
Probability weighting for losses and for gains
among smallholder farmers in Uganda

Arjan Verschoor1 • Ben D’Exelle1

Accepted: 28 November 2020
� The Author(s) 2020

Abstract
Probability weighting is a marked feature of decision-making under risk. For poor people

in rural areas of developing countries, how probabilities are evaluated matters for

livelihoods decisions, especially the probabilities associated with losses. Previous studies

of risky choice among poor people in developing countries seldom consider losses and do

not offer a refined tracking of the probability-weighting function (PWF). We investigate

probabilityweighting among smallholder farmers inUganda, separately for losses and for

gains, using a method (common consequence ladders) that allows refined tracking of the

PWF for a population with low levels of literacy. For losses, we find marked probability

weighting near zero, which is in line with evidence found in Western labs. For gains, the

absence of probability weighting is remarkable, particularly its absence near 100%. We

also find marked differences in probability weighting for traditional farmers which are in

line with the observed livelihoods strategies in the study area.

Keywords Cumulative prospect theory � Probability weighting � Losses � Gains �
Uganda

1 Introduction

How do poor people in the rural areas of developing countries, whose livelihoods

are subject to the vagaries of nature, thin or absent markets, dysfunctional

institutions and erratic governments, evaluate risky prospects? Contrary to a

stereotype of what keeps them poor, smallholder farmers in developing countries

may exhibit remarkable tolerance of risk, and are considerably less risk averse than
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typical Western populations (Vieider et al. 2019). In this study, we investigate, for a

sample of smallholder farmers from a developing country, not risk aversion as such

but a different aspect of decision-making under risk with important implications for

livelihoods decisions: probability weighting.

In risky choice decisions, how probabilities are evaluated is crucial. Economists

typically think of this as probabilities of outcomes being transformed into decision

weights on those outcomes, through some psychologically plausible nonlinear

probability-weighting process. Following Allais (1953), violations of the indepen-

dence axiom of expected utility theory have been observed in a large number of

experimental studies, which points to the prevalence of nonlinear probability

weighting.1 The rationale for probability weighting that is currently most commonly

invoked is due to prospect theory (Kahneman and Tversky 1979; Tversky and

Kahneman 1992). In prospect theory, the so-called ‘‘diminishing sensitivity’’

relative to a reference point is the central organising principle, which governs both

the distinct shape of the value function and the shape of the probability weighting

function (PWF). In the context of probability weighting, this means that people are

less sensitive to changes in probabilities that take place further from a reference

probability. For instance, if the reference probability is 0, then weighted

probabilities will increase by more when a probability of an outcome changes

from 5 to 6% than when it changes from 10 to 11%.

Typically, the reference probabilities 0 and 1 are jointly postulated: the certainty

that an outcome will not occur and the certainty that it will occur. Diminishing

sensitivity relative to these two reference probabilities produces what Fehr-Duda and

Epper (2012, p. 569) call the ‘‘famous inverse S’’: a PWF that is steep near the

reference probabilities of 0 and 100%, and relatively flat in the middle, giving rise to

the overweighting of small probabilities and the underweighting of large probabilities

(Kahneman and Tversky 1979; Tversky andKahneman 1992;Wu andGonzalez 1996;

Gonzalez and Wu 1999; Starmer 2000; Takahashi 2011). The inverse S-shaped PWF

has been confirmed in the bulk of the large number of experimental studies of

probability weighting.2 The robustness of this finding suggests that diminishing

sensitivity relative to the reference probabilities of 0 and 1 provides a good account of

how humans transform probabilities into decision weights.

In this study, we investigated as thoroughly as we deemed feasible the

probability-weighting habits of small-scale farmers in a poor country. We were

motivated by three considerations. First, these farmers are ‘‘experts’’ on decision-

making under risk. Frequent hazards such as droughts, floods, pests, and diseases

affect their investments, and getting investment decisions right is a matter of life and

death (Fafchamps 2003). To the extent that probability weighting is a bias that

1 Examples include the common consequence effect tests cited in Wu and Gonzalez (1998, pp. 131–2)

and the common consequence and common ratio effect tests reviewed in Starmer (2000) and in Fehr-

Duda and Epper (2012).
2 See the reviews of these studies in Wu and Gonzalez (1996, 1998), Prelec (1998), Gonzalez and Wu

(1999), Starmer (2000), Sugden (2004), Stott (2006), Van de Kuilen and Wakker (2011), and Fehr-Duda

and Epper (2012). Van de Kuilen and Wakker (2011)’s Online Appendix G lists 50 references to studies

that find weighting functions that exhibit the inverse-S shape. Studies that report exceptions to the

common finding of an inverse S-shaped PWF are listed in Blavatskyy (2006).
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experienced decision-makers should be less affected by, nonlinear probability

weighting should be less pronounced for such farmers than for typical experimental

subjects. Second, most of the experimental literature on nonlinear probability

weighting does not obtain a separate PWF for gains and losses; to the best of our

knowledge, Vieider et al. (2019) is the only previous experimental study of risky

choice in a developing country that obtains a separate PWF for losses. Since

hazards are so common in rural areas of developing countries, losses are a frequent

occurrence. Knowing the PWF for losses is therefore important, and we investigate

it in this study as well as for gains. Third, we were motivated by the intriguing

possibility that, in nonstandard subject pools, probability weighting could be very

different from that typically found in Western labs. In particular, we wondered

whether the all-pervasive nature of risk in the rural areas of developing countries

would lead to the emergence of reference probabilities not equal to but somewhere

between 0 and 1. If certainty is at best an abstract concept for a population, then

perhaps more realistic (historically informed) probabilities would act as referents. If

so, then the PWF may no longer resemble an inverse S.

For investigating probability weighting, we designed and implemented common

consequence effect tests (Wu and Gonzalez 1998). There are two reasons that we

decided to choose this method. The first is that we needed a simple method for a

subject pool with low levels of literacy and numeracy (Dave et al. 2010). Humphrey

and Verschoor (2004a, 2b) had previously successfully implemented common

consequence effect tests in similar subject pools to ours. Based on extensive

piloting, we found that we could considerably increase the refinement of these tests

while maintaining excellent subject comprehension. Conceptually attractive alter-

natives such as Van de Kuilen and Wakker (2011)’s midweight method were

deemed to be cognitively too demanding for our subject pool. The second is that we

needed a method with sufficient tracking ability of the PWF to investigate whether

more than two reference probabilities exist (e.g., 0, 1, and one or more others). For

that reason, we decided not to make use of functional forms of the PWF, since these

rule out a priori plausible shapes influenced by reference probabilities at the

extremes as well as in between those extremes of the domain of the PWF (as

explained below).

Each subject faced ten choices between two three-outcome lotteries. A pair of

lotteries may be thought of as representing a ‘‘rung’’ on a ‘‘common consequence

ladder’’. The rungs are related to each other through an identical manipulation of

both lotteries, a so-called common consequence shift. In our case, the manipulation

consists in shifting identical probability mass from the worst outcome to the

intermediate outcome of both lotteries on one rung, which yields the lotteries on

another rung. A preference reversal violates the independence axiom of expected

utility theory. Assuming cumulative prospect theory (Tversky and Kahneman 1992),
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preference reversals permit pronouncements on the relative steepness of the PWF in

precisely defined probability intervals.3

Importantly, we implemented two game conditions, in a between-subject design.

One condition is in the domain of losses, the other in the domain of gains. In the

losses version of the experiment, the best outcome of the three-outcome lotteries is

equal to the neutral outcome, so that the intermediate outcome and worst outcome

represent losses. In the gains version, the worst outcome is equal to the neutral

outcome, so that the intermediate outcome and best outcome represent gains. We

established the neutral outcome by giving each subject a voucher 3 weeks before the

day of the experimental session in which that subject would participate. The

voucher showed the name, address, and portrait photo of the face of the subject, as

well as the figure of 8000 shillings prominently displayed. 8000 Ugandan shillings

are about twice the median daily wage in the study area, in which waged labour is

moreover hard to come by. In a scripted, orally delivered message when the

vouchers were handed over, subjects were informed that, depending on the

decisions they would be asked to take in three weeks’ time, their final earnings

could be higher or lower than 8000 shillings.

By making the figure of 8000 shillings salient in this way, we aimed to establish

this amount as a reference point, so that lower amounts would be thought of as

losses, and higher amounts as gains. The reason we handed over the vouchers 3

weeks before experimental days was to alleviate concerns about a house-money

effect (Thaler and Johnson 1990) through inducing a sense of entitlement to the

8,000 shillings through the passage of time.

In the domain of losses, our investigations focused on probabilities between 0

and 0.8. This is mainly for the sake of realism: investment prospects in which losses

are more than 80% likely would not be considered by small-scale farmers in a poor

country. We find that probability weighting for losses is pronounced and consistent

with diminishing sensitivity relative to the reference probability of 0. Weak

evidence is obtained for a second reference probability of 0.5, but we deem it to be

insufficient for basing a firm conclusion on.

In the domain of gains, we investigated the curvature of the PWF for probabilities

between 0.35 and 1. This is again for realism in that investments that have a success

probability lower than 35% would not be contemplated in real life. We find no

evidence for probability weighting near the probability of 1, so no evidence that

100% acts as a reference probability relative to which diminishing sensitivity is at

work. We do find evidence for a PWF that is relatively flat in the middle, which is

consistent with an inverse S shape. However, more striking than that is the

overwhelming support for expected utility theory (EUT): 42 out of a total of 45

3 The vast majority of experimental studies of probability weighting assume either cumulative prospect

theory (Tversky and Kahneman 1992) or rank-dependent utility theory (Quiggin 1982). If all outcomes

are neutral or gains, then the two theories are indistinguishable. However, rank-dependent utility theory

has no place for losses relative to a neutral outcome, which is why we assume cumulative prospect theory.

Compared to Kahneman and Tversky (1979)’s original prospect theory, it is an improvement, because it

corrects the original theory’s problem that stochastically dominated lotteries may be sometimes preferred.

See Wakker (2010) for more elaborate discussion of these theories. The more recent influential theoretical

development of reference-dependent preferences of Koszegi and Rabin (2006, 2007) abstracts from

probability weighting, which makes it unsuitable for our purposes.

123

A. Verschoor, B. D’Exelle



common consequence steps (comparisons between rungs) are consistent with EUT

and only 3 point to nonlinear probability weighting.

When investigating correlates of probability weighting, we find that traditional

farmers, those who farm mainly for subsistence and with a minimal reliance on

purchased inputs, evaluate probabilities differently from the rest of the sample.

Whereas concavity near zero characterises the PWF for the sample as a whole in the

domain of losses, convexity does so for traditional farmers. In the domain of gains,

whereas linearity of the PWF when approaching 100% characterises the aggregate

sample, convexity does so for traditional farmers. We argue in the paper that the

contrast between how traditional and nontraditional farmers evaluate probabilities

makes sense of the observed difference between them in livelihoods strategies.

The main lesson from our study combines our findings from the domains of

losses and gains. In a sample of experienced decision-makers under risk, risky

choice in the domain of losses points to pronounced probability weighting that is

largely consistent with experimental evidence from Western labs, whereas risky

choice in the domain of gains is largely consistent with EUT. Of particular

relevance to this special issue, we argue that our results suggest that poor farmers in

developing countries should not be seen as shying away from risk but as particularly

adept decision-makers under risk (cf. Vieider et al. 2019).

We see the contribution of our study as follows. To begin with, we contribute to

the literature on individual risky choice in developing countries. Previous studies

have investigated probability weighting (Humphrey and Verschoor 2004a, b;

Harrison et al. 2010; Tanaka et al. 2010; Liu 2013; l’Haridon and Vieider 2018;

Vieider et al. 2018), but none of these have tracked the PWF with the refinement

offered here. Humphrey and Verschoor (2004a, 2004b) use only the probabilities

0, 1/4, 1/2, 3/4, and 1. In other studies of probability weighting in nonstudent

samples in developing countries, the parameters of a functional form are estimated

as those most likely to generate the experimental data given some assumptions on

errors; for instance, Prelec (1998)’s two-parameter functional form of the PWF is

estimated both in Harrison et al. (2010) and in Vieider et al. (2018). In the design of

Tanaka et al. (2010), which they used in rural Vietnam and Liu (2013) used in rural

China, the parameter of Prelec (1998)’s one-parameter functional form of the PWF

is instead obtained directly based on a series of paired lottery choices. Shapes with

more than one convex or more than one concave area cannot be captured by these

functional forms. For that reason, they cannot capture shapes influenced by

reference probabilities at the extremes as well as in between those extremes of the

domain of the PWF. We deem such shapes plausible in our subject pool; see

Sect. 2.2 for further discussion.4 Moreover, imposing a functional form may hide

linearity of the PWF for ranges of its domain for which decision-makers do not

transform probabilities nonlinearly into decision weights. We argue in Sect. 5 that

this is a plausible reason for the difference between our findings in the domain of

gains and those studies for farmers in developing countries that report finding an

inverse S-shaped PWF.

4 More generally, on the limitations of proposed functional forms of the PWF for capturing

experimentally observed behaviour, see Neilson and Stowe (2002).
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We also contribute to the fairly small literature on probability weighting in the

domain of losses (Tversky and Kahneman 1992; Abdellaoui 2000; Abdellaoui et al.

2005; Etchart-Vincent 2004; Abdellaoui et al. 2011). We make a small theoretical

contribution by spelling out common consequence conditions for probability

weighting in the domain of losses, make a methodological contribution by providing

real incentives in the domain of losses without practising deception (cf. Etchart-

Vincent and l’Haridon 2011), and expand the evidence base on probability

weighting in the domain of losses by investigating it for a nonstandard subject pool.

The paper proceeds as follows. In Sect. 2, we derive our hypotheses in the

context of cumulative prospect theory and develop common consequence conditions

for testing these hypotheses. Section 3 shows how we implemented these common

consequence conditions in our experimental design, and contains details of auxiliary

data collection as well as the study area, sampling, and other fieldwork

implementation. Section 4 presents descriptive statistics, a balancing test across

game conditions, and the univariate and multivariate analyses for testing our

hypotheses. Section 5 discusses our main results in terms of the theoretical

expectations and the related empirical literature, and concludes.

2 Theory and hypotheses

In this section, we derive from theory the hypotheses to be tested in our

experiments, as well as the vehicle for hypothesis testing, so-called common

consequence ladders. Our theoretical framework is cumulative prospect theory

(CPT) (Tversky and Kahneman 1992), one of the most influential theories of

decision-making under uncertainty, which allows precise tests of probability

weighting separately in the domains of gains and losses. The tests we derive from

CPT consist of a series of choices between paired lotteries, each pair containing a

relatively safe lottery and a relatively risky lottery. Each pair in the series is related

to every other one through a single manipulation: an identical shift of probability

mass between two outcomes, both in the safe lottery and in the risky lottery, a so-

called common consequence shift (Wu and Gonzalez 1998). When a common

consequence shift leads to a preference reversal (in one pair of lotteries the safe

lottery is preferred, in another pair the risky lottery), then evidence has been

obtained about the curvature of the probability weighting function (PWF) in a

precisely defined interval of probabilities. In what follows, we first present decision

weights in cumulative prospect theory, which make use of weighted cumulative

probabilities. We next present S-shaped and inverse S-shaped PWFs, as well as the

psychological intuitions that underpin them, and the hypotheses for our experi-

mental tests that these give rise to. In the last two subsections, we present common

consequence effects, in the domains of gains and losses, respectively. The common

consequence conditions for probability weighting obtained in these two subsections

form the basis for our experimental design, which constructs common consequence

ladders separately in the domains of gains and losses, in a between-subject design.
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2.1 Decision weights in cumulative prospect theory

In CPT, individuals maximise a strictly increasing value function v : X ! R, where

X is a set of monetary outcomes, with the neutral outcome denoted as 0, so that

gains relative to the neutral outcome are denoted as positive numbers and losses as

negative ones. The outcomes xi of uncertain prospect f are arranged in increasing

order, x�m; :::; x0; :::; xn, with �m to �1 indexing losses, 0 the neutral outcome, and

1 to n indexing gains. All positive outcomes, encapsulated by fþ, are multiplied by

decision weights pþðfþÞ ¼ ðpþ0 ; :::; pþn Þ; all negative outcomes in f� by decision

weights p�ðf�Þ ¼ ðp��m; :::; p
�
0 Þ. pþ0 and p�0 are in effect redundant, since

vðx0Þ ¼ vð0Þ ¼ 0.

The value function is additive in gains and losses, so that:

Vðf Þ ¼ VðfþÞ þ Vðf�Þ ¼
Xn

i¼0

pþi vðxiÞ þ
X0

i¼�m

p�i vðxiÞ: ð1Þ

For risky prospects given by probability distribution pi, decision weights are defined

by:

pþn � wþðpnÞ; ð2Þ

p��m � w�ðp�mÞ; ð3Þ

pþi � wþðpi þ :::þ pnÞ � wþðpiþ1 þ :::þ pnÞ; 0� i� n� 1; ð4Þ

p�i � w�ðp�m þ :::þ piÞ � w�ðp�m þ :::þ pi�1Þ; 1� m� i� 0: ð5Þ

Our interest is in the PWFs wþ and w�, defined, respectively, for gains and losses.5

They convert probabilities 0� pi � 1 into weighted probabilities wþðpiÞ and w�ðpiÞ
through strictly increasing functions that satisfy wþð0Þ ¼ w�ð0Þ ¼ 0 and

wþð1Þ ¼ w�ð1Þ ¼ 1.

Expressions 2–5 describe the transformation of weighted probabilities into

decision weights. The decision weights on the best gain (expression 2) and worst

loss (expression 3) are equal to the weighted probabilities associated with these

outcomes. The decision weight on other positive outcomes (expression 4) is equal to

the weighted probability that an outcome is at least as high as xi, w
þðpi þ :::þ pnÞ,

minus the weighted probability that the outcome is strictly better,

wþðpiþ1 þ :::þ pnÞ. The decision weight on negative outcomes other than the

worst outcome (expression 5) is defined analogously as the difference between the

weighted probability that an outcome is at least as bad as xi, w
�ðp�m þ :::þ piÞ and

the weighted probability that it is strictly worse, w�ðp�m þ :::þ pi�1Þ.
In Sects. 2.3 and 2.4, we specify decision weights pþn , p

þ
i , p

�
�m, and p�i for three-

outcome lotteries, and show how tests for nonlinear probability weighting may be

derived from them. However, first, we wish to devote some space to S-shaped and

5 As will become clear later, tests for probability weighting using common consequence effects control

for features of the value function, which, therefore, do not concern us here.
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inverse S-shaped PWFs, and the psychological intuitions underpinning these PWFs,

since these provide the hypotheses for our experimental tests.

2.2 S-shaped and inverse s-shaped probability weighting functions

The probability weighting postulated in cumulative prospect theory (Tversky and

Kahneman 1992), as it was in original prospect theory (Kahneman and Tversky

1979), is that according to an inverse S-shaped PWF (Fig. 1). The psychological

intuition invoked by Kahneman and Tversky is that of ‘‘diminishing sensitiv-

ity’’relative to the reference points of p� ¼ 0 and p� ¼ 1, where the superscript * is

used to indicate a reference probability. The idea is that changes near these

reference probabilities are felt more acutely than changes further away from them:

sensitivity to such changes diminishes as they take place further away from these

reference points. Therefore, for example, a farmer considering the prospect of an

investment in fertiliser would mind more (the value of the prospect would be more

affected) if the probability of a loss changes from 5 to 10% than if it changed from

25 to 30%. Likewise, that farmer would mind more if the probability of a gain

resulting from the investment dropped from 95 to 90% than if it dropped from 65 to

60%, if she weighted probabilities according to an inverse S-shaped PWF.

The bulk of the empirical evidence obtained in Western labs is consistent with an

inverse S-shaped PWF, but there are exceptions.6 By contrast, the limited evidence

available for rural areas of developing countries is sometimes consistent with an

inverse S-shaped PWF (Tanaka et al. 2010; Liu 2013; Vieider et al. 2018), and

sometimes consistent with an S-shaped PWF (Humphrey and Verschoor 2004a, b).7

In S-shaped PWFs (Fig. 2), changes in a middle interval of probabilities are felt

more acutely than changes near the end points. Compare for example in Fig. 2 the

increase in w(p) of size a when p increases from 0.25 to 0.5 to the increase in

w(p) of size b when p increases from 0.75 to 1.0. Therefore, a farmer considering an

investment in fertiliser would weight the probability increase of a gain from 50 to

60% more than the increase from 80 to 90%. Similarly, the probability of a loss

decreasing from 50 to 40% would matter more than a decrease from 20 to 10% if

probabilities are weighted according to an S-shaped PWF.

An S-shaped PWF is consistent with a reference probability somewhere in

between the extremes of its domain. The psychological intuition underpinning that

of a reference probability somewhere in the middle of its domain could be an

awareness of the pervasive nature of risk. For instance, if the reference probability is

informed by the historical relative frequency of outcomes, then in particularly

hazardous environments, in which outcomes seldom occur with probabilities near 0

or 100%, a reference probability (or several reference probabilities) in between

these two extremes is plausible.

6 See footnote 2.
7 As mentioned in the introduction, Tanaka et al. (2010), Liu (2013), and Vieider et al. (2018) use

functional forms for the PWF that are limited in their tracking ability, whereas the probabilities in

Humphrey and Verschoor (2004a, 2004b) are fairly crude (0.25, 0.5, and 0.75). Here, we advance the

literature through more-refined tracking of the PWF both in the domain of gains and in the domain of

losses.
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Diminishing sensitivity relative to reference probability p�, 0\p�\1, would

give rise to an S-shaped PWF: convex below p� and concave above p�, giving rise to
a relatively steep curve in the vicinity of p� and relative flatness near the end points

of p ¼ 0 and p ¼ 1. In this study, we are interested in whether 0\p�\1 in a sample

of Ugandan farmers. The reason we think this is plausible is that certainty (p ¼ 0,

p ¼ 1) is at best an abstract concept in the livelihood decisions of these farmers. As

detailed in Sect. 4.1, sharp negative income shocks due to harvest failure, droughts,

and floods are very common in the study area. If certainty of outcomes is not

remotely realistic, then a reference probability p� other than p� ¼ 0 and p� ¼ 1, so

0\p�\1 might be plausible.

We summarise these considerations by spelling out the following four

hypotheses, which we test in the paper. An inverse S-shaped PWF gives rise to

the first two hypotheses.

Hypothesis 1 The PWF is concave for probabilities ½0; pyÞ.

Hypothesis 2 The PWF is convex for probabilities ðpy; 1�.

Fig. 1 An inverse S-shaped PWF
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Note that theory provides no guidance as to the magnitude of inflection point py;
the bulk of the empirical evidence suggests that py � 1=3.8

By contrast, an S-shaped PWF implies the next two hypotheses.

Hypothesis 3 The PWF is concave for probabilities ðpy; 1�.

Hypothesis 4 The PWF is convex for probabilities ½0; pyÞ.

In these two hypotheses, inflection point py is also reference probability p�, with
0\p�\1. Again, theory provides no guidance as to its magnitude, so empirical

tests should allow for it to lie anywhere in a considerable interval if they are to

detect it. We made use of prior evidence on the likelihood of profits and losses,

along with some desirable design features, for the specification of the intervals (one

for gains and one for losses) within which to search for reference probabilities (see

Sect. 3.2).

Fig. 2 An S-shaped PWF

8 Among the reviews of studies of probability weighting, both Prelec (1998) and Starmer (2000) point

this out.
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All four hypotheses are evaluated relative to the null hypothesis of no probability

weighting, which implies that the PWF is a straight line connecting ðp;wðpÞÞ ¼
ð0; 0Þ and ðp;wðpÞÞ ¼ ð1; 1Þ The null hypothesis follows from the independence

axiom of expected utility theory. We next show how common consequence effects

are useful for testing these hypotheses, first for gains and then for losses.

2.3 Common consequence effects in the domain of gains

For deriving conditions for the curvature of the PWF (convex or concave), we make

use of common consequence effects. We limit the discussion to three-outcome

lotteries, since these feature in our experimental design. The lotteries we consider

are of the form ðp0; x0; p1; x1; p2; x2Þ, where x0 denotes the neutral outcome and

x2 [ x1 [ x0. For ease of comparison with Wu and Gonzalez (1998), we follow

their notation and rewrite x2 � x; x1 � y; x0 � z; p2 � p; p1 � q; and p0 � r. The
three-outcome lotteries we consider may thus be denoted (p, x; q, y) in which the

best outcome x occurs with probability p, the intermediate outcome y with

probability q, and the worst (and neutral) outcome z with probability r ¼ 1� p� q.
In the domain of gains, the value function of CPT for the three-outcome

prospects we consider may be written as:

VðfþÞ ¼ pþx vðxÞ þ pþy vðyÞ þ pþz vðzÞ: ð6Þ

From expressions 2 and 4, it follows that pþx ¼ wþðpÞ and

pþy ¼ wþðpþ qÞ � wþðpÞ. Since vðzÞ ¼ 0, the value function may therefore be

rewritten as:

v ¼ wþðpÞvðxÞ þ ðwþðpþ qÞ � wþðpÞÞvðyÞ: ð7Þ

This value function is identical to the one obtained in Wu and Gonzalez (1998), who

derive their common consequence conditions in the context of rank-dependent

expected utility (RDEU) (Quiggin 1982; Yaari 1987; Segal 1989). In the domain of

gains, RDEU is indistinguishable from CPT. However, in the domain of losses,

RDEU does not provide separate predictions: it simply ranks outcomes from worst

to best and does not consider them relative to a neutral outcome. Following a

slightly different approach, we therefore obtain in this subsection identical common

consequence conditions for gains to those obtained by Wu and Gonzalez (1998), and

derive novel common consequence conditions in the next subsection, for losses.

Consider a choice between safe lottery S (S for safe), characterised by ðp0
; q

0 Þ and
risky lottery R (R for risky), characterised by (p, q). Compared to S, R has a higher

probability of the best outcome (p[ p
0
) and a higher probability of the worst

outcome (1� p� q[ 1� p
0 � q

0
). Now, consider a choice between a second pair

of lotteries S� and R�, which are derived from S and R, respectively, by shifting

probability mass � from the worst to the intermediate outcome.9 S� is thus

9 In Machina’s unit probability triangle, this amounts to an identical horizontal translation of S and R; see
Wu and Gonzalez (1998, p. 123). The common consequence effects we consider in this subsection are

therefore known as horizontal common consequence effects.
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characterised by ðp0
; q

0 þ �Þ and R� by ðp; qþ �Þ. A series of binary lottery choices

constructed along these lines is known as a common consequence ladder: each

lottery choice in the ladder is connected to every other one through a shift of

probability mass between the same two outcomes, both in the safe and in the risky

lottery. Importantly, outcomes x, y, and z are held constant, so that features of the

value function are controlled for in common consequence conditions for the

curvature of the PWF.

Nonlinear probability weighting may be inferred from preference reversals upon

a common consequence shift. Consider the preference reversal R 	 S, while

R� 
 S�, so the safe lottery is preferred before and the risky lottery after common

consequence shift �, �[ 0. Such a preference reversal is an example of a common

consequence effect. The common consequence effect considered here implies that

the value of the risky prospect has risen more than the value of the safe prospect as a

result of the common consequence shift, or Dv ¼ v� � v[Dv
0 ¼ v

0
� � v

0
. For

spelling out implications for the curvature of the PWF, we obtain expressions for Dv
and Dv

0
, using Eq. 7. The value of the risky lottery R, so before the common

consequence shift, may be rewritten as follows:

v ¼ wþðpÞ½vðxÞ � vðyÞ� þ wþðpþ qÞvðyÞ: ð8Þ

Likewise, the value of the risky lottery R�, so after the common consequence shift, is

equal to v� ¼ wðpÞvðxÞ þ ðwðpþ qþ �Þ � wðpÞÞvðyÞ, which may be rewritten as:

v� ¼ wþðpÞ½vðxÞ � vðyÞ� þ wþðpþ qþ �ÞvðyÞ: ð9Þ

The increase in the value of the risky lottery as a result of the common consequence

shift may thus be expressed as:

Dv ¼ v� � v ¼ ðwþðpþ qþ �Þ � wþðpþ qÞÞvðyÞ: ð10Þ

Taking similar steps, the increase in the value of the safe lottery brought about by

the common consequence shift is equal to:

Dv
0 ¼ v

0

� � v
0 ¼ ðwþðp0 þ q

0 þ �Þ � wþðp0 þ q
0 ÞÞvðyÞ: ð11Þ

The preference reversal R 	 S while R� 
 S� implies that Dv[Dv
0
, which by

Eqs. 10 and 11 is equivalent to:

wþðpþ qþ �Þ � wþðpþ qÞ[wþðp0 þ q
0 þ �Þ � wþðp0 þ q

0 Þ: ð12Þ

This inequality may be used to pronounce on the curvature of the PWF for specific

intervals of its domain. Consider the interval ½pþ q; p
0 þ q

0 þ ��, in which pþ
q\p

0 þ q
0
(which we ensure in the experimental design). Strict concavity of wþð:Þ

in interval ½pþ q; p
0 þ q

0 þ �� ensures that inequality 12 holds, since, by the defi-

nition of concavity, the PWF is steeper for the interval of probabilities ½pþ q; pþ
qþ �� than for the interval ½p0 þ q

0
; p

0 þ q
0 þ ��, which lies to the right of the first-

mentioned interval. Strict concavity of wþð:Þ in the interval ½pþ q; p
0 þ q

0 þ �� is
thus a sufficient condition for inequality 12 to hold. For it to be a necessary
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condition, more structure needs to be imposed.10 Prudently, one should, therefore,

limit pronouncements on the curvature of the PWF in the light of preference

reversals R 	 S, while R� 
 S� to stating that evidence has been obtained that the

PWF is steeper in the interval ½pþ q; pþ qþ �� than in the interval

½p0 þ q
0
; p

0 þ q
0 þ ��, while remaining agnostic about concavity in the entire interval

of its domain ½pþ q; p
0 þ q

0 þ ��.
Mirroring the steps taken to obtain inequality 12 by reversing the inequality signs

in these steps, we may state that the preference reversal R 
 S, while R� 	 S�
implies the following inequality:

wþðpþ qþ �Þ � wþðpþ qÞ\wþðp0 þ q
0 þ �Þ � wþðp0 þ q

0 Þ; ð13Þ

or that the PWF is steeper in the interval ½p0 þ q
0
; p

0 þ q
0 þ �� than in the interval

½pþ q; pþ qþ ��.

2.4 Common consequence effects in the domain of losses

We next derive common consequence conditions for the curvature of the PWF in the

domain of losses, in the context of CPT. We consider three-outcome lotteries of the

form (p, x; q, y; r, z) in which the worst outcome x occurs with probability p, the
intermediate outcome y with probability q, and the neutral outcome z with

probability r ¼ 1� p� q. So now, x\y\z and vðzÞ ¼ 0.

In the domain of losses, the value function of such three-outcome lotteries may

be written as:

Vðf�Þ ¼ p�x vðxÞ þ p�y vðyÞ þ p�z vðzÞ: ð14Þ

From expressions 3 and 5, it follows that p�x ¼ w�ðpÞ and

p�y ¼ w�ðpþ qÞ � w�ðpÞ. Since vðzÞ ¼ 0:

v ¼ w�ðpÞvðxÞ þ ðw�ðpþ qÞ � w�ðpÞÞvðyÞ: ð15Þ

The problem of obtaining common consequence conditions is thus symmetrical in

its starting point to that for gains. However, since vðxÞ\0 and vðyÞ\0, some of the

key inequalities reverse. Moreover, the common consequence shifts we consider,

from the worst to the intermediate outcome, give rise to changes in the value of

prospects that are not symmetrical to such changes in the domain of gains, as will be

seen below.

Consider a choice between safe lottery S, (p
0
; x; q

0
; yÞ and risky lottery R,

(p, x; q, y), in which p
0
\p and 1� p

0 � q
0
\1� p� q, i.e., the probability of the

worst outcome occurring and that of the best (neutral) outcome occurring are both

lower in S than in R. By construction, q
0
[ q.

Our interest is in the curvature of w�, which we infer from the absence or

presence of preference reversals between various pairs of lotteries that relate to each

10 Wu and Gonzalez (1998, pp. 125ff.) show that for small �, continuous and twice differentiable w(.), a

local condition w00ðpþ qÞ\0 is approached as p
0 þ q

0 ! pþ q.
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other through common consequence shifts in the form of a shift of probability mass

from the worst to the intermediate outcome. S� is thus characterised by ðp0 � �; q
0 þ

�Þ and R� by ðp� �; qþ �Þ.
Consider the preference reversal R 	 S while R� 
 S� after the common

consequence shift �, �[ 0.11 As before, this implies that

Dv ¼ v� � v[Dv
0 ¼ v

0
� � v

0
. For the risky lottery, the common consequence shift

implies that:

v ¼ w�ðpÞvðxÞ þ ðw�ðpþ qÞ � w�ðpÞÞvðyÞ ¼ w�ðpÞ½vðxÞ � vðyÞ� þ w�ðpþ qÞvðyÞ;
ð16Þ

after the common consequence shift becomes:

v� ¼ w�ðp� �ÞvðxÞ þ ðw�ðpþ qÞ � w�ðp� �ÞÞvðyÞ
¼ w�ðp� �Þ½vðxÞ � vðyÞ� þ w�ðpþ qÞvðyÞ

ð17Þ

(since p� �þ qþ � ¼ pþ q). The increase in value of the risky lottery as a result

of the common consequence shift may thus be written as:

Dv ¼ v� � v ¼ ½w�ðp� �Þ � w�ðpÞ�½vðxÞ � vðyÞ�[ 0; ð18Þ

which is strictly positive, since w�ðp� �Þ\w�ðpÞ and vðxÞ\vðyÞ.
Analogously, for safe lotteries S and S�:

Dv
0 ¼ v

0

� � v
0 ¼ ½w�ðp0 � �Þ � w�ðp0 Þ�½vðxÞ � vðyÞ�[ 0: ð19Þ

Preference reversal R 	 S while R� 
 S� implies:

Dv[Dv
0 , ½w�ðp� �Þ � w�ðpÞ�½vðxÞ � vðyÞ�[ ½w�ðp0 � �Þ � w�ðp0 Þ�½vðxÞ � vðyÞ�:

ð20Þ

Dividing both sides by ½vðxÞ � vðyÞ�\0 reverses the inequality and gives the fol-

lowing common consequence condition:

R 	 S;R� 
 S� ) Dv[Dv
0 , w�ðp� �Þ � w�ðpÞ\w�ðp0 � �Þ � w�ðp0 Þ: ð21Þ

Since w�ðp� �Þ\w�ðpÞ and w�ðp0 � �Þ\w�ðp0 Þ, both sides of the inequality are

negative. It may therefore be more natural to divide both sides by minus one and

write the common consequence condition as follows:

R 	 S;R� 
 S� ) Dv[Dv
0 , w�ðpÞ � w�ðp� �Þ[w�ðp0 Þ � w�ðp0 � �Þ:

ð22Þ

In words, the preference reversal implies that the PWF for losses is steeper in the

interval of its domain ½p� �; p� than in ½p0 � �; p
0 �. Since p

0
\p, strict convexity in

11 Such a common consequence effect occurs in response to a vertical translation of lotteries R and S in

Machina’s unit probability triangle, and is therefore known as a vertical common consequence effect. See

Wu and Gonzalez (1998, p. 123) for an example in the domain of gains.
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the interval of its domain ½p0 � �; p� is a sufficient condition for w�ðpÞ � w�ðp�
�Þ\w�ðp0 Þ � w�ðp0 � �Þ but not a necessary condition (cf. the discussion on the

corresponding concavity condition in Sect. 2.3), so we limit our empirical conclu-

sions to the relative steepness of the PWF for interval ½p� �; p� compared to that of

½p0 � �; p
0 �.

Working through the same logic for the opposite preference reversal yields the

mirroring common consequence condition:

R 
 S;R� 	 S� ) Dv\Dv
0 , w�ðpÞ � w�ðp� �Þ\w�ðp0 Þ � w�ðp0 � �Þ; ð23Þ

so that the PWF for losses is steeper in the interval ½p0 � �; p
0 � than in the interval

½p� �; p�.
We will next show how our experimental design makes use of the common

consequence conditions obtained in Sects. 2.3 and 2.4 to test the hypotheses

presented in Sect. 2.2.

3 Experimental design, survey, and fieldwork implementation

In this section, we describe our data collection instruments. We first show how we

implemented common consequence ladders in a sample with low levels of literacy,

present the lottery choices we designed, and provide a rationale for the intervals of

probabilities and magnitudes of the common consequence shifts we focused on.

Next, we describe the steps we took to establish a neutral outcome in subjects’

minds in the weeks leading up to the experiment, so that gains and losses were

meaningful concepts to them when they chose between lotteries. We then present

the other key elements of our experimental design: random assignment to either the

gains or losses version of the common consequence ladders, and design choices as

to the order of the experimental tasks, a simple control for risk aversion, and the

random selection of one task for payment. The experiment was complemented with

a survey, which we outline in the last subsection, along with details of sample

selection and fieldwork implementation.

3.1 Implementing common consequence ladders

Literacy and the ability to translate visual displays on a computer screen into

concrete realisations cannot be guaranteed in the study area, so we needed a device

for implementing pairwise lottery choices that does not rely on written instructions,

and is concrete and simple. Based on extensive piloting, we settled on the following

device. Each lottery was represented by twenty coloured counters. So, for example,

lottery 6a in the domain of gains (see Table 1) has a 0.4 chance of the neutral

outcome, a 0.6 chance of the intermediate outcome, and a 0 chance of the best

outcome. This lottery was represented by 8 lilac counters (8=20 ¼ 0:4) and 12 light

blue counters. These were vertically set out on a table in single file, so that the 8

lilac counters were neatly arranged at the bottom and the 12 light blue counters on

top of those. Underneath that column of counters, 6a was clearly written on a large
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post-it note stuck to the table. About 40 cm next to the column of counters

representing lottery 6a was lottery 6b set out in similar fashion (12 lilac, 1 light blue,

and 7 white counters). Figure 3 illustrates these two lotteries.

Before they took their decisions, a demonstration was given to subjects of what

would happen once they chose one of the two lotteries. All counters representing

that lottery would be put in a bag, shuffled thoroughly, and one would be picked out

by a volunteer looking the other way. The value of the colour of the counter would

be paid out to subjects who had chosen that lottery. We demonstrated this both for

the relatively safe (6a) and for the relatively risky lottery (6b).

We ensured that all paired lotteries were spatially sufficiently apart, so that each

lottery choice problem would be considered in isolation. For this purpose, we used

five large tables arranged in the middle of the experiment room. On one side were

set out lottery pairs 1–5, on the other 6–10, with plenty of space left in the middle

between the lottery pairs on each side of the table. This arrangement not only

Table 1 Common consequence ladder (gains)

Rung Order Risky or safe Lilac @ 8000 (z) Light blue @ 10,000 (y) White @ 13,000 (x)

I 7a S 9 (r
0 ¼0.45) 11 (q

0 ¼0.55) 0 (p
0 ¼0)

7b R 13 (r ¼0.65) 0 (q ¼0) 7 (p ¼0.35)

II 6a S 8 (0.4) 12 (0.6) 0 (0)

6b R 12 (0.6) 1 (0.05) 7 (0.35)

III 10a S 7 (0.35) 13 (0.65) 0 (0)

10b R 11 (0.55) 2 (0.1) 7 (0.35)

IV 5a S 6 (0.3) 14 (0.7) 0 (0)

5b R 10 (0.5) 3 (0.15) 7 (0.35)

V 2a S 5 (0.25) 15 (0.75) 0 (0)

2b R 9 (0.45) 4 (0.2) 7 (0.35)

VI 3a S 4 (0.2) 16 (0.8) 0 (0)

3b R 8 (0.4) 5 (0.25) 7 (0.35)

VII 4a S 3 (0.15) 17 (0.85) 0 (0)

4b R 7 (0.35) 6 (0.3) 7 (0.35)

VIII 9a S 2 (0.1) 18 (0.9) 0 (0)

9b R 6 (0.3) 7 (0.35) 7 (0.35)

IX 8a S 1 (0.05) 19 (0.95) 0 (0)

8b R 5 (0.25) 8 (0.4) 7 (0.35)

X 1a S 0 (0) 20 (1) 0 (0)

1b R 4 (0.2) 9 (0.45) 7 (0.35)

The table presents the 10 pairwise lottery choices in the gains condition of the experiment. The number of

counters of each colour determines the probability of x (white), y (light blue), and z (lilac); probabilities of
outcomes are in parentheses. The first column indicates the rung on the common consequence ladder each

pair of lotteries represents; the second column the order in which they were presented (the reverse order

for a randomly selected half of subjects)
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encouraged considering each choice in isolation, but also greatly facilitated

reversing the order in which lottery choices were presented (see Sect. 3.4).

A control question designed to capture understanding of the essence of the device

revealed that subject comprehension was very good: 96% answered it correctly.12

3.2 Common consequence ladders implemented

Table 1 presents the common consequence ladder implemented in the domain of

gains. The first pair of lotteries (on rung I) constitutes the least attractive choice, the

next pair (rung II) the least attractive choice but one, and so forth, until the most

attractive choice in terms of expected value of the lotteries (rung X). Each pair

consists of a relatively safe and a relatively risky lottery, which subjects face in the

form of the number of counters of up to three colours presented in the last three

columns. The probability of each outcome is indicated in parentheses.

These ten lottery choice problems were determined as follows. The comparison

of choices between rungs allows pronouncing on the relative steepness of the PWF

for specific intervals of probabilities. For the horizontal common consequence

effects we consider, comparisons are between intervals ½pþ q; pþ qþ �� and ½p0 þ

12 The control question asked for the gains version of the experiment was: ‘‘We just want to check your

understanding of the task. Can you please tell me, of the two lotteries here in front of you, which one

offers the higher chance of leaving with exactly 10,000 shillings?’’ For the losses version of the

experiment, a very similar control question was asked. See the experimental instructions in the online

appendix.

Fig. 3 An example of a lottery
choice problem. Notes: this
represents choice problem 6 in
the gains condition of the
experiment. Subjects were
shown that the counters of the
lottery they preferred would be
put in a bag, from which one
counter would be randomly
selected. The value of the
outcome that counter represents
would be their payment. In the
gain condition, lilac counters
represented 8000 Ugandan
shillings, light blue counters
10,000 shillings, and white
counters 13,000 shillings
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q
0
; p

0 þ q
0 þ �� with p

0 þ q
0
[ pþ q needing to be ensured in the design (see

Sect. 2.3).

Consider for example a preference reversal between rung I and rung II. pþ q ¼
0:35 refers to the probability of either the white or light blue counter being selected

in I.R, p
0 þ q

0 ¼ 0:55 to the probability of that outcome in I.S, and common

consequence shift � is added to the analogous probabilities in II.S and II.R. A

preference reversal therefore indicates the relative steepness of the PWF in

probability intervals [0.35, 0.4] compared to [0.55, 0.6]. Following the same logic,

comparing rungs V and VI pronounces on the relative steepness of the PWF in

intervals [0.55, 0.6] and [0.75, 0.8], rungs IX and X intervals [0.75, 0.8] and

[0.95, 1.0], and so forth, for a total number of possible comparisons of 10 � 9=2 ¼
45 across each combination of rungs.

Such tracking of the PWF for gains is thus limited to part of its domain

[0.35, 1.0], which we decided for the sake of realism, avoiding cognitive overload

and prioritising more-refined measurement to measurement over the entire domain

Table 2 Common consequence ladder (losses)

Rung Order Risky or safe Lilac @ 3000 (x) Light blue @ 5000 (y) White @ 8000 (z)

I 3a S 14 (p
0 ¼0.7) 6 (q

0 ¼0.3) 0 (r
0 ¼0)

3b R 16 (p ¼0.8) 0 (q ¼0) 4 (r ¼0.2)

II 1a S 13 (0.65) 7 (0.35) 0 (0)

1b R 15 (0.75) 1 (0.05) 4 (0.2)

III 6a S 12 (0.6) 8 (0.4) 0 (0)

6b R 14 (0.7) 2 (0.1) 4 (0.2)

IV 9a S 10 (0.5) 10 (0.5) 0 (0)

9b R 12 (0.6) 4 (0.2) 4 (0.2)

V 4a S 8 (0.4) 12 (0.6) 0 (0)

4b R 10 (0.5) 6 (0.3) 4 (0.2)

VI 10a S 6 (0.3) 14 (0.7) 0 (0)

10b R 8 (0.4) 8 (0.4) 4 (0.2)

VII 5a S 4 (0.2) 16 (0.8) 0 (0)

5b R 6 (0.3) 10 (0.5) 4 (0.2)

VIII 2a S 2 (0.1) 18 (0.9) 0 (0)

2b R 4 (0.2) 12 (0.6) 4 (0.2)

IX 7a S 1 (0.05) 19 (0.95) 0 (0)

7b R 3 (0.15) 13 (0.65) 4 (0.2)

X 8a S 0 (0) 20 (1) 0 (0)

8b R 2 (0.1) 14 (0.7) 4 (0.2)

Notes. The table presents the 10 pairwise lottery choices in the losses condition of the experiment. The

number of counters of each colour determines the probability of x (lilac), y (light blue), and z (white);
probabilities of outcomes are in parentheses. The first column indicates the rung on the common con-

sequence ladder each pair of lotteries represents; the second column the order in which they were

presented (the reverse order for a randomly selected half of subjects)
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[0, 1.0]. As to realism, farmers’ investments in fertiliser, improved seeds, and other

pertinent agricultural investment goods in Uganda are successful with a probability

considerably higher than 0.35 (Verschoor et al. 2016, Table A1, p.147). Avoiding

cognitive overload made us decide after piloting that no more than 10 rungs should

be implemented and that each lottery should have no more than 20 counters. As to

refined measurement, limiting tracking of the PWF to part of its domain [0.35, 1.0]

meant that we could set � ¼ 0:05 between each two adjacent rungs in the common

consequence ladder for gains.

Table 2 presents the common consequence ladder implemented in the domain of

losses. Pairs of lotteries are again presented in order from the one with the lowest

expected values of S and R on rung I to the one with the highest expected value on

rung X. For losses, comparisons across paired lotteries are relevant for the relative

steepness of the PWF between probability intervals ½p0 � �; p
0 � and ½p� �; p� (see

Sect. 2.4).

For example, in lottery I.R, p ¼ 0:8 and in lottery I.S, p
0 ¼ 0:7. When the

common consequence shift of size � ¼ 0:05 is considered between paired lotteries I

and paired lotteries II, then p
0 � � ¼ 0:65 and p� � ¼ 0:75. A preference reversal

from R to S or S to R between lotteries I and lotteries II thus indicates that the PWF

is steeper in one of the two probability intervals [0.65, 0.7] and [0.75, 0.8] than it is

in the other.

Following similar logic, comparing choices in V and VI pronounces on the

relative steepness of the PWF in intervals [0.3, 0.4] and [0.4, 0.5], comparing

choices in IX and X on [0, 0.05] and [0.1, 0.15], and so forth, again for a total

possible number of comparisons of 10 � 9=2 ¼ 45.

The tracking of the PWF for losses is thus restricted to part of its domain [0, 0.8].

Considerations of realism, refinement where it matters most, and avoiding cognitive

overload have again inspired this design choice. The last two mentioned are similar

to those considerations for gains. As to realism, sharp negative income shocks are

common in the study area (see Sect. 4.1), which suggests sizeable reference

probabilities somewhere in the middle of the PWF’s domain (cf. Sect. 2.2). To

reduce the risk of failing to detect reference probabilities, we therefore cast our net

somewhat wider than in the domain of gains. Moreover, whereas for gains, it

seemed important to close in on certainty at one end of the PWF’s domain (a 100%

certain gain); for losses, it seemed important to close in on certainty at the other end

(a zero% chance of a loss).

The two common consequence ladders presented here are valid to the extent that

we have successfully established in subjects’ minds that z ¼ 8; 000 Ugandan

shillings are thought of as the neutral outcome. We next show how we attempted

this.

3.3 Establishing the neutral outcome

Three weeks before a subject was scheduled to participate, we gave them a voucher.

The voucher contained their name, address, and photo, as well as the figure of 8000
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shillings prominently displayed. The following scripted message was read out to

participants individually when the voucher was handed over:

On the day of the research workshop you’ll be asked to take some decisions

about this money. Depending on the decisions you will be asked to take, you

could end up with more than 8000 or with less than 8000 shillings.

During the delivery of the experimental instructions 3 weeks later, the voucher was

referred to when the outcome of 8000 shillings was introduced (see online Appendix

A, p.8):

Remember, you have already been given a voucher worth 8000 shillings.

Therefore, if a white counter is eventually drawn, then you do not earn any

extra money, but keep your 8000 shillings.

The vouchers were thus intended to instil a sense of entitlement. Deception was

avoided through emphasising that the money could be lost, depending on the

decisions subjects were asked to take. To avoid disappointment, an unannounced

show-up fee of 5000 shillings was paid after the resolution of the game. The amount

of 5000 shillings was the maximum amount that could be lost in the losses

condition. Minimum earnings were therefore 8000 shillings, or about twice the

median daily wage in the study area. Crucially though, losses could actually be

made out of the 8000 shillings mentioned on the voucher, exactly as per the

experimental instructions that subjects responded to.13

3.4 Other elements of the experimental design

Other elements of the design were as follows. We implemented a simple investment

game so as to be able to control for risk aversion, based on the Gneezy and Potters

(1997) design. Subjects were endowed with 20 counters, each representing 400

shillings, so 8000 shillings in total. They chose to invest k counters, where k 2
f0; 1; :::; 20g for facing the lottery ð0:5; 8000��400k; 0:5; 8000þ 800kÞ. In other

words, their investment was tripled if successful and lost in its entirety if it failed.14

The fate of their investment is determined by tossing a coin. We assume a power

Constant Relative Risk Aversion (CRRA) utility function over experimental

earnings x, which is defined as UðxÞ ¼ x1�r=ð1� rÞ, where r is the coefficient of

CRRA. As is conventional, we compute the CRRA coefficient for indifference

between investing k and k � 1, on one hand, and k and k þ 1 on the other, to find the

CRRA coefficient range that corresponds with the observed behaviour of investing

13 When losses are implemented in experiments, it is customary to either work with hypothetical payoffs

(e.g., Etchart-Vincent 2004; Abdellaoui et al. 2005), or to practise mild forms of deception when

implementing real incentives (e.g., Yesuf and Bluffstone 2009). Both are done for ethical reasons, so as to

ensure that subjects have no legitimate grounds for feeling deprived as a result of their participation in the

experiment. The implementation of hypothetical losses has been compared in one study with that of real

incentives, and little difference was found (Etchart-Vincent and l’Haridon 2011). Even so, we could not

be certain that this would hold in our sample, so we implemented real losses from an initial endowment,

while avoiding deception and the house-money effect (Thaler and Johnson 1990).
14 The rate of return on investment was calibrated during the pilot for inducing variation in behaviour.
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k. The investment decision was always task 11, so after the 10 lottery choices of the

main experiment had taken place.

The random-lottery incentive system was used, so that only one decision was

implemented and each of the 11 lottery choices (the decision in the investment game

is in effect also a lottery choice) had an equal chance of being played out for real.

Subjects were told this before they took their decisions.

The order of the ten paired lottery choices was randomised, both in the gains

condition and in the losses condition (see Tables 1 and 2). Moreover, whether a

subject faced the sequence of lottery choices 1, 2, ..., 10 or that of 10, 9, ..., 1 was

randomly determined.

Two experimental teams were used for delivering the instructions, who were

purposively rotated across sessions and game conditions, so that we can control for

experimenter effects. The experimental teams are experienced and were intensively

trained for 2 weeks, in addition to their involvement in extensive piloting.

Subjects were randomly assigned to either the gains condition or the losses

condition of the experiment in a between-subject design.

Experimental instructions were delivered in person, because literacy cannot be

guaranteed in the study area. Decision-making was partially private: other subjects

were not present but an enumerator recorded choices.

The experimental instructions were translated into Lugisu, the local language of

the study area, and back-translated into English to check for inadvertent changes in

meanings.

A number of instructions and reassurances were given at the outset to promote

orderly, leisurely, and autonomous decision-making; see the experimental instruc-

tions in online Appendix A.

3.5 Study area, sample selection, survey, and fieldwork implementation

We selected five sub-counties from a rural area in eastern Uganda: Sironko District

and Lower Bulambuli District, which together comprise the former Sironko District.

Almost all working adults in the area (95%) are smallholder farmers. The typical

farmer grows maize intercropped with beans alongside some cash crops (e.g.,

coffee) on land that does not exceed 2 acres. Using a multi-stage cluster sampling

method, we selected 1803 farmers for a number of risky choice experiments

including the ones reported on here. Of the individuals selected for participation,

370 were randomly assigned to the common consequence experiments, 184 of them

to the gains condition, and 186 to the losses condition. For a detailed description of

the study area and fieldwork implementation, see Verschoor et al. (2016).

Data collection followed the same basic pattern in each sub-county. Three weeks

before their relevant experimental session, individuals were visited, reminded about

their participation and given the voucher described in Sect. 3.3. In the week before

‘game day’, we visited all selected participants again to administer a household

survey questionnaire, to collect data on basic socio-economic variables, agricultural

practises, and the experience of income shocks. The experiment then took place at

the end of the week in a central location (usually in a school on a nonschool day);

for participants from remote villages, we organised transport.
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4 Results

In this section, we present our main results. We first show summary statistics and

ascertain whether condition assignment has given rise to inadvertent selection

issues. Next, we analyse common consequence effects in the domains of gains and

losses, respectively, and derive the shape of the PWFs (one for losses, one for gains)

that organise the data. Finally, we present the results of multivariate analysis that

searches for correlates of the particularly pronounced nonlinear probability

weighting that the univariate analysis has pointed to.

4.1 Sample characteristics

We begin by describing our sample and assess differences on observables between

game conditions. Table 3 presents summary statistics and a corresponding

balancing test. About 30% of subjects are traditional farmers. We consulted

Table 3 Summary statistics and balancing test

Mean (standard deviation)

Variable Total Gains condition Losses condition t statistic p value

(N=370) (N=184) (N=186)

Traditional farmer (=1) 0.30 0.30 0.31 �0.12 0.90

(0.46) (0.46) (0.46)

Wealth index 0.06 �0.20 0.31 �2.06 0.04

(2.38) (1.88) (2.77)

Risk aversion (CRRA) 1.29 1.40 1.17 1.10 0.27

(2.01) (2.26) (1.74)

Female (=1) 0.52 0.55 0.48 1.31 0.20

(0.50) (0.50) (0.50)

Years of schooling 5.46 5.37 5.55 0.49 0.62

(3.59) (3.51) (3.68)

Age 40.85 40.50 41.20 0.48 0.63

(14.03) (14.45) (13.63)

Harvest failed 0.77 0.78 0.75 0.65 0.52

in past 5 years (=1) (0.42) (0.41) (0.43)

Experienced severe flooding 0.59 0.60 0.58 0.40 0.69

in past 5 years (=1) (0.49) (0.49) (0.50)

Experienced severe drought 0.84 0.85 0.83 0.49 0.62

in past 5 years (=1) (0.37) (0.36) (0.38)

Control question correct (=1) 0.96 0.99 0.93 1.87 0.06

(0.31) (0.35) (0.26)

Notes. The table presents summary statistics and a test of the null hypothesis that mean values are equal

by game condition. In a logistic regression of condition assignment on all variables presented in the table,

the null hypothesis of all coefficients being jointly equal to zero cannot be rejected (v2 ¼ 10:8; p ¼ 0:46)
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agricultural experts in the study area to define traditional farmers.15 Traditional

farmers grow maize intercropped with beans, with a minimal reliance on bought

inputs such as improved seeds, pesticides, and inorganic fertiliser; if they do buy

inputs, then this would be limited to purchasing unimproved seeds on local markets.

We therefore classified all subjects as traditional farmers who grow only maize and

beans and do so without buying improved seeds, pesticides, or fertiliser. All other

subjects either buy such inputs or grow cash crops that are more lucrative than

maize and beans, but require higher cash outlays (e.g., tomatoes, cabbages, and

onions) or both. According to the local experts, traditional farmers avoid initial cash

outlays so as not to jeopardise their food security in periods of drought or excessive

flooding. This is a recognised motive in development economics (Fafchamps

2003, pp.18ff.).16

The wealth index presented in the table is the first component of a principal

component analysis based on a list of about 30 types of assets that our survey

collected information on (this method of constructing a wealth index is due to

Filmer and Pritchett (2001)). Risk aversion is measured using the constant relative

risk aversion (CRRA) coefficient based on behaviour in the investment game

presented in Sect. 3.4.

We asked several questions about income shocks. The way we asked these

questions was by inquiring whether respondents had experienced a sharp drop in

income in the past 5 years as a result of specified events. 77% had experienced a

sharp drop in income resulting from harvest failure, 59% from severe flooding, and

84% from a severe drought. Farmers in the sample are clearly used to frequent sharp

income shocks.

Most variables in Table 3 are not significantly different between game

conditions, but two variables are. One is the wealth index. We think that this

should be due to chance, as the random assignment to game condition was

rigorously carried out. Game comprehension is the other variable that is

significantly different between game conditions: 99% answered the control question

correctly in the gains condition and 93% in the losses condition, which is

significantly different at the 10% level. This could well be due to the differences

between the game versions, with the losses instructions possibly slightly harder to

understand. Reassuringly, the omnibus v2-statistic of a test of all coefficients being

equal to zero in a logistic regression of condition assignment on the variables

presented in the table is insignificant (v2 ¼ 10:8, p ¼ :46), suggesting that

inadvertent selection is not a major concern.

Table 4 contains a summary of experimental behaviour. Choosing the risky

lottery is somewhat more frequent than the safe one, especially for losses and,

within the domain of losses, especially for the lower rungs. In the domain of losses,

the gradual lowering of the proportion of risky choices as one moves up the ladder

15 These agricultural experts were interviewed individually and included the District Agricultural Officer,

several agricultural extension workers, and several leaders of farmers’ groups.
16 Traditional farmers are significantly less wealthy (t ¼ �7:47; p ¼ 0:000), more likely to be female

(t ¼ 3:14; p ¼ 0:002), spent fewer years in school (t ¼ �5:87; p ¼ 0:000), and are older than others in the
sample (t ¼ 2:64; p ¼ 0:008). The p values reported are based on two-sided tests.
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to rung V implies a preponderance of RS switches (choosing risky on a lower rung

followed by safe on the higher rung), which hints at the relative steepness of the

PWF near p ¼ 0; we formally test this below. Table 4 also shows that about a third

of subjects choose different lotteries on consecutive rungs, which our tests for

probability weighting in the next subsection focus on. In the domain of losses,

19.6% of subjects never deviate from their first choice; 13.0% always choose the

risky lottery, and 6.5% always safe. In the domain of gains, the corresponding

figures are 35.9, 19.0, and 16.8%. On average, experimental subjects switch about

three times between consecutive rungs (recall that consecutive rungs were not

sequentially presented, since the order in which they were presented to subjects was

randomised). In the domain of losses, the mean number of switches between

consecutive rungs is 2.9 (Std Dev 2.1), and for gains 2.7 (Std Dev 2.4).

4.2 Tracking the PWF

We next present the choice patterns that the common consequence shifts have given

rise to, and show the shapes of the PWFs, one in the domain of losses and one in the

domain of gains, that organise the data. Our tests of probability weighting used for

tracking the PWF may be construed as tests of the null hypothesis of expected utility

theory (EUT) plus noise arising from simple (Fechnerian) errors in decision-making

(Hey and Orme 1994). For these tests to be valid, we need to maintain the

assumption that erroneous SR switches are not more likely than erroneous RS
switches, in any of the comparisons considered between rungs of the common

consequence ladder.

Recall that there are two experimental conditions: about half of the subjects are in

the gains condition, and the other half are in the losses condition. Each subject

makes ten risky choice decisions. In each of the ten decision-making problems, they

can choose either the safe (S) or the risky (R) lottery. As is standard in tests for

common consequence effects, probability weighting is tested for by comparing

decisions in paired problems. There are 45 possible comparisons (10 � 9=2), which
all allow tests of probability weighting for specific ranges of probabilities (e.g.,

whether the probability weighting function is steeper for 0.8–1.0 than it is for

0.4–0.6).

Table 4 Summary of behaviour in experiments

Rung I II III IV V VI VII VIII IX X

% Risky, losses 63.6 61.2 57.6 58.2 54.9 61.4 58.7 55.4 48.4 52.7

% Switch from previous rung,

losses

27.4 31.2 26.3 36.6 32.3 36.0 33.3 29.6 36.6

% Risky, gains 56.0 51.4 54.1 51.1 51.6 46.7 51.6 47.8 50.5 50.5

% Switch from previous rung,

gains

28.8 24.5 34.2 33.2 26.6 32.1 26.6 28.8 32.6
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Therefore, we test for probability weighting by focusing on paired problems. Let

us consider two decision-making problems, problem 1 and problem 2. An individual

decides whether they want S or R in problem 1, and next whether they want S or R in

problem 2. There are therefore four possible choice patterns: SS, RR, SR, and RS.
The focus of the analysis (again standard in tests of common consequence

effects) is on the proportion of subjects that chooses each of these four possibilities.

The null hypothesis is: no probability weighting. In Sect. 2, we showed (in line with

standard theory) that this means that if somebody chooses S in one problem, then

they should also choose S in the second problem (and vice versa). Likewise, if they

choose R in one problem, then they should also choose R in the second problem (and

vice versa). The null hypothesis of no probability weighting and no errors requires

all choices to be SS or RR.
For testing this, we allow subjects to make mistakes. Therefore, the null

hypothesis becomes: apart from mistakes, all choices should be SS or RR. We then

make the assumption that mistakes in one direction (SR) are equally likely as

mistakes in another direction (RS). For testing for probability weighting, there are

several possibilities.

First, we could assume that the lowest of SR and RS is entirely due to mistakes.

Using a one-sample binomial test, we can then test whether the higher of RS and SR
significantly differs from the lower, the lower being the hypothesized value due to

mistakes. This is defensible, but there is an arbitrary element in doing this.

Second, we could do a proportion test for testing whether the proportion of RS is

equal to that of SR. However, this requires us to treat SR and RS as coming from two

independent samples. That is clearly not correct: they derive from a paired sample

(we observe the same subject twice when we consider pairs of decision-making

problems).

Third, we could do a sign test. For testing the difference in two variables between

paired observations, either a paired t test, or a signed rank test, or a sign test are

options. For the first, we need to assume that the difference between the two

variables is interval and normally distributed; for the second, we can relax that

assumption, but still need to assume that the difference is ordinal; for the third, we

need not assume anything about the difference, which seems appropriate here.

Fourth, we could in principle estimate functional forms for the probability

weighting and value functions. However, the methodology of common consequence

ladders is explicitly designed to avoid estimating value functions (conclusions about

probability weighting hold whatever the value function looks like, see Sect. 2).

Moreover, an important part of the motivation of the paper is that functional forms

are often inadequate and that, therefore, a nonparametric method (such as the one

we use) is preferred (see Sect. 1).

We therefore test for probability weighting in paired problems using a sign test.

We recode R ¼ 1 and S ¼ 0, so that RR ¼ 0, SS ¼ 0, RS ¼ positive and SR ¼
negative (the labels positive and negative are conventions for this test) and test

whether observed RS and SR are such that the null hypothesis of their being equally

likely to occur can be rejected. Since our priors allow deviations in either direction,

we report p values from a two-sided test.
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A secondary interest is whether we can reject the null hypothesis that patterns

across paired problems are due to chance (driven by noise alone). This amounts to

testing whether choices in one problem are independent of choices in the problem it

is paired with. We test for this by cross-tabulating choices in paired problems and

using a Chi-square test for establishing if there is a relationship between the choices.

For testing diminishing sensitivity relative to the end points, we focus first on

rung IX of the common consequence ladder. For losses, this allows us to assess

whether the probability weighting function is particularly steep for probabilities

between 0.05 and 0.15. We will below also consider the same for the interval 0–0.1,

but our primary focus is on an interval near to but not including 0. The reason for

this focus is the well-known observation that the probability weighting function is

ill-defined near the end points, notwithstanding these end points serving as reference

points (Kahneman and Tversky 1979). Focusing on rung IX in the domain of gains

allows us to assess whether the PWF is particularly steep for probabilities between

0.75 and 0.95.

In Table 5, we show the choice patterns in the domain of losses for rungs paired

with rung IX on the common consequence ladder. As mentioned, there are four

possible combinations when two rungs are considered: twice safe (SS), twice risky

(RR), first safe then risky (SR), and first risky then safe (RS). SS and RR are

consistent with EUT, while SR and RS are not and point to nonlinear probability

weighting. Therefore, for example, when choosing between the paired lotteries on

rung IX in one decision-making problem and on rung VI in another, 50 subjects

chose the safe lottery in each choice problem, 68 the risky lottery both times, 45

chose the safe lottery on rung IX and the risky lottery on rung VI, and 21 chose the

Table 5 Common consequence effects between rung IX and other rungs (losses)

Responses (number)

Rungs SS RR SR RS Noise alone? SR = RS? Inference

(p value) (p value)

IX–X 57 59 38 30 0.000*** 0.3961 wð0:15Þ � wð0:05Þ � wð0:1Þ � wð0Þ
IX–VIII 61 68 34 21 0.000*** 0.1048 wð0:15Þ � wð0:05Þ � wð0:2Þ � wð0:1Þ
IX–VII 56 69 39 20 0.000*** 0.0183** wð0:15Þ � wð0:05Þ[wð0:3Þ � wð0:2Þ
IX–VI 50 68 45 21 0.000*** 0.0043*** wð0:15Þ � wð0:05Þ[wð0:4Þ � wð0:3Þ
IX–V 61 67 34 22 0.000*** 0.1409 wð0:15Þ � wð0:05Þ � wð0:5Þ � wð0:4Þ
IX–IV 54 66 41 23 0.000*** 0.0328** wð0:15Þ � wð0:05Þ[wð0:6Þ � wð0:5Þ
IX–III 53 64 42 25 0.000*** 0.0498** wð0:15Þ � wð0:05Þ[wð0:7Þ � wð0:6Þ
IX–II 46 63 49 25 0.000*** 0.0071*** wð0:15Þ � wð0:05Þ[wð0:75Þ � wð0:65Þ
IX–I 42 64 53 25 0.000*** 0.0020*** wð0:15Þ � wð0:05Þ[wð0:8Þ � wð0:7Þ

N ¼ 184. Response columns show the number of each of the four possible choice patterns between paired

lotteries on indicated rungs of the common consequence ladder in the domain of losses. We use a Chi-

square test for testing the hypothesis that choices in paired problems are independent, i.e., are due to

‘‘noise alone’’; p values reported are associated with the Pearson v2 test statistic. We use a sign test for

testing the hypothesis that SR ¼ RS; reported p values are based on a two-sided test *Denotes rejection of

the null at the 10% level, ** at the 5 percent level, and *** at the 1% level
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risky lottery on rung IX and the safe lottery on rung VI. We first check whether we

can reject the notion that such choice patterns are due to ‘‘noise alone’’ by using a

Chi-square test for testing the hypothesis that choices in paired problems are

independent; this hypothesis is always rejected at the 1% level (Tables 5 and 7).

Using a two-sided sign test, we next test whether SR is significantly different

from RS for each of the nine steps involving rung IX. In the example of the step

from rung VI to rung IX, the likelihood that SR and RS are due to error is equal to

0.43%; EUT is rejected at the 1% level. As demonstrated in Sect. 2.4, this points to

nonlinear probability weighting. The probabilities for which this may be inferred are

spelt out in the final column of Table 5. In total, there are six significant common

consequence effects: the PWF for losses is less steep for probabilities [0.2, 0.3],

[0.3, 0.4], [0.5, 0.6], [0.6, 0.7], [0.65, 0.75], and [0.7, 0.8] than it is for [0.05, 0.15].

Conversely, no evidence is found that the PWF for losses is less steep for

[0.05, 0.15] than for any other interval.

We next investigate whether more can be said about the shape of the PWF when

considering all possible common consequence effects for losses (Table 6). Of the 45

possible steps between rungs, 10 point to statistically significant probability

weighting. Nine of these point to particular steepness of the PWF for probabilities

[0, 0.1] and [0.05, 0.15], and are thus all consistent with concavity of the PWF

arising from diminishing sensitivity relative to the end point of p ¼ 0. The tenth

significant common consequence effect suggests that the PWF is steeper for

[0.4, 0.5] than for [0.7, 0.8], but is only significant at the 10% level. Since there are

45 comparisons, this effect is too weak to base a firm conclusion on.

For losses, we thus find strong evidence for a PWF that is relatively steep near

p ¼ 0. In marked contrast, for gains, we find no evidence that the PWF is relatively

Table 6 All possible common consequence effects (losses)

PWF steeper for row than column probabilities?

0.05–0.15 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.65–0.75 0.7–0.8

0–0.1 ns ns ns s** ns ns ns s* s**

0.05–0.15 ns s** s*** ns s** s** s*** s***

0.1–0.2 ns ns ns ns ns ns ns

0.2–0.3 ns ns ns ns ns ns

0.3–0.4 ns ns ns ns ns

0.4–0.5 ns ns ns s*

0.5–0.6 ns ns ns

0.6–0.7 ns ns

0.65–0.75 ns

s indicates that the PWF is steeper, ls that it is less steep for the row than for the column interval of

probabilities; ns that the null hypothesis of equal steepness for the two intervals cannot be rejected. Each

comparison is tested using a two-sided sign test that SR ¼ RS for the relevant two rungs on the common

consequence ladder, as explained in the main text. * denotes rejection of the null at the 10% level, ** at

the 5 percent level, and *** at the 1% level
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steep near p ¼ 1. There are no significant common consequence effects involving

rung IX (Table 7), which allows us to investigate the relative steepness of the PWF

for [0.75, 0.95]. Likewise, no evidence is found for the PWF being steeper than

elsewhere for the interval [0.8, 1.0] (Table 8).

There is some tentative evidence for the PWF for gains being relatively flat in the

middle, which is consistent with an inverse S shape. It is less steep for [0.35, 0.55]

than it is for [0.6, 0.8] and [0.7, 0.9] and less steep for [0.45, 0.65] than for

[0.7, 0.9] (Table 7). However, the dominant impression for gains is the marked

absence of probability weighting.

In sum, probability weighting in the domain of losses is pronounced and points to

a relatively steep PWF near p ¼ 0, which suggests diminishing sensitivity near that

probability. This is consistent with an inverse S shape. No strong evidence is found

for probability weighting in the domain of gains, but such evidence that is found is

also consistent with an inverse S shape.

4.3 Multivariate analysis of nonlinear probability weighting

We next report on correlates of probability weighting. We investigated these by

classifying subjects according to their choice patterns across the ten rungs of the

common consequence ladder (cf. Bleichrodt and Pinto (2000)), and running probit

regressions in which the dependent variable is a dummy that captures one category

of the classification. In the domain of gains, 35% of subjects are EUT consistent
(19% chose always the risky lottery, 16% always safe). We classify the probability

weighting of 30% as dominantly convex, because the number of times they chose

Table 7 Common consequence effects between rung IX and other rungs (gains)

Responses (Number)

Rungs SS RR SR RS Noise alone? SR = RS? Inference

(p-value) (p-value)

IX–X 61 63 30 30 0.000*** 1.0000 wð0:95Þ � wð0:75Þ � wð1Þ � wð0:8Þ
IX–VIII 67 64 24 29 0.000*** 0.5831 wð0:95Þ � wð0:75Þ � wð0:9Þ � wð0:7Þ
IX–VII 61 65 30 28 0.000*** 0.8957 wð0:95Þ � wð0:75Þ � wð0:85Þ � wð0:65Þ
IX–VI 66 61 25 32 0.000*** 4270 wð0:95Þ � wð0:75Þ � wð0:8Þ � wð0:6Þ
IX–V 58 62 33 31 0.000*** 0.9007 wð0:95Þ � wð0:75Þ � wð0:75Þ � wð0:55Þ
IX–IV 63 66 28 27 0.000*** 1.0000 wð0:95Þ � wð0:75Þ � wð0:7Þ � wð0:5Þ
IX–III 63 72 27 21 0.000*** 0.4709 wð0:95Þ � wð0:75Þ � wð0:65Þ � wð0:45Þ
IX–II 60 64 30 29 0.000*** 1.0000 wð0:95Þ � wð0:75Þ � wð0:6Þ � wð0:4Þ
IX–I 53 65 38 28 0.000*** 0.2678 wð0:95Þ � wð0:75Þ � wð0:55Þ � wð0:35Þ

N ¼ 184. Responses columns show the number of each of the four possible choice patterns between

paired lotteries on indicated rungs of the common consequence ladder in the domain of gains. We use a

Chi-square test for testing the hypothesis that choices in paired problems are independent, i.e., are due to

‘‘noise alone’’; p values reported are associated with the Pearson v2 test statistic. We use a sign test for

testing the hypothesis that SR ¼ RS; reported p values are based on a two-sided test *Denotes rejection of

the null at the 10% level, ** at the 5 percent level, and *** at the 1% level
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the risky lottery on the first five rungs exceeds that of the last five rungs. It follows

that for them RS switches dominate between rungs corresponding with lower

probabilities and rungs corresponding with higher probabilities, i.e., convexity

dominates. For mirroring reasons, 20% are classified as exhibiting probability

weighting that is dominantly concave, which leaves 15% of subjects unclassified in

the domain of gains.

In the domain of losses, 21% of subjects are EUT consistent (14% chose always

risky; 7% always safe). For classifying the probability weighters, we ignore rungs V

and VI, which capture a relatively flat stretch in the middle of the (aggregate) PWF.

Dominant concavity (36% of subjects) is said to occur when the frequency of RS
switches between rungs I and IV on one hand and rungs VII–X on the other exceeds

that of the frequency of SR switches, and dominant convexity when it is the other

way around (28%). As in the domain of gains, 15% of subjects remain unclassified

in the domain of losses.

Tables 9 and 10 report marginal effects for a selection of the probit regressions

we ran. In the domain of gains, women are less likely than men to be EUT

consistent (Table 9). There is also a small effect of the order in which the lottery

choice was presented on the likelihood of EUT consistency. In the domain of losses,

risk aversion is positively and significantly correlated with EUT consistency, which

(not reported in the table) is driven by its significant correlation with the ‘‘always

safe’’ choice pattern.

Neither in the domain of gains nor in the domain of losses were any significant

correlates found of the choice patterns dominantly convex and dominantly concave.

The reason for this could well be that these classifications allow for a wide variety

of choice patterns. We therefore zoomed in on probability weighting near the end

points of p ¼ 0 in the domain of losses and p ¼ 1 in the domain of gains, i.e.,

comparisons involving rungs IX and X. Recall that, in the domain of gains, we do

not find evidence for nonlinear probability weighting near p ¼ 1 for the sample as a

whole (Table 8). By contrast, we find that convexity near p ¼ 1 is more common

among traditional farmers (Table 10). In the domain of losses, for the sample as a

whole, we found strong evidence for concavity near p ¼ 0 (Table 6). By contrast,

we find that convexity near p ¼ 0 is more common among traditional farmers

(Table 10). We will reflect on these contrasting findings for traditional and other

farmers in Sect. 5.

5 Discussion and conclusion

Our findings are usefully summarised in terms of our hypotheses (see Sect. 2.2).

Hypothesis 1 postulates diminishing sensitivity of the PWF relative to p� ¼ 0,

which we investigated and confirm in the domain of losses. Hypothesis 2 postulates

diminishing sensitivity of the PWF relative to p� ¼ 1, which we investigated but

cannot confirm in the domain of gains. Hypotheses 3 and 4 postulate diminishing

sensitivity relative to reference probability p�; 0\p�\1. Hypothesis 3 states that

the PWF is concave for probabilities ðpy; 1�. For gains, this is rejected, as those

rejections of expected utility theory we find are all consistent with convexity for
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[0.35, 1]. Moreover, convexity of the PWF approaching p ¼ 1 is found to be

particularly pronounced for traditional farmers. Hypothesis 4 states that the PWF is

convex for probabilities ½0; pyÞ, which we reject for the aggregate sample (as

implied by the confirmation of hypothesis 1). However, for traditional farmers,

convexity of the PWF near p� ¼ 0 is more likely than for others.

How do these findings relate to the previous literature, and what do they suggest?

The absence of support in the aggregate sample for a reference probability of p� ¼ 1

in the domain of gains is out of line with the bulk of lab studies in Western

countries, as well as with quite a few lab-in-the-field studies in developing

Table 9 EUT consistent: regression analysis

Dependent variables

Variable EUT consistent(gains) EUT consistent (losses)

Traditional farmer (=1) �0.07 0.02

(0.08) (0.07)

Wealth index 0.00 �0.00

(0.02) (0.01)

Risk aversion (CRRA) 0.02 0.04**

(0.02) (0.02)

Female (=1) �0.25*** 0.04

(0.08) (0.06)

Years of schooling �0.00 0.01

(0.01) (0.01)

Age 0.00 0.00

(0.00) (0.00)

Harvest failed in past 5 years (=1) 0.03 �0.04

(0.10) (0.08)

Experienced severe flooding in past 5 years (=1) 0.10 0.01

(0.10) (0.08)

Experienced severe drought in past 5 years (=1) �0.08 �0.07

(0.14) (0.13)

Order 1�10 (=1) �0.14* �0.04

(0.08) (0.06)

Experimenter team (=1 for team 1, 0 for team 2) �0.18 �0.15

(0.17) (0.14)

Control question correct (=1) 0.05 0.16

(0.11) (0.06)

N 183 184

Pseudo R2 0.12 0.12

Probit regression, reporting marginal effects; robust standard errors are in parentheses; session fixed

effects were used (not reported in the table). ***, **, and * indicate two-sided significance levels at 1%,

5%, and 10%, respectively
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countries. The dominant probability weighting found in Western labs finds

diminishing sensitivity relative to p� ¼ 1; see the reviews of the many studies of

probability weighting in Wu and Gonzalez (1996, 1998), Prelec (1998), Gonzalez

and Wu (1999), Starmer (2000), Sugden (2004), Stott (2006), Van de Kuilen and

Wakker (2011), Fehr-Duda and Epper (2012). The evidence on probability

weighting in developing countries is more limited. Imposing Prelec (1998)’s one-

parameter functional form, Tanaka et al. (2010) find evidence for an inverse

S-shaped PWF in a rural sample from Vietnam. Adopting the methodology

developed by Tanaka et al. (2010), Liu (2013) also finds evidence for an inverse

Table 10 Probability weighting near p ¼ 0 and p ¼ 1: regression analysis

Dependent variables

Variable Convex near p ¼ 1

(gains)

Convex near p ¼ 0

(losses)

Traditional farmer (=1) 0.13** 0.18**

(0.07) (0.09)

Wealth index 0.02* 0.00

(0.01) (0.02)

Risk aversion (CRRA) 0.01 �0.03

(0.01) (0.03)

Female (=1) �0.00 �0.06

(0.05) (0.08)

Years of schooling 0.00 �0.02

(0.00) (0.01)

Age 0.00 �0.01*

(0.00) (0.00)

Harvest failed in past 5 years (=1) 0.02 0.17*

(0.06) (0.09)

Experienced severe flooding in past 5 years

(=1)

�0.04 �0.12

(0.07) (0.10)

Experienced severe drought in past 5 years (=1) �0.08 0.15

(0.11) (0.13)

Order 1�10 (=1) �0.10* �0.07

(0.05) (0.08)

Experimenter team (=1 for team 1, 0 for team

2)

�0.06 0.25

(0.12) (0.19)

Control question correct (=1) 0.04 �0.08

(0.05) (0.15)

N 176 184

Pseudo R2 0.16 0.10

Probit regression, reporting marginal effects; robust standard errors are in parentheses; session fixed

effects were used (not reported in the table). ***, **, and * indicate two-sided significance levels at 1%,

5%, and 10%, respectively
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S-shaped PWF, in a sample of Chinese cotton farmers. Eliciting certainty

equivalents of binary lotteries, and estimating parameters of Prelec (1998)’s two-

parameter functional form, Vieider et al. (2018) find evidence for an inverse

S-shaped PWF for a sample of the general population in rural Ethiopia.17 An inverse

S implies a reference probability of p� ¼ 1, so we do not find evidence supporting

the lab-in-the field studies for developing countries that find this shape of the PWF.

One reason for this could be that imposing a functional form for the entire domain

of a PWF may suggest probability weighting for certain ranges of probabilities that

would not be found if the investigations zoomed in on that range. For example,

estimating parameters of one of Prelec (1998)’s PWFs for a sample in which in

reality only diminishing sensitivity near p� ¼ 0 existed and not near p� ¼ 1 would

yield estimates consistent with an inverse S and therefore erroneously suggest

convexity near 1.0 (which implies diminishing sensitivity near p� ¼ 1).

For that reason, we adopted a methodology in this study that enables more-

refined tracking of the PWF: common consequence ladders. It is similar to but much

more-refined than Humphrey and Verschoor (2004a, 2004b), who, in five rural

samples from Ethiopia, Uganda and India find evidence for an S-shaped PWF.

(They investigate gains only, not losses.) As in our study, they use common

consequence shifts to investigate nonlinear probability weighting. Unlike in our

study, the probabilities they consider are limited to 0, 0.25, 0.5, 0.75, and 1. The

contrast between their studies and ours is striking, given the similarity in methods

(common consequence ladders) and subjects (poor rural farmers, including in

Uganda). They find that the PWF for gains is steep for the middle range of

probabilities (in the vicinity of 0.5), whereas we find that it is flat for that range. A

hypothesis for explaining the difference is that their particular selection of

probabilities made the one in the middle, 0.5, prominent so that it became a

reference probability. A reference probability of p� ¼ 0:5 gives rise to an S-shaped

PWF, so one that is particularly steep for the middle range of probabilities. This

hypothesis may be worth testing in future research.

The reference probability of p� ¼ 0 that we find in the domain of losses is

consistent with the literature on probability weighting that included losses, all

conducted in Western labs (Tversky and Kahneman 1992; Abdellaoui 2000;

Etchart-Vincent 2004; Abdellaoui et al. 2005). The weak evidence we find for an

additional reference probability of p� ¼ 0:5 in the domain of losses is at odds with

that literature. The evidence is not strong enough to base a firm conclusion on, so

may require a higher powered test.

Our findings are plausible in the context of livelihoods strategies of farmers in the

rural areas of developing countries. These areas are characterised by frequent shocks

that threaten livelihoods, such as droughts, pests and diseases, and so forth

(Fafchamps 2003). Our study area is no exception (see Sect. 4.1). These shocks

notwithstanding, farmers in our study area do invest: 65% of farmers buy fertiliser

for the growing of their crops; 31% grow cash crops, despite great income volatility

and sizeable probabilities of investment losses (Verschoor et al. 2016, p.140).

17 Using a similar approach, l’Haridon and Vieider (2018) find evidence for an inverse S in student

samples from 30 countries, including many developing countries.
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Persistent probability weighting for a farmer who invests every agricultural season

would be surprising, since it causes profits to be lower than they could have been. In

other words, probability weighting is a bias that an experienced decision-maker

under risk is unlikely to indulge in. Our finding of a marked absence of probability

weighting in the domain of gains is consistent with this insight. So is our finding that

such probability weighting persists among traditional farmers, who are not in the

habit of investing.

The pronounced probability weighting we find in the domain of losses is striking

in the light of its marked absence in the domain of gains. We find strong evidence

for concavity of the PWF that is consistent with diminishing sensitivity relative to

p� ¼ 0. To help interpret this, it is helpful to appreciate the reality of agricultural

investment in the study area. The inability to recoup an investment may spell the

end of the road for smallholder farmers, since Centenary Rural Development Bank

(the main source of agricultural credit in the area) may claim a farmer’s land. A

nonzero probability that an agricultural investment results in a loss is therefore a

very serious matter. Finding diminishing sensitivity relative to p� ¼ 0 in the domain

of losses (i.e., caring particularly when the probability of a loss starts to deviate

from zero) is therefore less surprising than diminishing sensitivity relative to p� ¼ 1

in the domain of gains would have been for experienced decision-makers under risk.

The contrasting finding for traditional farmers is again telling. For them, we find

convexity, not concavity, of the PWF for small probabilities. These farmers are not

in the habit of investing, so this finding is not likely to reflect their attitudes towards

losses that may result from agricultural investment. It may well reflect a more

general attitude to uncertainty that stems from farming in a particularly hazardous

environment. Every few years a drought will strike, or pests and diseases will

destroy the harvest. A probability of zero of no losses is therefore an abstract

concept, which may help to explain that small probabilities are treated as not that

dissimilar from zero and hence the relative flatness of the PWF in the vicinity of

zero.

To conclude, in this study, we investigated the probability weighting habits of

farmers from eastern Uganda. Previous studies of risky choice in developing

countries have not separately investigated probability weighting for losses, but some

studies for Western labs have. We find evidence of a reference probability of 0 in

the domain of losses. A reference probability of 0 is consistent with an inverse

S-shaped probability weighting function. In that respect, our findings are similar to

the bulk of the evidence from Western labs. We do not find evidence for a reference

probability of 1 in the domain of gains (apart from for traditional farmers, about one

third of our sample). In that respect, our findings are at odds with most evidence

from Western labs as well as with earlier studies of probability weighting in

developing countries. We interpret this as evidence for experience of risky choice

diminishing the tendency to transform probabilities nonlinearly into decision

weights, although less so in the domain of losses.
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Seidl (Eds.), Handbook of utility theory (Vol. 2, pp. 685–755)., Extensions Boston: Springer.

Takahashi, T. (2011). Psychophysics of the probability weighting function. Physica A, 390, 902–905.
Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and time preferences: Linking experimental and

household survey data from vietnam. The American Economic Review, 100(1), 557–571.
Thaler, R. H., & Johnson, E. J. (1990). Gambling with the house money and trying to break even: The

effects of prior outcomes on risky choice. Management Science, 36(6), 643–660.
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of

uncertainty. Journal of Risk and Uncertainty, 5, 297–323.
Van de Kuilen, G., & Wakker, P. P. (2011). The midweight method to measure attitudes toward risk and

ambiguity. Management Science, 57(3), 582–598.
Verschoor, A., D’Exelle, B., & Perez-Viana, B. (2016). Lab and life: Does risky choice behaviour

observed in experiments reflect that in the real world? Journal of Economic Behavior and
Organization, 128, 134–148.

Vieider, F. M., Beyene, A., Bluffstone, R., Dissanayake, S., Gebreegziabher, Z., Martinsson, P., et al.

(2018). Measuring risk preferences in rural Ethiopia. Economic Development and Cultural Change,
66(3), 417–446.

Vieider, F. M., Martinsson, P., Nam, P. K., & Truong, N. (2019). Risk preferences and development

revisited. Theory and Decision, 86, 1–21.
Wakker, P. P. (2010). Prospect theory for risk and ambiguity. Cambridge: Cambridge University Press.

Wu, G., & Gonzalez, R. (1996). Curvature of the probability weighting function. Management Science,
42(12), 1676–1690.

Wu, G., & Gonzalez, R. (1998). Common consequence conditions in decision making under risk. Journal
of Risk and Uncertainty, 16, 115–139.

Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.
Yesuf, M., & Bluffstone, R. A. (2009). Poverty, risk aversion, and path dependence in low-income

countries: experimental evidence from Ethiopia. American Journal of Agricultural Economics,
91(4), 1022–1037.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

A. Verschoor, B. D’Exelle


	Probability weighting for losses and for gains among smallholder farmers in Uganda
	Abstract
	Introduction
	Theory and hypotheses
	Decision weights in cumulative prospect theory
	S-shaped and inverse s-shaped probability weighting functions
	Common consequence effects in the domain of gains
	Common consequence effects in the domain of losses

	Experimental design, survey, and fieldwork implementation
	Implementing common consequence ladders
	Common consequence ladders implemented
	Establishing the neutral outcome
	Other elements of the experimental design
	Study area, sample selection, survey, and fieldwork implementation

	Results
	Sample characteristics
	Tracking the PWF
	Multivariate analysis of nonlinear probability weighting

	Discussion and conclusion
	Open Access
	References




