks are categorised in accordance 

with their position in the energy supply chain which can be upstream, midstream, or 

downstream (Gracceva and Zeniewski, 2014) (see Section 2.5.2). In temporal-based 

classification, researchers categorised risks on the basis of their timescales over which 

they operate that can be long, medium or short time frames (Chevalier, 2006) (see 

Section 2.5.3). Some risks have their origins inside the national border or energy 

system and named internal, while many risks are related to imported energy that are 

named external. This kind of classification is discussed in the origin-based attitude 

towards energy supply chain risk classification (Babich et al., 2007; Chevalier, 2006; 

Huang et al., 2016; Tang et al., 2014; Yang et al., 2009) (see Section 2.5.4). Finally, 

there are hybrid classifications that consolidate two or three other classifications and 

provide a hybrid perspective of various dimensions (Boston, 2013) (see Section 2.5.5).  

Risk elements lie at the lowest level of the framework. They can also be divided 

into more detailed risk elements with more specific characteristics depending on the 

system under study and targeted plan for risk assessment. Ultimately, risk dimensions 
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are those aspects of risks that are significant enough to include meaningful risk 

elements under their paradigm. They are recognised as macro-level risks in contrast 

to risk elements which are of micro-level nature. In other words, risk dimensions need 

to incorporate a number of risk elements in their context. For example, technical 

reliability is regarded as a risk dimension which can contain a wide variety of risk 

elements such as lack of cooperation, inability to synthesise information, or human 

error. To this end, the analysis can explore and go down the hierarchy depending on 

many factors such as the availability of information, the required managerial 

assessment, and the method of risk assessment.  

 

Figure 5.3 The framework of energy risk identification 

Risk dimensions, as shown in the risk identification framework are the key 

components of the process because they assist analysis with obtaining appropriate 

risks that each one can facilitate the identification of risk elements. All the proposed 

risk dimensions are identified based on the literature and verified based on the experts’ 

feedback. They are chosen in a way that all potential risk elements can be categorised 

under at least one dimension’s definition. It is attempted to shed light on risk 

dimensions that are undertreated in the literature that may bring about severe 
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consequences in case of occurrence. For instance, a disease outbreak or a pandemic is 

proposed in this framework as an almost untapped risk dimension in the literature.  

The twelve risk dimensions were recognised based on a systematic and in-depth 

scrutinising of the literature. The systematic literature review was carried out to 

identify the critical risks and risk categories in the UK energy supply chain. The 

systematic literature review protocol is described in Table 5.1. 

Table 5.1 The systematic literature review protocol 

Element  Systematic review protocol 

Research field Energy security 

Search keywords energy AND risk, electricity AND generation AND risk, 

energy AND supply AND risk, energy AND supply AND 

chain AND risk, energy AND network AND risk  

Database Web of Science, Scopus, Google Scholar 

Language English 

Document types Journal articles, Reports, Books, Textbooks, and 

Conference Proceedings  

Years of publication 1989-2018 

 

As can be seen in Table 5.1, wide variety of documents from different disciplines were 

explored by using different keywords in several library databases. At initial stages, it 

soon became clear that finding risk dimensions cannot be carried out by merely 

looking at keywords, titles, or abstracts. Hence, cross-references found in the 

identified articles were utilised to reach more related papers. Ultimately, this approach 

returned approximately 100 documents, from 1989 to 2018, and offered enough 

substantial information to allow risk dimensions to emerge. Finally, to verify the 

identified risk dimensions, experts who participated in the survey were asked to 

indicate if the list of risks is comprehensive or any other risk is missing. Their 

feedback verified the identified risks as explained in more detail in data collection 

section (Section 5.3).  

These risk dimensions were identified as: (1) Climate Change (CC); (2) Natural 

Disasters (ND); (3) Environmental and Health Safety (EHS); (4) Technical Reliability 

(TR); (5) Operational Safety (OS); (6) Disease Outbreak (DO); (7) Political Instability 

(PI); (8) Industrial Action (IA); (9) Sabotage and Terrorism (ST); (10) Resource 
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Availability (RA); (11) Market Failure (MF); and (12) Affordability (AF). The 

detailed description of all risks based on the literature are provided in Section 2.4. The 

approach towards identifying these risk dimensions was not only focusing on energy 

supply but also the whole energy supply chain from upstream to downstream. It might 

be argued that some of the risk dimensions are only threats to energy supply and some 

of them are not. As it is shown in the framework (Figure 5.3), the five risk 

classification approaches can provide more clear insights from different perspectives 

to make this issue clear. For example, the position-based classification deals with the 

impacted segment(s) of the energy supply chain. The other important point that 

already explained in origin-based classification is that some of the risk dimensions are 

caused by the energy system itself such as environmental and health safety that are 

classified as internal causes. These risks can then in case of occurrence pose a threat 

to the security of supply. Their incident is the result of poor organisation and 

performance of the energy system unlike the risks with external causes such as market 

failure (e.g. world oil price) which their causes have roots in the outside of the system. 

Thus, each risk classification perspective can provide insightful view on 

understanding the risk dimensions efficiently. All the proposed risk dimensions are 

categorised in a distinct way separating them from each other to avoid overlaps. Even 

risk dimensions, which are not extensively covered in the literature, have been 

included to enable a wide-ranging approach. The detailed definition of each risk 

classification regarding the literature is provided in Section 2.5.  

Focusing on the UK power supply chain, twelve energy supply chain risk 

dimensions are evaluated based on the knowledge and experience of experts in the 

UK energy supply chain. The analysis is on the basis of the revised DEMATEL in the 

uncertain neutrosophic decision-making environment (namely NR-DEMATEL) so as 

to explore the causal interrelationships between risk dimensions. Moreover, the 

proposed ESM (Section 4.2) will be utilised by integrating HFS theory (Appendix A) 

(i.e. HESM) to obtain experts’ importance weights.  
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5.3 Data Collection 

Experts involved in this phase of research are comprised of both academics and 

practitioners with a proper level of knowledge and experience on the UK electricity 

supply chain. In total 161 experts were initially contacted through email to participate 

in the study by completing an online internet questionnaire. The data collection phase 

was carried out within four months (8th Nov 2017-5th Mar 2018) and collected the 

views of 31 experts including 25 academics and 6 practitioners, resulting in a response 

rate of 19% which is acceptable due to low response rate in web surveys from experts 

(Fan and Yan, 2010). This decision-making problem is categorised as Large-Scale 

Group Decision-Making (LSGDM) problems because higher than 20 experts 

participated in this study. The LSGDM problems can be characterised by involving at 

least 20 experts (H. Liu et al. 2018; Jiang et al. 2020). Experts’ fields of knowledge in 

various energy sectors along with the number of experts in each category include 

renewable energy (21 experts); policy and economics (20 experts); energy storage and 

grid modernisation (10 experts); fossil and nuclear energy (6 experts); environmental 

impacts (5 experts); energy end use and efficiency (5 experts); and other (4 experts) 

(see Figure 5.4). As shown in Figure 5.4, four experts grouped as other, because they 

indicated their energy expertise areas as whole system analysis, energy social 

research, sustainability, societal engagement with sustainable energy, environmental 

psychology, behaviour change, geoengineering and technological systems which all 

grouped into the category named as other.  Most experts (74%) had an overlapping 

expertise in more than one area.  

Practitioner experts’ professional associations include five organisations 

Nuclear Institute, The Scottish Oil Club, Engineering Industries Association (EIA), 

The Institution of Engineering and Technology (IET), and Society of Petroleum 

Engineers (SPE). Professional associations of the academic experts’ involved in our 

study comprise twenty-two organisations including International Association for 

Energy Economics (IAEE), Institute of Electrical and Electronics Engineers (IEEE), 

IET, Higher Education Academy (HEA), International Council on Large Electric 

Systems (CIGRE), The Technical Chamber of Greece (TEE-TCG), The Energy 

Institute, American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(UK ASHRAE), The Chartered Institute of Logistics and Transport, British Institute 

of Energy Economics (BIEE), Institution of Mechanical Engineers (IMechE), 
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Institution of Chemical Engineers (IChemE), European Association for the study of 

Science and Technology (EASST), European Sociological Association (ESA), Nuclear 

Institute, Royal Geographical Society, Athens Institute For Education and Research 

(ATINER), Sustainable Consumption Research and Action Initiative (SCORAI), 

Research Association on Monetary Innovation and Community and Complementary 

Currency Systems (RAMICS), Marie Curie Fellows Association, Renewable and 

Appropriate Energy Laboratory (RAEL), and Lindau Nobel Laureate Economics. 

Experts were asked to choose risk dimensions on which they considered 

themselves capable of providing reliable evaluations based on their knowledge and 

expertise. Then, for each risk dimension they were asked to come up with evaluations 

in comparison with other risk dimensions using the scale presented in Table 4.1. 

 

 

Figure 5.4 Experts’ energy expertise areas  

 

For instance, if the expert has chosen to assess Climate Change (CC) then the question 

appeared as “To what extent do you think climate change can impact on the following 

risks in the UK power supply chain?”. The “following risks” refers to the other eleven 

risk dimensions (for more details see Appendix J). Thus, as there are twelve identified 

risk dimensions, each question needed to be answered by providing eleven 

evaluations. In order to capture the theory behind this type of questions construction 
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see step 2 in Section 4.3. On average for each risk dimension, approximately 14 

experts provided evaluations and each expert on average provided nearly 58 

evaluations. This difference in number of experts would lead to more accurate 

evaluations and bias prevention because experts provide assessments about risk 

dimensions in which they have more experience and knowledge.  

A trial pilot run had been carried out with five academics in our school (i.e., 

NBS) before the actual data collection in order to fine tune the questionnaire. Their 

feedback was used to resolve any potential issue in the survey such as the actual time 

for completing the survey, the way the questions are represented and so on. At the end 

of the survey, further questions were asked regarding professional qualifications and 

affiliations, years of experience, and comments to verify the previously twelve 

identified risk dimensions (in case there is any missing risk). Regarding the other 

potential risk dimensions, 6 experts indicated that economic risks, public 

acceptability, lack of skilled workforce, reputational damages from poor management 

of Corporate Social Responsibility (CSR), cyberterrorism/hacking, end users' 

wasteful practices and military risk might be act as other potential risk dimensions as 

well. While other 25 experts believed that all major risks have been included in the 

study. In response, based on the proposed framework (Figure 5.3), defined risk 

element type of risks would make it possible for more detailed risks like the suggested 

ones to be categorised under each twelve risk dimensions’ spectrums. For instance, 

the following categorisation can be expected for suggested risks by experts like 

economic risks under Market Failure (MF), public acceptability under Political 

Instability (PI) or Industrial Action (IA), lack of skilled workforce under Technical 

Reliability (TR), reputational damages from poor management of CSR under 

Environmental and Health Safety (EHS), cyberterrorism/hacking under Sabotage and 

Terrorism (ST), end users' wasteful practices under Affordability (AF), and military 

risk under Political Instability (PI).        
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5.4 Scenario Analysis by HESM for Experts’ Weights Determination  

The proposed ESM as explained in Section 4.2 combined with HFS theory (namely 

HESM) is applied by implementing the data provided by 31 experts. The average age 

of experts is 39 with the average experience of six years. Concerning education, 87% 

(27 out of 31) of all experts hold PhD degrees while the other 4 hold Masters’ degrees. 

The gathered data show that regarding the professional association among practitioner 

experts, 4 out of 6 (67%) and among academic experts, 19 out of 25 (76%) hold 

professional association membership. As the experts were coming with miscellaneous 

backgrounds so their professional associations varied in a very broad range from 

social sciences to engineering and health sciences (Figure 5.3). Obviously, the experts 

are not at the same level of expertise and knowledge. As a result, the ESM has been 

applied so as to obtain the Expert Eligibility Values (EEV) (see Section 4.2) and 

correspondingly 31 experts’ importance weights.  

A scenario analysis applying HFS theory has been introduced and conducted in 

order to enhance the reliability of the expert selection scheme by obtaining a more 

cogent importance weight for each expert. In other words, instead of filtering out 

potential experts in the first place by the inclusion value of 𝛼 determination, a more 

precise weight determination process through hesitant scenario analysis is introduced. 

With this aim in mind, three scenarios are proposed including High-experience 

focused, Low-experience focused and Moderate. Values are essentially defined based 

on circumstances of the study and in a way that they can produce distinctive weights 

representing High, Moderate, and Low-experience focused scenarios. These scenarios 

for academic and practitioner experts can be seen in Table 5.2 and Table 5.3,  

respectively. 

For academic experts, experience is defined by working experience in academia 

such as university or college and not including experience in industry. In high-

experience focused scenario, more attention is paid to years of experience in three 

levels of Professorship, Senior lectureship and Lectureship (Equation (4.7)) rather 

than Professional Qualifications (Equation (4.5)) or Association Membership 

(Equation (4.6)). As can be seen in Table 5.2, in high-experience focused, one year of 

experience as a professor (𝐿1) accounts for approximately 3 professional 

qualifications (𝑄1), and 2 chartered professional association memberships (𝐴1). While 

in the moderate approach, one year of professorship (𝐿1) weighs as one chartered 
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membership (𝐴1). On the other hand, in low-experience focused scenario, more 

concentration is on professional qualification and association membership attributes 

rather than academic experience. It means one year of experience as a professor (𝐿1) 

is as important as holding one professional qualification (𝑄1) and less important as 

being a chartered member of a professional association in their subject (𝐴1).   

Table 5.2 Academic experts’ importance weight assignment scenarios 

Scenario Experience Qualification Association 

𝐿1 𝐿2 𝐿3 𝑄1 𝑄2 𝐴1 𝐴2 𝐴3 

High-

experience 

focused 

4 3 1 1.5 1 2 1.3 1 

Moderate 2 1.5 1 1.5 1 2 1.3 1 

Low-

experience 

focused 

1.5 1.3 1 1.5 1 2 1.3 1 

 

As it can be seen in the Table 5.3, in calculation of the practitioner experts in the field, 

three scenarios are suggested like in academic case but with the difference that in 

practitioners’ case, experience refers to practical experience while in academics’ case, 

the academic experience like teaching and carrying out research in classic higher 

education levels is meant. It is shown in Table 5.3 that in moderate scenario, one year 

of experience in upper-level of management (𝐿1) (Equation (4.3)) counts equal to 

being a chartered member of the related field (𝐴1), and it also equals to having a 

related PhD degree (𝐸1) (Equation (4.4)). In high-experienced focused scenario, one 

year of work in an upper-level managerial position (𝐿1) accounts for twice as 

significant as holding a PhD degree (𝐸1) or a professional qualification (𝑄1). Whereas 

on the other hand, in low-experience focused scenario working in upper-level 

managerial posts (𝐿1) are equally important as being a chartered member of a 

professional society (𝐴1) and slightly less significant than holding a PhD degree in the 

subject (𝐸1). For those scenarios the relative importance of industry experience is 

adjusted against education and professional qualifications. 
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Table 5.3 Practitioner experts’ importance weight assignment scenarios 

 Experience Education Qualification Association 

Scenario 𝐿1 𝐿2 𝐿3 𝐸1 𝐸2 𝐸3 𝐸4 𝑄1 𝑄2 𝐴1 𝐴2 𝐴3 

High-

experience 

focused 

4 3 1 2 1.5 1 0.8 2 1 3 2 1 

Moderate 2 1.4 1 2 1.5 1 0.8 1.5 1 2 1.3 1 

Low-

experience 

focused 

1.5 1.2 1 2 1.5 1 0.8 1.3 1 1.5 1.2 1 

 

Based upon the proposed model, various scenarios of experience-oriented approaches 

for the two groups of academics and practitioners can be incorporated by applying 

HFS theory to assign importance weights to experts (here, each combination of 

scenarios is called a case). This approach is highly useful especially when judgement 

would not be straightforward and there is no preference in cases and there would be 

expected hesitancy in decisions between the degrees of experience. For example, three 

combinations (i.e. high-high, moderate-moderate, and low-low) out of nine possible 

scenario combinations are chosen for the analysis based on Table 5.2 and Table 5.3. 

The reason is that extreme and middle points are included, which make more sense to 

get the average in the absence of case preferences. The three cases and a fourth one, 

which is their weighted average by utilising HFS theory, are tested with reference to 

the weights presented in Table 5.4 (Govindan et al., 2015) and Table 5.5. By applying 

Best Non-fuzzy Performance (BNP), the crisp values in Table 5.4 can be obtained. 

Given  (𝑙, 𝑚, 𝑟) is a Triangular Fuzzy Number (TFN), the BNP can be calculated using 

[(𝑟−𝑙)+(𝑚−𝑙)]

3
+ 𝑙  (Bhosale and Kant, 2016). 
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Table 5.4 Linguistic variables and fuzzy weights for experts’ weights scenarios  

Linguistic 

Variables 

TFN Crisp Numbers 

Very low (0.0,0.1,0.3) 0.1 

Low (0.1,0.3,0.5) 0.3 

Medium (0.3,0.5,0.7) 0.5 

High (0.5,0.7,0.9) 0.7 

Very high (0.7,0.9,1.0) 0.9 

 

In Table 5.5, the hesitant fuzzy information in each case in order to obtain the weighted 

average weights of all experts are revealed (see Equation (A.8) in order to calculate 

score function values). In cases 1, 2, and 3 for both academic and practitioner experts, 

high-experience, moderate, and low-experience scenarios (Table 5.2 and Table 5.3) 

have been applied in order to obtain the weighted average weights of experts. 

  

Table 5.5 Hesitant fuzzy information for acquiring experts’ weighted average weights  

Case Applied 

Scenarios 

HFS HFE SFV NSFV 

1 High {(0.5,0.7,0.9), (0.7,0.9,1.0)} {0.7,0.9} 0.8333 0.5102 

2 Moderate {(0.1,0.3,0.5), (0.3,0.5,0.7)} {0.3,0. 5} 0.4333 0.2653 

3 Low {(0.0,0.1,0.3), (0.1,0.3,0.5), (0.3,0.5,0.7)} {0.1,0.3,0.5} 0.3667 0.2245 

SFV=Score Function Value; NSFV=Normalised Score Function Value; HFS=Hesitant Fuzzy Set; 

HFE=Hesitant Fuzzy Element 

Various experts’ weights in case 1 (high), case 2 (moderate), case 3 (low) and 

weighted average weights of cases are represented in Table 5.6. The weighted average 

weights are calculated based on the normalised score function values shown in Table 

5.5. Then, this weight is used in the analysis using NR-DEMATEL according to the 

sensitivity analysis of various cases of experts’ weights which is provided in Section 

5.6. 
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Table 5.6 Experts’ weights in high, moderate, low, and weighted average cases 

Experts 
Case 1  

(High) 

Case 2 

(Moderate) 

Case 3  

(Low) 

Weighted 

average 

1 0.0268 0.0395 0.0439 0.0340 

2 0.0864 0.0636 0.0556 0.0734 

3 0.0179 0.0263 0.0292 0.0227 

4 0.0229 0.0338 0.0375 0.0291 

5 0.0046 0.0068 0.0075 0.0058 

6 0.2711 0.2041 0.1784 0.2325 

7 0.0103 0.0152 0.0169 0.0131 

8 0.0321 0.0473 0.0525 0.0407 

9 0.0229 0.0338 0.0375 0.0291 

10 0.0238 0.0351 0.0390 0.0302 

11 0.0045 0.0066 0.0073 0.0057 

12 0.0298 0.0241 0.0239 0.0270 

13 0.0060 0.0088 0.0097 0.0076 

14 0.0089 0.0132 0.0146 0.0113 

15 0.0069 0.0101 0.0112 0.0087 

16 0.0916 0.0692 0.0592 0.0784 

17 0.0060 0.0088 0.0097 0.0076 

18 0.0069 0.0101 0.0112 0.0087 

19 0.0030 0.0044 0.0049 0.0038 

20 0.0183 0.0176 0.0180 0.0180 

21 0.0137 0.0203 0.0225 0.0174 

22 0.0715 0.0527 0.0439 0.0603 

23 0.0357 0.0527 0.0585 0.0453 

24 0.0275 0.0197 0.0175 0.0232 

25 0.0179 0.0263 0.0292 0.0227 

26 0.0275 0.0263 0.0270 0.0271 

27 0.0357 0.0527 0.0585 0.0453 

28 0.0137 0.0203 0.0225 0.0174 

29 0.0030 0.0044 0.0049 0.0038 

30 0.0119 0.0176 0.0195 0.0151 

31 0.0412 0.0290 0.0283 0.0351 
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5.5 NR-DEMATEL Analysis 

The NR-DEMATEL method that has been elaborated in Section 4.3 is applied to 

evaluate the cause and effect interrelationships between identified energy risk 

dimensions. The analysed factors are the twelve risk dimensions Climate Change 

(CC); Natural Disasters (ND); Environmental Health and Safety (EHS); Technical 

Reliability (TR); Operational Safety (OS); Disease Outbreak (DO); Industrial Action 

(IA); Political Instability (PI); Sabotage and Terrorism (ST); Resource Availability 

(RA); Market Failure (MF); and Affordability (AF). The weighted average for 

experts’ weights is considered in the calculation. The analysis of various experts’ 

weights cases is presented in the Section 5.4. The total relation matrix obtained from 

the NR-DEMATEL analysis is shown in Table 5.7. Based on the total relation matrix, 

the Prominence, and Relation values along with total effect given by each risk 

dimension to others (𝑟𝑖) and total effect received by each risk dimension from others 

(𝑐𝑖) are calculated (regarding step 7 in Section 4.3), and are shown in Table 5.8.  
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Table 5.7 Total relation matrix 

 CC ND EHS TR OS DO PI IA ST RA MF AF 

CC 0.1105 0.1856 0.2717 0.2722 0.2803 0.1859 0.2541 0.2243 0.1746 0.2744 0.2644 0.3129 

ND 0.1362 0.0695 0.2517 0.2623 0.2849 0.1836 0.2245 0.2001 0.1446 0.2453 0.2311 0.2756 

EHS 0.1183 0.0831 0.1514 0.2161 0.2438 0.1815 0.1952 0.2075 0.1488 0.2091 0.2065 0.2639 

TR 0.1153 0.0793 0.2185 0.1584 0.2532 0.1320 0.2012 0.1998 0.1540 0.2201 0.2377 0.2862 

OS 0.1005 0.0725 0.2468 0.2411 0.1724 0.1340 0.2018 0.2221 0.1617 0.2163 0.2241 0.2705 

DO 0.1167 0.0986 0.2436 0.2071 0.2432 0.1027 0.2210 0.2258 0.1400 0.2032 0.2259 0.2611 

PI 0.1537 0.1068 0.2234 0.2418 0.2622 0.1621 0.1814 0.2586 0.2192 0.2489 0.2693 0.3146 

IA 0.1288 0.0825 0.2324 0.2768 0.2956 0.1721 0.2767 0.1764 0.1891 0.2726 0.2823 0.3224 

ST 0.1165 0.0797 0.2527 0.2641 0.2847 0.1446 0.2661 0.2225 0.1257 0.2697 0.2816 0.3147 

RA 0.1584 0.1074 0.2191 0.2262 0.2425 0.1316 0.2448 0.2070 0.1526 0.1711 0.2663 0.3038 

MF 0.1623 0.0921 0.2112 0.2433 0.2562 0.1356 0.2333 0.2282 0.1499 0.2511 0.1787 0.3088 

AF 0.1694 0.0982 0.2457 0.2583 0.2848 0.1507 0.2603 0.2404 0.1622 0.2707 0.2763 0.2258 
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Table 5.8 Prominence, relation, and total effect given/received by each risk to/from others  

 Total effect 

given by each 

risk to other 

risks (𝒓𝒊) 

Rank 

Total effect 

received by each 

risk from other 

risks (𝒄𝒊) 

Rank 
Prominence 
(𝒓𝒊 + 𝒄𝒊) 

Rank 
Relation 
(𝒓𝒊 − 𝒄𝒊) 

Rank Causer/Receiver 

CC 2.8109 1 1.5865 11 4.3973 10 1.2244 2 Net Causer 

ND 2.5093 6 1.1553 12 3.6646 12 1.3540 1 Net Causer 

EHS 2.2252 12 2.7682 6 4.9934 8 -0.5430 9 Net Receiver 

TR 2.2557 11 2.8675 4 5.1232 7 -0.6119 10 Net Receiver 

OS 2.2638 10 3.1037 2 5.3675 4 -0.8399 12 Net Receiver 

DO 2.2890 9 1.8165 10 4.1054 11 0.4725 4 Net Causer 

PI 2.6420 4 2.7604 7 5.4024 2 -0.1184 6 Net Receiver 

IA 2.7076 2 2.6126 8 5.3201 5 0.0950 5 Net Causer 

ST 2.6226 5 1.9226 9 4.5452 9 0.7001 3 Net Causer 

RA 2.4307 8 2.8525 5 5.2833 6 -0.4218 7 Net Receiver 

MF 2.4507 7 2.9441 3 5.3948 3 -0.4934 8 Net Receiver 

AF 2.6426 3 3.4602 1 6.1029 1 -0.8176 11 Net Receiver 
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5.5.1 Impact-relations map 

The Impact-Relations Map (IRM) (Figure 5.5), represents four quadrants. Quadrant 𝐼 

(core risks) is characterised by high Prominence, and positive Relation values. Risks 

in quadrant 𝐼𝐼 (minor key risks) have positive Relation but low Prominence values. 

Both quadrant 𝐼 and 𝐼𝐼 include net causer risks (cause group) because of positive 

Relation values. Quadrant 𝐼𝐼𝐼 (independent risks) has low Prominence, and negative 

Relation values while situated in the south-west part of the IRM and are disconnected 

from the system. Finally, risks in quadrant 𝐼𝑉 (impact or indirect risks) have high 

Prominence and negative Relation values and are mainly impacted by other risks. 

Risks in quadrants 𝐼𝐼𝐼 and 𝐼𝑉 are net receivers (effect group) as their Relation values 

are negative. Thus, based on IRM and four quadrants, risk dimensions can be grouped 

into four categories of (1) core risks; (2) minor risks; (3) independent risks; and (4) 

impact/indirect risks. 

The five risk dimensions of Natural Disasters (ND); Climate Change (CC); 

Sabotage and Terrorism (ST); Disease Outbreak (DO); and Industrial Action (IA) are 

positioned in quadrant 𝐼 (core risks).  

Based on the findings in Table 5.8 and depicted IRM in Figure 5.5, Natural 

Disasters (ND) has the highest relation value which means it has the highest influence 

on the system. It is followed by Climate Change (CC), Sabotage and Terrorism (ST), 

Disease Outbreak (DO), Industrial Action (IA), Political Instability (PI), Resource 

Availability (RA), Market Failure (MF), Environmental and Health Safety (EHS), 

Technical Reliability (TR), Affordability (AF), and the lowest factor in the relation 

category is Operational Safety (OS). In terms of Prominence, Affordability (AF) has 

the highest total effect which indicates its relative importance. Risk dimensions, 

Political Instability (PI), Market Failure (MF), Operational Safety (OS), Industrial 

Action (IA), Resource Availability (RA), Technical Reliability (TR), Environmental 

and Health Safety (EHS), Sabotage and Terrorism (ST), Climate Change (CC), 

Disease Outbreak (DO), and Natural Disasters (ND) stand in other ranks after 

Affordability (AF), respectively in the prominence list. Five risk dimensions of 

Natural Disasters (ND), Climate Change (CC), Sabotage and Terrorism (ST), Disease 

Outbreak (DO), and Industrial Action (IA) are positioned in quadrant I, which can be 

recognised as core factors. Additionally, they all belong to cause group which 
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indicates these five risk dimensions are net causers because their (𝑟𝑖 − 𝑐𝑖) values are 

positive.  

The rest of the risk dimensions including the seven risk dimensions of Political 

Instability (PI); Resource Availability (RA); Environmental and Health Safety (EHS); 

Market Failure (MF); Technical Reliability (TR); Operational Safety (OS); and 

Affordability (AF) are positioned in quadrant 𝐼𝑉 (indirect risks). In addition, all the 

risk dimensions in the effect group, which are net receivers, are positioned in quadrant 

𝐼𝑉. There is no minor key and independent risk in this study because no risk dimension 

is positioned in quadrants 𝐼𝐼 and 𝐼𝐼𝐼 respectively. 

 

 

Figure 5.5 The IRM 

 

5.5.2 Resulted rankings 

As can be seen in Table 5.8, four rankings have been obtained: (𝑟𝑖 , 𝑐𝑖 , 𝑟𝑖 + 𝑐𝑖 , 𝑟𝑖 − 𝑐𝑖) 

namely the Causers, Receivers, Prominence, and Relation lists, respectively. In 

DEMATEL, considering merely one ranking either Relation or Prominence would not 

be thoroughly compelling to reach a satisfactorily analysis. In fact, they both together 

with other analyses like causers, receivers and strong relationships should be 

considered for their complimentary features. 
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5.5.2.1 Net causers (cause group) and key factors 

These risk dimensions are situated in quadrant 𝐼 and include Natural Disasters (ND); 

Climate Change (CC); Sabotage and Terrorism (ST); Disease Outbreak (DO); and 

Industrial Action (IA). These risk dimensions are net causers that belong to the cause 

group (Figure 5.5 and Table 5.8). This means that in their occurrence, they can 

significantly influence or trigger other risks. 

5.5.2.2 Net receivers (effect group) 

These risk dimensions are situated in quadrant 𝐼𝑉 and include Operational Safety 

(OS); Affordability (AF); Technical Reliability (TR); Environmental and Health 

Safety (EHS); Market Failure (MF); Resource Availability (RA); and Political 

Instability (PI). Risk dimensions in this quadrant are more influenced rather than they 

influence other risks. 

5.5.2.3 Prominence 

In terms of Prominence, Affordability (AF) has the highest total effect (adding 

together given and received influences) which indicates its relative importance. It is 

followed by Political Instability (PI); Market Failure (MF); Operational Safety (OS); 

Industrial Action (IA); Resource Availability (RA); Technical Reliability (TR); 

Environmental and Health Safety (EHS); Sabotage and Terrorism (ST); Climate 

Change (CC); Disease Outbreak (DO); and Natural Disasters (ND). 

5.5.2.4 Relation 

Based on the findings in Table 5.8, and the IRM depicted in Figure 5.5, Natural 

Disasters (ND) has the highest Relation value, which means it has the highest 

influence on the system. It is followed by Climate Change (CC); Sabotage and 

Terrorism (ST); Disease Outbreak (DO); Industrial Action (IA); Political Instability 

(PI); Resource Availability (RA); Market Failure (MF); Environmental and Health 

Safety (EHS); Technical Reliability (TR); Affordability (AF);  the lowest factor in the 

Relation category is Operational Safety (OS). 

5.5.2.5 Causers 

Among risks that can have higher influence on others without subtracting the received 

impacts: Climate Change (CC); Industrial Action (IA); Affordability (AF); Political 

Instability (PI); Sabotage and Terrorism (ST); Natural Disasters (ND); and Market 

Failure (MF) are the top seven risk dimensions, respectively (𝑟𝑖 list in Table 5.8).  The 
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results show that Climate Change (CC) is the most important risk dimension in terms 

of influencing other risks. However, when compared to Natural Disasters (ND), 

Climate Change (CC) receives more impact from other risks, which is the reason why 

Natural Disasters (ND) is the most significant net causer and not Climate Change 

(CC). 

 

5.5.2.6 Receivers 

Among receivers or risks that can be highly influenced by others, Affordability (AF) 

and Operational Safety (OS) are found as the top ones followed by Market Failure 

(MF); Technical Reliability (TR); Resource Availability (RA); Environmental and 

Health Safety (EHS); and Political Instability (PI) ( 𝑐𝑖 list in Table 5.8). 

 

5.5.3 Threshold value 

For setting the threshold value (Step 8 in Section 4.3), the MMDE algorithm has been 

applied. The results from steps 1 to 5 of the MMDE algorithm (Appendix D) are 

summarised in Table 5.9. All 144 MDE values of dispatch-node set (𝑀𝐷𝐸𝑡
𝐷𝑖) and 

receive-node set (𝑀𝐷𝐸𝑡
𝑅𝑒) are illustrated in Figure 5.6 and Figure 5.7, respectively.  
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Table 5.9 MMDE algorithm calculation results 

Item Data 

𝑻∗ 
{
(0.3224,8,12), (0.3147,9,12), (0.3146,7,12),
(0.3129,1,12),… , (0.0725,5,2), (0.0695,2,2)

} 

𝑻𝑫𝒊  {8,9,7,1,11,10,… ,4,5,2} 

𝑻𝒕
𝑫𝒊  and 

𝑴𝑫𝑬𝒕
𝑫𝒊  

𝑇1
𝐷𝑖 = {8}, 𝑀𝐷𝐸1

𝐷𝑖 = 0; 𝑇2
𝐷𝑖 = {8,9}, 

 𝑀𝐷𝐸2
𝐷𝑖 = 0; … ; 𝑇8

𝐷𝑖 = {8,9,7,1,11,10,8,4}, 

 𝑀𝐷𝐸8
𝐷𝑖 = 0.005679; …; 𝑇143

𝐷𝑖 = {8,9,… ,4,5},  

𝑀𝐷𝐸143
𝐷𝑖 = 0.000023; 𝑇144

𝐷𝑖 = {8,9,… ,4,5,2}, 𝑀𝐷𝐸144
𝐷𝑖 = 0 

𝑴𝑫𝑬𝒕
𝑫𝒊  {0,0,0,0,0,0,0.007315,0.005679, 0.004531, … ,0.000023, 0} 

Max 𝑴𝑫𝑬𝒕
𝑫𝒊  0.026274 

𝑻𝒎𝒂𝒙
𝑫𝒊   𝑇22

𝐷𝑖 = {8,9,7,1,11,10,8,4,2,12,9,8,9,1,8,8,12,2,1,8,1,1} = 

{1,2,4,7,8,9,10,11,12} 

𝑻𝑹𝒆  {12,12,12,12,12,12,5,12,5,5,5,11,11,5,… , 2,2,2} 

𝑻𝒕
𝑹𝒆  and 

𝑴𝑫𝑬𝒕
𝑹𝒆  

𝑇1
𝑅𝑒 = {12}, 𝑀𝐷𝐸1

𝑅𝑒 = 0; … , 

 𝑇7
𝑅𝑒 = {12,12,12,12,12,12,5},  

𝑀𝐷𝐸7
𝑅𝑒 = 0.141515; … ,  

𝑇144
𝑅𝑒 = {12,12,12,12,12,12,5, … ,2,2}, 𝑀𝐷𝐸144

𝑅𝑒 = 0 

𝑴𝑫𝑬𝒕
𝑹𝒆  {0,0,0,0,0,0,0.141515,0.158189,… ,0.000023,0} 

Max 𝑴𝑫𝑬𝒕
𝑹𝒆  0.158189 

𝑻𝒎𝒂𝒙
𝑹𝒆  𝑇8

𝑅𝑒 = {12,12,12,12,12,12,5,12} = {5,12} 

𝑻𝑻𝒉 

{

(0.3224,8,12), (0.3147,9,12), (0.3146,7,12),
(0.3129,1,12), (0.3088,11,12),

(0.3038,10,12), (0.2956,8,5), (0.2862,4,12),
(0.2849,2,5), (0.2848,12,5), (0.2847,9,5)

} 

Threshold 

value 

0.2847 
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Figure 5.6 The 144 MDE values of dispatch-node set (𝑀𝐷𝐸𝑡
𝐷𝑖)  

 

 

Figure 5.7 The 144 MDE values of receive-node set (𝑀𝐷𝐸𝑡
𝑅𝑒)   

 

Regarding the obtained threshold value which is 0.2847 then risk dimensions with 

the influence level of equal or greater than 0.2847 in matrix 𝑇 (Table 5.7) are chosen 

and the relationships between them are shown in Figure 5.8. As can be seen, eleven 

relationships among ten risk dimensions have the influence levels equal or greater 

than 0.2847. Environmental and Health Safety (EHS) and Disease Outbreak (DO) are 

the only risk dimensions that have no significant impact (either dispatching or 

receiving) on other risk dimensions because their influence levels are less than 

0.2847.  Compared to other threshold setting methods, by applying the average of all 
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elements in the matrix 𝑇, the threshold will be 0.2073 leading us to identify 81 strong 

relationships, which is not helpful because it identifies numerous strong relationships. 

While using MMDE algorithm, the threshold value is 0.2847 providing us with 11 

strong relationships.     

5.5.4 Strong relationships and net relationships 

Risk dimensions with influence level equal or greater than the threshold value 

(0.2847) from matrix 𝑇 (Table 5.7), and the relationships between them are shown in 

Figure 5.8. Eleven relationships of ten risk dimensions have an influence level equal 

or greater than 0.2847. Environmental and Health Safety (EHS) and Disease 

Outbreak (DO) are the only risk dimensions that have no significant impact (either 

causing or receiving) on other risk dimensions because their influence level is below 

0.2847.   

The net influence matrix is represented (Table 5.10), and the corresponding 

values of eleven major relationships are illustrated (Figure 5.8). For instance, the 

influence level from Natural Disasters (ND) to Operational Safety (OS) is 0.2849 

(Figure 5.8) while the net influence value from Natural Disasters (ND) to Operational 

Safety (OS) is −0.2124 (Table 5.10). The negative value of −0.2124 reveals that the 

level of influence from Operational Safety (OS) to Natural Disasters (ND) is lower 

than the level of influence from Natural Disasters (ND) to Operational Safety (OS) 

and the difference value is 0.2124. The total relation values and ranking of eleven 

major relationships among risk dimensions as depicted in Figure 5.8 along with their 

net influence values and corresponding ranking are presented (Table 5.11). 

   

 

Figure 5.8 Total relations between risk dimensions based on the threshold value 0.2847
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Table 5.10 Net influence matrix 

 CC ND EHS TR OS DO PI IA ST RA MF AF 

CC             

ND -0.0494            

EHS -0.1534 -0.1686           

TR -0.1569 -0.1830 0.0024          

OS -0.1798 -0.2124 0.0030 -0.0121         

DO -0.0692 -0.0850 0.0621 0.0751 0.1092        

PI -0.1004 -0.1177 0.0282 0.0406 0.0604 -0.0589       

IA -0.0955 -0.1176 0.0249 0.0770 0.0735 -0.0537 0.0181      

ST -0.0581 -0.0649 0.1039 0.1101 0.1230 0.0046 0.0469 0.0334     

RA -0.1160 -0.1379 0.0100 0.0061 0.0262 -0.0716 -0.0041 -0.0656 -0.1171    

MF -0.1021 -0.1390 0.0047 0.0056 0.0321 -0.0903 -0.0360 -0.0541 -0.1317 -0.0152   

AF -0.1435 -0.1774 -0.0182 -0.0279 0.0143 -0.1104 -0.0543 -0.0820 -0.1525 -0.0331 -0.0325  
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In Table 5.11, total relation values and ranking of eleven major relationships among 

risk dimensions as depicted in Figure 5.8 along with their net influence values and 

corresponding ranking are presented.  

Table 5.11 Total relation and net influence of eleven major relationships 

From To Total Relation Rank Net Influence Rank 

IA AF 0.3224 1 0.0820 5 

ST AF 0.3147 2 0.1525 2 

PI AF 0.3146 3 0.0543 7 

CC AF 0.3129 4 0.1435 3 

MF AF 0.3088 5 0.0325 9 

RA AF 0.3038 6 0.0331 8 

IA OS 0.2956 7 0.0735 6 

TR AF 0.2862 8 0.0279 10 

ND OS 0.2849 9 0.2124 1 

AF OS 0.2848 10 0.0143 11 

ST OS 0.2847 11 0.1230 4 

 

The influence of Industrial Action (IA) on Affordability (AF) is the strongest 

relationship followed by ten other impacts (Table 5.11 and Figure 5.8). It shows that 

Industrial Action (IA); Natural Disasters (ND); Affordability (AF); and Sabotage and 

Terrorism (ST) can have strong influence on Operational Safety (OS). But only the 

influence of Natural Disasters (ND) on Operational Safety (OS) has the strongest net 

relationship (Table 5.11 and Figure 5.8) which could be expected due to the 

characteristic of the Operational Safety (OS) risk that is much more affected by 

Natural Disasters (ND) rather than having influence on it. Also, Industrial Action (IA); 

Sabotage and Terrorism (ST); Political Instability (PI); Climate Change (CC); Market 

Failure (MF); Resource Availability (RA); and Technical Reliability (TR) strongly 

affect Affordability (AF). Between Affordability (AF) and Operational Safety (OS), 

the strongest influence is received by Affordability (AF) (from Industrial Action (IA)) 

while Affordability (AF) itself subsequently has strong influence on Operational 

Safety (OS). The evaluation of strong relationships revealed that Environmental and 

Health Safety (EHS), and Disease Outbreak (DO) do not have any strong relationships 

with other risk dimensions. It also revealed that Affordability (AF) and Operational 
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Safety (OS) are the only two major strong individual influence receivers (Table 5.11 

and Figure 5.8). 

 

5.6 Sensitivity Analysis 

The cases of high, moderate, low, and weighted average are explained in Section 5.4 

(Table 5.6). Note that equal weights of experts are taken into consideration for the 

sensitivity analysis. The Prominence, and Relation values in NR-DEMATEL for all 

twelve risk dimensions under five sensitivity analysis cases have been calculated and 

presented in Table 5.12.  
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Table 5.12 Sensitivity analysis results under Equal, Moderate, High, Low, and Weighted Average weights  

 Equal Moderate High Low Weighted Average 

Prominence Relation Prominence Relation Prominence Relation Prominence Relation Prominence Relation 

AF 5.4749 -1.1400 5.8053 -0.8492 6.5720 -0.7587 5.5802 -0.8776 6.1029 -0.8176 

MF 5.3871 -0.6225 5.1916 -0.5180 5.7102 -0.4491 5.0471 -0.5474 5.3948 -0.4934 

PI 5.2044 -0.1824 5.1184 -0.1663 5.8297 -0.0654 4.8963 -0.2027 5.4024 -0.1184 

OS 5.1112 -0.7924 5.0963 -0.8195 5.7903 -0.8749 4.8910 -0.8057 5.3675 -0.8399 

IA 4.9834 -0.3369 5.0251 -0.0192 5.7628 0.2654 4.8176 -0.0993 5.3201 0.0950 

TR 4.9635 -0.4959 4.8755 -0.5741 5.5099 -0.6635 4.6937 -0.5493 5.1232 -0.6119 

RA 4.8252 -0.3113 4.9926 -0.3796 5.7384 -0.4780 4.7769 -0.3514 5.2833 -0.4218 

EHS 4.4579 -0.4227 4.6650 -0.4906 5.5047 -0.6171 4.4186 -0.4518 4.9934 -0.5430 

CC 4.2405 1.4377 4.2126 1.2668 4.6786 1.1619 4.0847 1.2996 4.3973 1.2244 

ST 4.1989 0.9014 4.3085 0.7432 4.9105 0.6349 4.1314 0.7755 4.5452 0.7001 

ND 3.7024 1.5008 3.5188 1.3501 3.8921 1.3604 3.4142 1.3552 3.6646 1.3540 

DO 3.4615 0.4642 3.7915 0.4565 4.5799 0.4842 3.5637 0.4549 4.1054 0.4725 
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In Figure 5.9, Prominence values of all risk dimensions in five cases are illustrated. 

The demonstrated trend is almost the same for all risk dimensions over various 

experts’ weights. As can be seen, the Weighted Average and Moderate lines are both 

positioned between the two extents of the High and Low charts with the difference 

that the Weighted Average chart is closer to the High chart, which is predictable based 

on the higher hesitant weights assigned to case 1 (Table 5.5).  From a practical 

standpoint, it means that opinions of more experienced experts can be given higher 

value by choosing the Weighted Average generating close Prominence values to the 

High case. Moreover, the Equal line and either Low or Moderate lines overlapped in 

some risks producing exactly the same weights.  

 

  Figure 5.9 Prominence values of risks in various cases of experts’ weights 

In Figure 5.10, Relation values for different risk dimensions were depicted and as can 

be seen the lines overlapped almost perfectly except for the Equal chart that is 

significantly different in few risks such as Natural Disasters (ND), Sabotage and 

Terrorism (ST), Climate Change (CC), Affordability (AF), and Industrial Action (IA). 

It means that in the Equal case, the Relation values of risks can vary more compared 

to other cases.     
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Figure 5.10 Relation values of risks in various cases of experts’ weights 

 

To better realise the changes of weights, the rankings of the Prominence and Relation 

values are provided in Table 5.13. And in Table 5.14, and Table 5.15 descriptive 

statistics for Relation and Prominence weights ranking are presented, respectively. 

Furthermore, the Kendall’s coefficient of concordance is calculated to statistically test 

the level of agreement between rankings in five cases for the Prominence and Relation 

values (Table 5.16). 
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Table 5.13 Rankings obtained from sensitivity analysis under Equal, Moderate, High, Low, and Weighted Average weights  

 Equal Moderate High Low Weighted Average 

 Prominence Relation Prominence Relation Prominence Relation Prominence Relation Prominence Relation 

AF 1 12 1 12 1 11 1 12 1 11 

MF 2 10 2 9 6 7 2 9 3 8 

PI 3 5 3 6 2 6 3 6 2 6 

OS 4 11 4 11 3 12 4 11 4 12 

IA 5 7 5 5 4 5 5 5 5 5 

TR 6 9 7 10 7 10 7 10 7 10 

RA 7 6 6 7 5 8 6 7 6 7 

EHS 8 8 8 8 8 9 8 8 8 9 

CC 9 2 10 2 10 2 10 2 10 2 

ST 10 3 9 3 9 3 9 3 9 3 

ND 11 1 12 1 12 1 12 1 12 1 

DO 12 4 11 4 11 4 11 4 11 4 
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Table 5.14 Descriptive statistics of Relation rankings under five cases (Equal, Moderate, 

High, Low, and Weighted Average) 

 N Mean Std. Deviation Minimum Maximum 

AF 5 11.60 0.548 11 12 

MF 5 8.60 1.140 7 10 

PI 5 5.80 0.447 5 6 

OS 5 11.40 0.548 11 12 

IA 5 5.40 0.894 5 7 

TR 5 9.80 0.447 9 10 

RA 5 7.00 0.707 6 8 

EHS 5 8.40 0.548 8 9 

CC 5 2.00 0.000 2 2 

ST 5 3.00 0.000 3 3 

ND 5 1.00 0.000 1 1 

DO 5 4.00 0.000 4 4 

 

Table 5.15 Descriptive statistics of Prominence rankings under five cases (Equal, Moderate, 

High, Low, and Weighted Average) 

 N Mean Std. Deviation Minimum Maximum 

AF 5 1.00 0.000 1 1 

MF 5 3.00 1.732 2 6 

PI 5 2.60 0.548 2 3 

OS 5 3.80 0.447 3 4 

IA 5 4.80 0.447 4 5 

TR 5 6.80 0.447 6 7 

RA 5 6.00 0.707 5 7 

EHS 5 8.00 0.000 8 8 

CC 5 9.80 0.447 9 10 

ST 5 9.20 0.447 9 10 

ND 5 11.80 0.447 11 12 

DO 5 11.20 0.447 11 12 
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Table 5.16 Kendall’s W Test 

 N Kendall’s Wa Chi-Square df P-value 

Relation 5 0.978 53.800 11 0.000*** 

Prominence 5 0.971 53.400 11 0.000*** 

             aKendall’s coefficient of concordance 

         ***indicates statistical significance at 1% level 

 

As high values of Kendall's 𝑊 = 0.978, and 𝑊 = 0.971 are obtained for Relation, 

and Prominence, respectively (Table 5.16), it can be realised that the obtained rankings 

for the Relation and Prominence values of twelve risk dimensions under five cases 

agree with each other at a statistically significant level (𝑃 < 0.001***) and there is 

no statistically significant difference between them. In other words, even if detailed 

differences occur, Relation, and Prominence rankings, which are central to this 

research, are not statistically sensitive to the changes in level of experience of experts 

under the predefined parameter settings described in the proposed HESM. However, 

the Weighted Average weights are used in this study, because the Weighted Average 

resembles a more rational weight assignment method since it aggregates all three other 

weights including Low, High, and Moderate. 

The IRM diagrams for four cases including Equal, Moderate, Low, and High 

are depicted in Figure 5.11. The IRMs provided show that Natural Disasters (ND), 

Climate Change (CC), Sabotage and Terrorism (ST), and Disease Outbreak (DO) are 

consistently positioned in quadrant 𝐼 under Equal (a), Moderate (b), Low (c), and High 

(d) cases while in case Moderate (b) the Natural Disasters (ND) is pushed to the border 

of two quadrants 𝐼 and 𝐼𝐼. Furthermore, only in case High (d), Industrial Action (IA) 

is also moved to quadrant 𝐼.     
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Figure 5.11 The IRMs in four cases of experts’ weights Equal (a), Moderate (b), Low (c), and High (d) 
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5.7 Discussion 

The identification of the key risks in an energy supply chain is fundamental to 

reducing the likelihood of disruption. Risks rarely occur independently, that is, the 

incidence of one risk can cause another to occur (domino effect or chain reaction). For 

the first time, this study highlighted these interdependencies, and provided significant 

insight into the relationship between the energy risks by identifying those risks that 

should be prioritised in order to minimise the occurrence of others. This approach has 

the potential to put forward risk mitigation strategies that focus on the highly 

interdependent risks. Therefore, policy makers must develop mitigation strategies that 

make best use of resources in a targeted approach since certain risks occur 

concurrently and are often amplified by other risks. For example, Industrial Action 

(IA) can strongly lead to Affordability (AF) risk. Equally, Natural Disasters (ND) can 

lead to risks relevant to Operational Safety (OS); therefore, vulnerability to natural 

disasters should be primarily tested against its potential to lead to operational safety 

damages (Figure 5.8). This approach can signify a departure from past practice that 

did not consider risks’ interdependencies. However, as climate change reshapes both 

the natural environment and the regulatory framework that power supply chains 

operated in, it is imperative that risk assessment also changes to accommodate our 

best understanding of risk interdependencies.  

Critical risk dimensions recognition and how the analysis results are being 

construed are on the basis of the chosen risk analysis perspective that can be either 

proactive or reactive. In case of proactive attitude towards risk analysis the focal point 

is on risks with higher damage potential to the system via the capability of propagating 

from one risk to another in the longer run. Therefore, a proactive approach considers 

a prospective situation of the system by taking into consideration net causers (i.e 

Relation). The reactive perspective focuses on the ongoing status of the system rather 

than the resulting risks. It seeks dealing with the current occurred critical risks rather 

than future ones (i.e. Prominence). In reactive perspective, it is tried to identify 

important risks to suggest strategies more in order to resolve the current systems’ 

malfunctions rather than to prevent from future risks that might happen as a result of 

current risks. Based on the findings, Natural Disasters (ND) lies at the first rank of 

Relation list which means it has the highest total effect given to others (propagation 

capability), whereas on the other hand it stands at the bottom of Prominence list due 
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to its low receiving effect (𝑐𝑖 value).  It means, when Natural Disasters (ND) occur 

(the occurrence probability is not discussed in this study) can result in triggering many 

other risks in the system. It can influence other risks as it has the highest Relation 

value, while itself can hardly be influenced by them due to low 𝑐𝑖 value. It indicates 

Natural Disasters (ND) has the capacity to bring about many other risks in future (it 

can be short-term, medium-term, or long-term), so if the risk analysis perspective is 

proactive, Natural Disasters (ND) must be absolutely more desirable and the 

mitigation strategy recommendations must be more preventive or proactive rather than 

reactive. Whereas on the other hand, in the reactive case, the opposite is true and the 

proposed mitigation strategies are more after temporary treatments. Overall, 

considering merely one factor either Relation or Prominence would not be thoroughly 

cogent and to reach a satisfactory risk analysis they both along with other analyses 

like causers, receivers, and strongest relationships should be considered. Note that net 

receivers are different from receivers, likewise for net causers and causers. Net causers 

and net receivers are those risk dimensions with positive and negative values in the 

relation list. Net causers belong to cause group and net receivers belong to effect 

group. On the other hand, causers and receivers are top risk dimensions in the (𝑟𝑖) and 

(𝑐𝑖) list (see Table 5.8).  

The findings revealed that Natural Disasters (ND), Climate Change (CC), 

Sabotage and Terrorism (ST), Disease Outbreak (DO) and Industrial Action (IA) are 

core risk dimensions and among them Industrial Action (IA) has the highest 

Prominence value. Out of five high-ranked Prominence risk dimensions, Industrial 

Action (IA) is the only one that appears in the list of the top five Relation risk 

dimensions which are Affordability (AF), Political Instability (PI), Market Failure 

(MF), Operational Safety (OS), and Industrial Action (IA) (Table 5.8). The findings 

are summarised as follows: 

1. Net causers (cause group) and key factors:  

The Natural Disasters (ND), Climate Change (CC), Sabotage and Terrorism 

(ST), Disease Outbreak (DO), and Industrial Action (IA) are core risk dimensions (the 

first five factors in Relation list and positioned in quadrant 𝐼) and all are net causers 

that belong to cause group (see Figure 5.5, and Table 5.8). It means apart from their 
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occurrence likelihoods, in case of occurring, they can significantly influence other 

risks.  

2. Net receivers (effect group):  

Operational Safety (OS), Affordability (AF), Technical Reliability (TR), 

Environmental and Health Safety (EHS), Market Failure (MF), Resource Availability 

(RA), and Political Instability (PI) are all risk dimensions in effect group or net 

receivers, respectively. It means these risk dimensions are more influenced by other 

risks rather that have impact on others. 

3. Prominence:  

Affordability (AF), Political Instability (PI), Market Failure (MF), Operational 

Safety (OS), Industrial Action (IA), Resource Availability (RA), Technical Reliability 

(TR), Environmental and Health Safety (EHS), Sabotage and Terrorism (ST), Climate 

Change (CC), Disease Outbreak (DO), and Natural Disasters (ND) are ranked in the 

prominence list, respectively. It represents the relative importance of each risk 

dimension by adding together their given and received influences. 

4. Causers:  

Among causers or risks that can have higher influence on others without 

subtracting the received impacts; Climate Change (CC), Industrial Action (IA), 

Affordability (AF), Political Instability (PI), Sabotage and Terrorism (ST), Natural 

Disasters (ND), and Market Failure (MF) are top seven risk dimensions, respectively 

(see 𝑟𝑖 list in Table 5.8). It shows Climate Change (CC) is the most important factor 

influencing other risks but compared to Natural Disasters (ND) it receives more 

impact from other risks that is why Natural Disasters (ND) is the most significant net 

causer not Climate Change (CC).  

5. Receivers:  

Among receivers or risks that can be highly influenced by others, Affordability 

(AF) and Operational Safety (OS) were found as top ones followed by Market Failure 

(MF), Technical Reliability (TR), Resource Availability (RA), Environmental and 

Health Safety (EHS), and Political Instability (PI) (see 𝑐𝑖 list in Table 5.8).  
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6. Strongest relationships:  

The influence of Industrial Action (IA) on Affordability (AF) is the strongest 

relationship followed by ten other impacts Sabotage and Terrorism (ST) on 

Affordability (AF), Political Instability (PI) on Affordability (AF), Climate Change 

(CC) on Affordability (AF), Market Failure (MF) on Affordability (AF), Resource 

Availability (RA) on Affordability (AF), Industrial Action (IA) on Operational Safety 

(OS), Technical Reliability (TR) on Affordability (AF), Natural Disasters (ND) on 

Operational Safety (OS), Affordability (AF) on Operational Safety (OS) and Sabotage 

and Terrorism (ST) on Operational Safety (OS), respectively (see Table 5.11 and 

Figure 5.8). It shows that Industrial Action (IA), Natural Disasters (ND), Affordability 

(AF), and Sabotage and Terrorism (ST) can have strong influence on Operational 

Safety (OS). Also, Industrial Action (IA), Sabotage and Terrorism (ST), Political 

Instability (PI), Climate Change (CC), Market Failure (MF), Resource Availability 

(RA), and Technical Reliability (TR) strongly impact on Affordability (AF). Between 

Affordability (AF) and Operational Safety (OS), the strongest influence is received 

by Affordability (AF) as indicated from Industrial Action (IA) while Affordability 

(AF) itself subsequently has strong influence on Operational Safety (OS). 

7. Strongest net relationships:  

The influence of Natural Disasters (ND) on Operational Safety (OS) is the 

strongest net relationship followed by ten other strong net impacts of Sabotage and 

Terrorism (ST) on Affordability (AF), Climate Change (CC) on Affordability (AF), 

Sabotage and Terrorism (ST) on Operational Safety (OS), Industrial Action (IA) on 

Affordability (AF), Industrial Action (IA) on Operational Safety (OS), Political 

Instability (PI) on Affordability (AF), Resource Availability (RA) on Affordability 

(AF), Market Failure (MF) on Affordability (AF), Technical Reliability (TR) on 

Affordability (AF) and Affordability (AF) on Operational Safety (OS) respectively 

(see Table 5.11, and Figure 5.8).  

8. The evaluation on strong relationships revealed that Environmental and Health 

Safety (EHS) and Disease Outbreak (DO) do not have any strong relationships with 

other risk dimensions. It also revealed that Affordability (AF) and Operational Safety 

(OS) are the only two major strong individual influence receivers (see Table 5.11, and 

Figure 5.8).  
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9. Considering all the analysis, the final suggestion would be to focus on the six risk 

dimensions of Natural Disasters (ND), Climate Change (CC), Industrial Action (IA), 

Affordability (AF), Political Instability (PI), and Sabotage and Terrorism (ST). It is 

surmised that offering mitigation strategies based on them can be quite beneficial for 

the UK power supply chain sustainability. 

In the related literature, the importance of identified risks is confirmed. For 

instance, Mideksa and Kallbekken (2010) reviewed studies on the effect of climate 

change on electricity markets, although it was stated that there has been a surprisingly 

scant number of research on the effects of climate change on the energy sector mainly 

because of the wide-ranging consequences that are rarely brought together in any 

single study. The Venezuelan strike in 2002/3, also known as an oil strike or oil 

lockout resulted in a gross peak supply loss of 2.6 mb/d (million barrels per day) and 

is regarded as one of the five most important disruptions of the past decades indicating 

the immense significance of industrial action (Löschel et al., 2010). Tranchita et al. 

(2009) presented a methodology to evaluate the power system security with respect to 

the likelihood of terrorist acts, regarding the uncertainties related to load and 

generation. Chevalier (2006) explained the social dimension of SOS as the fact that 

SOS has a cost and in case of a price shock certain types of consumers who are 

exposed to volatile prices may not be able to afford a supply of energy. 

Lin et al. (2018) identified security defence ability as one of the three main 

identified risk elements in NEPS in China out of 18 initially identified risks.  The 

security defence ability can be associated with the risk dimension Sabotage and 

Terrorism (ST) which was among the final risk list in this Chapter. Hammond and 

Waldron (2008) recognised severe weather conditions as the fourth significant risk 

out of fifteen recognised ones. They assessed risks based on the multiplication of 

likelihood and consequence of the hazard occurring while in this chapter, the causal 

relationships between risks via proactive perspective were evaluated. In their study, 

reliance on primary fuels for electricity generation, lack of investment in new 

infrastructure and decommissioning of nuclear-reducing capacity identified as the first 

three important risks. Terrorism was identified as the 12th important risk in Hammond 

and Waldron (2008) out of 15 identified ones while in here Sabotage and Terrorism 

(ST) was identified as the 3rd factor in relation list and 9th in prominence ranking, out 

of the twelve identified risk dimensions. Sabotage and Terrorism (ST) was also among 
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the final six identified significant risk dimensions in the UK. The same study 

highlighted the importance of severe weather conditions risk, which is also 

emphasised in findings in this chapter with the importance of Natural Disasters (ND), 

and Climate Change (CC). Chen and Yano (2010) indicated that weather could affect 

the seasonal product demand as the US National Research Council has estimated that 

around 46% of US gross domestic product is influenced by weather. Jira and Toffel 

(2013) indicated that suppliers’ vulnerability to climate change is of high importance 

and that a growing number of supplier companies are being asked to share information 

about it from buyers leading many managers to better understand supply chain 

management in connection with climate change (Y. Wang et al., 2010). Climate 

change has resulted in the variability of weather conditions and subsequently affecting 

sales of many products. Thus, in order to reduce sales volatility Brusset and Bertrand 

(2018) introduced an approach to transfer weather risks to risk takers utilising weather 

index-based financial instruments. Berger et al. (2017) utilised recent tools in decision 

theory in order to quantify the influence of deep uncertainty on the optimal level of 

emission abatement.  

Considering the causal interrelationships between risks with proactive 

perspective, Natural Disasters (ND), and Climate Change (CC) were also located at 

the top of the significant risks in relation list which are comparable to the severe 

weather conditions risk.  Natural Disasters (ND) can be related to human-made 

Climate Change (CC), however, not all of Natural Disasters (ND) are caused by 

Climate Change (CC) while Climate Change (CC) can increase the likelihood of 

weather-related Natural Disasters (ND). However, in some cases Natural Disasters 

(ND) may be caused by other Natural Disasters (ND). Liu et al (2009) showed that, 

in eastern Taiwan, slow earthquakes can be triggered by typhoons. As another 

example,in 2005, hurricane Katrina caused landslides in Louisiana on the US Gulf 

Coast and caused a disruption for nearly one-quarter of total US oil production at the 

time. Moreover, extraction of shale gas by hydraulic fracturing or fracking was 

observed to cause low-intensity earthquakes (measuring 2.3 and 1.5 on the Richter 

scale) in April 2011 in North West England which resulted in shale gas extraction 

suspension nationally from May 2011 to December 2012 (Stamford and Azapagic, 

2014). Dealing with Climate Change (CC) means regarding the root and cause of 
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many Natural Disasters (ND) such as droughts which can be the result of Climate 

Change (CC) (Gallina et al., 2016; Van Aalst, 2006).  

In support of the findings regarding no critical relation between Disease 

Outbreak (DO) and Natural Disasters (ND) or vice versa (Table 5.11), Watson et al. 

(2007) indicated that risk factors for outbreaks after Natural Disasters (ND) are linked 

primarily to population displacement rather than a fear likely from dead bodies and 

epidemics. The identified strong interaction between Natural Disasters (ND) and 

Operational Safety (OS) can be explained with the Fukushima event when a tsunami 

damaged one nuclear power plant and subsequent policies shut down almost all of 

them causing phasing out many nuclear plants in Japan and Germany  (Boston, 2013). 

The association between Resource Availability (RA) and Political Instability (PI) 

seems to be critical in oil producing countries (Correljé and van der Linde, 2006), but 

the findings have not revealed such a strong relationship in the UK. The link between 

Market Failure (MF) and Affordability (AF) is documented in the study, which is 

predictable since Affordability (AF) deals with the price of the energy, which is 

determined, based on the economic functions in the UK liberalised energy market. 

Finally, although this study focused on the UK power supply chain, but the 

results are relevant, and the findings can be applicable to the power sectors of other 

countries. 

5.8 Conclusions 

The power industry is uniquely vulnerable to natural and human-made risks such as 

natural disasters, climate change, and cybersecurity. In this chapter, a comprehensive 

framework for risk identification and classification focusing on the UK energy supply 

chain was proposed. It was based on scrutinising energy supply chain risks in the 

energy security literature via consolidating information from various fields such as 

engineering, social sciences, and natural sciences. The NR-DEMATEL was tailored 

in this study to analyse interrelationships between risks as well as dealing effectively 

with subjective judgements of experts. Furthermore, a novel proposed HESM along 

with scenario analysis provided a basis for the expert selection and weight assignment 

process. This is the first comprehensive risk causal relationships analysis of the UK 

energy supply chain. The findings revealed that Natural Disasters (ND) and Climate 
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Change (CC) are the most crucial risks followed by Industrial Action (IA), 

Affordability (AF), Political Instability (PI), and Sabotage/Terrorism (ST). 

Three main disciplines are more related to the identified risks including: 

environmental science (Natural Disasters (ND), and Climate Change (CC)), sociology 

and politics (Industrial Action (IA); Political Instability (PI); Sabotage and Terrorism 

(ST)) and economics (Affordability (AF)).  

The findings revealed that Natural Disasters (ND); Climate Change (CC); 

Sabotage and Terrorism (ST); Disease Outbreak (DO); and Industrial Action (IA) 

were core risk dimensions as all were situated in quadrant 𝐼 and among them, 

Industrial Action (IA) had the highest Prominence value indicating its high relative 

importance. Out of five high-ranked Prominence risk dimensions (Affordability (AF); 

Political Instability (PI); Market Failure (MF); Operational Safety (OS); and Industrial 

Action (IA)), Industrial Action (IA) was the only one that appeared in the list of the 

top five Relation risk dimensions as well (Table 5.8). The final six critical risk 

dimensions in the study were Natural Disasters (ND); Climate Change (CC); 

Industrial Action (IA); Affordability (AF); Political Instability (PI); and Sabotage and 

Terrorism (ST) (Figure 5.12). Affordability (AF) has been added to the final list 

because Affordability (AF) ranked first in the Prominence list and was among 8 (out 

of 11) of the strongest relationships (Figure 5.8). Political Instability (PI) has also been 

recognised as one of the final risk dimensions as it ranked second in the Prominence 

ranking and sixth in the Relation list (Table 5.8) while also being the third strongest 

relationship (Table 5.11). Disease outbreak (DO) has not been included in the final 

list, as it has not been recognised among the strong relationships (Table 5.11). 
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Figure 5.12 Final six critical risk dimensions to the UK electricity supply chain and their 

characteristics 

The six most critical risks are particularly important for the UK’s approach in reducing 

risk exposure. Specifically, Natural Disasters (ND) and Climate Change (CC), two 

very interlinked risks are core to the UK’s power supply as legacy nuclear power 

stations are all located in coastal areas, threatened by storm-induced erosion and sea 

level rise. Furthermore, the UK’s ambitious offshore wind program is at risk because 

of potential changes in sea winds that could affect power output. Moreover, like every 

country with an increasingly complex energy supply portfolio, the UK has to take into 

account the risk of Sabotage and Terrorism (ST), especially in the form of cyber-

attacks. At the same time Political Instability (PI), and Affordability (AF) are largely 

related to the UK’s power supply as they concern the issue of imported resources, 

largely natural gas in the UK, as the indigenous production is being reduced. Finally, 

despite the UK power supply chain being largely privatised, the risk of Industrial 

Action (IA) remains high mainly due to the still strong reliance on a small number of 

market players and strong unionisation of the sector. 

5.8.1 Limitations and future research directions 

This study suffers from few limitations which can be overcome in future research. 

These limitations and suggestions for future studies are explained as follows: 

(1) First, the identified risk dimensions are generic macro-level risks in the UK 

energy supply chain and not dealing with micro-level risk elements. In other words, 

risks can be studied in more details in a specific part of the supply chain such as supply 
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or demand or even can be studied in a specific power generation sector such as 

offshore wind industry, just as an example. This would open up an avenue for future 

studies based on the result of the current study where the risk dimensions with generic 

nature were proposed. A more detailed analysis at the lower level called risk elements 

based on the proposed framework can be realised as beneficial. For instance, under 

ND (risk dimension), what natural calamities (risk elements) should be explored in a 

specific power supply chain region or sector such as offshore wind energy, and a 

similar exploration for other risk dimensions. 

(2) Second, due to nature of MCDM methods the primary data has to be 

collected from experts in the field which can be strengthened in order to lead to a more 

reliable outcome by expanding the number of experts who are participating in the data 

collection process. The validation in primary data collection for quantitative methods 

can be considered as another source of concern which should be dealt with methods 

such as face validation or validation through expert elicitation.  

(3) Third, the DEMATEL method has a quantitative approach to investigate the 

causal relationships between risks which might make it hard to elicit knowledge 

quantitatively from experts by using a Likert scale in some decision-making problems. 

That is why in this study, the revised DEMATEL was integrated with NST to facilitate 

this knowledge elicitation process from experts. However, results from the 

DEMATEL can be compared with qualitative approaches such as Know-Why method 

or even with other dynamic quantitative methods such as System Dynamics (SD) to 

verify the outcome.   

(4) Fourth, the occurrence probability estimation of each micro-level risk 

elements with a reliable method and using the probability scores along with experts’ 

opinions to prioritise risk elements can be regarded as another future research 

direction.  

(5) Finally, proposing risk mitigation strategies that links to the outcome of vital 

risk elements identification to provide more detailed and efficient response to 

identified risk elements. 
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Chapter 6 Prioritisation of Risks 

 

6.1 Introduction  

In the previous chapter, the causal relationships between identified risk dimensions in 

the UK energy supply chain were studied. The results indicated that that Natural 

Disasters (ND) and Climate Change (CC) are the most crucial risks followed by 

Industrial Action (IA), Affordability (AF), Political Instability (PI), and 

Sabotage/Terrorism (ST). In this chapter, the objective is to develop and apply two 

extensions of the Best-Worst Method (BWM) to prioritise important energy risks 

obtained from the interrelationship analysis in previous chapter. Thus, objectives in 

this chapter are twofold: (1) to theoretically enhance the BWM method, and (2) to 

practically apply it in the UK energy supply chain risks prioritisation in order to show 

the applicability of methodological extensions of the BWM as well as confirming the 

most critical risk dimensions which were identified in the previous chapter.  

The BWM is a Multi Attribute Decision Making (MADM) method for 

evaluating a set of alternatives against a set of decision criteria where two vectors of 

pairwise comparisons are used to calculate the importance weight of those decision 

criteria. The BWM is an efficient and mathematically sound method used to solve a 

wide range of MADM problems by reducing the number of pairwise comparisons and 

identifying the inconsistencies derived from the comparison process. In a number of 

MADM methods like the AHP and the BWM, it is required to acquire experts’ 

opinions in pairwise comparisons of alternatives and criteria. And as there is linguistic 

imprecision and vagueness in human subjective judgements, it is essential to apply an 

uncertainty theory to deal with that imprecision. Each one of the uncertainty theories 

has unique characteristics (Yamaguchi et al., 2007). Reflecting on the drawbacks of 

each uncertainty theory has led to introducing new theories, such as the Neutrosophic 

Set Theory (NST) from mathematics, into the decision-making sphere and applying 

the new developed hybrid MADM methodologies under uncertainty. In spite of 

simplicity and efficiency of the BWM, it does not consider the Decision Makers’ 

(DMs’) (or experts’) confidence about their pairwise comparisons. In this chapter, two 

extensions of the original BWM are applied in order to prioritise the obtained six risk 

dimensions from Phase 𝐼𝐼 of the thesis. The proposed methods are hybrid Spanning 

Trees Enumeration and BWM (STE-BWM) and Neutrosophic Enhanced BWM (NE-
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BWM) which were explained in Section 4.4, and 4.5, respectively. In Figure 6.1, more 

details are provided regarding the study in the current Chapter (Phase 𝐼𝐼𝐼).  

 

Figure 6.1 Phase III of the research carried out in this chapter 

As was explained in Section 4.4, in the original BWM (Appendix E), a DM has to 

provide a criterion as the best and a criterion as the worst with certainty, assuming no 

hesitancy. In the real-world decision-making process applying the original BWM 

dealing with subjective judgements of human beings, it is not always that 

straightforward for DMs to choose a criterion as either the best or the worst because 

there is always a degree of hesitancy which must be regarded. Dong et al. (2019) 

investigated the incomplete preference relations and self-confident preference 

relations in MCDM and realised that using self-confident preference relations instead 

of incomplete preference relations improves the quality of decision-making. This 

finding confirms the importance of capturing the confidence level of DMs in a 

decision-making method like the BWM. Furthermore, a recent survey of the BWM 

literature by Mi et al. (2019) suggests that scholars should focus on the uncertainty 

extension of the original BWM as a predominant research direction. This is the general 
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motivation to propose two extensions of the BWM to overcome this gap in the original 

BWM as follows: 

1) The hybrid STE-BWM (Section 4.4)   

This method by applying spanning trees enumeration offers an opportunity for 

DMs to suggest more than one best or worst criteria. The reason is that in many cases 

DMs are unable to choose only one criterion due to uncertainty, hesitancy or lack of 

information. Then, the proposed method can calculate which ones are actually the 

best, and the worst criteria based on already provided pair-wise comparison values by 

DMs.  

2) The NE-BWM (Section 4.5) 

In the original BWM, two vectors of pairwise comparisons including best-to-

others and others-to-worst vectors are treated with the same level of importance. The 

first vector (i.e. best to others) is named as Separation 𝐼 and the second vector (i.e. 

others-to-worst) is named as Separation 𝐼𝐼. The gap is that the importance of 

separations 𝐼, and 𝐼𝐼 based on an uncertain confidence of a DM has not been taken 

into consideration. The original BWM unrealistically assumes a DM is 100% sure 

about the most and least favourable criteria. In addition, obtaining preference data 

from a DM is not easy due to the lack of underpinning theories for formulating 

uncertainty parameters in the original BWM because it does not consider uncertainty 

in the decision-making process. Thus, the NST is utilised in structuring the value 

assignment process in terms of 𝜌+  and 𝜌−  values while dealing with a DM’s 

uncertainty in the enhanced BWM. In fact, the NST provides a rating scale for DMs 

to express their level of confidence in terms of 𝜌+ and 𝜌− values.  Not utilising such 

a theory, the proposed enhanced BWM would not be able to structure the confidence 

value acquisitions and thus, DMs would find it difficult or impossible to express their 

confidence levels. The reasons to choose the NST out of other uncertainty theories are 

summarised as follows: 

(1) As indicated in Appendix E, fuzzy information and Fuzzy Set Theory (FST) 

has been commonly used in conjunction with the original BWM. Even though fuzzy 

set information proved handy, it is unable to express the information about rejection 

(Ashraf et al., 2019) which is effectively quantified in the NST by introducing the 

falsity-membership function. 



137 

 

(2) The NST has the capability to quantify the indeterminacy membership 

independently, which adds an extra level of suitability to it for structuring DMs’ 

confidence level. 

The research steps in this chapter is depicted in Figure 6.2 . 

 

Figure 6.2 Research steps in Phase III in the current chapter 

The research contributions in this chapter are summarised as follows: 

(I) The proposed STE-BWM (Section 4.4) which is a hybrid method of spanning 

trees enumeration and BWM is applied in order to help identification of the best and 

the worst energy risk dimensions in case that DMs were not able to choose only one 

best and one worst risk dimension with full confidence.  

(II) The proposed NE-BWM (Section 4.5) which considers the NST to structure 

a DM’s uncertainty in terms of 𝜌+  and 𝜌−  values is applied to prioritise the six energy 
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risk dimensions (the concept and mathematical definitions of neutrosophic logic is 

provided in Appendix A).  

(III) Two real-world cases are provided in Section 6.3 to demonstrate the 

applicability and efficacy of the proposed NE-BWM. The results are analysed in 21 

test problems under various 𝜌+ and 𝜌− values to verify the proposed NE-BWM.  

(IV) A new output measurement index, namely confidence difference ( CD ) for 

the NE-BWM is proposed and discussed.  

Finally, the obtained average weights in the original L-BWM, NL-BWM, and 

NE-BWM are computed and final ranking of energy risk dimensions is provided. 

6.2 Methodology  

The BWM, introduced by Rezaei (2015), is a relatively new method that has 

successfully attracted researchers’ attention from various fields since its introduction. 

The simplicity of use, the smaller number of pairwise comparisons, and more 

consistent comparisons compared to similar methods like the AHP, have made the 

BWM a reliable and popular method. The BWM can help DMs in defining criteria 

weights in a decision-making problem. The best and the worst criteria must be 

determined by a DM. Secondly, pairwise comparisons are carried out between each 

of the two criteria (i.e. best and worst) and other criteria. Then, the weights of criteria 

are determined by solving a minimax problem. In the following Section 6.2.1, and 

Section 6.2.2 applications of two extensions of the original BWM under uncertainty 

NE-BWM, and STE-BWM are explained, respectively. For computation steps of 

proposed methods of NE-BWM, and STE-BWM see Section 4.5, and Section 4.4, 

respectively. 

6.2.1 The NE-BWM  

Although the ranking of BWM appears reasonable, the degree of a DM’s confidence 

on the best-to-others preferences and others-to-worst preferences has been overlooked 

by giving equal importance to them in the original BWM. This is the motivation to 

propose the NE-BWM (Section 4.5). 

Applying the original BWM requires a DM to provide their best and worst 

criteria as well as corresponding pairwise comparisons while failing to notice their 

subjective confidence or uncertainty on separations 𝐼 and 𝐼𝐼. However, in real-world 
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decision-making, there are situations where a DM has more confidence on their 

provided evaluations on one separation rather than the other. Additionally, human 

judgements are biased by linguistic imprecision and vagueness; thus, in order to 

improve the outcome validity of the original BWM in real-world decision-making 

problems, considering uncertainty over separations 𝐼 and 𝐼𝐼 into the original BWM 

can be beneficial. This notion encouraged this study to improve the efficiency of the 

original BWM by introducing 𝜌+ and 𝜌−  namely the DM’s confidence on the best-

to-others preferences (the degree of certainty on Separation 𝐼) and the DM’s 

confidence on others-to-worst preferences (the degree of certainty on Separation 𝐼𝐼), 

respectively. The 𝜌+and 𝜌− values represent the degree of DM’s uncertainty about 

which criterion is the best and which one is the worst. This is because this uncertainty 

can be extended to pairwise comparisons and affect the confidence degree on 

separations 𝐼 and 𝐼𝐼. In fact, in the original BWM, the two separations’ values are 

considered as being equal to 1 (i.e. 𝜌+ = 1, and 𝜌− = 1). 

6.2.2 The STE-BWM  

As explained in Section 4.4, in the original BWM, a DM must be able to provide one 

decision-making criterion as the best and one decision-making criterion as the worst 

with certainty, assuming no hesitancy. In the real-world decision-making process 

applying the original BWM dealing with subjective judgements of human beings, it is 

not always straightforward for DMs to choose only one criterion as either the best or 

the worst, without any level of hesitancy. The BWM can only recognise one criterion 

as the best, and one criterion as the worst, and is unable to handle more than one 

criterion for each of the best, and the worst group. In this situation, where there would 

be more than one best, and more than one worst criteria, the STE can be applied to 

find out the one criterion as the best and one criterion as the worst. 

6.3 Case Study Analysis by NE-BWM 

Supply chain is a popular application area for the BWM in the literature (Mi et al., 

2019). In this section, two supply chain cases are conducted to verify the proposed 

NE-BWM. In both cases, 21 test problems are chosen based on Table 4.2 and 

calculated Consistency Index (CI) values (Section 4.5.1) for them as shown in 

Appendix G (Table G.1).  
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6.3.1 Parameters setting 

A partial factorial experiment has been conducted to obtain the 21 test problems 

including one original BWM test problem and 20 NE-BWM test problems based on 

various DM’s confidence levels (Table 4.2). Based on Table 4.2, 

 0.26,0.38,0.50,0.68,0.90,1.00
+
  and  0.26,0.38,0.50,0.68,0.90,1.00

−
=  can 

make 36 possible combinations in total that out of which, 21 combinations are chosen. 

The obtained 20 test problems in NE-BWM are considered as they provide all unique 

possible CI values (Appendix G). In Figure 6.3, all 20 combinations in NE-BWM 

analysis are depicted as represented in Table 6.3, and Table 6.7 which are test problems 

2 to 21. In one outcome out of 21, the NE-BWM problem would be equal to the 

original BWM problem where the DM is fully confident (i.e., 𝜌+ = 1 and 𝜌− = 1) 

and obviously zero confidence shall not be taken into consideration. 

 

 

Figure 6.3 The obtained 20 test problems 

6.3.2 Case 1: A supplier development problem 

Rezaei et al. (2015) discussed the supplier development problem applying the BWM 

to evaluate eight identified supplier capability criteria and obtain their weights. The 

eight criteria included supplier capability ( 1
c

C ), product quality capability ( 2
c

C ), 

delivery capability ( 3
c

C ), intangible capability ( 4
c

C ), service capability ( 5
c

C ), 

financial/cost capability ( 6
c

C ), sustainable capability 7( )c
C , and organisational 
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capability ( 8
c

C ). Here, the BWM evaluation data (Table 6.1 and Table 6.2) are utilised 

to compare the results of the original BWM, and the proposed NE-BWM in this case 

application. The best capability criterion is product quality capability ( 2
c

C ), and the 

worst capability criterion is organisational capability ( 8
c

C ) while 9BWa = . Based on 

the CI table in Rezaei (2015), the CR for the original BWM would be  

0.8599
0.1644

5.23
CR = = ,  the acceptable threshold proposed by Liang et al. (2019) is 

0.4587 which indicates the pair-wise comparisons are cardinally consistent based on 

output-based consistency measurement. 

Table 6.1 Best-to-others vector (Case 1) 

Criteria 1
c

C  2
c

C  3
c

C  4
c

C  5
c

C  6
c

C  7
c

C  8
c

C  

The best criterion ( 2
c

C ) 6 1 2 8 5 3 4 9 

 

Table 6.2 Others-to-worst vector (Case 1) 

Criteria 
The worst 

criterion ( 8
c

C ) 

1
c

C  2 

2
c

C  9 

3
c

C  8 

4
c

C  2 

5
c

C  3 

6
c

C  5 

7
c

C  4 

8
c

C  1 

In Table 6.3, the analysis of all test problems considering various  
+

 and 
−

 for the 

original and NE-BWM are provided. Calculated weights of all criteria along with 

numbered new rankings, the objective function value (
*

 ), and CR are shown in Table 

6.3.  
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Table 6.3 Analysis of 21 test problems in Case 1 

 Original BWM 

N


 
 *

1W  
*
2W  

*
3W  

*
4W  

*
5W  

*
6W  

*
7W  

*
8W  

*
  CR  

  0.0532 0.3093 0.2713 0.0393 0.0671 0.1299 0.0985 0.0314 0.8599 0.1644 

1 ranking (0) 6 1 2 7 5 3 4 8 - - 

 NE-BWM 

  *
1W  

*
2W  

*
3W  

*
4W  

*
5W  

*
6W  

*
7W  

*
8W  

*
  CR  

2 

0.26 + =  

0.0624 0.3210 0.2324 0.0371 0.0775 0.1348 0.1022 0.0325 0.2236 0.1827 

0.26 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

3 

0.26 + =  

0.0566 0.3125 0.2344 0.0417 0.0790 0.1379 0.1057 0.0322 0.2714 0.1895 

0.38 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

4 

0.26 + =  

0.0438 0.3018 0.2323 0.0442 0.0752 0.1648 0.1066 0.0314 0.3037 0.1964 

0.50 − =  

ranking (1) 7 1 2 6 5 3 4 8 - - 

5 0.26 + =  0.0648 0.2989 0.2333 0.0455 0.0786 0.1394 0.1081 0.0313 0.3719 0.2266 
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0.68 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

6 

0.26 + =  

0.0659 0.2832 0.2534 0.0450 0.0748 0.1431 0.1047 0.0298 0.4431 0.2603 

0.90 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

7 

0.26 + =  

0.0521 0.2890 0.2585 0.0467 0.0772 0.1382 0.1078 0.0305 0.4703 0.2733 

1.00 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

8 

0.38 + =  

0.0591 0.3038 0.2665 0.0351 0.0659 0.1420 0.0968 0.0308 0.3268 0.1827 

0.38 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

9 

0.38 + =  

0.0630 0.3154 0.2342 0.0402 0.0726 0.1372 0.1049 0.0323 0.3776 0.1872 

0.50 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

10 

0.38 + =  

0.0589 0.2864 0.2566 0.0406 0.0741 0.1537 0.1000 0.0297 0.4319 0.1945 

0.68 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 
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11 

0.38 + =  

0.0614 0.3002 0.2333 0.0450 0.0768 0.1392 0.1127 0.0314 0.5081 0.2155 

0.90 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

12 

0.38 + =  

0.0547 0.2902 0.2598 0.0442 0.0746 0.1354 0.1107 0.0304 0.5457 0.2274 

1.00 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

13 

0.50 + =  

0.0624 0.3207 0.2323 0.0395 0.0756 0.1349 0.1021 0.0325 0.4300 0.1827 

0.50 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

14 

0.50 + =  

0.0592 0.2953 0.2541 0.0416 0.0724 0.1484 0.0988 0.0303 0.5047 0.1879 

0.68 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

15 

0.50 + =  

0.0581 0.2984 0.2282 0.0424 0.0773 0.1604 0.1043 0.0310 0.5696 0.1947 

0.90 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

16 

0.50 + =  

0.0540 0.3063 0.2365 0.0449 0.0769 0.1407 0.1088 0.0319 0.5925 0.1975 

1.00 − =  
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ranking (0) 6 1 2 7 5 3 4 8 - - 

17 

0.68 + =  

0.0609 0.3131 0.2365 0.0362 0.0756 0.1463 0.0997 0.0318 0.5848 0.1826 

0.68 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

18 

0.68 + =  

0.0555 0.2929 0.2629 0.0418 0.0732 0.1462 0.0975 0.0300 0.6776 0.1873 

0.90 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

19 

0.68 + =  

0.0537 0.3141 0.2357 0.0452 0.0740 0.1387 0.1063 0.0323 0.7117 0.1897 

1.00 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

20 

0.90 + =  

0.0566 0.3021 0.2650 0.0422 0.0662 0.1411 0.0962 0.0306 0.7740 0.1826 

0.90 − =  

ranking (0) 6 1 2 7 5 3 4 8 - - 

 0.90 + =  

0.0564 0.3217 0.2352 0.0415 0.0714 0.1369 0.1042 0.0328 0.8203 0.1841 
21 1.00 − =  

 ranking (0) 6 1 2 7 5 3 4 8 - - 
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Figure 6.4 Trend and ranking of weights in 21 test problems in Case 1 

In Case 1, no severe changes in criteria weights have been observed after alterations 

in  +  and 
−

 (Figure 6.4). Only one new ranking (ranking 1) was observed in test 

problem 4 (Table 6.3 and Figure 6.4). The rest of the rankings remained the same as 

the original BWM’s ranking (test problem 1 and ranking 0). In all the rankings, 2W  

(i.e. weight of the best criterion, 2
c

C ) is at the top and 8W  (weight of the worst 

criterion 8
c

C ) lies at the lowest part of the diagram (Figure 6.4).  

Table 6.4 The NE-BWM weights analysis in Case 1 

Weights N Range Mean 
Ranks of 

Mean 

Std. 

Deviation 

Ranks of Std. 

Deviation 

1W  20 0.0221 0.0580 6 0.0051 4 

2W  20 0.0385 0.3033 1 0.0119 2 

3W  20 0.0383 0.2441 2 0.0135 1 

4W  20 0.0116 0.0420 7 0.0032 7 

5W  20 0.0131 0.0744 5 0.0035 6 

6W  20 0.0300 0.1430 3 0.0083 3 

7W  20 0.0165 0.1039 4 0.0047 5 

8W  20 0.0031 0.0313 8 0.0010 8 
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The descriptive statistics of 20 test problems (test problem 1 has not been considered 

because it regards the weights in the original BWM) in Case 1 and in the proposed 

NE-BWM are provided in Table 6.4. The standard deviations show that the weights 

of 3W  have been more spread out compared to others. Taking into consideration the 

ranking of mean values, no new ranking has been obtained.  

 

Figure 6.5 The CR-CD diagram in Case 1 

The CR values are moving upward in Case 1, as CD values increase, showing that the 

consistency of the comparisons will decrease. Its surge is more vivid while the CD is 

at the peak (Figure 6.5). The highest CD value (i.e. 0.74) appeared in test problem 7 

( 0.26 + =  and 1.00 − = ),  but, in test problem 7, the ranking remained unchanged 

(Table 6.3) compared to the original BWM. This point shows that merely an increasing 

CD does not necessarily lead to a change in the ranking, although it reduces the 

consistency of the DM’s comparisons. 

 

6.3.3 Case 2: A supply chain social sustainability problem 

Badri Ahmadi et al. (2017) applied the BWM to analyse eight identified social 

sustainability criteria in a developing economy context. Here, the criteria are assessed 

by the NE-BWM based on the provided evaluation data (Table 6.5 and Table 6.6). The 

social sustainability criteria are work safety and labour health ( 1SSC ),  training 
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education and community development ( 2SSC ), contractual stakeholders' influence (

3SSC ), occupational health and safety management system ( 4SSC ), interests and 

rights of employees ( 5SSC ),  rights of community ( 6SSC ), information disclosure 

7
)(SSC , and employment practices ( 8SSC ). The best social sustainability criterion is 

work safety and labour health ( 1SSC ) and the worst social sustainability criterion is 

rights of community 6
)(SSC  and 9BWa = . Based on the CI table in Rezaei (2015), 

the CR for the original BWM is obtained as  
1.7251

0.3298
5.23

CR = = . The threshold in 

this evaluation based on cardinal and output-based consistency measurement is 

0.4587 (Liang et al., 2019) indicating the pair-wise evaluations are consistent.  

 

Table 6.5 Best-to-others vector (Case 2) 

Criteria 1SSC  2SSC  3SSC  4SSC  5SSC  6SSC  7SSC  8SSC  

The best 

criterion (

1SSC ) 

1 3 5 4 5 9 5 7 

 

Table 6.6 Others-to-worst vector (Case 2) 

Criteria The Worst Criterion ( 6SSC ) 

1SSC  9 

2SSC  2 

3SSC  5 

4SSC  3 

5SSC  4 

6SSC  1 

7SSC  5 

8SSC  3 
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Table 6.7 Analysis of 21 test problems in Case 2 

 Original BWM 

N


  
*
1W  

*
2W  

*
3W  

*
4W  

*
5W  

*
6W  

*
7W  

*
8W  

*
  CR  

  0.3794 0.1206 0.1158 0.0981 0.0856 0.0354 0.1158 0.0492 1.7251 0.3298 

1 ranking (0) 1 2 3 4 5 7 3 6 - - 

 NE-BWM 

  
*
1W  

*
2W  

*
3W  

*
4W  

*
5W  

*
6W  

*
7W  

*
8W  

*
  CR  

2 

0.26 + =  

0.3431 0.1192 0.1048 0.1265 0.1048 0.0320 0.1048 0.0650 0.4485 0.3664 

0.26 − =  

ranking (1) 1 3 4 2 4 6 4 5 - - 

3 

0.26 + =  

0.3360 0.1075 0.1152 0.1426 0.0830 0.0322 0.1152 0.0683 0.5417 0.3783 

0.38 − =  

ranking (2) 1 4 3 2 5 7 3 6 - - 

4 

0.26 + =  

0.3410 0.0650 0.1269 0.1405 0.0935 0.0334 0.1269 0.0728 0.6014 0.3890 

0.50 − =  

ranking (3) 1 6 3 2 4 7 3 5 - - 

5 0.26 + =  0.3433 0.0950 0.1389 0.0704 0.1091 0.0344 0.1389 0.0700 0.6575 0.4007 
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0.68 − =  

ranking (4) 1 4 2 5 3 7 2 6 - - 

6 

0.26 + =  

0.3411 0.0602 0.1474 0.0776 0.1125 0.0349 0.1474 0.0791 0.6983 0.4103 

0.90 − =  

ranking (5) 1 6 2 5 3 7 2 4 - - 

7 

0.26 + =  

0.3196 0.0601 0.1410 0.1222 0.1081 0.0329 0.1410 0.0752 0.7147 0.4153 

1.00 − =  

ranking (6) 1 6 2 3 4 7 2 5 - - 

8 

0.38 + =  

0.3509 0.0743 0.1071 0.1542 0.1071 0.0327 0.1071 0.0665 0.6555 0.3664 

0.38 − =  

ranking (7) 1 4 3 2 3 6 3 5 - - 

9 

0.38 + =  

0.3552 0.0712 0.1179 0.1491 0.0841 0.0338 0.1179 0.0708 0.7553 0.3745 

0.50 − =  

ranking (8) 1 5 3 2 4 7 3 6 - - 

10 

0.38 + =  

0.3662 0.0973 0.1335 0.0621 0.1097 0.0357 0.1335 0.0621 0.8573 0.3862 

0.68 − =  

ranking (9) 1 4 2 5 3 6 2 5 - - 
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11 

0.38 + =  

0.3552 0.0650 0.1401 0.0715 0.1145 0.0354 0.1401 0.0783 0.9364 0.3971 

0.90 − =  

ranking (5) 1 6 2 5 3 7 2 4 - - 

12 

0.38 + =  

0.3556 0.0665 0.1441 0.0727 0.1084 0.0357 0.1441 0.0727 0.9624 0.4010 

1.00 − =  

ranking(10) 1 5 2 4 3 6 2 4 - - 

13 

0.50 + =  

0.3552 0.1234 0.1085 0.0963 0.1085 0.0331 0.1085 0.0665 0.8625 0.3664 

0.50 − =  

ranking(11) 1 2 3 4 3 6 3 5 - - 

14 

0.50 + =  

0.3371 0.1095 0.1131 0.1143 0.1131 0.0322 0.1131 0.0677 1.0091 0.3757 

0.68 − =  

ranking (7) 1 4 3 2 3 6 3 5 - - 

15 

0.50 + =  

0.3629 0.1152 0.1325 0.0617 0.0971 0.0354 0.1325 0.0627 1.1304 0.3863 

0.90 − =  

ranking(12) 1 3 2 6 4 7 2 5 - - 

16 

0.50 + =  

0.3571 0.1113 0.1344 0.0642 0.0993 0.0351 0.1344 0.0642 1.1716 0.3905 

1.00 − =  
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ranking(13) 1 3 2 5 4 6 2 5 - - 

17 

0.68 + =  

0.3762 0.1307 0.1149 0.0687 0.1149 0.0351 0.1149 0.0447 1.1731 0.3664 

0.68 − =  

ranking(11) 1 2 3 4 3 6 3 5 - - 

18 

0.68 + =  

0.3358 0.1121 0.1117 0.1440 0.1050 0.0320 0.1117 0.0478 1.3554 0.3747 

0.90 − =  

ranking(14) 1 3 4 2 5 7 4 6 - - 

19 

0.68 + =  

0.3738 0.1227 0.1284 0.0614 0.0925 0.0359 0.1284 0.0568 1.4204 0.3786 

1.00 − =  

ranking(15) 1 3 2 5 4 7 2 6 - - 

20 

0.90 + =  

0.3428 0.1191 0.1047 0.1507 0.1016 0.0320 0.1047 0.0445 1.5526 0.3664 

0.90 − =  

ranking(14) 1 3 4 2 5 7 4 6 - - 

 0.90 + =  

0.3731 0.1088 0.1176 0.0717 0.1176 0.0350 0.1176 0.0586 1.6447 0.3692 

21 1.00 − =  

 ranking(16) 1 3 2 4 2 6 2 5 - - 
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Figure 6.6 Trend and ranking of weights in 21 test problems in Case 2 

Table 6.7 shows the analysis of 21 test problems in Case 2 and indicates that by taking 

into account various  +  and 
−

 values in 20 test problems of the NE-BWM, no 

ranking equal to the original BWM ranking has been obtained (Table 6.7). Figure 6.6 

depicts the trend and rankings of weights in each test problem in Case 2. The best 

criterion’s weight ( 1W ) is considerably higher than other weights, which has made 

other diagrams closer to each other and consequently has resulted in various rankings 
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under different  +  and 
−

 values (Figure 6.6). In total, 16 new rankings are obtained 

in addition to the ranking provided by the original BWM (Table 6.7). 

Table 6.8 The NE-BWM weights analysis in Case 2 

Weights N  Range Mean 
Ranks of 

mean 

Std. 

deviation 

Ranks of std. 

deviation 

1W  20 0.0566 0.3511 1 0.0148 3 

2W  20 0.0706 0.0967 5 0.0246 2 

3W  20 0.0427 0.1241 2 0.0141 4 

4W  20 0.0928 0.1011 4 0.0363 1 

5W  20 0.0346 0.1042 3 0.0099 6 

6W  20 0.0039 0.0339 7 0.0015 7 

7W  20 0.0427 0.1241 2 0.0141 4 

8W  20 0.0346 0.0647 6 0.0101 5 

 

The descriptive statistics of 20 test problems in Case 2 in the proposed NE-BWM are 

provided in Table 6.8. The standard deviation values show that weights of 4W  have 

changed more erratically. The mean values of weights in Case 2 have generated a new 

unique ranking. This result indicates that the mean weight may be able to represent an 

aggregated weight ranking by taking into account all of the uncertainties. 

Figure 6.7 The CR-CD diagram in Case 2 
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Like Case 1, the CR CD−  diagram in Case 2 has an increasing trend, which means 

the greater the  CD value, the higher CR , and the lower the consistency (Figure 6.7). 

The CR CD−  diagram in Case 2, has a more erratic trend compared to Case 1. 

6.3.4 Discussion on case studies 

The NE-BWM analyses show that in Cases 1 and 2, various weight rankings were 

obtained under different  +  and 
−

 values in 21 test problems. In both cases, there 

are 8 criteria with the same 9BWa = . Additionally, with reference to the original 

BWM (i.e. NL-BWM), it was resulted that 0.1644CR =  (Case 1) and 0.3298CR =  

(Case 2). Under various  DMs’ confidence levels on separations I and II  (i.e.  +  

and 
−

 values), sixteen new rankings were obtained in Case 2 and only one new 

ranking in Case 1 (Table 6.3 and Table 6.7). Obtaining so many or few new different 

rankings distinctive to the original BWM ranking represents how the resulted ranking 

can be influenced and altered by DMs’ uncertain opinions compared to the original 

BWM. It shows that under uncertainty the original BWM might not be generating the 

most suitable and reliable result, which validates the need for an uncertainty extension 

of the original BWM.  

In this study, a new measurement index of the NE-BWM output ( CD ) has been 

proposed to better explain the consistency alteration in the provided comparisons. 

Results in both Cases show that an increase in the CD values, would raise the CR 

values, which indicates lower consistency in the comparisons and the DMs’ 

judgements (Figure 6.5 and Figure 6.7). This means that the consistency of evaluations 

is susceptible to an unbalanced confidence of DMs on the two separations I and II  

(i.e. a higher CD value). This shows the integration of uncertainty with the BWM can 

lead to higher inconsistency as was already indicated in the literature.  

The changes in CR values are more erratic in Case 2 (Figure 6.7). The CR value 

in the original BWM in Case 2 (i.e. 0.3298CR = ), is higher than its corresponding 

value in Case 1 (i.e. 0.1644CR = ). The reason for the more erratic change in CR in 

Case 2 can be due to the fact that its CR value in the original BWM shows higher 

inconsistency than in Case 1. Thus, the effect of a change in DMs’ confidence on 

separations I and II  (CD value alterations) would be more influential on CR values 
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in Case 2 (noting that in the original BWM there is a full confidence on the separations 

I and II ). 

It is also concluded that there is no direct relation between CD and a change in 

ranking in the test problems of Cases 1 and 2. For instance, having the highest CD 

value (i.e. 0.74) in Case 1 did not alter the rankings. However, in Case 2, having the 

slightest CD value alterations produced new rankings. This finding shows CD alone 

cannot contribute to a change in ranking and CR values should be taken into 

consideration. Suppose, a DM is completely confident on their comparisons and has 

chosen best, and worst criteria (i.e. 1.00 + = , 1.00 − = , and 0)CD =  but the 

comparisons are suffering from a high CR value. In this instance, it would cause the 

outcome rankings to become more sensitive to a little scepticism of a DM on their 

choice about either Separation I  or Separation II  (an uncertain DM, or 0CD  ). 

The overall outcomes from case studies can be summarised as follows:  

(I) The new NE-BWM model can change the final ranking of the criteria 

weights. This change in ranking just represents how the resulted ranking can be 

influenced and altered by DMs’ uncertain opinions compared to the full confident 

deterministic approach of DMs in the original BWM. This result shows that under 

uncertain real-world applications, the original BWM might not be able to generate the 

most suitable criteria weights and consequently the most reliable ranking because it 

presumes that DMs are fully confident, and there is no room for hesitancy.  

(II) With growing inconsistency, the DMs’ degree of confidence on the 

separations I and II can play a more critical role in obtaining new rankings. In other 

words, when the original BWM comparisons are consistent (smaller CR  values) then 

the proposed NE-BWM cannot significantly affect the criteria weights and rankings 

under various  +  and 
−

values in different test problems. It means that the final 

ranking and weights are more sensitive to the inconsistency of comparisons under 

various  +  and 
−

 values in different test problems.  

(III) An increase in CD  values, meaning an unbalanced confidence of DMs on 

the two separations I and II would raise the CR  values indicating less consistency in 

comparisons.  
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(IV) The changes in CR  values can be more erratic due to higher inconsistency, 

which makes the changes in CR  more susceptible to CD  value alterations.  

(V) The mean values of weights can represent an aggregated weight and produce 

a unique ranking (i.e. in Case 2, Table 6.8). In some circumstances, applying this 

aggregated weight might be helpful. This would include situations where acquiring 

the DMs’ confidence is impossible because the data is already gathered or for re-

analysing the other original BWM studies by the NE-BWM.  

 

6.4 Data Collection 

The required primary data in the form of pair-wise comparisons for the 

implementation of the original BWM, NE-BWM, and STE-BWM are obtained from 

5 UK energy experts out of 31 experts who already participated in Phase 𝐼𝐼 of the 

research (Chapter 5) and have related strong expertise. Initially, 16 out of 31 experts 

who were capable to provide valuable insights on the six identified risk dimensions 

were contacted and 5 of them participated in this phase of the thesis by providing their 

evaluations. The data is collected through an online survey. In Table 6.9, the best (most 

critical), and worst (least critical) energy risk dimensions identified by experts are 

presented. 

Table 6.9 Most and least critical risks determined by experts 

 
Identified as most critical 

by experts 

Identified as least critical by 

experts 

AF: Affordability 1  

ND: Natural Disasters 4  

IA: Industrial Action  1, 5 

CC: Climate Change 2, 3, 5  

ST: Sabotage/Terrorism 4 3 

PI: Political Instability  2, 4 

 

In Table 6.10, the best-to-other vectors and in Table 6.11, the others-to-worst vectors 

based on the evaluations provided by experts are shown.  
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Table 6.10 Best-to-others vectors  

Experts 
The most 

critical risk 
PI ND IA CC ST AF 

1 AF 1 3 5 2 4 1 

2 CC 9 8 3 1 9 5 

3 CC 5 3 3 1 4 7 

4 
ND 7 1 4 3 1 5 

ST 7 1 4 3 1 5 

5 CC 6 2 8 1 2 3 

  

Table 6.11 Others-to-worst vectors  

Experts 1 2 3 4 5 

The least 

critical risk 
IA PI ST PI IA 

ND 2 6 4 7 7 

CC 3 9 9 5 9 

ST 1 5 1 7 7 

AF 5 7 5 4 5 

PI 4 1 3 1 3 

IA 1 5 5 3 1 

 

In Table 6.12, the confidence levels of each expert are provided and can be used in the 

NE-BWM analysis. The applied scale is presented in Table 4.2 and the questions were 

utilised to acquire the confidence levels can be seen in Appendix F.   

Table 6.12 Confidence levels 

Experts 
confidence on the 

best-to-others 
𝜌+ 

confidence on the 

others-to-worst 
𝜌− 

1 Fairly high 0.68 Fairly high 0.68 

2 Medium 0.50 Medium 0.50 

3 Fairly high 0.68 Medium 0.50 

4 Fairly high 0.68 Medium 0.50 

5 High 0.90 High 0.90 
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The CR values are all in acceptable threshold lower than 0.1 based on Liang et al. 

(2019).  

6.5 Analysis  

In this section, the analysis of the STE-BWM, NE-BWM, and original BWM (L-

BWM, and NL-BWM) based on the acquired data in Section 6.4 are provided. All the 

optimisations are carried out by using the LINGO 18.0.  

6.5.1 The STE-BWM application 

As can be seen in Table 6.9, and Table 6.10; expert 4, hesitated in choosing only one 

best criterion (i.e. the most critical) between Natural Disasters (ND) and Sabotage and 

Terrorism (ST); that is why both were selected. This was made possible through the 

provided survey. Thus, following the proposed steps of STE-BWM explained in 

Section 4.4, the best criterion for expert 4, can be realised.  

Step 1: The identified set of risk dimensions are 𝑁 = {𝐴𝐹,𝑁𝐷, 𝐼𝐴, 𝐶𝐶, 𝑆𝑇, 𝑃𝐼} 

Step 2: The best and worst set of risk dimensions based on expert 4 are Θ = {𝑁𝐷, 𝑆𝑇} 

and Γ = {𝑃𝐼}. Thus, |Θ| = 2, and |Γ| = 1, then the STE calculations must be carried 

out two times (i.e. |Θ| × |Γ| = 2 ). One time for ND and PI, and the second time for 

ST and PI. 

6.5.1.1 The EAST analysis for ND and PI 

The EAST as explained in Appendix H is applied here.  

Step 1: The identified set of risk dimensions are 𝐶 = {𝐴𝐹, 𝑁𝐷, 𝐼𝐴, 𝐶𝐶, 𝑆𝑇, 𝑃𝐼}  

Step 2: Based on provided pair-wise comparison vectors by expert 4 for ND (i.e. the 

best risk dimension), and PI (i.e. the worst risk dimension) as shown in Table 6.10, 

and Table 6.11 the incomplete pair-wise comparison matrix 𝐴 can be obtained (Table 

6.13). The utilised scale is presented in Table E.1 in Appendix E. 
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Table 6.13 The incomplete pair-wise comparison matrix A by expert 4 (ND and PI) 

  1 2 3 4 5 6 

  AF ND IA CC ST PI 

1 AF 1 0.20    𝟒 

2 ND 𝟓 1 𝟒 𝟑 𝟏 𝟕 

3 IA  0.25 1   𝟑 

4 CC  0.33  1  𝟓 

5 ST  1.00   1 𝟕 

6 PI 0.25 0.14 0.33 0.20 0.14 1 

 

Step 3: The corresponding graph 𝐺 of the pair-wise comparison matrix 𝐴 (Table 6.13) 

is produced as shown in Figure 6.8.  

 

 

Figure 6.8 The undirected (a), and directed (b) graph G of the matrix A (ND and PI)  
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Step 4: The Kirchhoff’s matrix-tree theorem (Theorem B.3 in Appendix B) is used to 

obtain the total number of spanning trees. It is known that for each tree, 𝑛 − 1 = 6 −

1 = 5 edges are needed and as can be seen in Figure 6.8, the obtained graphs have 9 

edges. It indicates that at most there will be (9
5
) =

9!

5!×4!
= 126 potential trees and by 

using the Kirchhoff’s matrix-tree theorem, the total number of spanning trees can be 

obtained as 𝜂 = 48 (see Table C.1 in Appendix C). 

According to the Kirchhoff’s matrix-tree theorem (Theorem B.3 in Appendix 

B), the degree matrix and adjacency matrix of graph 𝐺 are shown in Equation (6.1), 

and Equation (6.2), respectively. 

         𝐷(𝐺) =

[
 
 
 
 
 
2 0 0 0 0 0
0 5 0 0 0 0
0
0
0
0

0
0
0
0

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 5]

 
 
 
 
 

 (6.1) 

 

 

         𝐴(𝐺) =

[
 
 
 
 
 
0 1 0 0 0 1
1 0 1 1 1 1
0
0
0
1

1
1
1
1

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0]

 
 
 
 
 

 (6.2) 

Then the Laplacian matrix of graph 𝐺 is obtained as represented in Equation (6.3) 

 
𝐿(𝐺) = 

2 -1 0 0 0 -1 

-1 5 -1 -1 -1 -1 

0 -1 2 0 0 -1 

0 -1 0 2 0 -1 

0 -1 0 0 2 -1 

-1 -1 -1 -1 -1 5 
 

(6.3) 

 

𝐿∗(𝐺) can be attained by omitting any row and the corresponding column of the 

Laplacian matrix (for instance, by removing row 1 and column 1 or row 2 and column 

2 and so on). Then, |𝐿∗(𝐺)| = 48 which is the total number of spanning trees for the 
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graph G (Figure 6.8) of the incomplete pairwise comparison matrix A (Table 6.13). 

Ultimately, the Gray code algorithm can be used to generate all 48 spanning trees as 

shown in Table C.1 in Appendix C. 

Step 5: the weights of six risk dimensions in each of the 48 spanning trees are 

calculated. The weight of 𝑖𝑡ℎ risk dimension (𝑖 = 1,… , 6) in 𝑘𝑡ℎ spanning tree (𝑘 =

1,… ,48) is denoted as 𝑤𝑖
(𝑘)

 and computed based on Equations (H.49) and (H.50) in 

Appendix H. All weights are shown in Table 6.14 

Table 6.14 Weights of risk dimensions in all spanning trees (ND and PI) 

  weights 

No. Arcs in spanning trees 1: AF 2: ND 3: IA 4: CC 5: ST 6: PI 

1 a21, a26, a36, a25, a24 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

2 a21, a26, a25, a24, a23 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

3 a21, a36, a25, a24, a23 0.0698 0.3488 0.0872 0.1163 0.3488 0.0291 

4 a21, a26, a36, a24, a56 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

5 a21, a36, a25, a24, a56 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

6 a21, a26, a36, a25, a46 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

7 a21, a36, a25, a24, a46 0.0714 0.3571 0.0714 0.1190 0.3571 0.0238 

8 a21, a36, a25, a24, a16 0.0732 0.3659 0.0549 0.1220 0.3659 0.0183 

9 a26, a36, a25, a24, a16 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

10 a21, a36, a24, a56, a23 0.0816 0.4082 0.1020 0.1361 0.2381 0.0340 

11 a21, a25, a24, a56, a23 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

12 a21, a26, a24, a56, a23 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

13 a21, a24, a46, a56, a23 0.0863 0.4317 0.1079 0.1439 0.2014 0.0288 

14 a21, a25, a46, a56, a23 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

15 a21, a36, a46, a56, a23 0.0789 0.3947 0.0987 0.1645 0.2303 0.0329 

16 a21, a26, a46, a56, a23 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

17 a24, a16, a46, a56, a23 0.1119 0.4196 0.1049 0.1399 0.1958 0.0280 

18 a25, a16, a46, a56, a23 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

19 a36, a16, a46, a56, a23 0.1250 0.3750 0.0938 0.1563 0.2188 0.0313 

20 a26, a16, a46, a56, a23 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

21 a21, a16, a46, a56, a23 0.0952 0.4762 0.1190 0.1190 0.1667 0.0238 

22 a21, a36, a25, a46, a23 0.0678 0.3390 0.0847 0.1412 0.3390 0.0282 
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23 a21, a25, a24, a46, a23 0.0702 0.3509 0.0877 0.1170 0.3509 0.0234 

24 a21, a26, a25, a46, a23 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

25 a26, a25, a24, a16, a23 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

26 a36, a25, a24, a16, a23 0.1111 0.3333 0.0833 0.1111 0.3333 0.0278 

27 a21, a25, a24, a16, a23 0.0706 0.3529 0.0882 0.1176 0.3529 0.0176 

28 a21, a36, a25, a46, a56 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

29 a21, a36, a24, a46, a56 0.0882 0.4412 0.0882 0.1471 0.2059 0.0294 

30 a21, a26, a36, a46, a56 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

31 a26, a36, a24, a16, a56 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

32 a36, a25, a24, a16, a56 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

33 a21, a36, a24, a16, a56 0.0960 0.4800 0.0720 0.1600 0.1680 0.0240 

34 a26, a36, a25, a16, a46 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

35 a36, a25, a24, a16, a46 0.0930 0.3488 0.0698 0.1163 0.3488 0.0233 

36 a21, a36, a25, a16, a46 0.0755 0.3774 0.0566 0.0943 0.3774 0.0189 

37 a25, a24, a16, a56, a23 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

38 a36, a24, a16, a56, a23 0.1290 0.3871 0.0968 0.1290 0.2258 0.0323 

39 a26, a24, a16, a56, a23 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

40 a21, a24, a16, a56, a23 0.0916 0.4580 0.1145 0.1527 0.1603 0.0229 

41 a25, a24, a16, a46, a23 0.0914 0.3429 0.0857 0.1143 0.3429 0.0229 

42 a36, a25, a16, a46, a23 0.1081 0.3243 0.0811 0.1351 0.3243 0.0270 

43 a26, a25, a16, a46, a23 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

44 a21, a25, a16, a46, a23 0.0727 0.3636 0.0909 0.0909 0.3636 0.0182 

45 a36, a24, a16, a46, a56 0.1143 0.4286 0.0857 0.1429 0.2000 0.0286 

46 a36, a25, a16, a46, a56 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

47 a26, a36, a16, a46, a56 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

48 a21, a36, a16, a46, a56 0.1000 0.5000 0.0750 0.1250 0.1750 0.0250 

 

Step 6: Finally, by getting the arithmetic average of all weights for each risk 

dimension (i.e. EAST) based on Equation (H.51) in Appendix H or geometric average 

(i.e. GMAST) based on Equation (H.52) in Appendix H, the final weight of each risk 

dimension can be obtained as shown in Table 6.15.  
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Table 6.15 Average weights of all spanning trees and rankings of risks (ND and PI) 

 AF ND IA CC ST PI 

EAST 0.1010 0.3444 0.0938 0.1410 0.2858 0.0341 

Ranking 4 1 5 3 2 6 

GMAST 0.0943 0.3392 0.0913 0.1360 0.2788 0.0327 

Ranking 4 1 5 3 2 6 

 

6.5.1.2 The EAST analysis for ST and PI 

The EAST as explained in Appendix H is applied here, similar to previous Section 

6.5.1.1.  

Step 1: The identified set of risk dimensions are 𝐶 = {𝐴𝐹, 𝑁𝐷, 𝐼𝐴, 𝐶𝐶, 𝑆𝑇, 𝑃𝐼}  

Step 2: The incomplete pair-wise comparison matrix 𝐴 can be obtained as shown in 

Table 6.16. It is constructed based on provided pair-wise comparison vectors by expert 

4 for ST (i.e. the best risk dimension), and PI (i.e. the worst risk dimension) as shown 

in Table 6.10, and Table 6.11.  

Table 6.16 The incomplete pair-wise comparison matrix A by expert 4 (ST and PI) 

  1 2 3 4 5 6 

  AF ND IA CC ST PI 

1 AF 1    0.20 𝟒 

2 ND  1   1.00 𝟕 

3 IA   1  0.25 𝟑 

4 CC    1 0.33 𝟓 

5 ST 𝟓 𝟏 𝟒 𝟑 1 𝟕 

6 PI 0.25 0.14 0.33 0.20 0.14 1 

 

Step 3: The corresponding graph 𝐺 of the pair-wise comparison matrix 𝐴 (Table 6.16) 

is produced as shown in Figure 6.9.  
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Figure 6.9 The undirected (a) and directed (b) graph G of the matrix A (ST and PI) 

Step 4: The Kirchhoff’s matrix-tree theorem (Theorem B.3 in Appendix B) is used to 

obtain the total number of spanning trees as 𝜂 = 48 (see Table K.1 in Appendix K).  

According to the Kirchhoff’s matrix-tree theorem (Theorem B.3 in Appendix 

B), the degree matrix and adjacency matrix of graph 𝐺 are shown in Equations (6.4) 

and Equation (6.5), respectively. 

         𝐷(𝐺) =

[
 
 
 
 
 
2 0 0 0 0 0
0 2 0 0 0 0
0
0
0
0

0
0
0
0

2 0 0 0
0 2 0 0
0 0 5 0
0 0 0 5]

 
 
 
 
 

 (6.4) 
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         𝐴(𝐺) =

[
 
 
 
 
 
0 0 0 0 1 1
0 0 0 0 1 1
0
0
1
1

0
0
1
1

0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0]

 
 
 
 
 

 (6.5) 

 

Then, the Laplacian matrix of graph 𝐺 is obtained as represented in Equation (6.6) 

 

 
𝐿(𝐺) = 

2 0 0 0 -1 -1 

0 2 0 0 -1 -1 

0 0 2 0 -1 -1 

0 0 0 2 -1 -1 

-1 -1 -1 -1 5 -1 

-1 -1 -1 -1 -1 5 
 

(6.6) 

 

𝐿∗(𝐺) can be obtained by omitting any row and the corresponding column of the 

Laplacian matrix. As a result, |𝐿∗(𝐺)| = 48 which is the total number of spanning 

trees for the graph 𝐺 (Figure 6.9) of the incomplete pairwise comparison matrix 𝐴 

(Table 6.16). Finally, a Gray code algorithm can be used to generate all the 48 

spanning trees as shown in Table K.1 in Appendix K. 

Step 5: The weights of six risk dimensions in each of the 48 spanning trees are 

calculated. The weight of 𝑖𝑡ℎ risk dimension (𝑖 = 1,… , 6) in 𝑘𝑡ℎ spanning tree (𝑘 =

1,… ,48) is denoted as 𝑤𝑖
(𝑘)

 and computed based on Equation (H.49) in Appendix H, 

and Equation (H.50) in Appendix H. All weights are shown in Table 6.17. 
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Table 6.17 Weights of risk dimensions in all spanning trees (ST and PI) 

  weights 

No. Arcs in spanning trees 1: AF 2: ND 3: IA 4: CC 5: ST 6: PI 

1 a16, a26, a36, a46, a56 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

2 a16, a26, a36, a46, a54 0.1143 0.2000 0.0857 0.1429 0.4286 0.0286 

3 a16, a26, a36, a56, a54 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

4 a16, a26, a36, a46, a53 0.1250 0.2188 0.0938 0.1563 0.3750 0.0313 

5 a16, a26, a46, a56, a53 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

6 a16, a26, a36, a46, a52 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

7 a16, a36, a46, a56, a52 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

8 a16, a26, a36, a46, a51 0.1000 0.1750 0.0750 0.1250 0.5000 0.0250 

9 a26, a36, a46, a56, a51 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

10 a16, a26, a56, a53, a54 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

11 a16, a26, a46, a53, a54 0.1119 0.1958 0.1049 0.1399 0.4196 0.0280 

12 a16, a26, a36, a53, a54 0.1290 0.2258 0.0968 0.1290 0.3871 0.0323 

13 a16, a56, a52, a53, a54 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

14 a16, a46, a52, a53, a54 0.0914 0.3429 0.0857 0.1143 0.3429 0.0229 

15 a16, a36, a52, a53, a54 0.1111 0.3333 0.0833 0.1111 0.3333 0.0278 

16 a16, a26, a52, a53, a54 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

17 a56, a51, a52, a53, a54 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

18 a46, a51, a52, a53, a54 0.0702 0.3509 0.0877 0.1170 0.3509 0.0234 

19 a36, a51, a52, a53, a54 0.0698 0.3488 0.0872 0.1163 0.3488 0.0291 

20 a26, a51, a52, a53, a54 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

21 a16, a51, a52, a53, a54 0.0706 0.3529 0.0882 0.1176 0.3529 0.0176 

22 a16, a36, a46, a52, a54 0.0930 0.3488 0.0698 0.1163 0.3488 0.0233 

23 a16, a36, a56, a52, a54 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

24 a16, a26, a36, a52, a54 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

25 a26, a36, a46, a51, a54 0.0882 0.2059 0.0882 0.1471 0.4411 0.0294 

26 a26, a36, a56, a51, a54 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

27 a16, a26, a36, a51, a54 0.0960 0.1680 0.0720 0.1600 0.4800 0.0240 

28 a16, a36, a46, a52, a53 0.1081 0.3243 0.0811 0.1351 0.3243 0.0270 

29 a16, a46, a56, a52, a53 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

30 a16, a26, a46, a52, a53 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 
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31 a26, a36, a46, a51, a53 0.0789 0.2303 0.0987 0.1645 0.3947 0.0329 

32 a26, a46, a56, a51, a53 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

33 a16, a26, a46, a51, a53 0.0952 0.1667 0.1190 0.1190 0.4762 0.0238 

34 a26, a36, a46, a51, a52 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

35 a36, a46, a56, a51, a52 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

36 a16, a36, a46, a51, a52 0.0755 0.3774 0.0566 0.0943 0.3774 0.0189 

37 a26, a56, a51, a53, a54 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

38 a26, a46, a51, a53, a54 0.0863 0.2014 0.1079 0.1439 0.4317 0.0288 

39 a26, a36, a51, a53, a54 0.0816 0.2381 0.1020 0.1361 0.4082 0.0340 

40 a16, a26, a51, a53, a54 0.0916 0.1603 0.1145 0.1527 0.4580 0.0229 

41 a36, a56, a51, a52, a54 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

42 a36, a46, a51, a52, a54 0.0714 0.3571 0.0714 0.1190 0.3571 0.0238 

43 a26, a36, a51, a52, a54 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

44 a16, a36, a51, a52, a54 0.0732 0.3659 0.0549 0.1220 0.3659 0.0183 

45 a46, a56, a51, a52, a53 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

46 a36, a46, a51, a52, a53 0.0678 0.3390 0.0847 0.1412 0.3390 0.0282 

47 a26, a46, a51, a52, a53 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

48 a16, a46, a51, a52, a53 0.0727 0.3636 0.0909 0.0909 0.3636 0.0182 

 

Step 6: Eventually, by getting the arithmetic average of all weights for each risk 

dimension (i.e. EAST) based on Equation (H.51) in Appendix H or geometric average 

(i.e. GMAST) based on Equation (H.52) in Appendix H, the final weight of each risk 

dimension can be obtained as shown in Table 6.18.  

Table 6.18 Average weights of all spanning trees and rankings of risks (ST and PI) 

 AF ND IA CC ST PI 

EAST 0.1010 0.2858 0.0938 0.1410 0.3444 0.0341 

Ranking 4 2 5 3 1 6 

GMAST 0.0943 0.2788 0.0913 0.1360 0.3392 0.0327 

Ranking 4 2 5 3 1 6 
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6.5.1.3 Results 

In this section, the obtained results and rankings from the EAST analysis for Natural 

Disasters (ND) and Political Instability (PI) (Table 6.15), and for Sabotage and 

Terrorism (ST) and Political Instability (PI) (Table 6.18), are incorporated to reach a 

conclusion that which one of Natural Disasters (ND) or Sabotage and Terrorism (ST) 

should be the best risk dimension based on the data obtained from expert 4. The 

aggregated weights and final rankings obtained from EAST and GMAST methods are 

represented in Table 6.19.  

Table 6.19 Aggregated weights and final rankings from EAST and GMAST 

  EAST   

  ND and PI ST and PI Average Ranking 

AF 𝑤1 0.1010065335 0.1010065335 0.1010065335 4 

ND 𝑤2 0.3443855204 0.2857569085 0.3150712145 1 

IA 𝑤3 0.0937656585 0.0937656585 0.0937656585 5 

CC 𝑤4 0.1409772290 0.1409772290 0.1409772290 3 

ST 𝑤5 0.2857569085 0.3443848954 0.3150709020 2 

PI 𝑤6 0.0341081492 0.0341081492 0.0341081492 6 

  GMAST   

  ND and PI ST and PI Average Ranking 

AF 𝑤1 0.0942570944 0.0942570944 0.0942570944 4 

ND 𝑤2 0.3391580310 0.2788162447 0.3089871379 1 

IA 𝑤3 0.0912640382 0.0912640382 0.0912640382 5 

CC 𝑤4 0.1360483960 0.1360483960 0.1360483960 3 

ST 𝑤5 0.2788162447 0.3391575505 0.3089868976 2 

PI 𝑤6 0.0327443216 0.0327443216 0.0327443216 6 

 

As it is shown in Table 6.19, Natural Disasters (ND) has a bit higher weight compared 

to the weight of Sabotage and Terrorism (ST) in both EAST and GMAST methods. 

Thus, in the BWM analysis the Natural Disasters (ND) has been chosen as the best 

risk dimension suggested by expert 4.  
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6.5.2 The BWM and NE-BWM applications 

In this section, using the data provided in Table 6.10 and Table 6.11 and the outcome 

of the STE-BWM using EAST and GMAST methods (Section 6.5.1), the original 

linear and non-linear BWM (L-BWM and NL-BWM) and the proposed NE-BWM are 

applied to prioritise the six energy risk dimensions. Note that, it is assumed in this 

analysis that all participated experts acquire relatively equal knowledge and expertise. 

Therefore, all experts are treated with equal level of importance weights in this study. 

The obtained weights from the applied methods as well as the final ranks of the risk 

dimensions are provided in Table 6.20 and Figure 6.10. The findings reveal that CC is 

the most critical energy risk dimension followed by ND, AF, ST, IA and PI.    

Table 6.20 Weights and rankings of risks and aggregated final ranking  

Risks L-BWM NL-BWM NE-BWM Average 
Final 

ranks 

AF 0.1447 (4) 0.1794 (2) 0.1824 (2) 0.1688 3 

ND 0.1810 (2) 0.1752 (3) 0.1726 (3) 0.1763 2 

IA 0.1189 (5) 0.1319 (5) 0.0843 (6) 0.1117 5 

CC 0.3023 (1) 0.2455 (1) 0.2889 (1) 0.2789 1 

ST 0.1467 (3) 0.1570 (4) 0.1586 (4) 0.1541 4 

PI 0.1064 (6) 0.1110 (6) 0.1131 (5) 0.1102 6 

 

 

Figure 6.10 Weights and order of risk dimensions 
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6.6 Discussion 

The applications of two proposed extended BWM under uncertain decision-making 

(i.e. NE-BWM and STE-BWM) were presented. The aim was the prioritisation of the 

six most important energy risk dimensions which have been obtained from the 

previous phase of thesis (Chapter 5). The results were compared to two original BWM 

including L-BWM and NL-BWM. As shown in Table 6.20, and Figure 6.10, the 

average weights have been used to introduce the final order of energy risk dimensions. 

The aggregated weights revealed that Climate Change (CC) is the most critical one 

followed by Natural Disasters (ND), Affordability (AF), Sabotage and Terrorism 

(ST), Industrial Action (IA), and Political Instability (PI), respectively. The Climate 

Change (CC) and Natural Disasters (ND) stood at the top of the list. Thus, it is of 

critical importance that policy makers focus on the Climate Change (CC), and Natural 

Disasters (ND) and identify the most critical Climate Change (CC), and Natural 

Disasters (ND) risk elements to the UK energy system.    

The subjective uncertainty of the involved experts has been considered in two 

major ways as shown in STE-BWM for expert 4, and in NE-BWM for all experts. In 

the data collection survey, experts were provided with the opportunity to offer their 

opinions of the best (i.e. the most critical) and the worst (i.e. the least critical) risk 

dimension in terms of a set of criteria instead of only considering one single criterion. 

It was aimed at capturing uncertainty of experts in situations when there is a hesitancy 

or indeterminacy to choose one single risk dimension. Thus, as can be seen in Table 

6.9 and Table 6.10, expert 4 had the hesitancy to choose only one best risk dimension 

(i.e. the most critical) over Natural Disasters (ND), and Sabotage and Terrorism (ST) 

and selected both of them as the best ones. The analysis results of the STE (i.e. EAST 

and GMAST) were shown in Section 6.5.1 and revealed that ND was marginally 

preferred over ST by expert 4, although they were not able to choose with absolute 

certainty only one risk dimension but with the aid of the STE method (i.e. 

EAST/GMAST) this issue has been overcome and the best risk dimension has been 

realised. Therefore, in the rest of the calculation steps in the BWM, and NE-BWM, 

Natural Disasters (ND) risk dimension was considered as the most important one 

recommended by expert 4.   

Regarding the proposed NE-BWM, in order to capture the experts’ uncertainty 

in selecting the best and worst risk dimension and subsequently the resulted 
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comparisons in the original BWM, two parameters were proposed which are defined 

as 0 1
+

   and 0 1
−

  . In other words, in the original BWM, obtaining the 

weights of risks was irrespective of how certain an expert was about the two 

separations ( I and II ). The reason was that the two separations ( I and II ) were 

treated with equal importance while in real-world decision-making problems it would 

not be the case, mainly due to experts’ indeterminacy in selecting the best and worst 

risks and consequently in the provided comparisons. As shown in Section 6.3, the 

performance of the proposed NE-BWM was also verified in two real-world case 

studies before its actual implementation in the energy risk dimensions analysis (See 

the Discussion in Section 6.3.4). In general, this lack of confidence could result from 

two interdependent causes: (1) hesitancy in opting the best and worst criteria, and/or 

(2) uncertainty or lack of confidence in the provided preferences (separations I and 

II ). The  +  and 
−

 are subjective values which can be dealt with by capturing the 

experts’ opinions. Based on the NST (Table 4.2),  +  and 
−

represent the experts’ 

degree of confidence on separations I and II . In the original BWM, either L-BWM 

or NL-BWM, experts are supposed to have the highest possible confidence on the two 

separations (i.e. 1
+
=  and 1

−
= ), in fact it is assuming experts have no uncertainty 

which is not realistic. 
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6.7 Conclusions 

In this chapter, the application of the two proposed methods STE-BWM and NE-

BWM in obtaining the final ranking of the six significant UK energy risk dimensions 

resulted from the previous phase of the thesis (Chapter 5) was shown. The objective 

was to develop and apply two extensions of the BWM (i.e. STE-BWM and NE-BWM) 

so as to prioritise important energy risks obtained from the interrelationship analysis 

in previous chapter. Thus, objectives in this chapter were twofold:  

(1) to theoretically enhance the BWM method  

(2) to practically apply it in the UK energy supply chain risks prioritisation in order 

to show the applicability of methodological extensions of the BWM as well as 

confirming the most critical risk dimensions which were identified in the previous 

chapter. 

The findings revealed that Climate Change (CC) is the most critical energy risk 

dimension followed by Natural Disasters (ND), Affordability (AF), Sabotage and 

Terrorism (ST), Industrial Action (IA), and Political Instability (PI).  

This study focused on representing the applicability of the methodological 

development of the original BWM in terms of capturing uncertainty. It revealed a need 

to improve the original BWM and proposed an extension of the method based on the 

NST called NE-BWM as well as STE-BWM which is based on spanning trees 

enumeration methods (EAST and GMAST).  

The degree of the experts’ confidence on the best-to-others preferences 

(Separation 𝐼), and others-to-worst preferences (Separation 𝐼𝐼) have been overlooked 

in the original BWM. The NE-BWM was proposed to overcome the explained 

shortcomings of the original BWM in the real-world under uncertainty applications. 

The validity of the proposed NE-BWM was analysed in two real-world cases in supply 

chain management.  In each case, 20 test problems were analysed and compared with 

one test problem of the original NL-BWM. The CR calculation in the NE-BWM was 

also elaborated in detail. Furthermore, a new measurement index named CD  was 

proposed which takes into consideration the extent of the discrepancy between the 

DMs’ evaluations on the separations 𝐼 and 𝐼𝐼. The NE-BWM can assist decision 

makers achieve more reliable rankings in real-world decision-making problems.  
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The STE-BWM would strengthen the capability of the original BWM (either L-BWM 

or NL-BWM) in capturing experts’ uncertainty by offering them the opportunity to 

choose the best set and the worst set of criteria (i.e. risk dimensions) compared to 

choosing only one criterion as the best and one as the worst as is common in the 

original BWM.  

6.7.1 Limitations and future research directions 

Regarding the verification of the proposed NE-BWM, there is a limitation about the 

small number of application cases which might make it rather hard to generalise the 

findings from the proposed NE-BWM. The other limitation is about the complexity 

of implementation of the proposed STE-BWM which makes it costly and time 

consuming and not handy for all researchers in spite of its promising merits. An 

additional limitation is a common one among MCDM methods which is about limited 

number of involved experts. The reason might partly be due to the difficulty of 

recruiting higher number of experts from multidisciplinary fields such as risks in 

energy supply chain management. 

In future studies, a Monte Carlo simulation can be a suitable choice to overcome 

the issue of a limited number of application cases which can improve the 

generalisability of results. For instance, by a larger sample or numerical simulations 

the generalisability of the obtained relationship between CD and CR in our case 

studies can be confirmed. Secondly, given that uncertainty leads to higher 

inconsistency (i.e., it has been confirmed that a higher CD value would result in a 

higher CR value), thus, there would be a necessity for processes that mitigate 

inconsistency to be further investigated. Thirdly, the proposed model can also be 

compared to the other uncertainty extensions of the original BWM integrated with 

uncertainty theories like FST. Using the idea of Interval Valued Neutrosophic Sets 

(IVNS) as another future research direction can be a suitable alternative to SVNS. It 

can be applied in conjunction with the enhanced BWM, in order to structure the 

confidence rating scale more properly by shifting from a single point to an interval. 
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Chapter 7 Risk Mitigation Analysis  

7.1 Introduction and Background 

In the previous chapter, it was found that Climate Change (CC), and Natural Disasters 

(ND) are the most critical energy risk dimensions in the UK energy supply chain. As 

a result, the next step of this thesis focuses on an innovative risk mitigation modelling 

based on the Concept of Stratification (CST) (see Section 3.6), game theory (see 

Section 3.7) and Shared Socio-economic Pathway (SSP) (see Section 7.2). The aim is 

to deal with the most significant natural disaster risk to the UK infrastructure (i.e. 

flooding) for the long-term policy making (between 5 to 20 years) with reference to 

the UK socio-economic status. In Figure 7.1, the details of the study in Chapter 7 are 

highlighted.  

 

Figure 7.1 Final phase of the research carried out in this chapter 

The UK has been a pioneer in developing a national evaluation of climate change risks 

(Warren et al., 2018), and has been ranked 8th least vulnerable, and 14th most ready 
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for climate change in 2016, based on Notre Dame Global Adaptation Initiative (ND-

GAIN) (Chen et al., 2015). In the UK, within the 2008 Climate Change Act there has 

been an obligation for the UK Government to evaluate the risks of current and 

estimated impacts of climate change through Climate Change Risk Assessment 

(CCRA) reports (Warren et al., 2018). The aim is to inform priorities for the UK 

Government’s National Adaptation Programme (NAP). Two rounds of CCRA have 

been done so far, implementing different methodologies which are CCRA1 in 2012, 

and CCRA2 in 2017. The CCRA2 was carried out in partnership with the Adaptation 

Sub-Committee (ASC) (Warren et al., 2016). Warren et al. (2016) explains that in 

CCRA2, the goal was to determine where immediate actions are required over the 

five-year period of NAP (2018-2022) by recognising adaptation choices.  

The CCRA2 recognised flooding and coastal change as one of the six risks with 

high priority in need of urgent action in the UK. Flooding is also recognised as a 

critical risk to infrastructure by CCRA2 (Committee on Climate Change, 2019; Sayers 

et al., 2015). Flooding in the UK is expected to increase while flood damage costs the 

UK around £1.3 billion yearly (Committee on Climate Change, 2012). By the 2080s, 

flooding can cost the UK approximately £27 billion yearly under a high global 

emission scenario (Foresight Future Flooding, 2004). In Figure 7.2, with reference to 

CCRA2, top six areas of inter-connected climate change risks for the UK is provided. 

The definition of urgency categories are presented as follows (Committee on Climate 

Change, 2016): 

1. More action needed: It indicates that new, and stronger government policies or 

implementation activities are required so as to decrease long-term vulnerability to 

climate change. 

2. Research priority: It emphasises the need for research in order to fill the gap and 

eliminate the uncertainty and evaluate further required actions. 

3. Sustain current action: It states that the current or planned activities are good 

enough and should be continued. 

4. Watching brief: It indicates that evidence should be kept under review considering 

long-term risk levels monitoring so as to ensure proper action can be taken if needed. 



177 

 

The categories more action needed, and research priority are more urgent compared 

to sustain current action, and watching brief. 

 

 

Figure 7.2 The top six UK climate change risks (Committee on Climate Change, 2016) 

 

The CCRA2 estimates that there is a large increase in both the number of people at 

risk from flooding and related costs in the future, if no extra adaptation above current 

levels is put in place (Committee on Climate Change, 2019). Additionally, Dawson et 

al. (2018) indicated that flooding can result in severe disruptions and damage to power 

stations compared to other infrastructure assets (see Table 7.1 adapted from Dawson 

et al. (2018)).  
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Table 7.1 Various infrastructure assets at risk from flooding in the UK (%) 

 Source of flooding 

 
River or coastal 

Surface 

water 
Groundwater 

Power stations 41 6 18 

Railway track 17 9 17 

Railway stations 14 3 16 

Motorways and A-roads 9 6 9 

Clean water and wastewater treatment 

plants 

33 12 24 

 

The way that climate change risks can affect the UK energy supply chain can be 

realised better by taking a systemic approach (Figure 7.3) with reference to Dawson 

et al. (2018). As it is shown in Figure 7.3, energy supply chain risks can be recognised 

as the systemic risks which are located at the bottom of the provided framework.  
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Figure 7.3 A systemic approach to climate change risk assessment framework for 

infrastructures (Dawson et al., 2018) 

Knowing that, the literature strongly indicates that flooding is a crucial natural disaster 

threatening infrastructure and life in the UK. In this study, it is tried to introduce a 

useful decision analysis model from the realm of decision making in order to enhance 

long-term policy making in a flooding risk mitigation strategy selection. The focus of 

this research is on flooding in the Highland and Argyll district in Scotland. The reason 

is that the expected annual flood damage in Scotland is £252 million (56% river 

flooding, 23% surface water flooding, and 21% coastal flooding) within 2016-2021. 

This amount can be increased considering the climate change effects as well as 

challenges to mitigation and adaptation that the country might face in its long-term 

planning (Kenyon, 2007; SEPA, 2016). This considerable cost of flooding has sparked 

interest in flood risk assessment by policy makers necessitating sophisticated 

techniques to deal with long-term strategy selection via informed decisions. The 
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Scottish Environment Protection Agency (SEPA) is the Scotland’s strategic flood risk 

management authority and has provided strategies for 14 local plan districts in 

Scotland. Among them, Highland and Argyll district has 4600 residential and 2700 

non-residential properties which are at risk of flooding in the region with estimated 

annual damage across the region accrued to £26.5 million (SEPA, 2015) indicating 

the critical risk of flooding in the region.  

The effects of flooding as a serious natural disaster in the UK can threaten the 

energy generation and distribution efficiency in the UK energy supply chain as the 

relationship between floods and energy infrastructure including generation and 

distribution is strong (Figure 7.4) (Dawson et al., 2018). It has been also indicated in 

the literature that taking into account uncertainty is critical for properly incorporating 

resilience into flood risk management programs. Additionally, a flood management 

program shall be assessed against a more comprehensive set of criteria such as those 

related to climate change adaptation (Associated Programme on Flood Management, 

2015).   

 

Figure 7.4 Relationships between climate hazards and infrastructure sectors [adapted 

from (Dawson et al., 2018)] 
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The contributions of this study are listed as follows: 

(I) A novel stratified decision-making model is introduced on the basis of the Concept 

of Stratification (CST), game theory, and Shared Socio-economic Pathway (SSP). 

(II) Managing impacts of flooding risk in the Highland and Argyll region in Scotland 

by identifying the most suitable strategies and proposing the priorities for action based 

on a novel stratified decision-making model. It is important to know that 4600 

residential and 2700 non-residential properties are at risk of flooding in the region 

with estimated annual damage across the region accrued to £26.5 million (SEPA, 

2015). This amount can increase in the next years due to climate change and UK socio-

economic status. This would necessitate the need for such a decision model for long-

term decision making due to importance of the issue in the region.       

7.2 Methodology  

The applied model is named stratified decision-making model which is based on the 

stratified model of game of chance involving risk that was explained in detail in 

Section 4.6. The main contribution of this model is proposing a stratified decision-

making modelling for long-term decision making. It considers system’s dynamics on 

the basis of the CST, game theory and SSP. The most suitable flooding risk mitigation 

strategies have been selected by taking into account the dynamic of the UK challenges 

to adaptation and mitigation based on SSP and flooding risk impacts based on MI, 

MO, and SV levels. The theories which are utilised in the applied model are CST and 

game theory which are explained in Section 3.6 and Section 3.7, respectively. Here, 

the SSP is explained. The SSP as discussed in Kriegler et al., (2012) defines two 

dimensions of Challenges to Adaptation and Challenges to Mitigation explained in 

the following parts: 

Challenges to Adaptation:  

Socio-economic conditions that, in the absence of climate-related policies, 

would result in higher vulnerability, and less adaptation capacity for a given level of 

climate change (Kriegler et al., 2012). 
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Challenges to Mitigation: 

Socio-economic conditions that in the absence of climate-related policies, 

would result in higher emissions, and poorly suited technological, or institutional 

conditions to reduce emissions (Kriegler et al., 2012). 

The nine possible SSPs based on the three-point scale on each dimension are presented 

in Figure 7.5. In this study, the three SSPs (i.e. SSP1, SSP5, and SSP9) are considered 

for simplicity. The SSP1, SSP5, and SSP9 correspond to low, moderate, and high 

challenges to adaptation and mitigation, respectively.  

 

Figure 7.5 Nine SSPs on two dimensions of challenges to mitigation and adaptation 

The obtained solutions in game theory are generally acquired via considering the 

interaction between the involved players. This process can be recognised in a form of 

“interactive decision theory” (Zhao et al., 2012). In decision making, not only the 

outcome from a particular strategy is seldom fully predictable but also the strategy-

performance relationships would not remain unchanged. This indicates the importance 

of adaptive decision making depending on the observed performances of previous 

choices. This can be more crucial when other decision circumstances change 

simultaneously (Kahneman and Tversky, 1979; Lee, 2008). Game theory has been 

called the science of strategic decision making (Kelly, 2003). However, in some 

games like games of chance (i.e. one-player game against nature), the dynamic change 

of various states of the system in a long-term decision-making time frame has been 

overlooked. In games of chance, the current state of the system has been considered 

unchanged during the decision-making timescale. This fixed state of the game makes 

the obtained decision useful in a longer time frame if only the current state at the time 
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of arriving to a decision persists, which in reality occurs rarely. The reason for this 

shortcoming might be due to lack of a proper theory to formulate dynamic change of 

states throughout a longer decision-making period.    

This study benefited from integration of CST and game of chance involving risk 

to overcome the explained gap in the long-term decision analysis. The model 

introduces a novel decision-making framework for long-term decision-making 

planning. The proposed model is a stratified decision-making model under risk or a 

stratified decision-making model of game of chance involving risk. In this study, it is 

named as a stratified decision-making model. Colman (1982) explained that games of 

chance are called “individual decision making under risk or uncertainty”. The 

stratified model is surmised to be cogently an effective methodology for interpreting 

the interplay between socio-economic situations and natural disasters in this study to 

make an optimum decision in the longer timescale. The outcomes of a game of chance 

depend partly on the player's choices and partly on nature, who is a second player. A 

number of DMs, experts or players can get involved to provide the parameters' values. 

Although the player does not know with certainty what moves will be made by nature, 

they know the meaningful probability of each of nature's responses and therefore the 

approximate probability of success for each of their strategies or actions. In this study, 

to show the applicability of the proposed decision model (Section 4.6), the model is 

utilised to evaluate flooding risk mitigation strategies in the Highland and Argyll 

district in Scotland, considering the dynamic nature of socio-economic situations and 

climate hazards severity impact levels in the long-term. 

The CST, as explained in Section 3.6 is a computational system where the 

elements of computation are strata of data. An example of a system with a stratified 

structure can be a multi-layer perception (Zadeh, 2016). The stratified approach has 

gained attention in the academic literature. However, there are only a handful of 

studies exploring the capability of CST to date. For instance, Asadabadi (2018) 

developed a Stratified MCDM (S-MCDM). Asadabadi and Zwikael (2019) proposed 

an extended version of stratified MCDM in order to address an important challenge 

of time and cost estimations in project management. Asadabadi et al. (2017) showed 

the practicality of CST in the field of logistic informatics modelling and revealed how 

the user would benefit from hybrid utilisation of Fuzzy Inference System (FIS) and 

CST. Asadabadi et al. (2018) discussed and proposed Bi-Objective CST (BO-CST) 
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and Fuzzy Bi-Objective CST (FBO-CST) models for the unequal importance 

objective weights in the original CST.  

7.3 Data Collection 

The data collection has been carried out in two stages: (1) screening; and (2) actual 

data collection.  

1) Screening stage 

In screening stage, 57 potential experts with sufficient knowledge and expertise in 

flood management have been chosen based on search of relevant websites and 

databases. Then, they were sent a short survey to self evaluate their level of knowledge 

and expertise in flood risk management in Scotland using a scale 1 to 100. Those who 

gave themselves a value greater than 70 have been considered for the actual data 

collection. Regarding the defined criteria, 13 experts have been chosen for the next 

actual stage of data collection.   

2) Actual stage 

In actual data collection, 13 surveys have been sent to experts and 10 responses have 

been received which have been considered for analysis. Thus, the data is collected 

from 10 flooding experts in the region of Scotland who participated in the online 

survey to answer the provided questions. In Appendix L, the questions used in the 

survey are explained in detail. The survey questions are constructed based on the 

rating scales provided in Table 7.2, and Table 7.3. In Table 7.2, the linguistic scale 

utilised by experts for estimating the utility values of each flooding risk mitigation 

strategy is provided.  
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Table 7.2 The verbal scale for obtaining utility values 

Linguistic Phrase Score SVTNN 
Expected 

Utility 

No Effectiveness (NE) 0 <(0,0,0,0);0,0,0> 0 

Low Effectiveness (LE) 1 <(0.2,0.3,0.4,0.5);0.6,0.2,0.2> 0.26 

Fairly Low Effectiveness 

(FLE) 
2 <(0.3,0.4,0.5,0.6);0.7,0.1,0.1> 0.38 

Medium Effectiveness 

(ME) 
3 <(0.4,0.5,0.6,0.7);0.8,0,0.1> 0.50 

Fairly High Effectiveness 

(FHE) 
4 <(0.7,0.8,0.9,1);0.8,0.2,0.2> 0.68 

High Effectiveness (HE) 5 <(1,1,1,1);0.9,0.1,0.1> 0.90 

Absolutely High 

Effectiveness (AHE) 
6 <(1,1,1,1);1,0,0> 1 

 

The following rating scale (Table 7.3) is introduced based on Haase et al. (2013) and 

Govindan et al. (2015) to obtain the estimated status transition and outcome transition 

probabilities. The Trapezoidal Intuitionistic Fuzzy Number (TrIFN) is a type of 

intuitionistic number which is explained in Appendix A that is applied here to capture 

subjective uncertainty of experts in the probability estimations.  

Table 7.3 The rating scale used for acquiring probability estimations  

Linguistic Phrase Score TrIFNs 
Expected 

probability 

Almost Zero (AZ) 0 (0,0,0,0) , (0,0,0,0)
 

0 

Very Small (VS) 1 ,0.3)(0,0.1,0.2 , ,0.3)(0,0.1,0.2
 

0.15 

Small (S) 2 ,0.5)(0,0.2,0.3 , .3,0.4)(0.1,0.2,0
 

0.25 

Moderate (M) 3 .5,0.7)(0.2,0.4,0 , .5,0.6)(0.3,0.4,0
 

0.45 

Large (L) 4 .7,0.9)(0.4,0.6,0 , .7,0.8)(0.5,0.6,0
 

0.65 

Very Large (VL) 5 .9,1)(0.7,0.8,0 , .9,1)(0.7,0.8,0
 

0.85 

Almost Certain (AC) 6 (1,1,1,1) , (1,1,1,1)
 

1 
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7.4 Analysis 

As explained previously, the region Highland and Argyll in Scotland has been 

considered in this study. The recommended strategies can manage flood risk (i.e. a 

major climate hazard in the UK) to energy infrastructure as shown in Table 7.5 (SEPA, 

2015). 

The proposed model considers both the socio-economic status of the UK 

influencing the adaptation options utilising the concept of SSP (i.e. low challenges to 

mitigation and adaptation, moderate challenges to mitigation and adaptation, high 

challenges to mitigation and adaptation) (Kriegler et al., 2012), and impact level of 

the flooding risk (i.e. mild, moderate and severe) to the energy infrastructure. The 

model also considers the transitions between various possible states in a longer 

timeframe (5 to 20 years) by taking into account the transition probabilities between 

socio-economic status, and flooding risks. This helps provide a model that can be 

more reliable in identifying the most effective strategies for long-term planning.  

The benefits obtained from strategies in each state (payoff or utility values) 

would not be always easy to assess precisely in quantitative values. Especially when 

the strategies include policy, regulatory, and community responses in addition to 

engineering responses. It is indicated that much of the evidence of adaption activity 

for UK infrastructures concentrates on engineering responses rather than policy, 

regulatory or community responses and the reason is that for engineering responses 

quantitatively assessing the benefits is typically easier (Dawson et al., 2018).  

To categorise climate hazards based on impact severity, three levels of Mild 

(MI), Moderate (MO), and Severe (SV) are chosen regarding the flood risk matrix of 

Scottish Flood Forecasting Service (SFFS) (Figure 7.6). As shown in Figure 7.6, the 

potential impacts of flooding (river, tidal/coastal, and surface water) can be 

categorised in four levels of minimal, minor, significant, and severe based on the SFFS 

(2014). However, knowing minimal and minor levels are very close, thus for the sake 

of simplicity in later computational steps and considering other international 

definitions like Malaysian National Security Council (2003), just a level mild (MI) 

has been defined along with moderate (MO) and severe (SV). The provided three 

levels of MI, MO, and SV are well representative of the impact severity of floods. The 
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three levels 𝐼, 𝐼𝐼 and III or MI, MO, and SV have been defined respectively as follows 

(Rahman, 2012):  

Level 𝐼, or MI 

Climate hazards are controllable and with no possibility of spreading out. They are 

not complicated and may cause a small damage to life and property. 

Level 𝐼𝐼, or MO 

Climate hazards cover a wide range area and have potential to spread out while 

affecting public daily activities. They would possibly cause damage to a large number 

of properties and could cause loss of life. Their complexity level is higher than level 

𝐼 and in terms of search and rescue are very challenging but could be controlled by 

the government.  

Level 𝐼𝐼𝐼, or SV 

Any disaster caused at this level is more complex in nature compared to other levels 

and affects a wide area (more than two provinces) while causing the highest damage 

possible to life and property. 

The risk assessment can be carried out on the basis of impact and likelihood of 

flooding to give a combined risk as shown in Figure 7.6. In this study, just the potential 

impact of flooding is considered in three levels of MI, MO, and SV in the introduced 

model, and likelihood of flooding risk is not considered as this would need to be based 

on climate modelling which is not the focus of this thesis. 

 

Figure 7.6 Flood risk matrix and overall flood risk (SFFS, 2014) 
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Floods can have direct or indirect damages. Direct flood damages are related to 

immediate effects of flood water with built, natural or human environments. Indirect 

damages cover disruptions of transportation and economy which influence people’s 

income (Associated Programme on Flood Management, 2015).  

It is assumed that the socio-economic situation can cause Low (L), Moderate 

(M), or High (H) challenges to mitigation and adaptation based on the SSP (Figure 

7.5). Furthermore, the impact of flooding can be MI, MO, or SV. Thus, the stratified 

game table with three statuses (𝑁 = 3) and three outcomes (𝑀 = 3) can be 

constructed as shown in Table 7.4.  

Table 7.4 The stratified game table of flood risk management for N=3 and M=3 
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Table 7.5 Flooding risk management strategies (SEPA, 2015)   

No. Strategy Characteristics 

1 Awareness raising Raising public awareness of flood risk is a duty of responsible authorities. Enhanced awareness of 

individuals, homes, and businesses regarding flood risk and related measures can lessen the total 

impact. 

2 Emergency plans/response Many organisations have responsibility to provide an emergency response to flooding, including local 

authorities and emergency services. This response may be supported by the work of voluntary 

organisations. 

3 Flood forecasting Issuing flood warnings by the Scottish Flood Forecasting Service (SFFS) via offering daily flood 

guidance statements can provide the public with information to lower the impacts of flooding on their 

business.  

4 Self help Property and business owners can make sure they are protected against flood damage by taking simple, 

yet effective steps such as arranging a flood plan or property level protection via registering at Floodline 

and the Resilient Communities Initiative. 

5 Maintenance It is of local authorities’ duty to evaluate watercourses and do clearance and repair works where such 

actions would significantly minimise flood risk. 

6 Planning policies The Scottish Planning Policy supports a catchment scale approach for sustainable flood risk 

management. It suggests that new development in areas with medium to high likelihood of flooding 

should be avoided. 
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7.4.1 Scenario settings for inputs in CST 

The performance of the considered strategies is evaluated in 5 to 20-year planning 

horizon via the proposed model. The influence of inputs on the state change should 

be evaluated in the understanding that state 1 is the target state and cannot be 

improved. Incremental enlargement in CST as a tool to identify possible paths towards 

the target state is considered in various ways in each Scenario (Section 3.6).   

7.4.1.1 Scenario 1: optimistic improvement  

In this scenario, all possible improvements are considered even those which can make 

an enormous difference. That is transition by incremental enlargement from the worst 

state to the best state is possible. 

7.4.1.2 Scenario 2: cautious improvement  

In this scenario, the state transitions are occurring towards the improvement of the 

system or not becoming worse. The incremental enlargement takes place at one step 

towards the target state which means inputs of the system cannot make the transition 

possible from a very poor situation to the very best situation in one move, indicating 

cautious or more realistic improvement. 

Table 7.6 Tabular CST for the flood risk management example 

tSE  
Socio-economic 

situation 
Flooding hazard 

t+1SE  

Scenario 1 Scenario 2 

𝟏 L MI 1 1 

𝟐 L MO 1,2 1,2 

𝟑 L SV 1,2,3 2,3 

𝟒 M MI 1,4 1,4 

𝟓 M MO 1,2,4,5 1,2,4,5 

𝟔 M SV 1,2,3,4,5,6 2,3,5,6 

𝟕 H MI 1,4,7 4,7 

𝟖 H MO 1,2,4,5,7,8 4,5,7,8 

𝟗 H SV 1,2,3,4,5,6,7,8,9 5,6,8,9 

State 1 is the target state. Inputs can be categorised into variables partly in control or 

out of control like climate change and natural disasters; and in control of the system 

analysts and associated authorities such as economic policies. In this study, only the 

outcomes and resulted states under various scenarios are considered.  
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7.4.2 Parameters settings 

In this section, parameters setting for the status and outcome transition probabilities 

and utility function values are explained.  

7.4.2.1 Status and outcome transition probability values 

In scenario 1, the values of 𝑝11 = 1, 𝑝12 = 𝑝13 = 𝑝23 = 0 , and 𝑞11 = 1, 𝑞12 = 𝑞13 =

𝑞23 = 0 are fixed. In scenario 2, the values of 𝑝11 = 1, 𝑝12 = 𝑝13 = 𝑝23 = 𝑝31 = 0 , 

and 𝑞11 = 1, 𝑞12 = 𝑞13 = 𝑞23 = 𝑞31 = 0  are fixed as shown in Table 7.7 and 

Appendix L. Status and outcome transitions are explained in Section 4.6.2 and Section 

4.6.3. Other probabilities can change based on the experts’ opinions and collected data 

(Table 7.7). The average of obtained values from experts are taken into consideration 

and all experts’ opinions are treated with the same level of importance. Details about 

the utilised surveys and how probability values are acquired can be seen in Appendix 

L. 

Table 7.7 Status and outcome transition probabilities setting for different scenarios based on 

average experts’ opinions 

Scenario 𝟏: optimistic 

Status transition probability matrix Outcome transition probability matrix 

P  

11
p = 1

 12
p = 0

 13
p = 0

 

Q  

11
q = 1

 12
q = 0

 13
q = 0

 

21
p = 0.37

 22
p = 0.63

 23
p = 0

 21
q = 0.43

 22
q = 0.57

 23
q = 0

 

31
p = 0.35

 32
p = 0.40

 33
p = 0.25

 31
q = 0.32

 32
q = 0.34

 33
q = 0.34

 

Scenario 2: cautious 

Status transition probability matrix Outcome transition probability matrix 

P  

11
p = 1

 12
p = 0

 13
p = 0

 

Q  

11
q = 1

 12
q = 0

 13
q = 0

 

21
p = 0.46

 22
p = 0.54

 23
p = 0

 21
q = 0.44

 22
q = 0.56

 23
q = 0

 

31
p = 0

 32
p = 0.39

 33
p = 0.61

 31
q = 0

 32
q = 0.44

 33
q = 0.56

 

 

In Figure 7.7, the graphical CST with transition probabilities based on optimistic 

scenario (scenario 1) is depicted. The values are calculated based on the provided 

probabilities in Table 7.7  and Equation (4.30). The pseudo code for the calculation of 

the state transition probability matrix presented in Table 4.7 can be helpful in the 

calculation process. 
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Figure 7.7 Graphical CST with transition probabilities for the flood risk planning (scenario 

1) 

In Figure 7.8, the graphical CST with transition probabilities based on cautious 

scenario (scenario 2) is provided. 

 

Figure 7.8 Graphical CST with transition probabilities for the flood risk planning (scenario 

2) 
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7.4.2.2 Utility values 

Based on the rating scale provided in Table 7.2, and the survey explained in Appendix 

L, the utility values of strategies are obtained on the basis of the average values offered 

by all experts (Table 7.8).  

Table 7.8 Utility values  

   outcome 

status strategy MI MO SV 

L 

1 Awareness raising 0.5960 0.5140 0.5400 

2 
Emergency 

plans/response 
0.5450 0.5110 0.5050 

3 Flood forecasting 0.5110 0.5100 0.5320 

4 Self help 0.4620 0.4720 0.4460 

5 Maintenance 0.4820 0.4880 0.4800 

6 Planning policies 0.4670 0.4770 0.4650 

M 

1 Awareness raising 0.4720 0.5250 0.5480 

2 
Emergency 

plans/response 
0.5520 0.5120 0.5143 

3 Flood forecasting 0.5730 0.5860 0.6080 

4 Self help 0.4940 0.5160 0.5180 

5 Maintenance 0.4960 0.4850 0.5700 

6 Planning policies 0.5350 0.5680 0.5970 

H 

1 Awareness raising 0.5613 0.6220 0.5310 

2 
Emergency 

plans/response 
0.5220 0.5680 0.5460 

3 Flood forecasting 0.6547 0.6310 0.6450 

4 Self help 0.5140 0.5620 0.5600 

5 Maintenance 0.6430 0.6200 0.6830 

6 Planning policies 0.6180 0.6240 0.6000 

 

In Figure 7.9, the trend of utility values for each strategy under various flooding risk 

impact levels, and socio-economic status are depicted.  
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Figure 7.9 Utility values for each strategy under various flooding risk impact levels, and socio-economic status determined by experts  
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7.4.3 Results 

The after-transition utility decision matrices for scenario 1 (Table 7.9), and scenario 2 

(Table 7.11) are calculated based on Equation (4.34), and Table 4.8. The EMVs are 

also calculated based on Equation (4.35). The calculations are carried out under the 

assumption of equal current state probabilities (i.e. 0.11). The current state is the state 

at the present time of planning with current or very near future that the socio-economic 

status and flooding risk impact can be framed.  If we are 100% sure about the current 

state, then this will get the probability 1 and other states will get probabilities of zero 

and automatically will be removed from the EMV calculation. In Section 7.5, the 

sensitivity analysis of the current state probabilities under various schemes are 

provided. Table 7.10, and Table 7.12 provide rankings of strategies under equal current 

state probabilities in scenarios 1 and 2, respectively. 

The analysis findings suggest that in the area of Highland and Argyll in Scotland 

the best long-term flood mitigating strategy is flood forecasting (i.e. Strategy 3) 

followed by awareness raising (i.e. Strategy 1), emergency plans/response (i.e. 

Strategy 2), planning policies (i.e. Strategy 6), maintenance (i.e. Strategy 5), and self 

help (i.e. Strategy 4), respectively.  
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Table 7.9 The after-transition utility decision matrix (scenario 1) 

Current state 

probability 
𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏  

Strategies 1SE  2SE  3SE  4SE  5SE  6SE  7SE  8SE  9SE  EMV 

Strategy 𝟏 0.5960 0.5493 0.5491 0.5179 0.5196 0.5282 0.5377 0.5421 0.5414 𝟎. 𝟓𝟑𝟔𝟗 

Strategy 𝟐 0.5450 0.5256 0.5198 0.5494 0.5279 0.5235 0.5421 0.5327 0.5286 𝟎. 𝟓𝟐𝟕𝟒 

Strategy 𝟑 0.5110 0.5104 0.5178 0.5501 0.5545 0.5629 0.5717 0.5711 0.5778 𝟎. 𝟓𝟒𝟐𝟎 

Strategy 𝟒 0.4620 0.4677 0.4600 0.4822 0.4922 0.4913 0.4878 0.5017 0.5013 𝟎. 𝟒𝟕𝟖𝟏 

Strategy 𝟓 0.4820 0.4854 0.4834 0.4908 0.4881 0.5048 0.5279 0.5233 0.5383 𝟎. 𝟒𝟗𝟕𝟔 

Strategy 𝟔 0.4670 0.4727 0.4697 0.5098 0.5238 0.5312 0.5320 0.5423 0.5448 𝟎. 𝟓𝟎𝟓𝟑 

 

Table 7.10 Rankings of strategies under equal current state probabilities (scenario 1) 

 
1SE  2SE  3SE  4SE  5SE  6SE  7SE  8SE  9SE  EMV 

Strategy 𝟏 1 1 1 3 4 3 3 3 3 𝟐 

Strategy 𝟐 2 2 2 2 2 4 2 4 5 𝟑 

Strategy 𝟑 3 3 3 1 1 1 1 1 1 𝟏 

Strategy 𝟒 6 6 6 6 5 6 6 6 6 𝟔 

Strategy 𝟓 4 4 4 5 6 5 5 5 4 𝟓 

Strategy 𝟔 5 5 5 4 3 2 4 2 2 𝟒 
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Table 7.11 The after-transition utility decision matrix (scenario 2) 

Current state 

probability 
𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 𝟎. 𝟏𝟏 

 

Strategies 
1SE  2SE  3SE  4SE  5SE  6SE  7SE  8SE  9SE  EMV 

Strategy 𝟏 0.5960 0.5501 0.5286 0.5290 0.5239 0.5336 0.5265 0.5588 0.5581 𝟎. 𝟓𝟑𝟗𝟓 

Strategy 𝟐 0.5450 0.5260 0.5076 0.5488 0.5279 0.5107 0.5337 0.5407 0.5391 𝟎. 𝟓𝟐𝟓𝟕 

Strategy 𝟑 0.5110 0.5104 0.5223 0.5445 0.5482 0.5634 0.6228 0.6176 0.6230 𝟎. 𝟓𝟓𝟕𝟎 

Strategy 𝟒 0.4620 0.4676 0.4574 0.4793 0.4885 0.4897 0.5062 0.5274 0.5438 𝟎. 𝟒𝟖𝟔𝟒 

Strategy 𝟓 0.4820 0.4854 0.4835 0.4896 0.4878 0.5100 0.5857 0.5754 0.6074 𝟎. 𝟓𝟏𝟕𝟕 

Strategy 𝟔 0.4670 0.4726 0.4703 0.5037 0.5163 0.5318 0.5856 0.5949 0.6003 𝟎. 𝟓𝟐𝟏𝟕 

 

Table 7.12 Rankings of strategies under equal current state probabilities (scenario 2) 

 
1SE  2SE  3SE  4SE  5SE  6SE  7SE  8SE  9SE  EMV 

Strategy 𝟏 1 1 1 3 3 2 5 4 4 𝟐 

Strategy 𝟐 2 2 3 1 2 4 4 5 6 𝟑 

Strategy 𝟑 3 3 2 2 1 1 1 1 1 𝟏 

Strategy 𝟒 6 6 6 6 5 6 6 6 5 𝟔 

Strategy 𝟓 4 4 4 5 6 5 2 3 2 𝟓 

Strategy 𝟔 5 5 5 4 4 3 3 2 3 𝟒 
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7.5 Sensitivity Analysis 

In this section, the sensitivity of the rankings based on the probability of current state 

is analysed under two scenarios 1 and 2 to see how sensitive the final ranking is to 

changes of current state’s probability. As can be seen in Table 7.13, five schemes of 

various probabilities are suggested while the sum of probabilities shall be equal to 1 

in all of them. In the default scheme, equal probabilities for all states are considered 

which was also used as the main analysis in the previous section. Scheme 1, 

emphasises the occurrence of High socio-economic situations (high challenges to 

mitigation and adaptation) by assigning the highest probability to them. Scheme 2, 

contrary to the scheme 1, considers the probability of Low socio-economic situations 

(low challenges to mitigation and adaptation) higher than others. In scheme 3, the SV 

flooding risk has the highest probability, and finally in scheme 4, the MI flooding risk 

has the highest probability.  

Table 7.13 Test schemes for sensitivity analysis of current state probability  

tSE  

Socio-

economic 

situation 

Flooding 

risk 

Default 

scheme 

Scheme 

𝟏 

Scheme 

𝟐 

Scheme 

𝟑 

Scheme 

𝟒 

𝟏 L MI 0.11 0.03 𝟎. 𝟐𝟎 0.03 𝟎. 𝟐𝟎 

𝟐 L MO 0.11 0.03 𝟎. 𝟐𝟎 0.10 0.10 

𝟑 L SV 0.11 0.03 𝟎. 𝟐𝟎 𝟎. 𝟐𝟎 0.03 

𝟒 M MI 0.11 0.10 0.10 0.03 𝟎. 𝟐𝟎 

𝟓 M MO 0.11 0.10 0.10 0.10 0.10 

𝟔 M SV 0.11 0.10 0.10 𝟎. 𝟐𝟎 0.03 

𝟕 H MI 0.11 𝟎. 𝟐𝟎 0.03 0.03 𝟎. 𝟐𝟎 

𝟖 H MO 0.11 𝟎. 𝟐𝟎 0.03 0.10 0.10 

𝟗 H SV 0.11 𝟎. 𝟐𝟎 0.03 𝟎. 𝟐𝟎 0.03 

 

The obtained EMVs from the sensitivity analysis under scenario 1 are shown in Table 

7.14. Trends and rankings of EMVs for strategies under various schemes in scenario 

1 is depicted in Figure 7.10. It is resulted that the three lowest ranking strategies 

(Strategies 4 to 6) in the default scheme are not sensitive to the changes in current 

state probability while the first three strategies (Strategies 1 to 3) are more sensitive 

in Schemes 2 and 4. It shows when the current socio-economic situation is facing low 
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challenges to adaptation and mitigation (Scheme 2), the most prioritised strategy 

would be awareness raising (Strategy 1) followed by emergency plans/response 

(Strategy 2) and flood forecasting (Strategy 3). It is also resulted that in scheme 4 

(under mild flooding risk), the awareness raising (Strategy 1) is the most useful 

strategy followed by flood forecasting (Strategy 3) and emergency plans/response 

(Strategy 2).     

Table 7.14 EMVs and rankings of strategies under various schemes (scenario 1) 

 Default 

Scheme 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Strategy 1 0.5369 (2) 0.5316 (2) 0.5441 (1) 0.5344 (2) 0.5400 (1) 

Strategy 2 0.5274 (3) 0.5285 (3) 0.5263 (2) 0.5221 (3) 0.5331 (3) 

Strategy 3 0.5420 (1) 0.5570 (1) 0.5262 (3) 0.5443 (1) 0.5399 (2) 

Strategy 4 0.4781 (6) 0.4864 (6) 0.4692 (6) 0.4796 (6) 0.4761 (6) 

Strategy 5 0.4976 (5) 0.5098 (5) 0.4862 (5) 0.5000 (5) 0.4956 (5) 

Strategy 6 0.5053 (4) 0.5226 (4) 0.4869 (4) 0.5083 (4) 0.5020 (4) 

 

 

Figure 7.10 Trends and rankings of EMVs for strategies under various schemes (scenario 1) 
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The sensitivity analysis findings in scenario 2 (Table 7.15), indicate that the last 

prioritised strategy which is self help (Strategy 4) is not sensitive to changes in current 

state probability. Furthermore, the most significant strategy in scenario 2 (flood 

forecasing), which is ranked first in almost all Schemes, (except Scheme 2) is not 

sensitive to the changes either. In Figure 7.11, trends and rankings of EMVs for 

strategies under various schemes (scenario 2) are shown. 

Table 7.15 EMVs and rankings of strategies under various schemes (scenario 2) 

 Default 

Scheme 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Strategy 1 0.5395 (2) 0.5376 (4) 0.5429 (1) 0.5369 (2) 0.5422 (2) 

Strategy 2 0.5257 (3) 0.5288 (5) 0.5229 (3) 0.5198 (5) 0.5317 (3) 

Strategy 3 0.5570 (1) 0.5846 (1) 0.5303 (2) 0.5597 (1) 0.5545 (1) 

Strategy 4 0.4864 (6) 0.5028 (6) 0.4705 (6) 0.4900 (6) 0.4826 (6) 

Strategy 5 0.5177 (5) 0.5460 (3) 0.4920 (4) 0.5218 (4) 0.5143 (5) 

Strategy 6 0.5217 (4) 0.5536 (2) 0.4906 (5) 0.5255 (3) 0.5177 (4) 

 

 

Figure 7.11 Trends and rankings of EMVs for strategies under various schemes (scenario 2) 
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7.6 Discussion 

Without any doubt, flooding is a major threat for the UK and can affect lives, 

infrastructures, and businesses. This impact is not diminishing and is predicted to 

grow in the future due to climate change and severe weather conditions (Few, 2003; 

Ntontis et al., 2019). As mentioned before, it was predicted that flooding could cost 

the UK approximately £27 billion under a high global emission scenario yearly by the 

2080s which is approximately 21 times higher than the £1.3 billion based on CCRA1 

report in 2012 (Committee on Climate Change, 2012; Foresight Future Flooding, 

2004).  

In this study, suggested uncertainty and climate change adaptation criteria have 

been used together with flood risk impacts in one single decision-making model. The 

main contribution of this study is proposing a stratified decision-making model for 

long-term decision making. It considers system’s dynamics on the basis of the CST, 

game theory and SSP. The most suitable flooding risk mitigation strategies have been 

selected by taking into account the dynamic of UK challenges to adaptation and 

mitigation based on SSP and flooding risk impacts based on MI, MO, and SV levels. 

The model applicability has been verified in the case of flooding risk mitigation 

strategy in an area selected to be at Highland and Argyll in Scotland. After primary 

data collected from the involved experts in the region of Scotland, the proposed model 

as described in Section 4.6, and Section 7.2 was applied and analysed (Section 7.4). 

The sensitivity analysis of the probabilities of current state was provided in Section 

7.5 in order to verify the obtained results. The final order of strategies is provided in 

Figure 7.12.  

The literature also supports the importance of Flood Forecasting as many 

studies explored it by developing various techniques such as neural network model 

(Campolo et al., 1999), and MCDM  (Levy, 2005). Neal et al. (2018) supported the 

finding in this study that Flood Forcasting should be prioritised to effectively deal 

with flood impacts proactively. They indicated that a medium to long-term forecast of 

coastal flooding can be useful for the UK government and response agencies. Nye et 

al. (2011) emphasised on the criticality of Awareness Raising strategy in the literature 

which confirms the identification of this strategy as the second most suitable flooding 

risk mitigation strategy in this chapter. They indicated that social aspects of flooding, 

particularly flood warning and awareness raising can lead to a more balanced 
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sociotechnical risk management portfolio (Johnson et al. 2005). Carter et al. (2009) 

also emphasised on the awareness raising of the flood risk threat among stakeholders 

and indicated that it can be enhanced by sustainability appraisal. Coles et al. (2017) 

highlighted the significance of the third important strategy in this study which is 

Emergency Plans/Response. They proposed an integrated model of numerical 

modelling and geographical analysis of service areas for ambulance, fire and rescue 

services by demonstrating two floods in York, UK in order to assess vulnerability of 

sheltered and care homes. Finally, one way to handle the impacts of flooding that the 

UK policy guidelines suggest is the community resilience concept by designing 

interventions which is close to the concept of Self Help strategy in the obtained result 

which ranks at the sixth place (Ntontis et al., 2019).  

 

 

 

Figure 7.12 Final order of strategies 
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7.7 Conclusions 

In this Chapter 7, a hybrid risk mitigation modelling based on CST (Section 3.6), game 

theory (Section 3.7), and SSP (Section 7.2) was proposed in order to obtain a reliable 

and applicable model for flooding risk mitigation strategy selection in the long-term. 

The model was applied in the region of Highland and Argyll in Scotland based on 

primary data obtained from experts to prioritise flooding risk mitigation strategies 

which were recommended by SEPA.  

In the literature, various decision analysis methods such as MCDM have been 

used for flood risk management, however it is believed the proposed stratified 

decision-making model is unique and innovative as it can offer predictive insights by 

incorporating advantages of CST, game theory, and SSP in one model. Game theory 

represents an abstract model of decision making, not the social reality of decision 

making itself. Thus, while game theory ensures that a result follows a model logically, 

it cannot ensure that the result itself represents reality, unless the model is an accurate 

one (Kelly, 2003). The integration of CST and game theory provide with a stratified 

model to overcome this static issue of game theory which enables the proposed model 

more dynamic. Then, for applying the proposed model in the context of disaster 

management (i.e. flooding) the SSP was taken into account to understand UK socio-

economic conditions in three levels of low (L), moderate (M), and high (H). As the 

proposed model has two dimensions, impact of flooding was considered, based on 

SFFS (2014), by providing three impact levels of mild (MI), moderate (MO) and 

severe (SV).  

Thus, the resulted model aims to take into account both UK socio-economic 

situations and flooding risk impacts for the long-term decision making (5 to 20-year 

time frame). The socio-economic situation is categorised into 3 status namely L, M, 

and H challenges to adaptation and mitigation based on SSP and flooding risk impacts 

with regard to MI, MO, and SV levels. These two dimensions generated nine states as 

shown in Table 7.4. The findings indicated that the most important strategies which 

can provide long-term benefit in mitigating flooding risk impact in the area of 

Highland and Argyll in Scotland are flood forecasting (i.e. Strategy 3), awareness 

raising (i.e. Strategy 1), emergency plans/response (i.e. Strategy 2), planning policies 

(i.e. Strategy 6), maintenance (i.e. Strategy 5), and self help (i.e. Strategy 4), 

respectively (Figure 7.12). 
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7.7.1 Limitations and future research directions  

In spite of the proposed model’s merits it suffers from a few downsides. Firstly, for 

the sake of simplicity, two dimensions of challenges to adaptation and mitigation 

based on SSP have been used to conceptualise the socio-economic conditions in only 

three levels (low, moderate, and high). However, in future studies in order to take into 

account the full picture, researchers may apply a model with all 9 possible levels. This 

may pose another obstacle of acquiring data from experts which would make it 

extremely hard for experts to offer their assessments due to high number of 

evaluations. As a result, it leads to the second limitation of this study that is utilising 

primary data acquired from subject experts. To overcome this issue, in future research, 

researchers can take advantage of mixed primary and secondary data and decrease the 

dependence of the results on subjective judgements. It can help strengthen the model’s 

reliability and robustness. The other concern may arise regarding the quantitative 

validation which might be difficult for this type of models. However, face validation 

or validation through expert elicitation should be relied upon for this aim. Thirdly, 

adding a third dimension of sustainable development goals or agenda to the model can 

be another interesting future research topic. It is also important to understand the 

potential synergic or dysergic behaviour of strategies apart from the adaptation and 

mitigation challenges and impact level dimensions, particularly in the longer time 

frame. However, it might add an extra level of complexity to the model which requires 

researchers to add more innovative features into the proposed stratified model. In 

other words, it would be beneficial to realise if strategies can potentially offer more 

helpful merits in terms of social justice or community well-being at the time following 

a flood. Fourthly, the proposed model can be utilised in similar strategic decision-

making settings such as natural disasters or energy systems in other countries or 

regions. In this way, the applicability and versatility of the model can be confirmed. 

The proposed model can deal with types of problems which are comprised of two 

dimensions such as socio-economic situations and climate hazards (as in the current 

study) for strategic, long-term, or even medium-term decision making. One 

application can be the evaluation of strategies for dealing with the impact of 

pandemics under various readiness of governments or local authorities for choosing 

the best strategies to respond in medium-term decision-making timeframes such as 

within 1.5-3 years.  Finally, it is also interesting to propose theories to more efficiently 

capture the utility values and transition probabilities in the stratified model. 
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Chapter 8 Conclusions  

In this chapter, conclusions, contributions, implications, limitations, and future 

research directions are presented in subsequent sections. 

8.1 Conclusions 

Large infrastructures like electricity supply networks are widely presumed to be 

crucial for the functioning of societies as they create conditions for essential economic 

activities. Electric power outages have been recognised as a national security issue by 

many governments like the US and more than 20 other countries including the UK 

(Brunner and Suter, 2008; Silvast, 2017). This thesis aimed at answering the following 

questions: 

1. What are the critical risks in the UK power supply chain?  

2. What are the causal relationships among the critical risks? 

3. How are these risks ranked and prioritised? 

4. How can policy makers deal with mitigating the most critical risks in the longer 

timeframe by taking into account socio-economic situations? 

5. What are the most appropriate risk mitigation strategies in response to the most 

critical risks?  

An overview on the energy security literature led this study to a comprehensive 

framework for identifying risks in energy supply chain and then to their 

interrelationship analysis. The reason is that, risks usually act in close interconnection 

to each other and barely act independently that means there would be causal relations 

among them in that occurrence of one risk would cause the other one. The following 

two research questions were answered in Chapter 5: 

1. What are the critical risks in the UK power supply chain?  

2. What are the causal relationships among the critical risks? 

In Chapter 5, an energy supply chain risk assessment model was proposed to 

address the identified UK energy supply chain risks. The study provided an insight on 

the energy supply chain risk management both practically and theoretically. It is 

aimed to be helpful and practical for practitioners as well as scholars in the energy 

supply chain to use an explicable risk identification framework while analysing an 
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energy system such as UK power supply chain. First, a risk identification and 

classification framework was proposed based on scrutinising energy supply chain 

risks. Then, causal relationships between identified risks were analysed by applying 

the NR-DEMATEL method. The proposed model considered experts’ subjective 

judgement applying the NR-DEMATEL. A novel HESM to systematically assist DMs 

with the expert selection and importance weight determination was also introduced. 

The proposed method was utilised in the energy supply chain in the UK to demonstrate 

its applicability and efficacy. It identified twelve risk dimensions each one can 

potentially include a myriad of consolidated micro-level risks (i.e. risk elements).  

This provided an opportunity to make a more comprehensive framework by 

presenting detailed risks namely risk elements as a sub-group of risk dimensions. The 

results suggest that the UK energy supply chain should focus on the following six 

risks out of the 12 identified risks when formulating the risk mitigation strategies: 

Natural Disasters (ND), Climate Change (CC), Industrial Action (IA), Affordability 

(AF), Political Instability (PI), and Sabotage and Terrorism (ST). They were chosen 

in a way that the majority of potential risk elements would be covered under their 

definitions and can easily be categorised under one of the dimensions. Considering all 

the analysis, the final suggestion would be to focus on the six risk dimensions of 

Natural Disasters (ND), Climate Change (CC), Industrial Action (IA), Affordability 

(AF), Political Instability (PI), and Sabotage and Terrorism (ST) and offering 

mitigation strategies based on them can be quite beneficial for the UK energy supply 

chain being sustainable. This finding would allow managers to allocate their resources 

efficiently by focusing on the dominant risks and the interdependencies among them. 

Additionally, it would open up avenues for further suggestions on risk mitigation 

strategies, which can improve the performance of the entire UK energy supply chain.   

Although this study focused on the UK energy supply chain, it is believed the 

results are relevant and the findings can be applicable to the power sectors of other 

countries. This is because the UK power sector fuel mix is similar to the fuel mix in 

other countries (Chalvatzis et al., 2019). For example, characteristics such as 

elimination of coal, ambitious offshore wind capacity, other renewables expansion 

plans are gaining momentum across Europe and the US (Hills et al., 2018; Ioannidis 

et al., 2019; Ioannidis and Chalvatzis, 2017; Li et al., 2018). Therefore, several aspects 

of the UK’s power supply system are similar to the current or forthcoming systems in 
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other countries as they all face strict decarbonisation agendas all while the nuclear 

power stocks are not replaced at the end of their lifespan (Chalvatzis and Ioannidis, 

2017b). As a result, risks such as Affordability (AF) gained popularity in the past 

when countries rushed to subsidise the emergence of renewable energy sources. 

Similarly, countries with thermal power stations face Operational Safety (OS) 

challenges to cool those power stations while Climate Change (CC) increases the 

frequency and intensity of heatwaves, and ultimately reducing access to cooling water. 

This is a core issue for nuclear power stations but one that expands to all thermal 

power stations as one of the prevailing risks. At the same time, risks deriving from 

exposure to Political Instability (PI), Sabotage and Terrorism (ST), and Industrial 

Action (IA) are highly dependent on country-specific circumstances relevant to the 

power industry structure, the economic and geopolitical balances, and 

industrialisation trends (Pappas et al., 2018; Pappas and Chalvatzis, 2017).   

Therefore, it is argued that this study is generalisable to other countries firstly 

by methodological virtue, as it can be applied to other countries to reveal their own 

power sector’s detailed risk analysis; and secondly, by highlighting the prioritisation 

of risks specific to certain power supply technologies (which are similar among 

countries). Currently, a sweeping transformation is taking place across the power 

sector of most countries, which requires decisions over electricity planning with risk 

vulnerability being one of the most important issues to be considered. Technologies 

subject to significant risks are being left behind as uninvestable.  To this end, results 

are useful for context setting for countries other than the UK, but it is maintained that 

more research would be required for any specific country’s electricity planning.   

The answer to the third research question “How are these risks ranked and 

prioritised?” was discussed in Chapter 6. That was focused on representing the 

applicability of the methodological development of the original BWM in terms of 

capturing uncertainty. A need to improve the original BWM and propose an uncertain 

extension of the method based on the NST called NE-BWM as well as STE-BWM 

was revealed and discussed in detail. The STE-BWM method by applying spanning 

trees enumeration offers an opportunity for experts to suggest more than one best or 

worst criteria. The reason is that in some cases experts are unable to choose only one 

risk dimension as either the best or worst one due to uncertainty, hesitancy, or lack of 

information. Thus, the proposed STE-BWM can obtain which ones are actually the 
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best and worst criteria based on already provided pair-wise comparison values by 

experts. Furthermore, original BWM considers two vectors of pairwise comparisons 

as equally important which is unrealistic. Thus, the proposed NE-BWM dealt with 

this issue. The first vector (i.e. best-to-others) was named as Separation 𝐼 and the 

second vector (i.e. others-to-worst) was named as Separation 𝐼𝐼. Then, the NST was 

utilised in structuring the value assignment process in terms of 𝜌+  and 𝜌−  values 

while dealing with an expert’s uncertainty in the NE-BWM. In fact, the NST provides 

a rating scale for DMs to express their level of confidence in terms of 𝜌+ and 𝜌− 

values.   

The applications of two proposed extended BWM under uncertain decision-

making (i.e. NE-BWM and STE-BWM) in prioritising the six most critical risk 

dimensions in energy supply chain were presented. For obtaining final ranking of 

risks, weights obtained from both the original BWM (L-BWM and NL-BWM), and 

NE-BWM were integrated. The aggregated weights revealed that Climate Change 

(CC) is the most critical one followed by Natural Disasters (ND), Affordability (AF), 

Sabotage and Terrorism (ST), Industrial Action (IA), and Political Instability (PI), 

respectively. 

Ultimately, Chapter 7, discussed the answers to the 4th and 5th research 

questions: 

4. How can policy makers deal with mitigating the most critical risks in the longer 

timeframe by taking into account socio-economic situations? 

5. What are the most appropriate risk mitigation strategies in response to the most 

critical risks? 

In a standard decision-making model of game of chance, the best strategy is 

chosen on the basis of the current state of the system under various outcomes of the 

nature. However, there is a shortcoming about this standard model that may be 

applicable only to short-term decision-making period. This drawback is mainly due to 

not evaluating the dynamic characteristics and changes in the states of system and 

outcomes of the nature which might occur in the longer timescale. In Chapter 6, it was 

obtained that Climate Change (CC), and Natural Disasters (ND) are the most critical 

energy risk dimensions in the UK power supply chain. In Chapter 7, an innovative 

risk mitigation model based on the CST (see Section 3.6), game theory (see Section 
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3.7), and SSP (see Section 7.2) was introduced to deal with these two most critical 

risk dimensions. The aim was to deal with the most significant climate change risk to 

UK infrastructure (i.e. flooding) for the long-term policy making (between 5 to 20 

years) with reference to the UK socio-economic status. In the study, the game of 

chance involving risk and CST were integrated to incorporate the dynamic nature of 

the decision environment for the long-term disaster risk planning taking into account 

various states of the system. It was demonstrated how this methodology can suitably 

be applied to obtain ad-hoc models, solutions, and analysis in the strategic decision-

making process of flooding risk strategy evaluation. The model applicability was 

shown in an uncertain decision-making context while taking into account the dynamic 

nature of socio-economic situations, and flooding hazards. The proposed model has 

been applied to a flooding risk mitigation strategy planning in the Highland and Argyll 

district in Scotland. The findings indicated that the most important strategies which 

can provide long-term benefit in mitigating flooding risk impact in the area of 

Highland and Argyll in Scotland are flood forecasting (i.e. Strategy 3), awareness 

raising (i.e. Strategy 1), emergency plans/response (i.e. Strategy 2), planning policies 

(i.e. Strategy 6), maintenance (i.e. Strategy 5) and self help (i.e. Strategy 4), 

respectively. 
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8.2 Contributions 

This thesis benefited from both theoretical and applied contributions that can yield 

insightful recommendations to both academics and practitioners. The research 

contributions are highlighted in Table 8.1. Novelty, scientific soundness, and value of 

each research objective are presented in Table 8.2. 

Table 8.1 Contributions 

No. Description Chapter RQ Type 

1 

A framework for risk analysis which can be 

used in strategic risk mitigation analysis 

resulted from systematic literature review 

and experts’ feedback 

5 1 Theoretical 

2 

A NR-DEMATEL method to analyse risk 

dimensions based on the causal relationships 

between them 

5 2 Applied 

3 

Introducing an expert selection model based 

on HFS theory (i.e HESM) to systematically 

assist researchers with the expert selection 

process. It has provided a reliable model that 

help decide who can be an expert based on 

their credentials and experience as well as 

assigning each expert a relative importance 

weight 

5 2 Theoretical 

4 
Aiding policy makers in the UK energy 

supply chain to recognise most critical risks  
5 2 Applied 

5 

The proposed STE-BWM which is a hybrid 

method of spanning trees enumeration and 

BWM. It can help identification of the best 

and the worst energy risk dimensions if the 

involved experts are not able to choose only 

one best and one worst risk dimension with 

full confidence 

6 3 Theoretical 

6 

The proposed NE-BWM by introducing two 

new parameters as the DMs’ confidence on 

the best-to-others preferences and the DMs’ 

confidence on the others-to-worst 

6 3 Theoretical 
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preferences. The NE-BWM  considers the 

NST to structure uncertainty of experts in 

terms of 𝜌+ and  𝜌− values which can 

prioritise the six energy risk dimensions 

7 

Two real-world cases to illustrate the 

applicability of the proposed NE-BWM by 

considering partial factorial experiment for 

confidence rating levels selection of the 

experts are explored. The results are 

analysed in 21 test problems under various 

𝜌+ and 𝜌− values 

6 3 Applied 

8 

A new output measurement index, namely 

confidence difference (CD ) for the NE-

BWM is proposed and discussed.  

6 3 Applied 

9 

A novel stratified decision-making model is 

introduced on the basis of the Concept of 

Stratification (CST), game theory, and 

Shared Socio-economic Pathway (SSP) 

7 4 Theoretical 

10 

Managing impacts of flooding risk in the 

Highland and Argyll region in Scotland by 

identifying the most suitable strategies and 

proposing the priorities for action based on a 

novel stratified decision-making model.  

7 5 Applied 
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Table 8.2 Novelty, scientific soundness, and value for each research objective 

Research 

Objectives 
Novelty Scientific Soundness Value 

RO #1: Proposing a 

risk classification 

and identification 

framework in the 

UK energy supply 

chain 

Novel 

comprehensive 

risk identification 

framework to help 

categorise energy 

supply chain risks 

in the UK 

Verified by systematic literature 

review and experts’ feedback 

It offers a structure for 

researchers in the energy risk 

management field to classify 

and organise the risk 

identification process in 

future studies 

RO #2: Analysing 

causal 

interrelationships 

between identified 

risks 

The proposed NR-

DEMATEL has a 

theoretical 

contribution as it 

uses the revised 

DEMATEL and 

NST 

The DEMATEL is a well-

established MCDM method for 

evaluating the causal 

interrelationships between 

factors. Additionally, the result 

is supported by the primary data 

from  31 experts, making the 

result reliable as it is a LSGDM 

problem (more than 20 

participants)  

It offers value for policy 

makers in the UK energy 

supply chain to understand 

the causal interrelationships 

between risks at macro-level 

RO #3: Prioritising 

identified UK 

energy supply chain 

risks 

Two novel 

extensions of the 

original BWM are 

proposed (i.e. 

STE-BWM and 

NE-BWM)  

The original BWM is a recently 

developed MCDM method 

which has various merits. In 

addition to application in 

energy risk management in this 

thesis, two real case studies 

from supply chain management 

verified the applicability of NE-

BWM.  

It provides (1) two extensions 

of BWM which can be used 

by researchers in any other 

MCDM problems, (2) a 

ranking for energy risks 

which can assist policy 

makers to recognise most 

critical risks  

RO #4: Long-term 

risk mitigation 

planning   

A novel stratified 

decision-making 

model is proposed 

for long-term 

decision making 

considering two 

dimensions of 

socio-economic 

situations and 

climate hazards 

The model has been verified by 

showing its application in the 

region Highland and Argyll in 

Scotland for managing flood 

risks (i.e. a major climate 

hazard in the UK) to energy 

infrastructure by providing an 

order for risk mitigation 

strategies. The data for the 

analysis were gathered from 10 

experts with suitable level of 

practical knowledge  

It provides researchers with 

(1) a decision-making model 

that can be used for strategic 

or medium-term decision 

making by taking into 

account at least two 

dimensions in the model  (2) 

an insight for flood risk 

managers and policy makers 

in the region by knowing 

priorities for action in the 

longer timescale  
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8.3 Implications  

The implications of the results for academics and policy makers are listed in Table 8.3 

Table 8.3 Implications  

No. Description For 

1 

The proposed energy risk identification framework would provide a 

guideline to further explore the detailed analysis of risk elements in 

a specific sector in energy supply chain 

Academics 

2 

The identified most important risk dimensions including Natural 

Disasters (ND), Climate Change (CC), Industrial Action (IA), 

Affordability (AF), Political Instability (PI), and Sabotage/Terrorism 

(ST) can inform decision-making in the energy supply chain  

Policy 

makers 

3 

The proposed Expert Selection Model (ESM) would be a valuable 

tool for researchers in MCDM field to identify experts and their 

importance weights in a more systematic way 

Academics 

4 

The proposed STE-BWM and NE-BWM both can be used by 

researchers in future studies in the MCDM field in various decision-

making problems 

Academics 

5 

The stratified decision-making model would be a helpful model for 

long-term decision-making process by considering system’s 

dynamics. It can be utilised in project management, or other fields 

where two dimensions with various levels would construct a number 

of states 

Academics 

6 

The identified prioritised list of flooding risk mitigation strategies 

including flood forecasting, awareness raising, emergency 

plans/response, planning policies, maintenance, and self help can be 

useful for policy makers in Highland and Argyll region in Scotland 

Policy 

makers 
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8.4 Limitations  

In this section, limitations are provided separately regarding each study presented in 

Chapter 5, Chapter 6, and Chapter 7.  

In Chapter 5, the first limitation is the static, snapshot approach to risk 

interrelations, meaning the dynamics of the risk dimensions over time has not been 

considered. Secondly, the identified risk dimensions are macro-level risks in the UK 

energy supply chain and not dealing with risk elements (i.e. micro-level risks). In other 

words, risks can be studied in more detail in a specific part of the supply chain such 

as supply or demand or even can be studied in a specific power generation sector such 

as offshore wind industry, just as an example. Thirdly, due to the nature of MCDM 

methods the primary data has to be collected from experts in the field which can be 

regarded as a limitation. Fourthly, the DEMATEL method has a quantitative approach 

to explore the cause-effect and interrelationships between risks which might make it 

hard to elicit knowledge quantitatively from experts by using a Likert scale in some 

decision-making problems. That is why in this study, the revised DEMATEL was 

integrated with NST to facilitate this knowledge elicitation process from experts. The 

fourth limitation is related to the generic nature of the risk dimensions which was due 

to the broad extent of energy supply chain. This limitation has made recruiting subject 

experts for covering all interdisciplinary subject areas extremely lengthy and costly. 

In Chapter 6, the first limitation is the small number of application cases which 

makes it difficult to generalise the findings from the proposed NE-BWM. The second 

limitation is about the complexity of implementation of the proposed STE-BWM 

which makes it costly and time consuming and not handy for all researchers in spite 

of its promising merits. The third limitation is a common one within MCDM field 

which is about limited number of experts involved that is partly due to the difficulty 

of recruiting higher number of experts from a transdisciplinary field like risks in 

energy supply chain management. 

In Chapter 7, for the sake of simplicity, two dimensions of challenges to 

adaptation and mitigation based on SSP have been used to conceptualise the socio-

economic conditions in only three levels (low, moderate, and high). It was a limitation 

of the model because considering all 9 SSPs would make it too complicated for both 

experts and researcher. The second limitation of this study was utilising primary data 
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for acquiring parameters’ values which are based on subject experts. Primary data are 

prone to be biased due to the nature of subjective judgements when humans are 

involved in the decision-making process. 

8.5 Future Research Directions 

In Chapter 5, as directions for future study, firstly, a more detailed analysis of six 

identified critical risks in order to lead to a more reliable outcome by expanding the 

number of experts who are participating in the data collection process can be 

beneficial because it would provide more insight for policy makers. Secondly, 

proposing a predictive dynamic model that can estimate the influence and 

interrelationships among risks over the longer period can provide insights into how 

risks act under various socio-political and economic conditions over time. System 

Dynamics (SD) can be an attractive approach in pursuing this research direction. 

Thirdly, a more detailed analysis at the lower level called risk elements (i.e., micro-

level risks) based on the proposed framework would be interesting. Fourthly, the 

occurrence probability estimation of each risk elements with a reliable method and 

using the probability scores along with experts’ opinions to prioritise risk elements 

can be regarded as another future research direction. Fifthly, results from the 

DEMATEL can be compared with qualitative approaches such as Know-Why method 

or even with other dynamic quantitative methods such as SD to verify the outcome. 

Finally, proposing risk mitigation strategies that links to the outcome of vital risk 

elements identification to provide more detailed and efficient response to identified 

risk elements. 

In Chapter 6 in future research directions, firstly, a simulation approach can be 

a reasonable solution to overcome the issue of a limited number of application cases 

in order to provide findings that are more generalisable. Secondly, given that 

uncertainty leads to higher inconsistency (i.e., it has been confirmed that a higher 𝐶𝐷 

value would result in a higher 𝐶𝑅 value), thus, there would be a necessity for processes 

that mitigate inconsistency to be further investigated. Thirdly, the proposed model 

might also be compared to the other uncertainty extensions of the original BWM 

integrated with uncertainty theories like FST.  

In Chapter 7, in order to take into account the full potential of the proposed 

stratified decision-making model, researchers may revise the model in order to make 
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it capable of encompassing all 9 possible levels within SSPs. In this way the result can 

be more comprehensive by recognising all possible socio-economic conditions in the 

UK. Secondly, to overcome the limitation of primary data, in future research, 

researchers can take advantage of a mixed primary and secondary data and decrease 

the dependence of the results on subjective judgements. It can help strengthen the 

model’s reliability and robustness. Thirdly, adding a third dimension of sustainable 

development goals or agenda to the model can be another interesting future research 

topic. However, it might add an extra level of complexity to the model which requires 

researchers to add more innovative features into the proposed stratified model. In 

other words, it would be beneficial to realise if strategies can potentially offer more 

helpful merits in terms of social justice or community well-being at the time following 

a flood. Fourthly, the proposed model can be utilised in similar strategic decision-

making settings such as natural disasters or energy systems in other countries or 

regions. In this way, the applicability and versatility of the model can be confirmed. 

Finally, it is also interesting to propose theories to more efficiently capture the utility 

values and transition probabilities in the stratified model.  
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Glossary of Terms 

Terms Acronyms 

Analytic Hierarchy Process AHP 

Asia Pacific Energy Research Centre APERC 

Adaptation Sub-Committee ASC 

Bayesian Network BN 

Best Non-fuzzy Performance BNP 

Best-to-Others vector BO 

Bi-Objective CST BO-CST 

Best-Worst Method BWM 

Climate Change Risk Assessment CCRA 

Circular Economy CE 

Carbon Dioxide CO2 

COmplex PRoportional ASsessment COPRAS 

Clean Power Plan CPP 

Consistency Ratio CR 

Corporate Social Responsibility CSR 

Concept of Stratification CST 

Decision-Making Trial and Evaluation Laboratory DEMATEL 

Decision Maker DM 

Dynamic Programming DP 

Enumerating All Spanning Trees EAST 

Evaluation based on Distance from Average Solution EDAS 

Expert Eligibility Value EEV 

ELimination Et Choix Traduisant la REalit (in French) or 

elimination and choice expressing reality 

ELECTRE 

Expected Monetary Value EMV 

Expert Selection Model ESM 

Fuzzy Bayesian Network FBN 

Fuzzy Bi-Objective CST FBO-CST 

Fuzzy-Delphi Method FDM 

Fuzzy Filtering Method FFM 
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Terms Acronyms 

Fuzzy Inference System FIS 

Fuzzy Sets FS 

Finite-State Machine FSM 

Fuzzy Set Theory FST 

Grams of CO2 equivalent per kilowatt-hour of electricity 

generated 

gCO2eq/kWh 

Green-House Gas GHG 

Geometric Mean of All Spanning Trees GMAST 

Grey Relational Analysis GRA 

Human Development Indicator HDI 

Hesitant Expert Selection Model HESM 

Hesitant Fuzzy Element HFE 

Hesitant Fuzzy Sets HFS 

International Energy Agency IEA 

Intuitionistic Fuzzy Best-Worst Method IF-BWM 

Intuitionistic Fuzzy Sets IFS 

Intuitionistic Fuzzy Multiplicative Best-Worst Method IFM-BWM 

Intergovernmental Panel on Climate Change IPCC 

Impact-Relations Map IRM 

Interval Rough Number IRN 

Interpretive Structural Modelling ISM 

Interval Valued Neutrosophic Sets IVNS 

Linear Best-Worst Method L-BWM 

Linguistic Neutrosophic Geometric Heronian Mean LNGHM 

Linguistic Neutrosophic Prioritised Geometric Heronian Mean LNPGHM 

Large-Scale Group Decision-Making LSGDM 

Multiple Attribute Decision Making MADM 

Multi Attribute Group Decision Making MAGDM 

Multi Criteria Decision Analysis MCDA 

Multiple Criteria Decision Making MCDM 

Multiple Criteria Group Decision-Making MCGDM 
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Terms Acronyms 

Matrice d’Impacts Croisés Multiplication Appliquée à un 

Classement meaning “Cross Impact Matrix Multiplication 

Applied to Classification” 

MICMAC 

Mixed Integer Linear Model MILM 

Maximum Mean De-Entropy algorithm MMDE 

Model of Short-term Energy Security MOSES 

Maclaurin Symmetric Mean MSM 

Multi-Objective Optimisation by Ratio Analysis plus the full 

MULTIplicative form 

MULTIMOORA 

National Adaptation Programme NAP 

Normal Accident Theory NAT 

Notre Dame Global Adaptation Initiative ND-GAIN 

Neutrosophic Enhanced Best-Worst Method NE-BWM 

New Energy Power System NEPS 

Neutrosophic Hesitant Fuzzy Set NHFS 

Non-Linear Model NLM 

Non-Linear Best-Worst Method NL-BWM 

Normal Neutrosophic Sets NNS 

Neutrosophic Revised-DEMATEL NR-DEMATEL 

Neutrosophic Sets NS 

Normalised Score Function Value NSFV 

Neutrosophic Set Theory NST 

Organisation for Economic Cooperation and Development OECD 

Others-to-Worst vector OW 

Probabilistic Hesitant Fuzzy Elements PHFE 

Preference Ranking Organisation Method for Enrichment 

Evaluations 

PROMETHEE 

Power Transmission System PTS 

Photovoltaics PV 

Renewable Energy RE 

Renewable Energy Sources RES-E 
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Terms Acronyms 

Severe Acute Respiratory Syndrome SARS 

System Dynamics SD 

The Scottish Environment Protection Agency SEPA 

The Scottish Flood Forecasting Service SFFS 

Score Function Value SFV 

Safety, Health and Environment SHE 

Stratified Multiple Criteria Decision Making S-MCDM 

Security of Supply SOS 

Shared Socio-economic Pathway SSP 

Spanning Trees Enumeration STE 

Spanning Trees Enumeration and BWM STE-BWM 

Single Valued Neutrosophic SVN 

Single-Valued Neutrosophic Dombi Weighted Arithmetic 

Average 

SVNDWAA 

Single-Valued Neutrosophic Dombi Weighted Geometric 

Average 

SVNDWGA 

Single-Valued Neutrosophic Numbers SVNN 

Single-Valued Neutrosophic Sets SVNS 

Single-Valued Trapezoidal Neutrosophic Numbers SVTNN 

Single-Valued Trapezoidal Neutrosophic Normalised Weighted 

Bonferroni Mean 

SVTNNWBM 

Triangular Fuzzy Number TFN 

Trapezoidal Neutrosophic Number TNN 

Trapezoidal Neutrosophic Weighted Arithmetic Averaging TNWAA 

Trapezoidal Neutrosophic Weighted Geometric Averaging TNWGA 

TOmada de Deciso Interativa e Multicritrio (in Portuguese) 

meaning interactive and multicriteria decision-making 

TODIM 

Technique for Order Preference by Similarity to Ideal Solution TOPSIS 

Trapezoidal Intuitionistic Fuzzy Number TrIFN 

United Nations Development Programme UNDP 

Vlsekriterijumska Optimizacija I Kompromisno Resenje (in 

Serbian) 

VIKOR 
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Appendix A: Uncertainty Theories-Definitions 

 

A.1 Fuzzy logic 

A.1.1 Fuzzy set  

In this section the definitions of the FST are provided: 

Definition A.1. A special Fuzzy Set (FS) 𝐹 = {(𝑥, 𝜇𝐹(𝑥)), 𝑥 ∈ 𝑅} would define a 

fuzzy number (Kwong and Bai, 2002). A Triangular Fuzzy Number (TFN) is 

represented as a triplet (𝑙, 𝑚, 𝑟) where 𝑙 ≤ 𝑚 ≤ 𝑟. Equation (A.1) presents the 

membership function of a TFN (Vafadarnikjoo et al., 2018, 2015): 

 

𝑓𝐴(𝑥) =

{
 
 

 
 

0 𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
𝑙 ≤ 𝑥 ≤ 𝑚

𝑟 − 𝑥

𝑟 − 𝑚
𝑚 ≤ 𝑥 ≤ 𝑟

0 𝑥 > 𝑟

 (A.1) 

 

Definition A.2. Given 𝐴̃ = (𝑎1, 𝑎2, 𝑎3) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3) are two TFNs. Then 

Equations (A.2)-(A.5) are true (Vafadarnikjoo et al., 2018, 2015):  

𝐴̃ − 𝐵̃ = (𝑎1, 𝑎2, 𝑎3) − (𝑏1, 𝑏2, 𝑏3) = (𝑎1 − 𝑏3, 𝑎2 − 𝑏2, 𝑎3 − 𝑏1)  (A.2) 

 

 𝐴̃ + 𝐵̃ = (𝑎1, 𝑎2, 𝑎3) + (𝑏1, 𝑏2, 𝑏3) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) 
(A.3) 

 

 𝐴̃ × 𝐵̃ = (𝑎1, 𝑎2, 𝑎3) × (𝑏1, 𝑏2, 𝑏3) ≈ (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3) (A.4) 

 

𝐴̃ ÷ 𝐵̃ = (𝑎1, 𝑎2, 𝑎3) ÷ (𝑏1, 𝑏2, 𝑏3) ≈ (𝑎1/𝑏3, 𝑎2/𝑏2, 𝑎3/𝑏1) (A.5) 

 

A.1.2 Hesitant fuzzy set 

The Hesitant Fuzzy Set (HFS) was first introduced by Torra (2010) and is a 

generalisation of IFS. By HFS theory, it is possible to acquire DMs’ or experts’ 

subjective judgements more properly by giving them the opportunity to choose among 

a couple of possible values. The reason is that experts usually encounter a degree of 

hesitance or indeterminacy before expressing their subjective judgements and by 

using HFS theory this issue is addressed (Vafadarnikjoo et al., 2020). In this study, 
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HFS theory is applied in the proposed Hesitant Expert Selection Model (HESM) to 

obtain experts’ importance weights as explained in Section 5.4.  

Definition A.3. (Farhadinia, 2013; Torra, 2010; Torra and Narukawa, 2009) HFS on 

𝑋 (i.e. a fixed set) is defined in terms of a function when applied to 𝑋 generates a 

subset of [0,1]. Xia and Xu (2011) presented HFS as Equation (A.6): 

 𝐸 = {〈𝑥, ℎ𝐸(𝑥)〉: 𝑥 ∈ 𝑋} 
(A.6) 

 

The ℎ𝐸(𝑥) can take values within [0,1], signifying the possible membership 

degree of the element 𝑥 ∈ 𝑋 to the set 𝐸. Additionally, Hesitant Fuzzy Element (HFE) 

was defined by Xia and Xu (2011) as ℎ = ℎ𝐸(𝑥). 

Definition A.4. (Farhadinia, 2013) Let ℎ = 𝑈𝛾𝜖ℎ{𝛾} = {𝛾𝑗}𝑗=1
𝑙(ℎ)

 be a HFE, in which 

𝑙(ℎ) represents the number of values in ℎ. Equation (A.7) shows a score function 𝑆 of 

a HFE ℎ. Where {𝛿(𝑗)}𝑗=1
𝑙(ℎ)

 is a positive-valued monotonic ascending order of index 𝑗. 

 𝑆(ℎ) =
∑ 𝛿(𝑗)𝛾𝑗
𝑙(ℎ)
𝑗=1

∑ 𝛿(𝑗)
𝑙(ℎ)

𝑗=1

 (A.7) 

 

Considering 𝑙(ℎ) = 𝑁 and 𝛿(𝑗) = 𝑗 are given and Equation (A.8) is resulted. 

 𝑆(ℎ) =
∑ 𝑗𝛾𝑗
𝑁
𝑗=1

∑ 𝑗𝑁
𝑗=1

=
2

𝑁(𝑁 + 1)
∑𝑗𝛾𝑗

𝑁

𝑗=1

 (A.8) 

 

A.1.3 Intuitionistic fuzzy set 

Atanassov (1986) introduced the Intuitionistic Fuzzy Set (IFS) theory as the extension 

of the original FST. The IFS theory is characterised by both membership and non-

membership functions unlike FST which only benefits from membership function 

(Govindan et al., 2015; Nikjoo and Saeedpoor, 2014).  

Definition A.5. (Atanassov, 1986): Let 𝑋 be a fixed set. Then an IFS, 𝐴 can be defined 

as Equation (A.9)    
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 𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉|𝑥 ∈ 𝑋} 
(A.9) 

Where, 𝜇𝐴(𝑥): 𝑋 → [0,1] (i.e. membership degree of  𝑥 ∈ 𝑋 to set 𝐴),  𝑣𝐴(𝑥): 𝑋 →

[0,1]  (i.e. non-membership degree of  𝑥 ∈ 𝑋 to set 𝐴) and 0 ≤ 𝜇𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1 , 

 𝑥 ∈ 𝑋 . Furthermore, the 𝜋𝐴(𝑥) is defined as the hesitancy level of 𝑥 ∈ 𝑋 to set 𝐴 

based on Equation (A.10). 

 𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝑣𝐴(𝑥) ,  𝑥 ∈ 𝑋 (A.10) 

Definition A.6. (Govindan et al., 2015). A Trapezoidal Intuitionistic Fuzzy Number 

(TrIFN) 𝐴, given 𝑏1 ≤ 𝑎1 ≤ 𝑏2 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑏3 ≤ 𝑎4 ≤ 𝑏4in ℝ is signified as 𝐴 =

〈(𝑎1, 𝑎2, 𝑎3, 𝑎4), (𝑏1, 𝑏2, 𝑏3, 𝑏4)〉 which the membership and non-membership 

functions of 𝐴 are provided in Equation (A.11) and (A.12) 
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Definition A.7. (Govindan et al., 2015). The expected value (EV) of a TrIFN 𝐴 =

〈(𝑎1, 𝑎2, 𝑎3, 𝑎4), (𝑏1, 𝑏2, 𝑏3, 𝑏4)〉 is presented as Equation (A.13)  

 𝐸𝑉(𝐴) =
1

8
(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4) 

(A.13) 
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A.2 Grey systems 

Grey systems theory was first introduced by Deng (1989). Grey theory can be applied 

in various research fields such as grey systems analysis, decision making, modelling 

and forecasting. Successful applications of grey system span a broad range of research 

in agriculture (Tang et al., 2008), energy (Malekpoor et al., 2018), transport (Hsu and 

Wen, 2000), innovation (Chalvatzis et al., 2019), just to name a few. In manufacturing 

sectors, the applications have produced considerable profits. The main merit of grey 

systems theory is its capability to produce satisfactory outcomes by using a relatively 

small amount of data (Govindan et al., 2016; Xia et al., 2015).  

Grey systems theory compared to many mainstream uncertainty theories, such 

as FST has appreciable features, particularly when it is necessary to deal with 

uncertain data and lack of information (Govindan et al., 2016; Yamaguchi et al., 

2007):  

• Grey systems generate satisfactory results utilising a relatively small amount 

of data. 

• Grey systems are robust regarding the noise and lack of modelling 

information. 

• Grey systems theory yields fairly flexible, non-parametric assumptions. 

The basic definitions of grey systems are provided as follows: 

Definition A.8. A grey number ⊗𝑋 is defined as an interval with known upper and 

lower bounds which are shown by 𝑋 and 𝑋 , respectively, but there is no known 

distribution information for 𝑋  (Deng, 1989; Vafadarnikjoo et al., 2018). It is 

represented in Equation (A.14). 

 ⊗𝑋 = [𝑋, 𝑋] = [𝑋′ ∈⊗ 𝑋|𝑋 ≤ 𝑋′ ≤ 𝑋] (A.14) 

  

Definition A.9. Given ⊗𝑋1 = [𝑋1, 𝑋1] and ⊗𝑋2 = [𝑋2, 𝑋2] are two grey numbers 

then the basic operations of grey numbers can be defined as Equation (A.15) to (A.18) 

(Govindan et al., 2016; Liu and Lin, 2006).  

 ⊗𝑋1 +⊗𝑋2 = [𝑋1 + 𝑋2, 𝑋1 + 𝑋2] 
(A.15) 
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 ⊗𝑋1 −⊗𝑋2 = [𝑋1 − 𝑋2, 𝑋1 − 𝑋2] 
(A.16) 

 ⊗𝑋1 ×⊗ 𝑋2 = [𝑚𝑖𝑛(𝑋1𝑋2, 𝑋1𝑋2, 𝑋1𝑋2, 𝑋1𝑋2), 𝑚𝑎𝑥(𝑋1𝑋2, 𝑋1𝑋2, 𝑋1𝑋2, 𝑋1𝑋2)] 
(A.17) 

 ⊗X1 ÷⊗X2 = [X1, X1] × [
1

X2
,
1

X2
] (A.18) 

 

Definition A.10. The length of a grey number ⊗𝑋 is defined as Equation (A.19). 

 𝐿(⊗ 𝑋 ) = [𝑋 − 𝑋] (A.19) 

 

Definition A.11. Comparison of grey numbers (Li et al., 2007): 

Given ⊗𝑋1 = [𝑋1, 𝑋1] and ⊗𝑋2 = [𝑋2, 𝑋2] are two grey numbers, the possibility 

degree of ⊗𝑋1 ≤⊗𝑋2 can be defined as Equation (A.20). 

 𝑃{⊗ 𝑋1 ≤⊗𝑋2} =
𝑚𝑎𝑥 (0, 𝐿∗ −𝑚𝑎𝑥(0,𝑋1 − 𝑋2))

𝐿∗
 

(A.20) 

Where 𝐿∗ = 𝐿(⊗ 𝑋1) + 𝐿(⊗ 𝑋2) 

There are four possible cases on the real number axis to determine the relationship 

between ⊗𝑋1 and ⊗𝑋2 : 

(1) If 𝑋1 = 𝑋2 , and 𝑋1 = 𝑋2 , then ⊗𝑋1 =⊗ 𝑋2. Hence, 𝑃{⊗ 𝑋1 ≤⊗ 𝑋2} = 0.5 

(2) If 𝑋2 > 𝑋1 , then ⊗𝑋2 >⊗𝑋1 . Hence, 𝑃{⊗ 𝑋1 ≤⊗𝑋2} = 1 

(3) If 𝑋2 < 𝑋1 , then ⊗𝑋2 <⊗𝑋1. Hence, 𝑃{⊗ 𝑋1 ≤⊗𝑋2} = 0 

4-a) If {⊗ 𝑋1 ≤⊗𝑋2} > 0.5 , then ⊗𝑋2 >⊗𝑋1   

4-b) If {⊗ 𝑋1 ≤⊗𝑋2} < 0.5 , then ⊗𝑋2 <⊗𝑋1 

Definition A.12. (Stanujkic et al., 2012). Whitenised (whitened or crisp value) of a 

grey number is a deterministic number with its value between the upper and lower 

bounds of a grey number ⊗𝑋. The whitenised value 𝑥(𝜆) can be defined as Equation 

(A.21) in which 𝜆 is whitening coefficient and 𝜆 ∈ [0,1]. 

 𝑥(𝜆) = (1 − 𝜆)𝑥 + 𝜆𝑥 (A.21) 

For 𝜆 = 0.5, the Equation (A.22) will be resulted: 
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 𝑥(𝜆=0.5) =
1

2
(𝑥 + 𝑥) (A.22) 

 

Definition A.13. Signed Distance: (Eberly, 2006; Stanujkic et al., 2012). Given ⊗

𝑋1 = [𝑋1, 𝑋1] and ⊗𝑋2 = [𝑋2, 𝑋2] are two grey numbers. Then, the distance between 

⊗𝑋1 and ⊗𝑋2 can be calculated as signed difference between their centres as shown 

in Equation (A.23). 

 𝑑(⊗ 𝑋1,⊗ 𝑋2) =
𝑥1 + 𝑥1
2

−
𝑥2 + 𝑥2
2

=
1

2
[(𝑥1 − 𝑥2) + (𝑥1 − 𝑥2)] 

(A.23) 

 

Definition A.14. (Liu and Lin, 2006). Given ⊗𝑋 = [𝑋, 𝑋] is a grey number and 𝑘 >

0 then Equation (A.24) is obtained. 

 𝒌 × [𝑋, 𝑋] = [𝑘𝑋, 𝑘𝑋] (A.24) 

 

A.3 Neutrosophic logic 

A.3.1 Neutrosophic set theory 

Atanassov (1986) proposed IFS as a development of the FST. The IFS was generalised 

to the Neutrosophic Set (NS), so as to present valuable information on how a DM 

would effectively deal with uncertainty within subjective judgements (Smarandache, 

1999, 1998). However, values of truth, indeterminacy, and falsity functions must be 

within [0,1] in order to be able to apply NS in real-world problems. The issue was 

that, they were within ]0−, 1+[ , where 1+ = 1 + 𝜀 , and 0− = 0 − 𝜀  , are non-

standard finite numbers (Ji et al., 2018; Rivieccio, 2008). Wang et al. (2010) solved 

the issue by introducing Single-Valued Neutrosophic Sets (SVNS) where truth, 

indeterminacy, and falsity functions are real values within [0,1] (Ji et al., 2018; Scherz 

and Vafadarnikjoo, 2019). Another generalisation of intuitionistic numbers is a 

Single-Valued Trapezoidal Neutrosophic Number (SVTNN). In Table A.1 a 

comparison between four uncertainty approaches is presented (Govindan et al., 2016; 

Liu and Lin, 2006; Smarandache, 2002). 
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Table A.1 A comparison between four uncertainty theories  

 Grey Systems 

Theory 

Probability 

Theory 

FS Theory NS Theory 

Study objects poor 

information 

uncertainty 

stochastic 

uncertainty 

cognitive 

uncertainty 

transcendental 

uncertainty 

Basic Sets grey hazy sets cantor sets fuzzy sets neutrosophic 

sets 

Methods information 

coverage 

probability 

distribution 

function of 

affiliation 

truth, falsity, 

indeterminacy 

membership 

functions 

Requirement any distribution typical 

distribution 

experience 3D 

neutrosophic 

space 

Objective laws of reality laws of 

statistics 

cognitive 

expression 

neutrosophic 

mathematics 

Characteristics small samples large samples experience philosophical 

viewpoint 

 

Recently, a growing number of scholars are working on SVNS from the Multi 

Attribute Group Decision Making (MAGDM) realm (Table A.2). While NST has been 

developed rapidly over the past few years, there are relatively limited studies looking 

into its practical applications, as most of the literature has focused on its theoretical 

advances (Vafadarnikjoo et al., 2018).   
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Table A.2 Decision-making under the NST environment 

Article Characteristics 

Abdel-Basset 

et al. (2019a)  

Proposed a type-2 neutrosophic number integration with the TOPSIS method. 

Wang et al. 

(2018) 

Developed a series of Maclaurin Symmetric Mean (MSM) aggregation techniques 

under single-valued neutrosophic linguistic environments and proposed 

procedures for solving MCDM problems. 

Liang et al. 

(2018) 

Developed a method based on the Single-Valued Trapezoidal Neutrosophic 

Normalised Weighted Bonferroni Mean (SVTNNWBM) operator to deal with 

Multiple Criteria Group Decision-Making (MCGDM) problems. 

Peng and Dai 

(2018) 

Introduced the Single Valued Neutrosophic (SVN) distance and similarity 

measures expressed by SVNN and a novel score function. 

Li et al. (2017) Proposed two aggregation operators based on neutrosophic information namely 

the Linguistic Neutrosophic Geometric Heronian Mean (LNGHM) and the 

Linguistic Neutrosophic Prioritised Geometric Heronian Mean (LNPGHM). Also, 

developed two MCDM methods under linguistic neutrosophic environments. 

Deli and Subas 

(2017) 

Presented a methodology for solving MADM problems with SVNN. 

Chen and Ye 

(2017) 

Proposed the Single-Valued Neutrosophic Dombi Weighted Arithmetic Average 

(SVNDWAA) and the Single-Valued Neutrosophic Dombi Weighted Geometric 

Average (SVNDWGA) operators to aggregate SVNN. 

Peng and Liu 

(2017) 

Proposed three algorithms to solve the single-valued neutrosophic soft decision-

making problem by EDAS, similarity measure, and level soft set. 

Stanujkic et al. 

(2017) 

Extended MULTIMOORA (Multi-Objective Optimisation by Ratio Analysis plus 

Full Multiplicative Form) by integration with SVNS. 

Liu and Zhang 

(2017) 

Integrated the Neutrosophic Hesitant Fuzzy Set (NHFS) with the VIKOR method. 

Ye (2017a) Developed Trapezoidal Neutrosophic Weighted Geometric Averaging (TNWGA) 

and Trapezoidal Neutrosophic Weighted Arithmetic Averaging (TNWAA) 

operators. On the basis of TNWGA, TNWAA, and the score function of the 

Trapezoidal Neutrosophic Number (TNN), a MADM method is established. 

Ye (2017b) Introduced a simplified neutrosophic harmonic averaging projection measure 

between each alternative and the ideal choice in the MADM problems. 

Ye (2017c) Proposed two correlation coefficients between Normal Neutrosophic Sets (NNS) 

and then developed a MADM method with NNS. 

Ye (2017d) Proposed a MAGDM method under an interval neutrosophic uncertain linguistic 

environment. 

Ye (2017e) Proposed a bidirectional projection measure of interval numbers and neutrosophic 

numbers and then developed a bidirectional projection-based MAGDM method. 
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In this section, some basic definitions of the NST are explained. 

Definition A.15. (Smarandache, 1999; Vafadarnikjoo et al., 2018) Given 𝑈 be a finite 

set of objects, and x denotes a generic element in 𝑈. The NS, 𝐴 in 𝑈 is presented by a 

truth-membership function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and 

a falsity-membership function 𝐹𝐴(𝑥). The 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) are the elements of 

]0−, 1+[. The NS can be shown as Equation (A.25). 

 𝐴 = {< 𝑥, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) >: 𝑥 ∈ 𝑈, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ ]0
−, 1+[ } (A.25) 

 

Note that 0− ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3
+ 

Definition A.16. (Vafadarnikjoo et al., 2018; H. Wang et al., 2010) Given 𝑈 be a finite 

set of elements, and x denotes a generic element in 𝑈. A SVNS, 𝐴 in 𝑈 is signified by 

a truth-membership function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), 

and a falsity-membership function 𝐹𝐴(𝑥). The 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) are the 

elements of [0,1]. The SVNS can be shown as Equation (A.26) 

 𝐴 = {< 𝑥, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) >: 𝑥 ∈ 𝑈, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈  [0,1] } 
(A.26) 

 

Note that 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

For convenience, a SVNS 𝐴 = {< 𝑥, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) >: 𝑥 ∈ 𝑈} is 

sometimes shown as a 𝐴 = {< 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑈} called a simplified form. 

Definition A.17. (Deli and Subas, 2014; Vafadarnikjoo et al., 2018) A SVTNN 𝑎̃ =<

(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤𝑎̃, 𝑢𝑎̃, 𝑦𝑎̃ > , 𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈ ℝ , 𝑎1 ≤ 𝑏1 ≤ 𝑐1 ≤ 𝑑1, and 

𝑤𝑎̃, 𝑢𝑎̃, 𝑦𝑎̃ ∈ [0,1] is a particular SVNN that  𝑇𝑎̃(𝑥), 𝐼𝑎̃(𝑥), and 𝐹𝑎̃(𝑥) are presented 

as Equations (A.27)-(A.29) respectively. 

 𝑇𝑎̃(𝑥) =

{
 

 
(𝑥 − 𝑎1)𝑤𝑎̃ (𝑏1 − 𝑎1)⁄ 𝑎1 ≤ 𝑥 < 𝑏1
𝑤𝑎̃                                    𝑏1 ≤ 𝑥 ≤ 𝑐1

(𝑑1 − 𝑥)𝑤𝑎̃ (𝑑1 − 𝑐1)⁄          𝑐1 < 𝑥 ≤ 𝑑1

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.27) 
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 𝐼𝑎̃(𝑥) =

{
 
 

 
 (𝑏1 − 𝑥 + 𝑢𝑎̃(𝑥 − 𝑎1)) (𝑏1 − 𝑎1)⁄ 𝑎1 ≤ 𝑥 < 𝑏1

𝑢𝑎̃                                     𝑏1 ≤ 𝑥 ≤ 𝑐1
(𝑥 − 𝑐1 + 𝑢𝑎̃(𝑑1 − 𝑥)) (𝑑1 − 𝑐1)⁄          𝑐1 < 𝑥 ≤ 𝑑1

1                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.28) 

 

 

 𝐹𝑎̃(𝑥) =

{
 
 

 
 (𝑏1 − 𝑥 + 𝑦𝑎̃(𝑥 − 𝑎1)) (𝑏1 − 𝑎1)⁄ 𝑎1 ≤ 𝑥 < 𝑏1

𝑦𝑎̃                                    𝑏1 ≤ 𝑥 ≤ 𝑐1
(𝑥 − 𝑐1 + 𝑦𝑎̃(𝑑1 − 𝑥)) (𝑑1 − 𝑐1)⁄          𝑐1 < 𝑥 ≤ 𝑑1

1                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.29) 

 

Definition A.18. (Ye, 2017a) Given 𝑎̃ =< (𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤𝑎̃, 𝑢𝑎̃, 𝑦𝑎̃ > and 𝑏̃ =<

(𝑎2, 𝑏2, 𝑐2, 𝑑2); 𝑤𝑏̃, 𝑢𝑏̃, 𝑦𝑏̃ > be two SVTNN and 𝜆 > 0  and 𝑤𝑎̃, 𝑢𝑎̃, 𝑦𝑎̃, 𝑤𝑏̃, 𝑢𝑏̃, 𝑦𝑏̃  ∈

[0,1] ,  𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑎2, 𝑏2, 𝑐2, 𝑑2 ∈ ℝ , 𝑎1 ≤ 𝑏1 ≤ 𝑐1 ≤ 𝑑1, and 𝑎2 ≤ 𝑏2 ≤ 𝑐2 ≤ 𝑑2 

then Equations (A.30)-(A.31) are defined. 

 𝑎̃ + 𝑏̃ =< (𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2, 𝑑1 + 𝑑2); 𝑤𝑎̃ + 𝑤𝑏̃ − 𝑤𝑎̃𝑤𝑏̃, 𝑢𝑎̃𝑢𝑏̃ , 𝑦𝑎̃𝑦𝑏̃ > (A.30) 

 𝜆𝑎̃ =< (𝜆𝑎1, 𝜆𝑏1, 𝜆𝑐1, 𝜆𝑑1); 1 − (1 − 𝑤𝑎̃)
𝜆 , 𝑢𝑎̃

𝜆 , 𝑦𝑎̃
𝜆 > (A.31) 

When 𝑎1,𝑏1, 𝑐1,𝑑1,𝑎2,𝑏2, 𝑐2, 𝑑2 > 0 then Equations (A.32)-(A.33)  are correct.  

 𝑎̃𝑏̃ =< (𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2 , 𝑑1𝑑2);𝑤𝑎̃𝑤𝑏̃, 𝑢𝑎̃ + 𝑢𝑏̃ − 𝑢𝑎̃𝑢𝑏̃ , 𝑦𝑎̃ + 𝑦𝑏̃ − 𝑦𝑎̃𝑦𝑏̃ > (A.32) 

 𝑎̃𝜆 =< (𝑎1
𝜆 , 𝑏1

𝜆 , 𝑐1
𝜆 , 𝑑1

𝜆);𝑤𝑎̃
𝜆 , 1 − (1 − 𝑢𝑎̃)

𝜆 , 1 − (1 − 𝑦𝑎̃)
𝜆 > (A.33) 

 

Definition A.19. (Wang and Zhong, 2009; Ye, 2017a) Let 𝑎̃ =<

(𝑎, 𝑏, 𝑐, 𝑑);𝑤𝑎̃, 𝑢𝑎̃, 𝑦𝑎̃ > be a SVTNN. The score function of 𝑎̃ is computed based on 

Equation (A.34): 

 𝑆(𝑎̃) =
1

12
(𝑎 + 𝑏 + 𝑐 + 𝑑)(2 + 𝑤𝑎̃ − 𝑢𝑎̃ − 𝑦𝑎̃)        𝑆(𝑎̃) ∈ [0,1] 

(A.34) 

 

Definition A.20. (Ye, 2017a) For comparison of two SVTNNs  𝑎̃ =<

(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤𝑎̃, 𝑢𝑎̃, 𝑦𝑎̃ > and 𝑏̃ =< (𝑎2, 𝑏2, 𝑐2, 𝑑2);𝑤𝑏̃, 𝑢𝑏̃, 𝑦𝑏̃ > on the basis of 

Equation (A.34), if 𝑆(𝑎̃) > 𝑆(𝑏̃) then 𝑎̃ > 𝑏̃; if 𝑆(𝑎̃) = 𝑆(𝑏̃) then 𝑎̃ = 𝑏̃.  
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Appendix B: Graph Theory-Definitions 

Definition B.1: order and size of a graph (Benjamin et al., 2015). The order of a graph 

𝐺 is the number of vertices (i.e. 𝑛) and the size of a graph 𝐺 is the number of edges 

(i.e. 𝑚) (In Figure 3.1, 𝑛 = 6 and 𝑚 = 7). 

Definition B.2: the degree of a vertex 𝑣 (Benjamin et al., 2015). The degree of a vertex 

𝑣 in a graph 𝐺 is shown as 𝑑𝑒𝑔𝐺𝑣 and is defined as the number of edges incident with 

the vertex 𝑣. Thus, in a graph 𝐺 with 𝑛 vertices, we have 0 ≤ 𝑑𝑒𝑔𝐺𝑣 ≤ 𝑛 − 1.  

For instance, in graph 𝐺, in Figure 3.1, 𝑑𝑒𝑔𝐺𝑓 = 0 (isolated vertex), 𝑑𝑒𝑔𝐺𝑎 = 3, 

𝑑𝑒𝑔𝐺𝑏 = 3, 𝑑𝑒𝑔𝐺𝑐 = 4, 𝑑𝑒𝑔𝐺𝑑 = 1, 𝑑𝑒𝑔𝐺𝑒 = 3 

Definition B.3: undirected graphs (Metcalf and Casey, 2016). In undirected graphs 

relationships between any two vertices are mutual.  

It means for instance if 𝑒 and 𝑐 in Figure 3.1 are connected vertices by an edge in an 

undirected graph, then 𝑒 is related to 𝑐, and 𝑐 is related 𝑒. The graph G in Figure 3.1, 

is an example of undirected graphs which are also named simple graphs. Social 

networks such as a high school class is an example where students in such a network 

can be modelled by undirected graphs. The reason is that the relationships between 

students in a high school class or people in any other social networks are mutual.   

Definition B.4: complete graph (Zhang, 2012). A graph 𝐾 with order 𝑛 (i.e. 𝐾𝑛) is a 

complete graph if between any pair of distinct vertices there exists an edge (Figure 

B.1).  

 

Figure B.1 A complete graph 𝐾4  

Definition B.5. path (Hein, 2001). A path is defined as a sequence of edges that is 

denoted by a sequence of vertices. 

For instance, in Figure B.1, there is a path 𝑝, 𝑞, 𝑟, 𝑜 with the length of 3 
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Definition B.6. cycle (Hein, 2001). A cycle is a path with equal beginning and ending 

vertices where no edge occurs more than once.  

For instance, in Figure B.1, a path 𝑝, 𝑞, 𝑟, 𝑝 is a cycle 

Definition B.7: connected graph (Hein, 2001). If there is a path between every pair of 

vertices, then the graph is named a connected graph.  

Definition B.8: subgraphs (Benjamin et al., 2015). A graph 𝐻 is named a subgraph of 

a graph 𝐺 if every vertex and edge of 𝐻 is a vertex and edge of 𝐺.  

Definition B.9: spanning subgraphs (Benjamin et al., 2015). If the subgraph 𝐻 of a 

graph 𝐺, has the same vertices as 𝐺, then 𝐻 is a spanning subgraph of 𝐺. 

Definition B.10: trees (Benjamin et al., 2015). A tree is a connected graph that 

contains no cycles. It is common to signify a tree by 𝑇.  

Theorem B.1. A graph 𝐺 is a tree if and only if every two vertices of 𝐺 are connected 

by only one path (The proof is provided in Benjamin et al. (2015)). 

Definition B.11: spanning trees (Wu and Chao, 2004). A spanning tree of a graph 𝐺 

is a subgraph of 𝐺 which is a tree and includes all the vertices in 𝐺.  

Definition B.12: a branch and a chord (Chakraborty et al., 2019). Let 𝐺 be a connected 

graph then an edge in a spanning tree 𝑇 of 𝐺 is named a branch and an edge of 𝐺 

which is absent in the given spanning tree 𝑇 is named chord.  

Definition B.13: directed graphs or digraphs (Bang-Jensen and Gutin, 2006). A 

digraph 𝐷 that is often written as 𝐷 = (𝑉, 𝐴) includes a non-empty finite set 𝑉(𝐷) of 

elements (vertices) and a finite set 𝐴(𝐷) of ordered pairs of distinct vertices (arcs). 

𝑉(𝐷) and 𝐴(𝐷) named vertex set and arc set respectively.  

In Figure B.2, a digraph 𝐷 is depicted as an example. The 𝑉(𝐷) and 𝐴(𝐷) in this 

example are as follows: 

𝑉(𝐷) = {𝑥, 𝑦, 𝑧, 𝑡, 𝑢, 𝑣, 𝑤} 

𝐴(𝐷) = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑦, 𝑡), (𝑧, 𝑡), (𝑡, 𝑢), (𝑢, 𝑣), (𝑢, 𝑤), (𝑤, 𝑢)} 

 



233 

 

 

Figure B.2 A digraph 𝐷 

In digraphs, for an arc like (𝑦, 𝑧) the first vertex 𝑦 is called tail and the second vertex 

is named head (i.e. 𝑧). It is also said that 𝑦 dominates 𝑧 or 𝑧 is dominated by 𝑦. An 

arc (𝑦, 𝑧) is often signified as 𝑦𝑧 (Bang-Jensen and Gutin, 2018). In this thesis, the 

arc (𝑦, 𝑧) is shown as 𝑎𝑦𝑧.  

Theorem B.2: Cayley’s tree formula. Cayley (1889) introduced the formula 𝑛𝑛−2 for 

counting the number of spanning trees in a complete graph with order n (𝐾𝑛). The 

proof is provided in Wu and Chao (2004). 

For instance, for a 𝐾4 graph (Figure B.1), 44−2 = 16 spanning trees can be 

obtained as shown in Figure B.3. 

 

Figure B.3 All spanning trees of a complete graph 𝐾4 
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Definition B.14: degree matrix (Chartrand et al., 2011). Let 𝐺 be a graph with 𝑉(𝐺) =

{𝑣1, 𝑣2, … , 𝑣𝑛}, then the degree matrix 𝐷(𝐺) = [𝑑𝑖𝑗] is a diagonal 𝑛 × 𝑛 matrix with 

diagonal values as are shown in Equation (B.35) 

 
𝑑𝑖𝑗 = {

𝑑𝑒𝑔𝑣𝑖 , 𝑖𝑓 𝑖 = 𝑗
0, 𝑖𝑓 𝑖 ≠ 𝑗

 

 

(B.35) 

Definition B.15: adjacency matrix (Siraj et al., 2012). Let 𝐺 be a graph with 𝑉(𝐺) =

{𝑣1, 𝑣2, … , 𝑣𝑛}, then the adjacency matrix 𝐴(𝐺) = [𝑐𝑖𝑗] where each element 𝑐𝑖𝑗 

represents the number of edges from vertex 𝑣𝑖 to vertex 𝑣𝑗. 

Theorem B.3. Kirchhoff’s matrix-tree theorem (Chartrand et al., 2011). Let 𝐺 be a 

labelled graph with adjacency matrix 𝐴(𝐺) and degree matrix 𝐷(𝐺), then the absolute 

value of any cofactor of the Laplacian matrix 𝐷(𝐺) − 𝐴(𝐺) results in the number of 

distinct spanning trees of 𝐺. 

The Kirchhoff’s matrix-tree theorem helps determine the number of distinct spanning 

trees of labelled graphs in general and not only in complete graphs.  
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Appendix C: All spanning trees by Gray code algorithm for ND 

and PI 

There are many algorithms in the literature for generating all possible spanning trees 

in undirected graphs as reviewed by Chakraborty et al. (2019). In this research, I have 

used Gray code algorithm developed by Naskar et al. (2009) using Gray codes. First, 

an initial tree 𝑇0 must be generated by any method such as Breadth-First Traversal 

(Hein, 2001). The 𝑇0 is comprised of 𝑛 − 1 branches and 𝑚 − (𝑛 − 1) chords. Then, 

2𝑚−(𝑛−1) binary representations are produced each of length 𝑚 − (𝑛 − 1) namely 

Gray codes. Subsequently, combination of 𝑛 − 1 branches and 𝑚 − (𝑛 − 1) chords 

are calculated for each Gray code in a way that output will contain (𝑛 − 1) edges. 

Finally, each combination should be checked if there is no cycle and it is a spanning 

tree. In this section, generating all spanning trees by the Gray code algorithm is shown.  

The undirected graph 𝐺 of the pairwise comparison matrix 𝐴 provided by expert 

4 in the UK energy risk dimensions analysis in Chapter 6 (Section 6.5.1.1). It indicates 

ND (Natural Disasters) as the most critical risk dimension (i.e. the best) and PI 

(Political Instability) as the least critical risk dimension (i.e. the worst) in the STE-

BWM and is represented in the Figure C.1.  

 

 

Figure C.1 The graph of pairwise-comparisons (ND and PI) 

The initial tree (tree no 1 in Table C.1) is shown in the Figure C.2 which is used as 

the starting tree, in the Gray code algorithm. 
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Figure C.2 The initial tree used in the Gray code algorithm (ND and PI) 

 

In Table C.1, the # means the graph is not a tree 

Table C.1 All-tree matrix (ATM) of the Gray code algorithm (ND and PI) 

Graph 

no. 

Tree 

no. 
𝒆𝟏 𝒆𝟔 𝒆𝟕 𝒆𝟓 𝒆𝟒 𝒆𝟐 𝒆𝟖 𝒆𝟗 𝒆𝟑 

Gray 

code 

1 1 1 1 1 1 1 0 0 0 0 0000 

2 # 1 1 1 1 0 0 0 0 1 0001 

3 # 1 1 1 0 1 0 0 0 1 0001 

4 2 1 1 0 1 1 0 0 0 1 0001 

5 3 1 0 1 1 1 0 0 0 1 0001 

6 # 0 1 1 1 1 0 0 0 1 0001 

7 # 1 1 1 1 0 0 0 1 0 0010 

8 4 1 1 1 0 1 0 0 1 0 0010 

9 # 1 1 0 1 1 0 0 1 0 0010 

10 5 1 0 1 1 1 0 0 1 0 0010 

11 # 0 1 1 1 1 0 0 1 0 0010 

12 6 1 1 1 1 0 0 1 0 0 0100 

13 # 1 1 1 0 1 0 1 0 0 0100 

14 # 1 1 0 1 1 0 1 0 0 0100 

15 7 1 0 1 1 1 0 1 0 0 0100 

16 # 0 1 1 1 1 0 1 0 0 0100 

17 # 1 1 1 1 0 1 0 0 0 1000 

18 # 1 1 1 0 1 1 0 0 0 1000 

19 # 1 1 0 1 1 1 0 0 0 1000 
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20 8 1 0 1 1 1 1 0 0 0 1000 

21 9 0 1 1 1 1 1 0 0 0 1000 

22 # 0 1 1 1 0 0 0 1 1 0011 

23 # 0 1 1 0 1 0 0 1 1 0011 

24 # 0 1 0 1 1 0 0 1 1 0011 

25 # 0 0 1 1 1 0 0 1 1 0011 

26 # 1 0 1 1 0 0 0 1 1 0011 

27 10 1 0 1 0 1 0 0 1 1 0011 

28 11 1 0 0 1 1 0 0 1 1 0011 

29 12 1 1 0 0 1 0 0 1 1 0011 

30 # 1 1 0 1 0 0 0 1 1 0011 

31 # 1 1 1 0 0 0 0 1 1 0011 

32 # 0 0 0 1 1 0 1 1 1 0111 

33 # 0 0 1 0 1 0 1 1 1 0111 

34 # 0 1 0 0 1 0 1 1 1 0111 

35 13 1 0 0 0 1 0 1 1 1 0111 

36 # 0 0 1 1 0 0 1 1 1 0111 

37 # 0 1 0 1 0 0 1 1 1 0111 

38 14 1 0 0 1 0 0 1 1 1 0111 

39 # 0 1 1 0 0 0 1 1 1 0111 

40 15 1 0 1 0 0 0 1 1 1 0111 

41 16 1 1 0 0 0 0 1 1 1 0111 

42 17 0 0 0 0 1 1 1 1 1 1111 

43 18 0 0 0 1 0 1 1 1 1 1111 

44 19 0 0 1 0 0 1 1 1 1 1111 

45 20 0 1 0 0 0 1 1 1 1 1111 

46 21 1 0 0 0 0 1 1 1 1 1111 

47 # 0 1 1 1 0 0 1 0 1 0101 

48 # 0 1 1 0 1 0 1 0 1 0101 

49 # 0 1 0 1 1 0 1 0 1 0101 

50 # 0 0 1 1 1 0 1 0 1 0101 

51 22 1 0 1 1 0 0 1 0 1 0101 

52 # 1 0 1 0 1 0 1 0 1 0101 

53 23 1 0 0 1 1 0 1 0 1 0101 

54 # 1 1 0 0 1 0 1 0 1 0101 

55 24 1 1 0 1 0 0 1 0 1 0101 
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56 # 1 1 1 0 0 0 1 0 1 0101 

57 # 0 1 1 1 0 1 0 0 1 1001 

58 # 0 1 1 0 1 1 0 0 1 1001 

59 25 0 1 0 1 1 1 0 0 1 1001 

60 26 0 0 1 1 1 1 0 0 1 1001 

61 # 1 0 1 1 0 1 0 0 1 1001 

62 # 1 0 1 0 1 1 0 0 1 1001 

63 27 1 0 0 1 1 1 0 0 1 1001 

64 # 1 1 0 0 1 1 0 0 1 1001 

65 # 1 1 0 1 0 1 0 0 1 1001 

66 # 1 1 1 0 0 1 0 0 1 1001 

67 # 0 1 1 1 0 0 1 1 0 0110 

68 # 0 1 1 0 1 0 1 1 0 0110 

69 # 0 1 0 1 1 0 1 1 0 0110 

70 # 0 0 1 1 1 0 1 1 0 0110 

71 28 1 0 1 1 0 0 1 1 0 0110 

72 29 1 0 1 0 1 0 1 1 0 0110 

73 # 1 0 0 1 1 0 1 1 0 0110 

74 # 1 1 0 0 1 0 1 1 0 0110 

75 # 1 1 0 1 0 0 1 1 0 0110 

76 30 1 1 1 0 0 0 1 1 0 0110 

77 # 0 1 1 1 0 1 0 1 0 1010 

78 31 0 1 1 0 1 1 0 1 0 1010 

79 # 0 1 0 1 1 1 0 1 0 1010 

80 32 0 0 1 1 1 1 0 1 0 1010 

81 # 1 0 1 1 0 1 0 1 0 1010 

82 33 1 0 1 0 1 1 0 1 0 1010 

83 # 1 0 0 1 1 1 0 1 0 1010 

84 # 1 1 0 0 1 1 0 1 0 1010 

85 # 1 1 0 1 0 1 0 1 0 1010 

86 # 1 1 1 0 0 1 0 1 0 1010 

87 34 0 1 1 1 0 1 1 0 0 1100 

88 # 0 1 1 0 1 1 1 0 0 1100 

89 # 0 1 0 1 1 1 1 0 0 1100 

90 35 0 0 1 1 1 1 1 0 0 1100 

91 36 1 0 1 1 0 1 1 0 0 1100 
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92 # 1 0 1 0 1 1 1 0 0 1100 

93 # 1 0 0 1 1 1 1 0 0 1100 

94 # 1 1 0 0 1 1 1 0 0 1100 

95 # 1 1 0 1 0 1 1 0 0 1100 

96 # 1 1 1 0 0 1 1 0 0 1100 

97 37 0 0 0 1 1 1 0 1 1 1011 

98 38 0 0 1 0 1 1 0 1 1 1011 

99 39 0 1 0 0 1 1 0 1 1 1011 

100 40 1 0 0 0 1 1 0 1 1 1011 

101 # 0 0 1 1 0 1 0 1 1 1011 

102 # 0 1 0 1 0 1 0 1 1 1011 

103 # 1 0 0 1 0 1 0 1 1 1011 

104 # 0 1 1 0 0 1 0 1 1 1011 

105 # 1 0 1 0 0 1 0 1 1 1011 

106 # 1 1 0 0 0 1 0 1 1 1011 

107 41 0 0 0 1 1 1 1 0 1 1101 

108 # 0 0 1 0 1 1 1 0 1 1101 

109 # 0 1 0 0 1 1 1 0 1 1101 

110 # 1 0 0 0 1 1 1 0 1 1101 

111 42 0 0 1 1 0 1 1 0 1 1101 

112 43 0 1 0 1 0 1 1 0 1 1101 

113 44 1 0 0 1 0 1 1 0 1 1101 

114 # 0 1 1 0 0 1 1 0 1 1101 

115 # 1 0 1 0 0 1 1 0 1 1101 

116 # 1 1 0 0 0 1 1 0 1 1101 

117 # 0 0 0 1 1 1 1 1 0 1110 

118 45 0 0 1 0 1 1 1 1 0 1110 

119 # 0 1 0 0 1 1 1 1 0 1110 

120 # 1 0 0 0 1 1 1 1 0 1110 

121 46 0 0 1 1 0 1 1 1 0 1110 

122 # 0 1 0 1 0 1 1 1 0 1110 

123 # 1 0 0 1 0 1 1 1 0 1110 

124 47 0 1 1 0 0 1 1 1 0 1110 

125 48 1 0 1 0 0 1 1 1 0 1110 

126 # 1 1 0 0 0 1 1 1 0 1110 
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As an example, the spanning trees (no 2-6 in Table C.1) are depicted as follows: 

(2): 

 

 

(3): 

 

(4): 
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(5): 

 

(6): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



242 

 

Appendix D: Maximum Mean De-Entropy Algorithm 

The concept of entropy is utilised in information theory and is a measure for capturing 

uncertainty. The higher the entropy, the higher the expected uncertainty of single 

events indicating the higher instability level of the system. The Maximum Mean De-

Entropy (MMDE) algorithm utilises the concept of entropy to determine the helpful 

information in the total relation matrix of the DEMATEL method. It is carried out by 

obtaining a threshold to filter the redundant information in total relation matrix (Lee 

and Lin, 2013; Li and Tzeng, 2009).  

Definition D.1. (Lee and Lin, 2013). Given 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) with a corresponding 

probability 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛) then the entropy 𝐻(𝑥) is defined as Equation (D.36) 

Where ∑𝑝𝑖 = 1 and 𝑝𝑖 ln 𝑝𝑖 = 0 if 𝑝𝑖 = 0 

 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛) = −∑𝑝𝑖 ln 𝑝𝑖  (D.36) 

By Definition D.1, 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛) is the largest if 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 , and the 

largest entropy is represented as 𝐻 (
1

𝑛
,
1

𝑛
, … ,

1

𝑛
).  

Definition D.2. (Lee and Lin, 2013). Given 𝑋 is a finite discrete scheme, the de-

entropy of 𝑋 is defined as  𝐻𝐷  in Equation (D.37). Unlike entropy, which is used as a 

measure of uncertainty, the de-entropy can expound the amount of helpful information 

obtained from a specific dataset which reduces information uncertainty (Li and Tzeng, 

2009).  

 𝐻𝐷 = 𝐻 (
1

𝑛
,
1

𝑛
,… ,

1

𝑛
) − 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛) (D.37) 

Definition D.3. (Lee and Lin, 2013) For each 𝑡𝑖𝑗 element of matrix 𝑇, that refers to a 

directed influence relation from factor 𝑥𝑖 (dispatch-node) to factor 𝑥𝑗 (receive-node), 

it can be shown as a triplet of (𝑡𝑖𝑗 , 𝑥𝑖 , 𝑥𝑗). Hence, the matrix 𝑇 can be regarded as a 

set 𝑇 with 𝑛2 pair ordered elements (in the set 𝑇, ordered dispatch-node set 𝑇𝐷𝑖and 

ordered receive-node set 𝑇𝑅𝑒  exist). Given 𝑚 is the number of variables in 𝑇𝐷𝑖 or 𝑇𝑅𝑒 

and the frequency of variables 𝑥𝑖 or 𝑥𝑗 is 𝑘, then the probability of the variable would 

be 𝑝𝑖 =
𝑘

𝑚
 noting that ∑𝑝𝑖 = 1. 𝐶(𝑇𝐷𝑖) or 𝐶(𝑇𝑅𝑒) denotes the cardinal number of an 

ordered set 𝑇𝐷𝑖 or 𝑇𝑅𝑒  while 𝑁(𝑇𝐷𝑖) or 𝑁(𝑇𝑅𝑒) represents the cardinal number of 

different elements in set 𝑇𝐷𝑖 or 𝑇𝑅𝑒 . For example, if 𝑇𝐷𝑖 = {1,2,2,3,1} then 𝐶(𝑇𝐷𝑖) =
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5 and 𝑁(𝑇𝐷𝑖) = 3. The steps of the MMDE algorithm for obtaining a threshold value 

based on a matrix 𝑇 are elaborated as follows (Lee and Lin, 2013):  

Step 1: Ordered triplets 𝑇∗ construction 

Converting 𝑇 into an ordered set 𝑇 = {𝑡11, 𝑡12, … , 𝑡21, 𝑡22, … , 𝑡𝑛𝑛} then 

rearranging elements in descending order and converting to respective ordered triplets 

(𝑡𝑖𝑗 , 𝑥𝑖 , 𝑥𝑗) set called 𝑇∗ 

Step 2: Dispatch-node set (𝑇𝐷𝑖) and receive-node set (𝑇𝑅𝑒) construction 

Taking the second and third elements from 𝑇∗ and then obtaining a new ordered 

dispatch-node set (𝑇𝐷𝑖) and receive-node set (𝑇𝑅𝑒) as shown in Equation (D.38) and 

(D.39) respectively. 

 𝑇𝐷𝑖 = {𝑥𝑖} (D.38) 

 𝑇𝑅𝑒 = {𝑥𝑗} (D.39) 

Step 3: 𝑀𝐷𝐸𝑡
𝐷𝑖 and 𝑀𝐷𝐸𝑡

𝑅𝑒  calculation 

Taking the first 𝑡 elements of 𝑇𝐷𝑖 and 𝑇𝑅𝑒 as new sets 𝑇𝑡
𝐷𝑖 and 𝑇𝑡

𝑅𝑒 respectively. 

By Equation (D.40)-(D.43), 𝑀𝐷𝐸𝑡
𝐷𝑖 and 𝑀𝐷𝐸𝑡

𝑅𝑒  can be obtained. 

 𝐻𝑡
𝐷𝑖 = 𝐻 [

1

𝑁(𝑇𝐷𝑖)
,

1

𝑁(𝑇𝐷𝑖)
, … ,

1

𝑁(𝑇𝐷𝑖)
] − 𝐻 [

𝑘1
𝐶(𝑇𝐷𝑖)

,
𝑘2

𝐶(𝑇𝐷𝑖)
, … ,

𝑘𝑡
𝐶(𝑇𝐷𝑖)

] (D.40) 

 𝐻𝑡
𝑅𝑒 = 𝐻 [

1

𝑁(𝑇𝑅𝑒)
,

1

𝑁(𝑇𝑅𝑒)
, … ,

1

𝑁(𝑇𝑅𝑒)
] − 𝐻 [

𝑘1
𝐶(𝑇𝑅𝑒)

,
𝑘2

𝐶(𝑇𝑅𝑒)
, … ,

𝑘𝑡
𝐶(𝑇𝑅𝑒)

] (D.41) 

 𝑀𝐷𝐸𝑡
𝐷𝑖 =

𝐻𝑡
𝐷𝑖

𝑁(𝑇𝑡
𝐷𝑖)

 (D.42) 

 𝑀𝐷𝐸𝑡
𝑅𝑒 =

𝐻𝑡
𝑅𝑒

𝑁(𝑇𝑡
𝑅𝑒)

 (D.43) 

 

Step 4: MMDE, 𝑇𝑚𝑎𝑥
𝐷𝑖  and 𝑇𝑚𝑎𝑥

𝑅𝑒  identification 

Finding the maximum value of 𝑀𝐷𝐸𝑡
𝐷𝑖 and 𝑀𝐷𝐸𝑡

𝑅𝑒  and their respective set 𝑇𝑡
𝐷𝑖 and 

𝑇𝑡
𝑅𝑒 represented as 𝑇𝑚𝑎𝑥

𝐷𝑖  and 𝑇𝑚𝑎𝑥
𝑅𝑒  
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Step 5: Maximum information set construction and threshold value determination 

Taking the first 𝑢 elements in 𝑇∗ as the subset, 𝑇𝑇ℎ , which comprises all elements of 

𝑇𝑚𝑎𝑥
𝐷𝑖  and 𝑇𝑚𝑎𝑥

𝑅𝑒  , then the minimum impact value in 𝑇𝑇ℎ is the threshold value. 
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Appendix E: Best-Worst Method 

The Best-Worst Method (BWM) functions in a similar way to that of the Analytic 

Hierarchy Process (AHP) as both methods use pairwise comparisons. However, the 

BWM benefits from some advantages over the AHP, which has made it more popular 

in recent years. One merit is the BWM’s requirement of fewer comparisons than those 

required in the AHP. Secondly, the BWM consists of a lower complexity of 

comparisons as in the BWM only whole numbers (i.e., 1 − 9 scale) are utilised, while 

in the AHP, fractional numbers are also used (i.e. 1 9⁄ − 9  scale). Using whole 

numbers makes the evaluation process and interpretations much easier since they can 

more easily be measured by human perception and cognition. Thirdly, the BWM 

properly maintains the consistency of pairwise comparisons because the redundant 

comparisons are eliminated. This means that the derived BWM results are more 

reliable than the ones obtained by the AHP (Mi et al., 2019).  

The BWM has been successfully applied in a wide range of studies. Some of the 

recent applications of the BWM include: Circular Economy (CE) in the leather 

industry in Bangladesh (Moktadir et al., 2020); third-party logistics (Pamucar et al., 

2019); renewable energy integration (Vishnupriyan and Manoharan, 2018); power 

plants alternatives selection (Omrani et al., 2018); battery energy storage systems 

(Zhao et al., 2018); financial performance analysis (Alimohammadlou and Bonyani, 

2018); sustainable architecture (Amoozad Mahdiraji et al., 2018); acute leukaemia 

classification (Alsalem et al., 2018) and  sustainable supplier selection in  the plastics 

industry (Cheraghalipour and Farsad, 2018).  

 Huge efforts have been made to develop the BWM theoretically and integrate 

it with other techniques. Mi et al. (2019) recently reviewed the BWM literature 

providing insightful detailed information on the BWM theoretical extensions and 

practical applications. They have indicated that 67% of the BWM publications are 

related to the integration of the BWM. Almost half of this amount focused on the 

singleton integrations of the BWM while the rest integrated more than one method 

with the BWM. The most popular singleton integrations of the BWM include 

uncertainty (i.e. fuzzy information), Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS), VIKOR, and Fuzzy-Delphi Method (FDM). 
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A recent list of the BWM integrations include the Euclidean BWM (Kocak et al., 

2018); the Probabilistic Hesitant Fuzzy Elements (PHFE) and the BWM (Li et al., 

2019); the Z-number extension of the BWM (Aboutorab et al., 2018); the mixed grey-

based BWM and TODIM (Bai et al., 2019); the hybrid fuzzy BWM, and Complex 

Proportional Assessment (COPRAS) method (Amoozad Mahdiraji et al., 2018); the 

integrated BWM and VIKOR method (Cheraghalipour et al., 2018; Garg and Sharma, 

2018; Gupta, 2018a); the hybrid fuzzy TOPSIS and the BWM (Gupta, 2018b; Gupta 

and Barua, 2018; Lo et al., 2018); the hybrid BWM and ELECTRE method (Yadav et 

al., 2018); the fuzzy BWM and fuzzy MULTIMOORA (A. Liu et al., 2018); rough 

numbers and the BWM (i.e. RBWM) and VIKOR (S. Liu et al., 2018); the integrated 

Interval Rough Number (IRN) and the BWM (IRN-BWM) (Pamucar et al., 2019); the 

Mixed Integer Linear Model (MILM) to provide better approximate solutions to the 

original Non-Linear Model (NLM) in the BWM (Beemsterboer et al., 2018); the fuzzy 

BWM (Guo and Zhao, 2017; Hafezalkotob and Hafezalkotob, 2017; Ijadi Maghsoodi 

et al., 2019); the IF-BWM (Mou et al., 2017), and the hybrid Intuitionistic Fuzzy 

Multiplicative BWM (IFM-BWM) (Mou et al., 2016).  

The original Linear-BWM (L-BWM) procedure is explained below (Badri 

Ahmadi et al., 2017; Rezaei, 2016):  

Step 1: Identifying decision-making criteria (in this thesis, risk dimensions) 

A set of risk dimensions is identified. The identified risks can be signified by 

the notations {𝑟1, 𝑟2, … , 𝑟𝑛}. 

Step 2: Determining the best (i.e., the most critical) and the worst (i.e., the least 

critical) risks 

In this step, decision-makers identify the best (i.e., the most critical) and the 

worst (i.e., the least critical) risk dimensions. To do this, there is no need to construct 

a vector comparison matrix.  

Step 3: Establishing the Best-to-Others (BO) preference vector using a 9-point scale  

In this stage, experts use the linguistic 1 − 9 rating scale (Table E.1) to construct 

a preference vector of the most critical risk (i.e., best) over other risks. A rating scale 

of 1 means equal preference, and 9 means extreme preference. The resulting BO 

vector can be represented as 𝐴𝐵 = (𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛). The notation 𝑎𝐵1 
denotes the 
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preference of the most critical (i.e., the best) risk dimension 𝐵 compared to risk 

dimension 1 , and obviously, the value of 𝑎𝐵𝐵 
will be 1. 

Step 4: Establishing the Others-to-Worst (OW) preference vector using a 9-point scale 

In this stage, experts use the linguistic 1 − 9 rating scale (Table E.1) to construct 

a preference vector of others to the worst (i.e., the least critical) risk dimension. The 

OW vector can be represented as 𝐴𝑊 = (𝑎1𝑊, 𝑎2𝑊, … , 𝑎𝑛𝑊)
𝑇. In the OW vector, the 

notation 𝑎1𝑊 denotes the value of a verbal scale for a risk dimension 1 over the worst 

(i.e., the least critical) risk dimension 𝑊, and, naturally, the value of 𝑎𝑊𝑊  would be 

equal to 1. 

Table E.1 The importance rating scale 

Numerical scale Verbal scale 

𝟏 Equally important 

𝟐 Weakly more important 

𝟑 Moderately more important 

𝟒 Moderately Plus more important 

𝟓 Strongly more important 

𝟔 Strongly Plus more important 

𝟕 Very Strongly Plus more important 

𝟖 Very Very Strongly more important 

𝟗 Extremely more important 

 

Step 5: Finding the optimal weights of identified risks (𝑤1
∗ , 𝑤2

∗ , … ,𝑤𝑛
∗ )  

In this step, the optimised weight of each risk dimension is calculated by 

minimising the maximum absolute differences, as shown in the objective function of 

Model (E.44). 

 min 𝑚𝑎𝑥𝑗 {|𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗|, |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊|} (E.44) 

 subject to  

 
∑𝑤𝑗
𝑗

= 1  

 𝑤𝑗 ≥ 0 for all 𝑗  
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Model (E.44) is converted to a linear programming problem, which can be 

represented as Model (E.45): 

 Min 𝜉𝐿 (E.45) 

 subject to  

 |𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗| ≤ 𝜉𝐿 for all j  

 |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊| ≤ 𝜉
𝐿
 for all j  

 
∑𝑤𝑗
𝑗

= 1  

 𝑤𝑗 ≥ 0 for all 𝑗  
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Appendix F: Acquiring DMs’ confidence levels 

Table F.1 Acquiring DMs’ confidence on the best-to-others and the others-to-worst preferences 

Q1. Reflecting on your chosen best criterion and your provided preferences, to what degree do you 

have confidence on your provided best-to-others preferences? Please choose one of the following 

choices: 

󠅊 No  

Confidence 

󠅊 Low  

Confidence 

󠅊 Fairly Low  

Confidence 

󠅊Moderate  

Confidence 

󠅊Fairly High 

Confidence 

󠅊High 

Confidence 

󠅊Absolute 

Confidence 

Q2. Reflecting on your chosen worst criterion and your provided preferences, to what degree do you 

have confidence on your provided others-to-worst preferences? Please choose one of the following 

choices: 

󠅊 No  

Confidence 

󠅊 Low  

Confidence 

󠅊 Fairly Low  

Confidence 

󠅊Moderate  

Confidence 

󠅊Fairly High 

Confidence 

󠅊High 

Confidence 

󠅊Absolute 

Confidence 
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Appendix G: The CI values in NE-BWM 

In this appendix, CI values corresponding to various BWa ,  + and 
−

 values have 

been shown (Table G.1). Note that by swapping values for  + and 
−

 the CI values 

will not change (The reason for that is clear in Equation (4.25) as interchanging  +

and 
−

 would not produce a new solution. For instance, for 2BWa =  and 0.68
−
=

and 0.90
+
=  the CI  would be  0.274CI =  which is the same CI value for  2BWa =  

and 0.90
−
=  and 0.68

+
= ). Thus, for convenience those 

−
 and  + values are 

shown which produce unique CI values. The CI values for  1BWa =   are not shown 

because it is not possible that the best and worst criteria are equally important.  

 

Table G.1 The CI values in NE-BWM 


+

  −
 2BWa =  3BWa =  4BWa =  5BWa =  6BWa =  7BWa =  8BWa =  9BWa =  

0.26 0.26 0.092 0.218 0.363 0.520 0.687 0.860 1.040 1.224 

0.26 0.38 0.109 0.257 0.428 0.612 0.807 1.010 1.218 1.432 

0.26 0.50 0.120 0.283 0.468 0.668 0.878 1.095 1.318 1.546 

0.26 0.68 0.132 0.307 0.506 0.718 0.941 1.169 1.403 1.641 

0.26 0.90 0.140 0.325 0.533 0.754 0.984 1.219 1.459 1.702 

0.26 1.00 0.143 0.331 0.542 0.765 0.997 1.235 1.476 1.721 

0.38 0.38 0.135 0.318 0.530 0.760 1.004 1.258 1.520 1.789 

0.38 0.50 0.153 0.361 0.600 0.860 1.134 1.420 1.715 2.017 

0.38 0.68 0.172 0.404 0.670 0.956 1.258 1.571 1.892 2.220 

0.38 0.90 0.187 0.438 0.723 1.028 1.348 1.678 2.015 2.358 

0.38 1.00 0.193 0.450 0.740 1.051 1.376 1.711 2.053 2.400 

0.50 0.50 0.177 0.419 0.697 1.000 1.321 1.655 2.000 2.354 

0.50 0.68 0.204 0.481 0.800 1.146 1.511 1.892 2.284 2.686 

0.50 0.90 0.227 0.533 0.883 1.261 1.658 2.070 2.493 2.926 

0.50 1.00 0.234 0.551 0.911 1.298 1.706 2.127 2.559 3.000 

0.68 0.68 0.241 0.570 0.948 1.360 1.796 2.251 2.720 3.202 

0.68 0.90 0.274 0.647 1.076 1.542 2.034 2.547 3.075 3.617 

0.68 1.00 0.286 0.675 1.121 1.605 2.115 2.646 3.193 3.752 

0.90 0.90 0.319 0.754 1.255 1.800 2.377 2.979 3.600 4.238 

0.90 1.00 0.336 0.793 1.320 1.893 2.500 3.132 3.785 4.455 

1.00 1.00 0.354 0.838 1.394 2.000 2.641 3.310 4.000 4.708 
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Appendix H: Spanning Trees Enumeration 

H.1 Enumerating All Spanning Trees 

Siraj et al. (2012) introduced the Enumerating All Spanning Trees (EAST) method to 

obtain prioritisation weights of criteria in pair-wise comparisons. The procedure of 

EAST is explained in the following steps (In this thesis, criteria are risk dimensions): 

Step 1: Obtain the criteria set 

 𝐶 = {𝐹1,𝐹2,… , 𝐹𝑛} (H.46) 

 

Step 2: Acquire the pair-wise comparison matrix of criteria 

The obtained pair-wise comparisons can be either complete (without missing values) 

or incomplete (with missing values).   

 𝐴 = [𝑎𝑖𝑗]    𝑖, 𝑗 = 1,… , 𝑛 (H.47) 

 

Step 3: Produce the corresponding graph of the pair-wise comparison matrix 

The graph can be produced by taking each criterion as a vertex then each non-empty, 

non-diagonal element of the pair-wise comparison matrix reveals that there is an edge 

between the two related vertices as in Equation (H.48), (𝑖, 𝑗) represents an edge 

between vertex 𝑖 and 𝑗.  

 (𝑖, 𝑗) = {
𝑒𝑥𝑖𝑠𝑡𝑠, 𝑎𝑖𝑗 ∉ ∅

𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑎𝑖𝑗 ∈ ∅
        𝑖 ≠ 𝑗 (H.48) 

 

Step 4: Generate all spanning trees 

The total number of possible spanning trees (𝜂) can be calculated using Kirchhoff’s 

matrix-tree theorem (Theorem B.3 in Appendix B). Then, a Gray code algorithm 

(Appendix C) can be used to generate all spanning trees. 
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Step 5: Compute the weights of criteria from each spanning tree 

Knowing that each obtained spanning tree has (𝑛 − 1) edges. The weight of 𝑖𝑡ℎ 

criterion in 𝑘𝑡ℎ spanning tree (𝑤𝑖
(𝑘)

) can be computed by solving a system of 𝑛 linear 

equations. For any spanning tree, the (𝑛 − 1) equations out of 𝑛 are constructed based 

on Equation (H.49), and the last one indicates the sum of weights must be equal to 1 

as shown in Equation (H.50).  

 𝑤𝑖
(𝑘) = 𝑎𝑖𝑗𝑤𝑗

(𝑘)
   ∀𝑘 = 1,… , 𝜂    𝑖, 𝑗 = 1,… , 𝑛   𝑖 ≠ 𝑗 (H.49) 

 

 ∑ 𝑤𝑖
(𝑘)𝑛

𝑖=1 = 1       ∀𝑘 = 1,… , 𝜂 (H.50) 

 

Step 6: Calculate the average of all weights and prioritise criteria 

Assuming 𝜂 is the total number of generated spanning trees then the final weights of 

criteria (𝑤𝑖) can be obtained based on the Equation (H.51) 

 𝑤𝑖 =
∑ 𝑤𝑖

(𝑘)𝜂
𝑘=1

𝜂
     ∀𝑖 = 1,… , 𝑛      (H.51) 

 

H.2 Geometric Mean of All Spanning Trees 

Lundy et al. (2017) explored the quality of the Geometric Mean of All Spanning Trees 

(GMAST) method and indicated that as EAST fails to adhere to geometric properties, 

GMAST can outperform EAST in obtaining final weights. The steps 1 to 5 in the 

GMAST is the same as EAST as explained in Section H.1 and the step 6 is as follows: 

Step 6: Calculate the geometric mean of all weights and prioritise criteria as shown in 

Equation (H.52).  

 𝑤𝑖 = √∏ 𝑤𝑖
(𝑘)𝜂

𝑘=1

𝜂

     ∀𝑖 = 1,… , 𝑛      (H.52) 
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Appendix I: Twelve states in a stratified game table 

Table I.1 Twelve states in a stratified game table for N=3 and M=4 

 
1SE  2SE  3SE  4SE  5SE  6SE  7SE  8SE  9SE  10SE  11SE  12SE  

1SE  𝑝11 × 𝑞11 𝑝11 × 𝑞12 𝑝11 × 𝑞13 𝑝11 × 𝑞14 𝑝12 × 𝑞11 𝑝12 × 𝑞12 𝑝12 × 𝑞13 𝑝12 × 𝑞14 𝑝13 × 𝑞11 𝑝13 × 𝑞12 𝑝13 × 𝑞13 𝑝13 × 𝑞14 

2SE  𝑝11 × 𝑞21 𝑝11 × 𝑞22 𝑝11 × 𝑞23 𝑝11 × 𝑞24 𝑝12 × 𝑞21 𝑝12 × 𝑞22 𝑝12 × 𝑞23 𝑝12 × 𝑞24 𝑝13 × 𝑞21 𝑝13 × 𝑞22 𝑝13 × 𝑞23 𝑝13 × 𝑞24 

3SE  𝑝11 × 𝑞31 𝑝11 × 𝑞32 𝑝11 × 𝑞33 𝑝11 × 𝑞34 𝑝12 × 𝑞31 𝑝12 × 𝑞32 𝑝12 × 𝑞33 𝑝12 × 𝑞34 𝑝13 × 𝑞31 𝑝13 × 𝑞32 𝑝13 × 𝑞33 𝑝13 × 𝑞34 

4SE  𝑝11 × 𝑞41 𝑝11 × 𝑞42 𝑝11 × 𝑞43 𝑝11 × 𝑞44 𝑝12 × 𝑞41 𝑝12 × 𝑞42 𝑝12 × 𝑞43 𝑝12 × 𝑞44 𝑝13 × 𝑞41 𝑝13 × 𝑞42 𝑝13 × 𝑞43 𝑝13 × 𝑞44 

5SE  𝑝21 × 𝑞11 𝑝21 × 𝑞12 𝑝21 × 𝑞13 𝑝21 × 𝑞14 𝑝22 × 𝑞11 𝑝22 × 𝑞12 𝑝22 × 𝑞13 𝑝22 × 𝑞14 𝑝23 × 𝑞11 𝑝23 × 𝑞12 𝑝23 × 𝑞13 𝑝23 × 𝑞14 

6SE  𝑝21 × 𝑞21 𝑝21 × 𝑞22 𝑝21 × 𝑞23 𝑝21 × 𝑞24 𝑝22 × 𝑞21 𝑝22 × 𝑞22 𝑝22 × 𝑞23 𝑝22 × 𝑞24 𝑝23 × 𝑞21 𝑝23 × 𝑞22 𝑝23 × 𝑞23 𝑝23 × 𝑞24 

7SE  𝑝21 × 𝑞31 𝑝21 × 𝑞32 𝑝21 × 𝑞33 𝑝21 × 𝑞34 𝑝22 × 𝑞31 𝑝22 × 𝑞32 𝑝22 × 𝑞33 𝑝22 × 𝑞34 𝑝23 × 𝑞31 𝑝23 × 𝑞32 𝑝23 × 𝑞33 𝑝23 × 𝑞34 

8SE  𝑝21 × 𝑞41 𝑝21 × 𝑞42 𝑝21 × 𝑞43 𝑝21 × 𝑞44 𝑝22 × 𝑞41 𝑝22 × 𝑞42 𝑝22 × 𝑞43 𝑝22 × 𝑞44 𝑝23 × 𝑞41 𝑝23 × 𝑞42 𝑝23 × 𝑞43 𝑝23 × 𝑞44 

9SE  𝑝31 × 𝑞11 𝑝31 × 𝑞12 𝑝31 × 𝑞13 𝑝31 × 𝑞14 𝑝32 × 𝑞11 𝑝32 × 𝑞12 𝑝32 × 𝑞13 𝑝32 × 𝑞14 𝑝33 × 𝑞11 𝑝33 × 𝑞12 𝑝33 × 𝑞13 𝑝33 × 𝑞14 

10SE  𝑝31 × 𝑞21 𝑝31 × 𝑞22 𝑝31 × 𝑞23 𝑝31 × 𝑞24 𝑝32 × 𝑞21 𝑝32 × 𝑞22 𝑝32 × 𝑞23 𝑝32 × 𝑞24 𝑝33 × 𝑞21 𝑝33 × 𝑞22 𝑝33 × 𝑞23 𝑝33 × 𝑞24 

11SE  𝑝31 × 𝑞31 𝑝31 × 𝑞32 𝑝31 × 𝑞33 𝑝31 × 𝑞34 𝑝32 × 𝑞31 𝑝32 × 𝑞32 𝑝32 × 𝑞33 𝑝32 × 𝑞34 𝑝33 × 𝑞31 𝑝33 × 𝑞32 𝑝33 × 𝑞33 𝑝33 × 𝑞34 

12SE  𝑝31 × 𝑞41 𝑝31 × 𝑞42 𝑝31 × 𝑞43 𝑝31 × 𝑞44 𝑝32 × 𝑞41 𝑝32 × 𝑞42 𝑝32 × 𝑞43 𝑝32 × 𝑞44 𝑝33 × 𝑞41 𝑝33 × 𝑞42 𝑝33 × 𝑞43 𝑝33 × 𝑞44 
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Appendix J: Survey for NR-DEMATEL 

Q1. On which of the following risk dimension(s) in the UK power supply chain can 

you provide assessments?  (Please choose as many as you can. Based on your selection 

you will rate the influence of each selected items to others.) 

  

 Climate Change (CC) 

 Natural Disasters (ND) 

 Environmental and Health Safety (EHS) 

 Technical Reliability (TR) 

 Operational Safety (OS) 

 Disease Outbreak (DO) 

 Political Instability (PI) 

 Industrial Action (IA) 

 Sabotage and Terrorism (ST) 

 Resource Availability (RA) 

 Market Failure (MF) 

 Affordability (AF) 

 

Based on the chosen risk dimension(s) in the Q1, the expert will answer to a number 

of questions, in the Q2 it is assumed that the expert selected Climate Change (CC) so 

he/she is only asked to answer one question with 11 evaluations (The influence scale 

is explained in Table 4.1). 
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Q2. To what extent do you think Climate Change (CC) can impact the following risks 

in the UK power supply chain? (NI=No Influence, LI=Low Influence, FLI=Fairly 

Low Influence, MI= Medium Influence, FHI=Fairly High Influence, HI=High 

Influence, AHI=Absolutely High Influence). 

 Influence Scale 

Climate Change influence on: NI LI FLI MI FHI HI AHI 

Natural Disasters (ND)        

Environmental and Health 

Safety (EHS) 
       

Technical Reliability (TR)        

Operational Safety (OS)        

Disease Outbreak (DO)        

Political Instability (PI)        

Industrial Action (IA)        

Sabotage and Terrorism (ST)        

Resource Availability (RA)        

Market Failure (MF)        

Affordability (AF)        
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Appendix K: All spanning trees by Gray code algorithm for ST 

and PI 

The undirected graph 𝐺 of the pairwise comparison matrix 𝐴 provided by expert 4 in 

the UK energy risk dimensions analysis in Chapter 6 (Section 6.5.1.2). It indicates ST 

(Sabotage and Terrorism) as the most critical risk dimension (i.e. the best), and PI 

(Political Instability) as the least critical risk dimension (i.e. the worst) in the STE-

BWM and is represented in the Figure K.1.  

 

 

Figure K.1 The graph of pairwise-comparisons (ST and PI) 

The initial tree (tree no 1 in Table K.1) is shown in the Figure K.2 which is used as 

the starting tree, in the Gray code algorithm. 

 

 

Figure K.2 The initial tree used in the Gray code algorithm (ST and PI) 
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In Table K.1, the # means the graph is not a tree 

Table K.1 All-tree matrix (ATM) of the Gray code algorithm (ST and PI) 

Graph 

no. 

Tree 

no. 
𝒆𝟐 𝒆𝟑 𝒆𝟓 𝒆𝟕 𝒆𝟗 𝒆𝟏 𝒆𝟒 𝒆𝟔 𝒆𝟖 

Gray 

code 

1 1 1 1 1 1 1 0 0 0 0 0000 

2 2 1 1 1 1 0 0 0 0 1 0001 

3 3 1 1 1 0 1 0 0 0 1 0001 

4 # 1 1 0 1 1 0 0 0 1 0001 

5 # 1 0 1 1 1 0 0 0 1 0001 

6 # 0 1 1 1 1 0 0 0 1 0001 

7 4 1 1 1 1 0 0 0 1 0 0010 

8 # 1 1 1 0 1 0 0 1 0 0010 

9 5 1 1 0 1 1 0 0 1 0 0010 

10 # 1 0 1 1 1 0 0 1 0 0010 

11 # 0 1 1 1 1 0 0 1 0 0010 

12 6 1 1 1 1 0 0 1 0 0 0100 

13 # 1 1 1 0 1 0 1 0 0 0100 

14 # 1 1 0 1 1 0 1 0 0 0100 

15 7 1 0 1 1 1 0 1 0 0 0100 

16 # 0 1 1 1 1 0 1 0 0 0100 

17 8 1 1 1 1 0 1 0 0 0 1000 

18 # 1 1 1 0 1 1 0 0 0 1000 

19 # 1 1 0 1 1 1 0 0 0 1000 

20 # 1 0 1 1 1 1 0 0 0 1000 

21 9 0 1 1 1 1 1 0 0 0 1000 

22 # 0 1 1 1 0 0 0 1 1 0011 

23 # 0 1 1 0 1 0 0 1 1 0011 

24 # 0 1 0 1 1 0 0 1 1 0011 

25 # 0 0 1 1 1 0 0 1 1 0011 

26 # 1 0 1 1 0 0 0 1 1 0011 

27 # 1 0 1 0 1 0 0 1 1 0011 

28 # 1 0 0 1 1 0 0 1 1 0011 

29 10 1 1 0 0 1 0 0 1 1 0011 

30 11 1 1 0 1 0 0 0 1 1 0011 

31 12 1 1 1 0 0 0 0 1 1 0011 
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32 # 0 0 0 1 1 0 1 1 1 0111 

33 # 0 0 1 0 1 0 1 1 1 0111 

34 # 0 1 0 0 1 0 1 1 1 0111 

35 13 1 0 0 0 1 0 1 1 1 0111 

36 # 0 0 1 1 0 0 1 1 1 0111 

37 # 0 1 0 1 0 0 1 1 1 0111 

38 14 1 0 0 1 0 0 1 1 1 0111 

39 # 0 1 1 0 0 0 1 1 1 0111 

40 15 1 0 1 0 0 0 1 1 1 0111 

41 16 1 1 0 0 0 0 1 1 1 0111 

42 17 0 0 0 0 1 1 1 1 1 1111 

43 18 0 0 0 1 0 1 1 1 1 1111 

44 19 0 0 1 0 0 1 1 1 1 1111 

45 20 0 1 0 0 0 1 1 1 1 1111 

46 21 1 0 0 0 0 1 1 1 1 1111 

47 # 0 1 1 1 0 0 1 0 1 0101 

48 # 0 1 1 0 1 0 1 0 1 0101 

49 # 0 1 0 1 1 0 1 0 1 0101 

50 # 0 0 1 1 1 0 1 0 1 0101 

51 22 1 0 1 1 0 0 1 0 1 0101 

52 23 1 0 1 0 1 0 1 0 1 0101 

53 # 1 0 0 1 1 0 1 0 1 0101 

54 # 1 1 0 0 1 0 1 0 1 0101 

55 # 1 1 0 1 0 0 1 0 1 0101 

56 24 1 1 1 0 0 0 1 0 1 0101 

57 25 0 1 1 1 0 1 0 0 1 1001 

58 26 0 1 1 0 1 1 0 0 1 1001 

59 # 0 1 0 1 1 1 0 0 1 1001 

60 # 0 0 1 1 1 1 0 0 1 1001 

61 # 1 0 1 1 0 1 0 0 1 1001 

62 # 1 0 1 0 1 1 0 0 1 1001 

63 # 1 0 0 1 1 1 0 0 1 1001 

64 # 1 1 0 0 1 1 0 0 1 1001 

65 # 1 1 0 1 0 1 0 0 1 1001 

66 27 1 1 1 0 0 1 0 0 1 1001 

67 # 0 1 1 1 0 0 1 1 0 0110 
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68 # 0 1 1 0 1 0 1 1 0 0110 

69 # 0 1 0 1 1 0 1 1 0 0110 

70 # 0 0 1 1 1 0 1 1 0 0110 

71 28 1 0 1 1 0 0 1 1 0 0110 

72 # 1 0 1 0 1 0 1 1 0 0110 

73 29 1 0 0 1 1 0 1 1 0 0110 

74 # 1 1 0 0 1 0 1 1 0 0110 

75 30 1 1 0 1 0 0 1 1 0 0110 

76 # 1 1 1 0 0 0 1 1 0 0110 

77 31 0 1 1 1 0 1 0 1 0 1010 

78 # 0 1 1 0 1 1 0 1 0 1010 

79 32 0 1 0 1 1 1 0 1 0 1010 

80 # 0 0 1 1 1 1 0 1 0 1010 

81 # 1 0 1 1 0 1 0 1 0 1010 

82 # 1 0 1 0 1 1 0 1 0 1010 

83 # 1 0 0 1 1 1 0 1 0 1010 

84 # 1 1 0 0 1 1 0 1 0 1010 

85 33 1 1 0 1 0 1 0 1 0 1010 

86 # 1 1 1 0 0 1 0 1 0 1010 

87 34 0 1 1 1 0 1 1 0 0 1100 

88 # 0 1 1 0 1 1 1 0 0 1100 

89 # 0 1 0 1 1 1 1 0 0 1100 

90 35 0 0 1 1 1 1 1 0 0 1100 

91 36 1 0 1 1 0 1 1 0 0 1100 

92 # 1 0 1 0 1 1 1 0 0 1100 

93 # 1 0 0 1 1 1 1 0 0 1100 

94 # 1 1 0 0 1 1 1 0 0 1100 

95 # 1 1 0 1 0 1 1 0 0 1100 

96 # 1 1 1 0 0 1 1 0 0 1100 

97 # 0 0 0 1 1 1 0 1 1 1011 

98 # 0 0 1 0 1 1 0 1 1 1011 

99 37 0 1 0 0 1 1 0 1 1 1011 

100 # 1 0 0 0 1 1 0 1 1 1011 

101 # 0 0 1 1 0 1 0 1 1 1011 

102 38 0 1 0 1 0 1 0 1 1 1011 

103 # 1 0 0 1 0 1 0 1 1 1011 
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104 39 0 1 1 0 0 1 0 1 1 1011 

105 # 1 0 1 0 0 1 0 1 1 1011 

106 40 1 1 0 0 0 1 0 1 1 1011 

107 # 0 0 0 1 1 1 1 0 1 1101 

108 41 0 0 1 0 1 1 1 0 1 1101 

109 # 0 1 0 0 1 1 1 0 1 1101 

110 # 1 0 0 0 1 1 1 0 1 1101 

111 42 0 0 1 1 0 1 1 0 1 1101 

112 # 0 1 0 1 0 1 1 0 1 1101 

113 # 1 0 0 1 0 1 1 0 1 1101 

114 43 0 1 1 0 0 1 1 0 1 1101 

115 44 1 0 1 0 0 1 1 0 1 1101 

116 # 1 1 0 0 0 1 1 0 1 1101 

117 45 0 0 0 1 1 1 1 1 0 1110 

118 # 0 0 1 0 1 1 1 1 0 1110 

119 # 0 1 0 0 1 1 1 1 0 1110 

120 # 1 0 0 0 1 1 1 1 0 1110 

121 46 0 0 1 1 0 1 1 1 0 1110 

122 47 0 1 0 1 0 1 1 1 0 1110 

123 48 1 0 0 1 0 1 1 1 0 1110 

124 # 0 1 1 0 0 1 1 1 0 1110 

125 # 1 0 1 0 0 1 1 1 0 1110 

126 # 1 1 0 0 0 1 1 1 0 1110 
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Appendix L: Survey for stratified decision-making modelling 

In order to acquire the utility values and status transition probabilities, the following 

three sections are designed within the survey. 

Section 1: Utility values estimations for each strategy using the scale provided in the 

Table 7.2.  

Each expert was first asked to read the following definitions for the specific flooding 

risk mitigation strategy and answer Q1. Six questions like Q1 for each strategy are 

required to be answered by each expert. Here, just one of the questions for Awareness 

Raising is provided for the sake of simplicity. The definitions provided for each 

strategy are based on SEPA (2015) and provided in Table 7.5. 

Awareness Raising: 

Raising public awareness of flood risk is a duty of responsible authorities. Enhanced 

awareness of individuals, homes, and businesses regarding flood risk and related measures 

can lessen the total impact. 

Socio-economic scenarios for climate change analysis in the UK: 

L=Low Challenges to Mitigation and Adaptation 

M=Moderate Challenges to Mitigation and Adaptation 

H=High Challenges to Mitigation and Adaptation 

Challenges to Adaptation: Socio-economic conditions that, in the absence of climate-

related policies, would result in higher vulnerability, and less adaptation capacity for a 

given level of climate change.  

Challenges to Mitigation: Socio-economic conditions that in the absence of climate-related 

policies, would result in higher emissions, and poorly suited technological, or institutional 

conditions in order to reduce emissions. 

Impact levels of flooding hazard to the energy infrastructure: 

MI=Mild Impact 

Climate hazards are controllable and with no possibility of spreading out. They are not 

complicated and may cause a small damage to life and property. 

MO=Moderate Impact 

Climate hazards cover a wide range area and have a potential to spread out while affecting 

public daily activities. They would possibly cause damage to a large number of properties 

and cause death. Their complexity level is higher than level MI and in terms of search and 

rescue are very challenging but could be controlled by the government.  

SV=Severe Impact 

Any disaster caused at this level is more complex in nature compared to other levels and 

would affect a wide area (more than two states) and also would cause the highest damage 

possible to life and property 
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Q1: How is the effectiveness of "Awareness Raising" strategy in relation to flood 

prevention/preparedness/recovery in the Highland and Argyll, Scotland region under 

following circumstances? (You can choose more than one phrase in case you are uncertain 

between few choices). NE=No Effectiveness; LE=Low Effectiveness; FLE=Fairly Low 

Effectiveness; ME= Medium Effectiveness; FHE=Fairly High Effectiveness; HE=High 

Effectiveness; AHE=Absolutely High Effectiveness 

 NE LE FLE ME FHE HE AHE 

1.(L) challenges, 

and (MI) 

risk impact 

       

2.(L) challenges, 

and (MO) 

risk impact  

       

3.(L) challenges, 

and (SV) 

risk impact  

       

4.(M) challenges, 

and (MI) 

risk impact  

       

5.(M) challenges, 

and (MO) 

risk impact  

       

6.(M) challenges, 

and (SV) 

risk impact  

       

7.(H) challenges, 

and (MI) 

risk impact  

       

8.(H) challenges, 

and (MO) 

risk impact  

       

9.(H) challenges, 

and (SV) 

risk impact  

       
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Section 2: Obtaining status transition probabilities using scale provided in Table 7.3 

by getting answers of questions Q2-Q4.  

To be more clear, under optimistic scenario (scenario 1) (Table L.1), the aim is to 

identify the values shown as 𝑝21, 𝑝31 , and 𝑝32 by getting the answers of questions 

Q2, Q3 and Q4 respectively. Under cautious scenario (scenario 2) (Table L.2), the aim 

is to identify the values shown as 𝑝21, and 𝑝32 by getting the answers of questions Q2, 

and Q4 respectively. Knowing that sum of probabilities in each row must be equal to 

1. 

Table L.1 Status transition probability matrix under optimistic scenario 

  L M H 

 L 𝑝11 = 1.00 𝑝12 = 0.00 𝑝13 = 0.00 

P M 𝑝21 1 − 𝑝21 𝑝23 = 0.00 

 H 𝑝31 𝑝32 1 − (𝑝31 + 𝑝32) 

 

Table L.2 Status transition probability matrix under cautious scenario 

  L M H 

 L 𝑝11 = 1.00 𝑝12 = 0.00 𝑝13 = 0.00 

P M 𝑝21 1 − 𝑝21 𝑝23 = 0.00 

 H 𝑝31 = 0.00 𝑝32 1 − 𝑝32 
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Q2: What is the probability of status transition from Moderate Challenges to Mitigation 

and Adaptation (M) to Low Challenges to Mitigation and Adaptation (L) in the next 5 to 

20-year timescale in Scotland under following scenarios? AZ=Almost Zero; VS=Very 

Small; S=Small; M= Moderate; L=Large; VL=Very Large; AC=Almost Certain 

 AZ VS S M L VL AC 

1. Optimistic 

Scenario 
       

2. Cautious 

Scenario 
       

 

Q3: What is the probability of status transition from High Challenges to Mitigation and 

Adaptation (H) to Low Challenges to Mitigation and Adaptation (L) in the next 5 to 20-

year timescale in Scotland under following scenario? AZ=Almost Zero; VS=Very Small; 

S=Small; M= Moderate; L=Large; VL=Very Large; AC=Almost Certain 

 AZ VS S M L VL AC 

Optimistic 

Scenario 
       

 

Q4: What is the probability of status transition from High Challenges to Mitigation and 

Adaptation (H) to Moderate Challenges to Mitigation and Adaptation (M) in the next 5 to 

20-year timescale in Scotland under following scenarios? AZ=Almost Zero; VS=Very 

Small; S=Small; M= Moderate; L=Large; VL=Very Large; AC=Almost Certain 

 AZ VS S M L VL AC 

1. Optimistic 

Scenario 
       

2. Cautious 

Scenario 
       
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Section 3: Obtaining outcome transition probabilities using scale provided in Table 

7.3 by getting answers of questions Q5-Q7 

To be more clear, under optimistic scenario (scenario 1) (Table L.3), the aim is to 

identify the values shown as 𝑞21, 𝑞31 , and 𝑞32 by getting the answers of questions 

Q5, Q6 and Q7 respectively. Under cautious scenario (scenario 2) (Table L.4), the aim 

is to identify the values shown as 𝑞21, and 𝑞32 by getting the answers of questions Q5, 

and Q7 respectively. Knowing that sum of probabilities in each row must be equal to 

1. 

Table L.3 Outcome transition probability matrix under optimistic scenario 

  MI MO SV 

 MI 𝑞11 = 1.00 𝑞12 = 0.00 𝑞13 = 0.00 

Q MO 𝑞21 1 − 𝑞21 𝑞23 = 0.00 

 SV 𝑞31 𝑞32 1 − (𝑞31 + 𝑞32) 

 

Table L.4 Outcome transition probability matrix under cautious scenario 

  MI MO SV 

 MI 𝑞11 = 1.00 𝑞12 = 0.00 𝑞13 = 0.00 

Q MO 𝑞21 1 − 𝑞21 𝑞23 = 0.00 

 SV 𝑞31 = 0.00 𝑞32 1 − 𝑞32 
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Q5: What is the transition probability of flooding risk impact from Moderate risk impact 

(MO) to Mild risk impact (MI) in the next 5 to 20-year timescale in the Highland and Argyll 

area in Scotland under following scenarios? AZ=Almost Zero; VS=Very Small; S=Small; 

M= Moderate; L=Large; VL=Very Large; AC=Almost Certain 

 AZ VS S M L VL AC 

1. Optimistic 

Scenario 
       

2. Cautious 

Scenario 
       

 

Q6: What is the transition probability of flooding risk impact from Severe risk impact (SV) 

to Mild risk impact (MI) in the next 5 to 20-year timescale in the Highland and Argyll area 

in Scotland under following scenario? AZ=Almost Zero; VS=Very Small; S=Small; M= 

Moderate; L=Large; VL=Very Large; AC=Almost Certain 

 AZ VS S M L VL AC 

Optimistic 

Scenario 
       

 

Q7: What is the transition probability of flooding risk impact from Severe risk impact (SV) 

to Moderate risk impact (MO) in the next 5 to 20-year timescale in the Highland and Argyll 

area in Scotland under following scenarios? AZ=Almost Zero; VS=Very Small; S=Small; 

M= Moderate; L=Large; VL=Very Large; AC=Almost Certain 

 AZ VS S M L VL AC 

1. Optimistic 

Scenario 
       

2. Cautious 

Scenario 
       
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