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Empirical assessments of the relationship between emissions from the industrial sector and the characteristics of
the production process are surprisingly scarce in the literature for European countries, despite the industrial sec-
tor being one of themajor air polluters. In our study,we assess long-term relationship between industrial process
and air emissions by building on an existing empirical framework. Our work implies re-estimating published
findings for the UK industrial sector on a bigger dataset, incorporating additional observed factors which can
plausibly influence the level of emissions and taking into account, for the first time in the empirical literature,
unobserved common factors through cross section dependence. In comparison to previous findingswe conclude
that production inputs, total factor productivity and economies of scale cannot be relied upon to reduce
emissions from industrial sector. We provide evidence that reduction in emissions can be reliably delivered by
reducing energy consumption, encouraging fuel substitution and by encouraging market competition so that
one can counteract the increase in emissions related to higher level of capital investment. We observe consider-
able similarities in the relationship between market concentration on one side and industrial emissions and in-
novation on the other side. This is an interesting result in for the energy and environmental economic literature
as the relationship between the level of emissions andmarket structure is a considerably under-researched area.
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1. Introduction

Air pollution affects negatively human health in various ways.
Particular matter exposition, for example, raises the risk of developing
cardiovascular diseases and lung cancer (Guerreiro et al., 2016), ecosys-
tems are affected by air pollution through acidification, eutrophication,
and ground level ozone (Wald, 2016)1 while greenhouse gases are the
dominant cause of climate change (IPCC, 2014) with related impacts
on health (Watts et al., 2015), the economy (Stern, 2008), and ecosys-
tems (Walther et al., 2002). Cole et al. (2005), from now onwards
CES (2005), drew attention to the shortage of studies assessing the
utants (such as
vegetation and
ophication and
ildlife in sensi-
ntributes in cli-

en access article und
relationship between industrial activity and air pollution outside of
the United States and provided the first empirically investigation
of this relationship in the UK manufacturing2 sector using data
from 1990 to 1998. Although the manufacturing sector is one of
the major air polluters in Europe (ONS, 2016a; EEA, 2015), not many
studies have responded to the task highlighted by CES (2005) so
that this apparent lack of investigative effort is preventing a rigorous
understanding of the historical determinants of emissions from the
manufacturing sector, at least in Europe. In fact, many contributions
focus only on national or regional CO2 emissions rather than from the
industrial sector, e.g. Li et al. (2017), Mussini and Grossi (2015), Omri
(2013), Qi et al. (2016), Tajudeen et al. (2018).When focusing on the in-
dustrial sector, analysis has been often implemented by usingdecompo-
sition analysis rather than econometric modelling, e.g. Dachraoui and
Harchaoui (2006), Kim and Kim (2012), Liaskas et al. (2000), Tan and
2 Despite the difference between the two sectors based on the international SIC taxon-
omywewill be using the term ‘manufacturing’ and ‘industrial’ interchangeably. The list of
the industrial subsectors covered by this study can be seen in Table 1.
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3 Figure A3shows only CO2 emissions intensity per SIC07 manufacturing sectors due to
space constrains, nevertheless, graphs of the rest emissions intensities are available upon
request.

4 The ONS Business Enterprise R&Ddevelopment dataset reports R&D expenditure data
for “product groups” which is an industrial classification that classifies sectors on a more
aggregated level than SIC07 two-digit classification, i.e. SIC 10–11-12 are aggregated on
one product group., the same applies to 13–14-15 and 16–17-18. R&D expenditure data
by product group are not directly comparable to R&D data by industrial sector according
to ONS (2014) while R&D expenditure data by industrial sector has started to be reported
by the ONS Business Enterprise R&D development dataset only after 2010 and onwards.
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Lin (2018), Wang et al. (2018), with Floros and Vlachou (2005) being a
notable exception but only focusing on CO2 rather than set of air emis-
sions discussed in this article. CES (2005) found that emissions intensity
is positively related to energy use, physical capital intensity and human
capital intensity and negatively related to sector's average firm size and
productivity. Research and development (R&D) expenditures were re-
ported to have a mixed impact on emissions intensities, with the direc-
tion of the impact depending on the pollutants being assessed. Impact of
capital expenditure was positive but non-statistically significant. Emis-
sions were also negatively influenced by regional population density,
prosecution activity and regional age of population and positively by
unemployment. This study responds to the task highlighted by CES
(2005) on establishing an empirically grounded understanding of the
relationship between emissions and industrial activity, with a focus on
the UK manufacturing subsectors. The United Kingdom is chosen due
to our easy access to subsector specific data (aswell as datasets required
to build potential explanatory variables) but also for the ability to com-
pare our results to those in CES (2005) in a similar fashion to the repli-
cation study performed by Karakaya et al. (2017) on CO2 emissions.
Lacking an established and generally accepted theoretical framework,
the best way to analyse the extent to which emissions from the
manufacturing sector are related to the characteristics of the production
process is to assess the robustness of established findings in the litera-
ture such as those in CES (2005).

This study investigates the long-term determinants of emissions
from the industrial sector by assessing the robustness of the results in
CES (2005) in three ways. First of all, we adopt a specification as close
as possible to the one CES (2005) estimated on a 1990–1998 sample,
which we re-estimate on our sample, from 1997 to 2014. If results
from CES (2005) are reflective of long-term determinants of emissions,
we would expect our results to be fairly similar to those in CES (2005),
with some changes in the value of the coefficientsmaybe due to the pos-
sibility of time-varying parameters in the data generation process or
missing variables. Secondly, we estimate a model augmented by two
factors which might have an impact on emissions from themanufactur-
ing sector, fuel substitution and market concentration. As emissions in-
tensities vary across different fuels, fuel substitution seems an obvious
candidate as explanatory factor. Building on the results in Aghion et al.
(2005) introducingmarket concentrationmight help to consider the im-
pact of innovation on emissions, therefore tackling lack of R&D data at
the subsectoral level. Again, if results from CES (2005) are reflective of
long-term determinants of emissions, we would expect changes from
introducing two explanatory variables to be limited, especially in cases
where correlation between the explanatory variables is low. Thirdly, as
our requirements for long-term determinants of emissions are not met
bymost of the variables in CES (2005),we assess the extent towhichun-
observed common factors (through cross section dependence – CSD –
see Chudik et al. (2011)) affect our results. Our choice of focusing on
CSD ismotivated by the fact that industrial subsectors in the same coun-
try are likely to be affected, to some extent, by a common set of unob-
served factors, e.g. either through the impact of spillovers or common
shocks, such as technological progress and regulatory pressure, as con-
firmed by the statistical tests we ran. Not taking CSD into account is a
serious shortcoming, as it may impact both the statistical significance
of explanatory variables and the values of the estimated coefficients,
as discussed below. Application of the Common Correlated Pooled
Group estimator (Pesaran, 2006) tackling CSD enables us to point at
energy intensity, fuel substitution, and capital expenditure intensity as
robust determinants of industrial emissions across the pollutants
assessed in this study. Reflecting results from Aghion et al. (2005) on
the relationship between market concentration and innovation, our re-
sults point at a robust U-shaped relationship betweenmarket concentra-
tion and emissions intensities, therefore contributing to an area of
environmental economics which appear surprisingly under-researched.
We also conclude that factors such as production inputs i.e. labour and
capital, total factor productivity and size of typical firm are not robust
determinants of emissions from industrial sector, at least in the timespan
assessed in this study, based on our definition of the variables, and the
level of aggregation at which our analysis is conducted.

The remainder of the paper is structured as follows: Section 2 briefly
describes the trend in the emissions from the industrial sector and dis-
cusses potential emissions determinants we consider in this study.
Section 3 introduces our econometric methodology with most of the
discussion focusing on CSD and estimators able to take it as our contri-
bution represents our example of tackling CSD in the environmental
economics literature. Section 4 presents our results which are further
discussed in Section 5. Section 6 concludes.

2. Atmospheric emissions and their determinants

The UK has experienced a significant reduction in the overall level of
atmospheric emissions from the manufacturing sector in the last
25 years. Between 1990 and 2014 CO2 emissions have fallen by 32%,
N2O emissions by 96%, NOX by 64% and SO2 emissions by 84% (Brown
et al., 2016, p.108–111), with the great majority of the reductions addi-
tional to those assessed in CES (2005) which are related only to the
1990–1998 time period (see Fig. A1). As one can see in Table 1, there is
considerable variation in the average emissions intensity across
manufacturing subsectors in our sample (1997–2014) so that one canno-
tice a handful of emissions intensive sectors, such as “wood and products
of wood and cork” (SIC 16), “paper and paper products” (SIC 17), “coke
and refined products” (SIC 19), “chemical and chemical product's”
(SIC 20), “non-metallic minerals” (SIC 23) and “basic metals” (SIC 24).
Although the overall emissions have significantly decreased, industrial
subsectors have continued to experience disparate trends in emissions
intensities documented in CES (2005) - as one can see in Fig. A3 for
CO2

3 . Agnolucci et al. (2017) also reveals the existence of considerable
heterogeneity across UK industrial subsectors when it comes to the
long-run impact of economic activity on energy consumption. Therefore,
it seems sensible to implement an investigation focused on industry-
specific determinants, like the one pursued in CES (2005).

Our investigation centres on emissions intensities rather than the
level of emissions, a choice motivated by our aim of identifying long-
term industrial characteristics related to industrial emissions by
assessing the robustness of results in CES (2005), but also by the fact
that the time pattern of emissions is driven by intensive factors rather
than the level of production, as one can appreciate from comparing
the time pattern of emissions (Fig. A1) and emissions intensity
(Fig. A2). The variables used in our study include most of those used
in CES (2005), with only R&D excluded due to data limitations.4 As
our interest is on the relationship betweenemissions and characteristics
of the production process, we dropped regional variables discussed in
CES (2005), a decision which does not affect our comparison with CES
(2005) as their results were robust to the absence of regional variables.
Moreover, results in Cole et al. (2013) cast doubts on the importance of
these factors, or maybe the extent to which available data enable a pre-
cise estimation, as none of the four regional variables used in Cole et al.
(2013) were found statistically significant in any of the estimated
models. In addition to the variables in CES (2005) we include two fac-
tors which might affect emissions intensity, i.e. fuel substitution and
market concentration, as discussed below. As emissions are compiled
on the basis of Standard Industrial Classification 2007 (SIC07), we use



Table 1
Average emissions intensities per UK manufacturing subsector for 1997–2014.

SIC07 Manufacturing industry SO2 NOx Tot. acid CO PM10 CO2 N2O

10 Food products 2.88E-04 9.56E-04 1.34E-03 1.21E-03 1.01E-04 4.25E-01 4.52E-03
11–12 Beverages and Tobacco products 2.27E-04 5.81E-04 8.19E-04 8.28E-04 4.25E-05 2.84E-01 1.49E-03
13 Textiles 6.24E-04 1.10E-03 1.73E-03 2.66E-03 1.78E-04 6.03E-01 3.19E-03
14 Wearing apparel 1.36E-04 3.35E-04 4.67E-04 8.32E-04 3.76E-05 1.92E-01 7.44E-04
15 Leather and related products 2.95E-05 2.17E-04 2.61E-04 3.57E-04 3.58E-05 1.26E-01 4.32E-04
16 Wood and products of wood and corka 3.88E-04 2.24E-03 2.95E-03 2.79E-02 1.14E-03 1.05E+00 9.08E-03
17 Paper and paper products 1.08E-03 1.60E-03 2.69E-03 2.44E-03 2.09E-04 1.01E+00 5.59E-03
18 Printing and reproduction of recorded material 5.78E-05 3.36E-04 4.01E-04 6.70E-04 2.32E-05 2.12E-01 1.11E-03
19 Coke and refined petroleum 4.10E-02 1.15E-02 5.27E-02 2.21E-02 1.44E-03 9.80E+00 1.86E-02
20 Chemical and chemical products 2.63E-03 2.54E-03 5.90E-03 7.96E-03 3.51E-04 1.90E+00 4.04E-01
21 Pharmaceutical products 1.17E-04 1.90E-04 3.09E-04 4.90E-04 1.47E-05 1.52E-01 4.92E-04
22 Rubber and Plastic 8.76E-04 9.84E-04 1.87E-03 2.05E-03 2.03E-04 4.17E-01 3.46E-03
23 Non-metallic minerals 6.70E-03 6.50E-03 1.35E-02 9.65E-03 1.24E-03 3.32E+00 1.45E-02
24 Basic metals 1.89E-02 7.22E-03 2.61E-02 1.17E-01 2.48E-03 8.18E+00 1.90E-02
25 Fabricated productsb 1.06E-04 5.07E-04 6.19E-04 1.07E-03 1.45E-04 2.61E-01 1.54E-03
26 Computer, electronic and optical products 4.07E-05 2.09E-04 2.57E-04 4.47E-04 3.12E-05 8.21E-02 1.21E-03
27 Electrical equipment 4.36E-05 3.75E-04 4.26E-04 8.35E-04 7.72E-05 1.61E-01 1.61E-03
28 Machinery and equipment 4.62E-05 4.37E-04 4.89E-04 9.99E-04 9.64E-05 1.69E-01 1.23E-03
29 Motor vehicles, trailer and semi-trailers 1.88E-04 3.20E-04 5.11E-04 6.91E-04 1.67E-04 1.81E-01 1.07E-03
30 Transport equipment 1.06E-04 2.96E-04 4.09E-04 3.97E-04 7.21E-05 1.36E-01 5.86E-04

Notes: Emissions intensities aremeasured as thousand tonnes permillion pounds sterling of real GVA. For each column, the five highest emitting industries are highlighted in bold.Weuse
SIC07 industrial classification.

a Except furniture.
b Except machinery and equipment.
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the same industrial taxonomy to build the variables in our study which
are mainly based on the ONS Input-Output Supply and Use tables -
available for the 1997–2014 time-period (ONS, 2015), therefore
limiting the overlap between our sample and the sample used in CES
(2005) to 2 years only, i.e. 1997 and 1998. This is not a limitation for
our study as our analysis of the long-term relationships between indus-
trial emissions and their determinants is not expected to be impaired by
limited overlap between the sample in our study and the one used in
CES (2005).

Following CES (2005), we focus on carbon dioxide (CO2), nitrogen
oxides (NOx), sulphur dioxide (SO2), total acid precursor emissions5

(TAC), particular matter (PM10) and carbon monoxide (CO). We also
add another GHG to the set in CES (2005), i.e. Nitrogen Monoxide
(N2O), data for which is available in ONS (2016a). All abovementioned
pollutants are divided by the level of real GVA, which we obtain from
Input-Output Supply and Use tables - for more information see ONS
(2016c) - for 20 UKmanufacturing subsectors to compute emissions in-
tensities. In addition to energy intensity, an obvious determinant of
emissions intensity6 (we expect a positive relationship between emis-
sions and energy intensities), we consider two other factor intensities,
i.e. Physical Capital Intensity (PCI) and Human capital intensity (HCI).
The use of PCI and HCI when studying emissions intensity is related to
the relationship between production inputs, including energy and
therefore emissions, and the associated debate on the substitution or
complementarity in the so-called KLE (Capital, Labour and Energy) liter-
ature, e.g. Thompson (2006) and Koetse et al. (2014). While results
from Antweiler et al. (2001) and Cole and Elliott (2003) suggest that
higher emissions are related to higher physical capital intensities, per-
haps due to higher abatement costs, it is not entirely clear whether
this empirical relationship would hold between emissions intensity
and physical capital intensity, especially after controlling for energy in-
tensity, a factor which is not included in neither Antweiler et al. (2001)
nor Cole and Elliott (2003). After all, if higher abatement costs manifest
themselves through demand for energy, so that it is more difficult for
5 Total acid precursor emissions (TAC) are the weighted sum of SO2, NOx and NH3

(ammonia) produced by industrial processes and direct fuel use at the point of release.
6 In fact, in the case of Chinese industrial sectors Qi et al. (2016) provide evidence that

CO2 emissions have been mainly reduced by the reduction in energy intensity per output
while Li et al. (2017) prove that economic scale effect and energy intensity are the major
factors driving regional differences in CO2 emissions.
thesefirms to reduce emissions by substituting away from energy, a sta-
tistically significant relationship between physical capital and emissions
intensity might not hold after energy intensity use is controlled for. CES
(2005) argues that certain complex industrial processes which tend to
be physical capital intensive might generate more emissions per unit
of energy than less capital-intensive processes. CES (2005) also argues
that that human capital-intensive sectors are likely to be more efficient
and hence less energy intensive and therefore relatively clean (CES
2005) but again, it is not clear whether this plausible relationship
would hold after one controls for energy intensity. CES (2005) eventu-
ally finds a statistically significant positive relationship between HCI
and emissions intensities (after controlling for energy intensity), a re-
sult contradicting their reasoning above. We conclude that there does
not seem to be very strong theoretical reasons for expecting statistically
significant relationships between physical and human capital intensi-
ties, on one side, and emissions intensities, on the other, especially
after controlling for energy intensity.

We include among emissions intensity determinants, the capital ex-
penditure intensity, measured based on Gross Fixed Capital Formation,
a measure of investment intensity slightly different from the one used
in CES (2005). CES (2005) argues that capital expenditure intensity
can be used as a measure of the vintage of production processes,
under the assumption that the higher this expenditure, the more mod-
ern the equipment and machinery are likely to be, and the lower the
emissions from the production process. Results in CES (2005) contradict
their argument, as the estimated coefficients are positive for all emis-
sions intensities although non-statistically significant. We also consider
Total Factor Productivity (TFP) to take into account the output not
explained by the amount of inputs used in the production (Hulten,
2000). According to CES (2005), emissions are expected to be negatively
correlated with TFP, as a more productive firm tend to be better man-
aged, more resource efficient, produce less waste per unit of output
and able to respond relatively quickly to any change in pollution control
incentives.Whilemore efficient firms are likely to produce a lower level
of emissions, it is however not clear whether this hold after energy
intensity is controlled for. Cui et al. (2015) found a negative relation-
ship between a simplified measure of TFP7 and emissions intensities.
7 TFP is estimated as a simple firm and industry-specific fixed effect in a linear produc-
tion function comprising labour, an industry fixed effect, an industry-specific time effect
and a firm and industry-specific fixed effect taken to measure TFP.
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A similarly negative relationship has been estimated in CES (2005)
which, unlike Cui et al. (2015), control for energy intensity.

We also include size among our explanatory variables. CES (2005)
discusses the hypothesis of a positive relationship between a firm's
total output and emissions, although diminishing at the margin, so
that emissions intensities decline as output increases, due to economies
of scale in resource use and in pollution abatement. Engineering evi-
dence supporting lower unitary abatement costs as size of the plant
increases is briefly discussed in Andreoni and Levinson (2001) but
analysis of detailed US factories reveals a great diversity with regard
to marginal abatement cots, i.e. some marginal costs rising with the
scale of abatement, while others falling. Similarly, for some sectors
and some pollutants, marginal abatement costs decline across time
while for others they rise across time (Hartman et al., 1997). Impact
of firm size on emissions intensities in Cole et al. (2013) and Gray
and Shadbegian (2007) is negative although not always statistically
significant.8 However, none of these studies control for energy intensity
when estimating the impact offirm size on emissions intensities. Impact
of size is negative but statistically significant only in half of the selected
final models in CES (2005).

As emissions intensity vary across fuels, fuel substitution seems an
obvious driver of emissions intensities, especially bearing in mind that
part of the emissions is calculated in ONS (2016a) by applying sector-
and fuel-specific emissions coefficients. According to Liaskas et al.
(2000) fuel substitution from conventional fuels to natural gas in the in-
dustrial sector has resulted in the reduction of CO2 emissions in most of
the EU countries while Dachraoui and Harchaoui (2006) find that a re-
duction in Canadian CO2 emissions intensities has been the outcome
of a combination of energy intensity and substitution effect. The fact
that fuel substitution is not controlled for in CES (2005) and in any of
the other contributions estimating the relative importance of the deter-
minants of emissions intensity, e.g. Cole et al. (2013), Cui et al. (2015)
and Gray and Shadbegian (2007), is a shortcoming maybe related to
the overall low profile of fuel substitution in the EKC literature.9 We
test the extent towhich fuel substitution is an important factor in deter-
mining emissions intensities by using the gas share, as a proxy for sub-
stitution from dirtier to cleaner fuels. One would therefore expect a
negative relationship between gas share and emissions intensities.
Statistically significant substitution effects between coal and gas for the
UK manufacturing sectors are discussed in Steinbucks (2012). The im-
pact of switching from coal to gas on the level of CO2 emissions is one
of the generally acknowledged facts in the literature assessing the EU
ETS, e.g. Chevallier (2012), while, similarly, low coal and carbon prices
is one of the causes of the low demand for gas in Europe (Stern, 2017).

Market structure and concentration10 have received considerable
attention in the literature focused on the optimal choice of policy in-
struments aimed at maximising social welfare in presence of exter-
nalities (Harberger, 1954; Buchanan, 1969; Oates and Strassman,
1984; Baumol and Oates, 1975). Textbook environmental economics
conclude that reduction in the level of externalities is related to the re-
duction in economic activity brought about by any degree of market
power, an established relationship which does not seem to cast much
light on the relationship between emissions intensity, i.e. level of emis-
sions given the level of economic activity, and its determinants. The
8 When using categorical size variables, Cole et al. (2013) finds that only two of the
three size variables are statistically significant. Similarly, Gray and Shadbegian (2007)
finds that the continuous size variable used in their study is not statistically significant
in the two models explaining PM emissions.

9 Fuel substitution is mentioned only once, as part of the technological changes associ-
atedwith the production process, in a survey of EKC (Dinda, 2004) and estimated to have a
relatively overall minor impact in a number of influential articles, i.e. Stern (2002) and
Stern (2004).
10 Although conceptually distinct, market structure and concentration are naturally
interlinked, with the conventional understanding, e.g. Bikker and Haaf (2002), being that
the greater the market share of a firm, the more concentrated an industry is and the
smaller the level of competition in that industry.
empirical relationship between observed emissions and market struc-
ture or concentration is however a surprisingly little researched
topic with very few exceptions in the electricity market. Mansur
(2007) finds that exercise of market power in the Pennsylvania, New
Jersey and Maryland Interconnection (PJM), i.e. the world's largest
restructured wholesale electricity market, resulted in the reduction of
SO2, NOx and CO2 emissions, a result further supported by Chaton and
Guillerminet (2013) with regard to CO2 emissions although it is not
clear what the effect would have been on emissions intensity. On one
hand, Asane-Otoo (2016) found that the degree of vertical integration
in OECD electricity markets was positively correlated to emissions in-
tensity while on the other hand, market concentration was found to
be positively related to air emissions abatement control costs (per unit
of economic activity) although the effect is not statistically significant
(Farber and Martin, 1986). Similarly, Barrows and Ollivier (2018)
show that increased competition, which one would expect from de-
creased concentration, decreases aggregate emission intensity through
increases in aggregate productivity. As there is no established consen-
sus, it is worth exploring the historical relationship between market
concentration and emissions intensity. We do so while accounting for
energy intensity and fuel substitution effects and to this end, we incor-
porate in our study (see Section 3) the logarithm of HHI and the square
of the logarithm of HHI in order to incorporate evidence of non-linear
effects of market concentration on innovation discussed by Aghion
et al. (2005)11 in the UK manufacturing sector.

3. Econometric modelling

We start by re-estimating as closely as possible the model imple-
mented in CES (2005), i.e.

Eit ¼ αi þ δt þ β1ENit þ β2HCIit þ β3PCIit þ β4SIZEit þ β5TFPit

þ β6CAPit þ εit ð1Þ

for i = 1,…, 20 industrial sectors and t = 1,…, 18 years where the in-
dependent variable Eit is emissions intensity, i.e. atmospheric emissions
divided by real GVA. Eq. (1) is estimated separately for sulphur dioxide
(SO2), nitrogen oxides (NOx), total acid precursor emissions (TAC), car-
bonmonoxide (CO), particularmatter (PM10), carbon dioxide (CO2) and
dinitrogen monoxide (N2O) emissions intensities. Independent vari-
ables in Eq. (1) include energy intensity (ENit), human capital intensity
(HCIit), physical capital intensity (PCIit), size of the average firm in the
manufacturing subsector (SIZEit), total factor productivity (TFPit), and
capital expenditure intensity (CAPit). We take the logarithms of all var-
iables, so that the estimated coefficients can be interpreted as elasticities
like in CES (2005). When estimating Eq. (1) we choose between fixed
effects (FE) and random effects (RE) estimators using the Hausman
test and we use a F-test to determine the existence of time-effects,
i.e. introducing time dummies if the null of the F-test is rejected. From
the estimation, we obtain a benchmark model for comparison with re-
sults from CES (2005). We then introduce in Eq. (2) gas share (GASit)
and the Herfindhal-Hirschman index (HHIit), with the latter both in
levels and squares to incorporate the possibly non-linear impact ofmar-
ket concentration on emissions intensity.

Eit ¼ αi þ δt þ β1ENit þ β2GASit þ β3HCIit þ β4PCIit þ β5SIZEit
þ β6TFPit þ β7HHIit þ β8HHI

2
it þ β9CAPit þ εit ð2Þ

We continue by testing for the existence of CSD in the dataset which
may arise from unobserved common processes or “factors” affecting
both the variables and the error term, possibly to a different extent.
The factors can be either strong orweak, the former representing shocks
11 Correa (2012) argues that a structural break in the early 1980s makes Aghion et al.
(2005) competition-innovation relationship unstable as he finds a positive relationship
between the examined variables for 1973–1982 and no relationship for 1983–1994.



12 It is worth pointing out that in our case, contrary to evidence presented in CES (2005),
the choice between FE and RE estimator does not affect the results from the estimation, as
values of the coefficients and their statistical significance are fairly similar – see Table A3
and Table A4 in the Appendix.

Table 2
Results from the estimation of Eq. (1) from the Fixed or Random Effects estimator, as selected by the Hausman test.

SO2 NOx TAC CO PM10 CO2 N2O

(1) (2) (3) (4) (5) (6) (7)

FE RE FE FE RE FE FE

Energy Intensity
0.766*** 0.787*** 0.727*** 0.677*** 0.785*** 0.904*** 0.568***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Physical capital intensity
−0.098* −0.066*** −0.053*** 0.01 −0.078*** −0.004 −0.049*
(0.086) (0.000) (0.005) (0.719) (0.001) (0.565) (0.076)

Human capital intensity
−0.062 −0.045*** −0.052* −0.054 −0.107*** −0.01 −0.135***
(0.468) (0.000) (0.080) (0.203) (0.000) (0.326) (0.004)

Size
0.128*** 0.022** 0.041*** −0.053** 0.063*** −0.015*** −0.006
(0.003) (0.020) (0.007) (0.015) (0.003) (0.004) (0.804)

TFP
−0.013 0.125*** 0.039 −0.162 −0.101 −0.077*** −0.389***
(0.949) (0.006) (0.570) (0.104) (0.318) (0.002) (0.001)

Capital expenditure int.
−0.087 0.018 0.047 0.044 −0.038 0.038** 0.093
(0.588) (0.575) (0.392) (0.571) (0.569) (0.050) (0.202)

Constant
−6.880*** −6.139*** −5.418*** −4.435*** −8.044*** 0.995*** −4.445***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel groups 19 19 19 19 19 19 19
Observations 286 300 300 300 300 300 300
CD test X −2.45** −2.62*** −2.89*** −1.85* 3.23*** 3.06***
CD p-value (x) (0.014) (0.009) (0.004) (0.064) (0.001) (0.002)
R2 between 0.807 0.935 0.947 0.862 0.766 0.963 0.559
R2 within 0.513 0.948 0.863 0.713 0.707 0.98 0.576
R2 overall 0.772 0.929 0.923 0.845 0.741 0.966 0.576
Hausman χ2 31.4*** 8.997 41.903*** 46.009*** 2.466 52.46*** 11.982*
Hausman p-value (0.000) (0.174) (0.000) (0.000) (0.872) (0.000) (0.062)
Time dummy F-test 6.024*** 174.7*** 9.612*** 6.141*** 25.88* 1.486* 0.6491
F-test p-value (0.000) (0.000) (0.000) (0.000) (0.077) (0.099) (0.850)
Time dummies YES YES YES YES YES YES NO

Notes: Values in parenthesis are p-values of coefficient estimates. *. ** and *** indicate 10%, 5% and 1% stat. significance, respectively. CD test (Pesaran, 2004) tests regressions residuals
for cross section dependence and assumes null of cross section independence. CD test cannot produce result for column 1 because of SO2 missing values. FE and RE stand for fixed effects
and randomeffects estimators, respectively. Hausman test indicates use of either FE or RE estimator where under null hypothesis RE is chosen. Rejection of null hypothesis of time dummy
F-test indicates use of times dummies.

550 P. Agnolucci, T. Arvanitopoulos / Energy Economics 78 (2019) 546–566
affecting all panel units, while the latter representing spillovers across
panel units with strength of the dependence declining as some notion
of distance, suitably measured, between panel components increases
(Chudik et al., 2011; Smith and Fuertes, 2016). Estimators not taking
CSD into account, like the FE and RE above, produce biased and inconsis-
tent estimates when both disturbance and regressors share a common
factor (Andrews, 2005; Phillips and Sul, 2003, 2007; and Sarafidis and
Robertson, 2009). We use the CD test (Pesaran, 2004) to assess the ex-
istence of CSD, our choice motivated by the CD test being robust
to structural breaks, and having good small sample properties even
when T is small relative to N which might be an important feature
bearing inmind the structure of our panel dataset.We use the Common
Correlated Effects (CCE) estimator (Pesaran, 2006; Kapetanios et al.,
2011) to account for the presence of CSD in our sample. This estimator
can be algebraically derived from a multifactor error structure such as:

yit ¼ φiyit−1 þ β
0
ixit þ uit ;

uit ¼ cyi þ γ
0
i f t þ ϵit ;

xit ¼ cxi þ Γ
0
i f t þ εit

ð3Þ

where ci=(cyi, cxi) is the individual specific effects, ft=(f1t, f2t,…, fmt) is a
m × 1 vector of unobserved common factors affecting both error terms
uit and variables with Γi′ and γi′ being two m × 1 vectors of factor load-
ings of the independent variables and the error term, respectively,
and γi′ a m × 1 vector of factor loadings for the dependent variable.
The terms ϵit and εit are idiosyncratic errors with Ε(ϵit) = 0, Ε(εit) =
0, E(ϵit2) = σi

2, and E(εit2) = σi
2, while the covariance of error uit is de-

termined by factor loadings Γi′ and γi′. If unobserved factors ft are corre-
lated with the vector of the independent variables xit (which is common
in the economic literature) omitting ftwill result in biased and inconsis-
tent βi′ estimates, as the resulting omitted factor will then be incorpo-
rated in uit. The CCE Pooled (CCEP), which has good small sample
properties (Pesaran, 2006) in the model above even with small T rela-
tive to N, can be implemented by estimating:

yit ¼ αi þ βixit þ δxixt þ δyiyt þ uit; ð4Þ

where βi= β and σi
2= σ2 for all i. The CCEP estimator allows for unob-

served effects to have heterogeneous impact on individual units and
arbitrarily correlated to the individual-specific regressors (Eberhardt
and Teal, 2010). ft is treated as nuisance parameter while CSD is re-
moved from the model by including yt and xt which are the cross-
section averages of the independent (yit) and the dependent variables
(xit), respectively. The CCE estimator remains consistent with good
small sample properties when ft is non-stationary and by extent when
xit is non-stationary (Kapetanios et al., 2011).

4. Estimation results

We start the presentation of our results from the estimation of
Eq. (1) with a Random or Fixed Effects estimator which should produce
results close to results in CES (2005), if underlying data generation pro-
cess is structurally stable across time and if CSD does not affect the esti-
mation. As it can be seen in Table 2, the RE estimator is selected by the
Hausman test in the case of NOx, PM10 while for the remaining emis-
sions intensities the FE estimator is preferred, a departure from CES
(2005) where FE model was preferred in all cases by the Hausman
test.12 Confirming results in CES (2005), all models in Table 2 include
time dummies, with the exception of the model for N2O (not included
in CES 2005). The sign of the time dummies matches results from CES
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(2005) with the exception of CO2 where time dummies are negative in
CES (2005) but overall positive in the model presented in Table 2. As
shown in Fig. A4 in the Appendix, time dummies in the models for
NOx and TAC have overall downward trends while one can see that
CO2 dummies display an upward trend. The values for SO2, CO and
PM10 are U-shaped, with a downward trend up to around 2005 which
becomes slightly upward for SO2 and is completely reversed by 2014
for CO and PM10. A similarity between the time pattern of the dummies
(Fig. A4) and the time pattern of emissions intensities (Fig. A2) can be
observed in the case of NOx and TAC. In the case of SO2, CO and PM10

the rebound we observed in the time dummies does not materialise
itself in the time pattern of SO2, CO and PM10 intensities. Finally, emis-
sions intensity is downward sloping in the case of CO2 even though
pattern of time dummies is upward sloping.

With regards to the determinants of emissions intensity, energy in-
tensity is always positive and highly significant with values of the coef-
ficients in the models in Table 2 close to those in CES (2005) for SO2,
NOx, TAC, PM10 and CO2, i.e. difference between the estimates in this
paper and CES (2005) being at most 0.18, with the exception of CO
where our estimated value is 2 times larger than the value in CES
(2005). With regard to the other determinants, we find stronger evi-
dence for statistical significance of PCI than CES (2005), even though
in our case coefficients are mostly negative, contradicting findings
from CES (2005). Contradictory results are also obtained in the case of
HCI (positive impact in CES (2005) but negative in Table 2) and the
size (impact being negative in CES (2005) but not showing clear
Table 3
Results from the estimation of Eq. (2) from the Fixed or Random Effects estimator, as selected

SO2 NOx TAC

(1) (2) (3)

RE RE RE

Energy Intensity
1.317*** 0.888*** 1.033***
(0.000) (0.000) (0.000)

Gas share
−0.326*** 0.007 −0.238***
(0.000) (0.860) (0.000)

Physical capital intensity
−0.011 −0.169*** −0.097***
(0.810) (0.000) (0.000)

Human capital intensity
0.043*** −0.040*** −0.026***
(0.008) (0.000) (0.000)

Size
0.084 0.086** 0.101***
(0.317) (0.011) (0.005)

TFP
0.651** 0.463*** 0.458***
(0.012) (0.000) (0.000)

HHI
0.018 −0.006 −0.016
(0.829) (0.857) (0.638)

HHI2
−0.043 −0.032 −0.018
(0.410) (0.134) (0.440)

Capital expenditure int.
−0.109 −0.110*** −0.063*
(0.208) (0.002) (0.092)

Constant
−6.467*** −7.299*** −6.258***
(0.000) (0.000) (0.000)

Panel groups 19 19 19
Observations 286 300 300
CD test X −2.61*** −2.19**
CD p-value (x) (0.009) (0.029)
R2 between 0.927 0.95 0.97
R2 within 0.477 0.906 0.843
R2 overall 0.875 0.94 0.954
Hausman χ2 −61.93 10.88 13.36
Hausman p-value (1.000) (0.284) (0.147)
Time dummy F-test 52.65*** 31.68** 46.2***
F-test p-value (0.000) (0.016) (0.000)
Time dummies YES YES YES
HHI F-test 0.860 2.280 0.684
HHI F-test p-value (0.650) (0.319) (0.710)
HHI vertex 0.05 0.04 0.03

Notes: Values in the parenthesis are p-values of the coefficient estimates. *. ** and *** indicate 1
residuals for cross section dependence and assumes null of cross section independence. CD test c
effects and randomeffects estimators, respectively. Hausman test indicates theuse of either FE o
time dummy F-test indicates use of times dummies while rejection of null hypothesis of HHI F
direction in Table 2). The statistically significant impact of TFP is nega-
tive in two instances, CO2 and N2O, and positive the case of NOx. This
is also a departure from CES (2005) which reports all coefficients
being negative and statistically significant. Finally, our results agree
with those in CES (2005)with regards to the difficulty in estimating sta-
tistically significant impact of capital expenditure intensity.

The next step in our strategy consists in estimating Eq. (2), i.e. the
specification in CES (2005)with additional variables taking into account
fuel substitution and market concentration. Although our estimation
followed exactly the same procedure we implemented for Eq. (1),
a number of changes can be observed by comparing the results in
Table 3 and Table 2. Based on the Hausman test, RE model is now
selected in five of the seven intensities, i.e. all cases except CO and
CO2, a striking change from the results in CES (2005) and to a less extent
those in Table 2. Five out of the seven models in Table 3, i.e. those for
SO2, NOx, TAC, CO and N2O incorporate time dummies. Time dummies
were included in six models in Table 2 i.e. those for SO2, NOx, TAC, CO,
PM10 and CO2 and in all models in CES (2005). One can notice some
changes with regard to the pattern of time dummies that are included
in models in Table 3 (see Fig. A5), compared to those in the models in
Table 2 (see Fig. A4). With regard to the determinants of emissions
intensity, we can see in Table 3 that energy intensity remains always
positive and statistically significant for all emissions intensities. A con-
siderable change in its coefficient occurs in the case of SO2, TAC and
N2O, with SO2 increasing from 0.77 to 1.31, TAC from 0.72 to 1.03
and N2O from 0.56 to 1.24.We find evidence that gas share is a negative
by the Hausman test.

CO PM10 CO2 N2O

(4) (5) (6) (7)

FE RE FE RE

0.678*** 0.638*** 0.879*** 1.240***
(0.000) (0.000) (0.000) (0.000)
0.06 −0.604*** −0.029 0.610***
(0.505) (0.000) (0.168) (0.000)
0.009 −0.017 0.0004 −0.185***
(0.746) (0.342) (0.937) (0.000)
−0.055 −0.088*** 0.002 −0.086***
(0.226) (0.000) (0.878) (0.000)
−0.081* 0.016 −0.039*** 0.467***
(0.065) (0.539) (0.000) (0.000)
−0.143 −0.207*** −0.067*** −0.248
(0.158) (0.004) (0.005) (0.388)
0.036 0.002 0.020** −0.389***
(0.365) (0.930) (0.020) (0.000)
0.036 −0.016 −0.007 −0.181***
(0.195) (0.423) (0.312) (0.002)
0.036 0.067 0.028* 0.279***
(0.645) (0.146) (0.075) (0.003)
−4.240*** −8.033*** 1.094*** −5.893***
(0.000) (0.000) (0.000) (0.000)
19 19 19 19
300 300 300 300
−2.81*** 1.6 0.43 −1.23
(0.005) (0.109) (0.667) (0.219)
0.866 0.758 0.953 0.802
0.716 0.765 0.979 0.368
0.84 0.75 0.96 0.737
25.17*** −2.199 19.82** 7.64
(0.003) (1.000) (0.019) (0.570)
6.1764*** 8.12 1.1311 26.16*
(0.000) (0.964) (0.324) (0.072)
YES NO NO YES
1.29 0.650 3.23** 24.085***
(0.276) (0.722) (0.041) (0.000)
0.02 0.04 0.17 0.01

0%, 5% and 1% stat. significance, respectively. CD test (Pesaran, 2004) tests the regressions
annot produce result for column 1 because of SO2missing values. FE and RE stand forfixed
r RE estimatorwhere under the null hypothesis RE is chosen. Rejection of null hypothesis of
-test indicates that market concentration effect is significant.



Table 4
Results from the estimation of Eq. (1) from the CCEP estimator.

SO2 NOx TAC CO PM10 CO2 N2O

(1) (2) (3) (4) (5) (6) (7)

CCEP CCEP CCEP CCEP CCEP CCEP CCEP

Energy Intensity
0.505*** 0.787*** 0.792*** 0.557*** 0.578*** 0.946*** 0.562***
(0.004) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Physical capital intensity
0.028 −0.025** 0 −0.008 −0.023 0 −0.044
(0.629) (0.027) (0.995) (0.724) (0.235) (0.933) (0.166)

Human capital intensity
0.058 −0.041** −0.014 −0.032 −0.063** 0.005 −0.111**
(0.467) (0.014) (0.601) (0.331) (0.034) (0.495) (0.037)

Size
−0.13 0.004 0.012 −0.002 −0.072* −0.003 −0.05
(0.222) (0.864) (0.762) (0.966) (0.099) (0.781) (0.448)

TFP
0.147 0.128 0.088 0.099 0.176 0.038 −0.027
(0.706) (0.137) (0.527) (0.578) (0.263) (0.371) (0.914)

Capital expenditure int.
0.399** 0.064* 0.140** 0.321*** 0.123* 0.032** 0.293***
(0.012) (0.068) (0.014) (0.000) (0.056) (0.042) (0.001)

Constant
1.957 −0.247 0.058 −1.072 −0.091 0.379 −3.323
(0.784) (0.904) (0.987) (0.798) (0.986) (0.588) (0.517)

Panel groups 20 20 20 20 20 20 20
Observations 286 300 300 300 300 300 300
CD test X −0.5 −1.71* −1.35 −1.09 1.79* 1.41
CD p-value (x) (0.616) (0.087) (0.177) (0.276) (0.074) (0.158)

Notes: Values in parenthesis are p-values of coefficient estimates. *. ** and *** indicate 10%, 5% and 1% stat. significance, respectively. CD test (Pesaran, 2004) tests regressions residuals for
cross section dependence and assumes a null of cross section independence. CD test cannot produce result for column1 because of SO2missing values. CCEP stands for Common Correlated
Effect Pooled estimator.

14 Coefficients in Table 4 are mostly higher in absolute value than those in CES (2005)
with the exception of the coefficient on the SO2 and PM10 models. The average difference
between the coefficients in Table 4 and Table 2 is similar in absolute terms to the average
difference between coefficients in CES (2005) and those in Table 2.
15 The impact of size ismostly negative but non-statistically significant in all cases except
PM10while the impact of TFP ismostly positive, but non-statistically significant in all cases.
HCI however remains significant in three instances, i.e. NOx, PM10 andN2O,with estimated
values in the case of PM10 and N2O being almost by 50% and 33% higher, respectively than
those in Table 2, while the value in the case of NOx remains approximately the same. PCI
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and significant determinant of SO2, TAC, and PM10 and N2O but, sur-
prisingly, it is not significant in the models for the other intensities.
Regarding the other determinants, PCI remains statistically significant
and negative for NOx and TAC, as it occurred in Table 2, while it becomes
positive and significant in the case of N2O, positive but non-statistically
significant for SO2 and negative but non-statistically significant in the
case of PM10. The size variable remains positive and statistically signifi-
cant for NOx and TAC, negative and significant for CO and CO2, while it
becomes significant in the case of N2O but non-statistically significant
for SO2 and PM10. HCI is almost always negative and significant with
the exception of SO2. TFP becomes significant in all cases except CO
and N2O although its impact is positive in the case of SO2, NOx and
TAC. The coefficient on the linear term ofmarket concentration is signif-
icant in two cases (CO2 and N2O) while the quadratic coefficient is
significant only for N2O. Joint significance of the two terms for market
concentration using an F-test (see Table 3) reveals that market concen-
tration has a statistically significant inverted-U relationship for CO2 and
N2O (see Fig. A6). Interestingly a similarly shaped relationship, although
non-statistically significant, occurs also in the case of SO2, NOX, TAC and
PM10, while in the case of CO the curve is U-shaped. In all cases one can
notice that this non-linear relationship is highly skewed so that the
globalmaximumorminimum is very close to the case of nomarket con-
centration (or perfect competition). Lastly, capital expenditure intensity
becomes significant and negative for NOx and TACwhile significant and
positive for CO2 and N2O.

Results related to the CSD among the variables incorporated in this
study (see Table A5) cast doubts on the results presented so far.
One can also notice that CSD is left in all but three residuals of the
models presented in Table 2 and Table 3.13 In fact, results from the re-
estimation of Eq. (1) and Eq. (2) using the CCEP estimator cast an en-
tirely new light on the determinants of the emissions intensities. Results
in Table 4 shows that accounting for CSD does not affect the statistical
significance of energy intensity although it implies on average reduction
in the coefficients, with those in Table 2 in themodels for SO2 and PM10

particularly affected while the coefficient in the model for NOx virtually
unaffected. Our results differ considerably from those in CES (2005)
with regard to the coefficient for energy intensity in the SO2 and CO
models, with our estimate being 0.44 units smaller and 0.31 units larger,
13 The CD test is unable to produce results for panel regression residuals in column 1 due
to missing observations for SO2 emissions.
respectively.14 Strikingly, capital expenditure intensity becomes statis-
tically significant for all emissions intensities (it was significant
only for CO2 in Table 2). The remaining coefficients in Table 4 have
overwhelmingly lost their statistical significance in contrast to the
selected models in Table 2.15 Overall, energy intensity and capital
expenditure intensity are the prevalent determinants of UK demand
for manufacturing emissions in Table 4 once we account for CSD. The
robustness of the results produced by CCEP estimator is backed up by
the fact that almost all residuals in Table 4 are cross section independent
except TAC and CO2.16

Results from the CCEP estimator in Table 4 are robust to the intro-
duction of variables taking into account fuel substitution and market
concentration (see Table 5). Energy intensity remains positive and
highly significant in all cases while capital expenditure intensity re-
mains positive and statistically significant in all cases but PM10. Changes
in the value of the coefficients are limited, at most by 0.11 units for CO
with only exception SO2 that increases by 0.35 units, while the average
elasticity is virtually identical. Elasticity of natural gas share in Table 5
become statistically significant for all emissions intensities except N2O,
with considerable change in the values compared to those in Table 3,
with the biggest changes observed in the case of SO2 and TAC - a change
of 1.42 and 0.96 units respectively. The average impact (in absolute
value) of fuel substitution across emissions intensities increases by an
order ofmagnitude, from−0.07 in Table 3 to−0.79 in Table 5. Fuel sub-
stitution affects more severely SO2 emissions intensity as its elasticity is
equal to−1.758, and given that SO2 emissions are highly related to the
level of sulphur used in the manufacturing process, this result reflects
the fact that coal and oil contain high levels of sulphur while gas con-
tains only negligible quantities (Brown et al., 2017; Wakeling et al.,
remains significant only for NOx and its estimated value increases by more than 50%.
16 Asmentioned in Section 3, the CCEP estimator is robust to shocks affecting some or all
panel units such as the 2008 economic crisis or perhaps the impact of the business cycle,
the dynamics of which may very different across industrial subsectors.



Table 5
Results from the estimation of Eq. (2) from the CCEP estimator.

SO2 NOx TAC CO PM10 CO2 N2O

(1) (2) (3) (4) (5) (6) (7)

CCEP CCEP CCEP CCEP CCEP CCEP CCEP

Energy Intensity
0.855*** 0.816*** 0.944*** 0.662*** 0.662*** 0.966*** 0.378***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Gas share
−1.758*** −0.582*** −1.201*** −0.687*** −0.916*** −0.203*** −0.261
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.201)

Physical capital intensity
0.024 −0.023** −0.008 −0.027 −0.046** 0.004 −0.062**
(0.731) (0.042) (0.679) (0.158) (0.037) (0.174) (0.024)

Human capital intensity
−0.076 −0.036** −0.01 −0.013 −0.02 0.012*** −0.046
(0.424) (0.016) (0.681) (0.622) (0.503) (0.002) (0.379)

Size
−0.003 −0.038 0.067 −0.015 0.029 0.011 −0.137*
(0.982) (0.202) (0.124) (0.751) (0.588) (0.103) (0.051)

TFP
−0.567 0.034 −0.330** −0.159 −0.176 −0.019 −0.101
(0.252) (0.710) (0.024) (0.328) (0.338) (0.395) (0.632)

HHI
0.042 0.041 −0.013 0.014 −0.06 0.004 0.195***
(0.752) (0.102) (0.743) (0.734) (0.196) (0.521) (0.000)

HHI2
0.185* 0.011 0.100*** 0.093*** 0.061 0.008* 0.117**
(0.068) (0.559) (0.001) (0.006) (0.106) (0.089) (0.013)

Capital expenditure int.
0.476** 0.063* 0.200*** 0.200*** 0.106 0.034*** 0.270***
(0.017) (0.075) (0.001) (0.002) (0.178) (0.000) (0.002)

Constant
−20.486 1.027 −0.599 1.113 −7.875 0.162 0.825
(0.177) (0.892) (0.950) (0.738) (0.365) (0.704) (0.856)

Panel groups 20 20 20 20 20 20 20
Observations 283 300 300 300 300 300 300
CD test X −1.5 −0.81 0.19 1.28 2.73*** −0.88
CD p-value (x) (0.134) (0.419) (0.853) (0.2) (0.006) (0.379)
HHI F-test 3.710 3.096 11.56*** 7.48** 4.502 3.095 20.286***
HHI F-test p-value (0.156) (0.213) (0.003) (0.024) (0.105) (0.213) (0.000)
HHI vertex 0.04 0.01 0.04 0.04 0.07 0.03 0.02

Notes: Values in parenthesis are p-values of coefficient estimates. *. ** and *** indicate 10%, 5% and 1% stat. significance, respectively. CD test (Pesaran, 2004) tests the regressions residuals
for cross section dependence and assumes null of cross section independence. CD test cannot produce result for column 1 because of SO2 missing values. CCEP stands for Common
Correlated Effect Pooled estimator. Rejection of null hypothesis of time dummy F-test indicates use of times dummies while rejection of null hypothesis of HHI F-test indicates thatmarket
concentration effect is significant.
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2017). Fuel substitution is non-statistically significant for N2O which
confirms the fact that the main historical sources of N2O emissions re-
duction have been the closure of adipic acid manufacturing plants
(reflected in the time pattern of emissions intensities in Fig. A2) and
the installation of abatement technologies in the largest remaining
plants (Brown et al., 2017). The negative and significant impact of PCI
and size elasticities for N2O supports the findings from Brown et al.
(2017) with regard to the installation of abatement technology in
large plants. Similarly, to Table 4, we observe in Table 5 that most of
the remaining coefficients are non-statistically significant once we ac-
count for CSD. PCI is statistically significant in the cases of NOx, PM10,
and N2O (as just mentioned), while HCI is significant only for NOx and
CO2, although the impact is negative in the former and positive in the
latter. Size remains non-statistically significant in all cases except N2O
in Table 5 (which matches evidence discussed above). As suggested by
both CES (2005) and Cui et al. (2015), TFP becomes mostly negative
but remains non-statistically significant in all cases but for TAC. Coeffi-
cient on the linear term of the market concentration variable in
Table 5 remains significant only for N2O but the coefficient on the
squared term becomes significant in 5 out of 7 cases - SO2, NOx, TAC,
CO2 and N2O – with the relationship taking the shape of an upwards
parabola in all cases – see Fig. A7. An F-test on both the linear and qua-
dratic coefficients of market concentration (see Table 5) reveals the
existence of a statistically significant relationship between concentra-
tion and intensities in 3 out of 7 cases, namely NOx, TAC, and N2O.
Again, this nonlinear relationship (see Fig. A7) is greatly skewed to-
wards zero market concentration (or perfect competition) with the
highest value of the vertex being a bare 0.07. In other words, accounting
for CSD, implies a change in the relationship between market concen-
tration and emission intensities - from downward to upward parabola
(see Fig. A6 and Fig. A7) with three of these relationships being statisti-
cally significant. The robustness of our results presented in Table 5 is
supported by the fact that the residuals of all emissions intensities but
for CO2 are now cross section independent in contrast to those is
Table 4 where TAC and CO2 still suffered from CSD. Since both Table 5
and Table 4 use the CCEP estimator taking into account CSD, the cross
section independence of almost all residuals in Table 5 indicates that
the introduction of gas share andmarket concentration in Eq. (2) allows
us to accurately identify the long-run effect of industrial characteristics
on emissions intensitieswhich has not been possiblewith the use of CES
(2005) specification (see Eq. (1)).

5. Discussion

We are able to draw a number of insights related to the long-term
determinants of emissions intensity in the manufacturing sector from
our analysis which is based on the methodology in CES (2005),
augmented by taking into consideration fuel substitution, market
concentration and unobserved common factors through CSD. From
our analysis, we see that energy intensity elasticities remain consis-
tently positive and statistically significant for all emissions intensities,
confirming the robustness of results from CES (2005). Variation in the
value of the elasticities in Table 2 - Table 5 is fairly limitedwith variation
highest for SO2 (0.8 points) and lowest for CO2, i.e. 0.09 points at most.
Estimated coefficients when re-estimating the model in CES (2005) are
very similar to those in CES (2005), with the difference between coeffi-
cients in Table 2 and those in CES (2005) being at most 0.18 units (CO
being an exception with the difference equal to 0.43 units), a consider-
able similarity bearing inmind the difference between the two samples.
Our results and the similarity with CES (2005) results confirms that en-
ergy intensity is a positive long-term and statistically significant deter-
minant of emissions intensity, as we expected based on the fact that
emissions data are obtained, at least in part, from energy consumption
data, therefore validating the econometric approach used in this study.

The conclusions from our results for physical and human capital in-
tensities, size and total factor productivity are however starkly different.
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First of all, one can notice that the size of elasticities is considerably
lower, than those we estimated for energy intensity. The highest value
of the estimated elasticities, in absolute value, is 0.18, with an average
of 0.03 for physical capital intensity, and 0.13 for human capital inten-
sity, across specifications and emission intensities. Our re-estimation
of the approach in CES (2005) produced considerably different results
both in terms of the number of statistically significant coefficients and
their sign. Physical (PCI) and Human Capital intensities (HCI) increase
emissions intensities in CES (2005) but take a negative coefficient
in Table 2, strongly contradicting results in CES (2005). Size and Total
Factor Productivity (TFP) have a negative impact on emission intensities
in CES (2005) but our results are inconclusive with respect to the direc-
tion of the impact (when statistically significant) as one can see in
Table 2, again contradicting results from CES (2005). Considerable
changeswith regard to statistical significance of the variables can be ob-
served when introducing gas share and market concentration.17We in-
terpret these results as evidence of an instable relationship between
emissions on one side and PCI, HCI, size and TFP on the other, pointing
out that these relationships are spurious or at least unstable based on
the dataset used by CES (2005) and ourselves. Further doubts are re-
lated to the presence of CSD in the residuals of the estimated models,
implying that standard errors and estimated coefficients might be
biased. Our concerns about the possible spurious nature of the relation-
ship betweenemissions intensity and physical and human capital inten-
sity, size and TFP are increased by the fact that statistical significance
almost completely disappears after taking into account unobserved fac-
tors, fuel substitution and market concentration, with the exception of
very few instances, i.e. PCI in NOx, PM10, and N2O, HCI in NOX and CO2,
size in N2O and TFP in TAC. Our analysis leads us to conclude that elas-
ticities of emissions with respect to PCI, HCI, size and TFP are small, and
mostly non-statistically significant, especially when implementing
more comprehensive econometric approaches. This implies that rela-
tionship between capital, labour and emissions cannot be relied upon
to produce certain environmental benefits frompolicies changing either
the labour or the capital intensity of an industry, trying to increase total
factor productivity or size of the manufacturing sector.

Our results point at fuel substitution being an important factor in re-
ducing emissions from UK manufacturing, with the exception of N2O.
This finding which echoes results from energy demand and ETS litera-
ture (Chevallier, 2012; Steinbucks, 2012) has surprisingly not been ex-
plored before in the literature on the determinants of emissions
intensities (CES, 2005; Cole et al., 2013; Cui et al., 2016; Gray and
Shadbegian, 2007). Value of elasticities and statistically significance
are considerably influenced by taking unobserved factors into account,
as one can conclude by comparing results in Table 3 and Table 5, a
sign that these unobserved factors are correlated to the time pattern
of the gas share. In Table 5, elasticities are all negative, as one would
expect based on natural gas being a cleaner fuel than oil and coal. The
plausibility of this finding is further supported by the fact that the
coefficient with the highest absolute value is observed in the case of
SO2 emissions, i.e. the emissions for which natural gas delivers the
highest savings (Wakeling et al., 2017; Brown et al., 2017). The non-
statistically significant impact of fuel substitution on N2O is reflective
of the fact that historical reductions in N2O emissions has been mainly
delivered by the closure of adipic acid manufacturing plants and the in-
stallation of abatement technologies (Brown et al., 2017).

Our re-estimation of the approach in CES (2005) produced results
similar to theirs for capital expenditure intensity, confirming their diffi-
culty of estimating a statistically significant impact and the direction of
the impact,which in both studies ismainly positive. The impact remains
positive and become statistically significant after unobserved factors are
17 The number of instances inwhich coefficients are statistically significant changes from
5 to 3 in the case of physical capital intensity, from 4 to 5 in the case of human capital in-
tensity, from 6 to 5 in the case of size variable and from 2 to 5 in the case of TFP, as one can
see by comparing Table 2 and Table 3.
taken into account. Including fuel substitution and market concentra-
tion affect the size but not the direction and statistically significance of
the impact, with the only exception of PM10. The similarity of our results
from fixed and random effect models to those in CES (2005) is taken
as evidence of capital expenditure being a long-term of emissions inten-
sity while the fact that its impact becomes statistically significant only
after controlling for unobserved factors shows the importance of
adopting a comprehensive and robust econometric approach. With re-
gard tomarket concentration, our results point at a quadratic functional
relationship between this variable and emissions. The shape of this rela-
tionship changes from a downwards, when implementing fixed and
randomeffectmodels – see Fig. A6, to an upwards parabolawhen taking
into account unobserved factors through CSD – see Fig. A7, an outcome
that shows once again the importance of adopting a comprehensive and
robust econometric approach. In the latter case, market concentration
impacts emissions intensities through an initial dip and then a steady
increase up to the maximum level of emissions observed in the case of
monopoly. As TAC is the weighted sum of SO2, NOx and NH3 emissions,
our findings indicate the existence of a statistically significant relation-
ship between market concentration and acid rain precursors, in addi-
tion, to market concentration being statistically significant in the case
of case of CO and N2O. In all cases, regardless of the statistically signifi-
cance, a similar non-linear shape of the functional relationship between
market concentration and emissions intensities can be observed,
confirming the robustness of our findings, so that it is greatly skewed to-
wards perfect competition. This implies that increased concentration in
the market increases emission intensity with the exception of very low
level of market concentration, at which reduction in competition de-
livers increasing environmental benefits. Our findingmight be explained
by increased productivity, or CSR performance. In fact, Fernández-Kranz
and Santaló (2010) shows that a number of market concentration
proxies and widely used CSR measures are inversely related so that an
increase in concentration deteriorates the CSR performance of firms to
an extent that firms in more competitive environments have a superior
environmental performance, measured by firm pollution levels. Consid-
ering that we have already accounted for both energy intensity and fuel
substitution effects, a superior performance of firms inmore competitive
environments can be the reflection of superior innovation performance,
if innovations tends to be emissions savings, an assumption which is
supported by the results in CES (2005). In fact, our results are strikingly
similar to Aghion et al. (2005) which assesses the relationship between
competition and innovation. Their estimated inverted-U relationship be-
tween market competition and innovation is greatly skewed towards
perfect competition. Following the argument of Aghion et al. (2005),
firms in highly competitive markets are “prevented” from innovating,
and therefore abating emissions intensities, due to low profit margins.
Reduction of competition allows firms to increase their margins, inno-
vate to be ahead of the curve and eventually increase the abatement of
emissions although this incentive decreases as market concentration in-
creases above a certain threshold due to market power guaranteeing
profit margins. In both our case and the one discussed by Aghion et al.
(2005), the vertex of this relationship is fairly close to the case of perfect
competition – value of 0.95 in the case of Aghion et al. (2005) with per-
fect competition in Aghion et al. (2005) being equal to one. As far we
are aware there is no published empirical evidence on the impact of in-
creasing competition on emissions in the UK. On the other hand, related
research reveals that increased consolidation in the UK defence sector
has been accompanied by sharp fall in R&D funds (Hall and James,
2009) which implies increased emissions assuming a positive correla-
tion between R&D budget and environmental performance.

6. Conclusions

Lacking an established and generally accepted theoretical frame-
work on the relationship between emissions and characteristics of
the production process in the manufacturing sector, this study has



18 One can access the abovementioned Controlled Data via the UK Data Service Secure
Lab on the condition that they fulfil specific requirements (for more information please
check the UK Data Service webpage – see https://www.ukdataservice.ac.uk/get-data/
how-to-access/accesssecurelab). UK Data Service (UKDS) Secure Lab provides access to
ABS and ARD databases only to accredited researchers that have successfully completed
the Safe Researcher or Safe User of Research data Environments (SURE) training course.
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investigated the long-term determinants of emissions by assessing the
robustness of established findings in the literature such as those in Cole
et al. (CES) (2005). Our strategy implied re-estimating a specification as
close as possible to CES (2005), originally estimated on the 1990–1998
sample, using observations between 1997 and 2014, and adding two fac-
tors which might have an impact on emissions from the manufacturing
sector, fuel substitution and market concentration. We expect long-
term determinants of emissions to be reasonably robust to changes in
the estimation sample and the addition of a limited number of explana-
tory variables. We then explored the impact of unobserved factors
through cross sectional dependence (CSD) on the difference between
our results and those in CES (2005). As expected, we find that energy
consumption is positive and significant determinant for all emissions in-
tensities, with values of estimated elasticities similar to those in CES
(2005). However, once we account for CSD, physical and human capital,
size and total factor productivity (TFP) become overwhelmingly non-
statistically significant for most of the emissions assessed in this study.

Our results indicate that factors such as production inputs i.e. labour
and capital, total factor productivity and size of typical firm are not ro-
bust determinants of emissions from industrial sector but on the other
hand, energy intensity, fuel substitution, capital expenditure intensity
and market concentration are long-term determinants of industrial
emissions across the pollutants assessed in this study. This implies
that the relationship between emissions on one side and physical and
human capital, size of the typical firm and TFP cannot be relied upon
to produce certain environmental benefits from policies aimed at
changing any of these factors. A sustained reduction in emissions from
the manufacturing sector needs to be delivered through the leverages
of reduced energy consumption and increased adoption of cleaner
fuels, therefore indicating the crucial role of energy efficiency policies
and those facilitating adoption of cleaner fuels, e.g. the Climate Change
Levy, in reducing emissions. On the other hand, increases in capital ex-
penditure intensity brought about by policies facilitating investments,
for example to increase productivity, have an adverse impact on emis-
sions, therefore pointing at a trade-off between economic growth and
environmental quality. Investing in new capital equipment andmachin-
ery should not per se be considered equivalent to investing in cleaner
technologies, therefore contradicting the assumption in CES (2005).
The fact that we find evidence that capital expenditure intensity has in-
creased all emissions of all pollutants except PM10 indicates the impor-
tance of redirecting capital investment towards “green” industrial
technologies. On the other hand, changing level of competition through
a change in market concentration delivers emissions savings probably
through an increasing level of innovations documented in Aghion
et al. (2005). This implies that reduction of entry barriers for firms in
the manufacturing sector delivers environmental benefits which are
consistent across emissions assessed in this study perhaps through
stimulating rate of innovation in the sector.

Froman academic perspective, it would be interesting to explore the
extent to which our results on the limited importance of physical and
human capital, size and total factor productivity are robust across
time, countries and regulation environments. One would also want to
assess whether our estimated relationships are confirmed when using
microdata rather than observations aggregated to industrial subsector.
By matching patent and emissions datasets observed at firm level
one would be able to test our conjecture that innovation processes
directed towards reducing emissions are responsible for the hump-
shaped relationship between market concentrations and emissions.
From an environmental policy perspective, industrial policy planning
in the short-term should continue to encourage fuel switching from car-
bon fuels to cleaner fuels and reduce energy consumption. As possibili-
ties of switching to low carbon fuels and energy efficiency might be
limited after sustained efforts in this direction are undertaken by the
manufacturing sector, long-run industrial policy planning should focus
on development and adoption of technologies minimising emissions
so as to counteract increases brought about by the scale of economic
activity and capital expenditure. Our results pointing at environmental
benefits arising from increased competition in the market place high-
light potential synergies betweenpolicies focused on industrial strategy,
market completion and environmental welfare. Reduced emissions ob-
served in presence on increased competition is likely to be due to the
pressure to innovate taking place in competitive markets so that adop-
tion of and development of emissions saving technologies can reduce
abatement cost, and achieve positive brand recognition and a competi-
tive advantage in the supply chain. The relationship between emissions
abatement andmarket concentration through innovation is likely to be-
come more and more important in delivering reduction in industrial
emissions, especially because estimated autonomous technological
change (measured through a time effect) only rarely shows a distinct
trend towards reducing emissions.
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Appendix A. Appendix

In order to produce the dataset that used in our empirical analy-
sis, we use a combination of publicly available datasets (National At-
mospheric Emissions Inventory, ONS Environmental Accounts, ONS
Gross Fixed Capital Formation chain volume measure, ONS Input-
Output Supply and Use tables, ONS Labour Force Survey – see
Table A1). We also use the ONS (2018) Annual Business Survey
(ABS) and ONS (2012) Annual Respondents Database (ARD) which
can be accessed only by ONS Accredited Researchers under the Sta-
tistics and Registration Services Act of 2007.18 Although the security
agreement that we have signed with UK Data Service does not allow
us to publicly share the final dataset that has been used in the pres-
ent analysis, the syntax file accompanying this paper contains all
the necessary information to produce the variables below from the
ONS ABS and ARD, as well the steps required to produce the tables
and figures presented in this paper. Our description is particularly
detailed in the case of the variables obtained from the ABS and
ARD, due to limited accessibility to the dataset and the several
steps required to build variables.

(Direct) Emissions Intensity (emissions / real GVA). Direct atmo-
spheric emissions for the UK industrial sectors are computed by the Na-
tional Atmospheric Emissions Inventory (NAEI) and compiled by AEA
Energy & Environment on behalf of the Department for Environment,
Food & Rural Affairs (DEFRA) (Wakeling et al., 2016; Brown et al.,
2016). As direct emissions are produced by industrial processes and di-
rect fuel use at the point of release, including generation of electricity
from primary fuels for their own use (Wakeling et al., 2016; Brown
et al., 2016), the dataset, which we derive from ONS Environmental

https://www.ukdataservice.ac.uk/get-data/how-to-access/accesssecurelab
https://www.ukdataservice.ac.uk/get-data/how-to-access/accesssecurelab
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Accounts (ONS, 2016a), is essentially obtained by multiplying direct
fuel use by emission factors and subsequently adding emissions unre-
lated to fuel consumption. Following CES (2005), we focus on carbon di-
oxide (CO2), acid rain precursors such as nitrogen oxides (NOx), sulphur
dioxide (SO2), and total acid precursor emissions19 (TAC), as well as
other pollutants such as particularmatter (PM10) and carbonmonoxide
(CO). We also add another GHG to the set in CES (2005), i.e. Nitrogen
Monoxide (N2O), data for which is also available in the Defra dataset.
All abovementioned pollutants are divided by the level of real GVA,
which we obtain from Input-Output Supply and Use tables - for more
information see ONS (2016c) - to compute emissions intensities.

(fossil fuel) Energy intensity (fossil fuels energy consumption / real
GVA).We obtain this variable, denominated energy use intensity in CES
(2005), by dividing total fossil fuels consumption, obtained from ONS
(2016a) by the level of real GVA, obtained from Input-Output Supply
and Use tables (ONS, 2016c), with fossil fuels consumption, which we
derive from ONS Environmental Accounts (ONS, 2016a), measuring
the direct use of primary fossil fuels in the industrial process as well as
some secondary fuels, e.g. from coke. Following CES (2005), our mea-
sure of energy intensity excludes consumption of electricity and hydro-
gen since consumption of these secondary fuels does not influence the
levels of direct emissions from firms in the industrial sector. We expect
a positive relationship between emissions and energy intensity, as the
higher the amount of combusted fossil fuels per unit of GVA the higher
the direct emissions intensities.

Factor intensities, i.e. Physical Capital Intensity (PCI) (nonwage
value added per worker) and Human capital intensity (HCI) ((total
real payroll – unskilled real wage times employment) / real GVA). Total
real payroll and GVA were obtained from ONS Input-Output Supply
and Use tables (ONS, 2016c), employment from ONS Labour Force
Survey – for more information see ONS (2016d), unskilled real wage
was produced by dividing real payroll by employment,20 nonwage
value added per worker was built by subtracting a real measure for
total real payroll from real GVA (ONS, 2016c). With regard to the actual
measurement of capital and labour intensities, while the capital-labour
ratio is probably the most common measure of capital-intensity, e.g.
Cole et al. (2013), Ma et al. (2014), Löschel et al. (2015), othermeasures,
such as the value added perworker (Lim, 1976) or nonwage value added
per worker, are adopted especially when reliable data on capital stock
are not immediately available (Banerji, 1978).21 Other measures used
in the academic literature and statistical offices include the ratio between
real capital stock and total value added, e.g. Ciccone and Papaioannou
(2009) and ONS (2016b). With regard to human capital, data on the
length of time spent in formal education, education enrolment rates,
share of population (or employees) with a certain education level or
share of hours worked by those with a certain education level are nor-
mally used in empirical studies covering countries or economic sectors
(Ciccone and Papaioannou, 2009; Kottaridi and Stengos, 2014, and
Wood andRidao-Cano, 1999).Whilewe are aware of the potential short-
comings in the definition of the variables used in CES (2005),22 maybe
19 Total acid precursor emissions (TAC) are the weighted sum of SO2, NOx and NH3

(ammonia) produced by industrial processes and direct fuel use at the point of release.
20 CES (2005) defines unskilled real wage using as a proxy the real wage of the “Wood
and products ofwood and cork” (SIC 16) sector, a strategy thatwe also follow as the indus-
trial sector with the lowest real average real wage happens to be the “Wood and products
of wood and cork” (SIC 16) industrial sector.
21 It is important to bear in mind that differences in the nonwage value added per em-
ployeewill reflect, apart from any real difference in the sectoral PCI it is supposed to proxy
for, presence of factors such as imperfections and monopoly (for which we account for
using theHHI - see Eq. (2)), differences in tax and credit policies, degree of excess capacity
are likely to influence the level of nonwage value added per employee given a certain level
of capital intensity, as discussed in Banerji (1978).
22 We notice that the variable to proxy for human capital in CES (2005) includes real
wage obtained by skilled and unskilled workers, i.e. total real payroll – (unskilled real
wage times employment), so that factors related to relative scarcity of these two groups
and factors such as imperfections and monopoly, differences in tax and credit policies,
etc. mentioned above.
dictated by the dataset they had available, we include their definition
of variables in our studyin order to facilitate comparison to their results.

Capital expenditure intensity (Gross Fixed Capital Formation chain
volume measure (GFCF CVM)/real GVA). Gross Fixed Capital Formation
(Nolan and Field, 2014) captures the annual business investmentwhich
is defined as the cost of acquisitions less proceeds from disposals of as-
sets used in the production process. We decided to adopt a slightly dif-
ferent definition of this variable from CES (2005), as Gross Fixed Capital
Formation in chain volume measure is the most comprehensive de-
flated measure of UK capital expenditure for the industrial sectors
(Nolan, 2013). It is worth mentioning that results from CES (2005)
points at no statistically significance for the impact of this variable on
emissions intensities.

Total factor productivity (TFP). We estimated TFP for each
sector using the empirical approach developed by Olley and Pakes
(1996) and, subsequently, we calculate TFP (or aggregate industry
productivity) using real turnover as a firm-specific weight (Beveren,
2012).23 Our choice is not likely to influence our findings, as CES
(2005) reports little effect on the estimated coefficient on TFP when
TFP data were estimated using a number of different production func-
tion specifications. As ABS and ARD datasets are provided by UK Data
Service Secure lab on an annual basis, we append all ABS and ARD
annual datasets from 1997 to 2015 and keep only the variables required
for our research and related to thefirms that are part of themanufactur-
ing sector i.e. SIC07 industrial classification 10 to 30. Thus, we namely
use the variables “wq550” (total turnover), “wq450” (total employment
costs), “wq523” (total net capital expenditure) and “wq499” (total pur-
chases of energy, goods, materials services) (see ONS, 2015). More in-
formation on the construction of TFP can be found in the attached
with this paper syntax file – see section called “BUILD TOTAL FACTOR
PRODUCTIVITY (TFP) USING PRODEST”.

Size (Gross value added per firm). The average firm size within an
industrial sector is obtained by dividing the total number of firms, the
number ofwhich is obtained by theONS (2018) Annual Business Survey
(time-span 2009–2014) and the ONS (2012) Annual Respondents
Database (time-span 1998–2008), to the sector's real GVA (ONS,
2016c). This variable indicates the effect of intra-sectoral economies of
scale on the emissions intensities.

Fuel substitution (gas share out of total fossil fuels consumption).
We obtain this variable by dividing gas consumption by total fossil
fuels consumption, both of which are obtained from the Environmental
Accounts (ONS, 2016a). Gas share declares the ratio of gas to the
total fossil fuels used in industrial processes and works as a proxy for
fuel substitution from dirtier fuels to cleaner ones e.g. coal and gas,
respectively.

Level of Concentration (Herfindahl-Hirschman index – HHI).
Market structure and associated level of concentration in the industrial
sectors can be proxied by the Herfindahl-Hirschman index (HHI),
which is probably the most widely used concentration index in the in-
dustrial literature. HHI is equal to the sum of squares of the market
share of the firms in an industrial sector, with firms having a high mar-
ket share influencing more than proportionally the level of the index
(Ginevičius and Stasys, 2007). HHI takes values from 0 to 1, where 0
represents perfect competition and 1 monopoly. In order to estimate
the HHI we use the variable “wq550” (total turnover variable) from
ONS ABS and ARD (see ONS, 2015). More information on the construc-
tion of HHI can be found in the attachedwith this paper syntax file – see
section called “BUILD HERFINDHAL-HIRSCHMAN CONCENTRATION
INDEX”.
23 TFP (or aggregate industry productivity) is equal to dTFPit ¼ ∑Nt
i¼1sjtΩ̂jt (for industrial

sector i and year t) where Ω̂jt is the firm-specific TFP residual and sjt = Sjt/∑jSjt is the
firm-specific weight where Sjt is firm's j turnover for year t. All productions inputs and
turnover usedare expressed in real terms, as they are deflatedwith theuse of theONSpro-
ducer price inflation index for each industrial sector at the two-digit SIC07 level classifica-
tion, and transformed in their logarithmic equivalents.



Table A1
Variables definitions and data sources.

Variables Description

Emissions intensity
Direct atmospheric emissions (source: National Atmospheric Emissions Inventory) divided by real GVA (source: see below). Thousand tonnes
of emissions per million pounds sterling.

Energy intensity
Total fossil fuels consumption. (Source: ONS Environmental Accounts) divided by real GVA (source: see below). Thousand tonnes of fossil
fuels per million pounds sterling.

GVA Gross value added in real terms (Source: ONS Input-Output Supply and Use tables). Millions of pounds sterling (2006 base year).
Gas share Ratio of gas to total fossil fuels consumption (source: ONS Environmental Accounts). Thousand tonnes of gas per thousand tonnes of fossil fuels.

PCI
Physical capital intensity = (real GVA-real payroll)/employment. GVA (source: see above), payroll (source: ONS Input-Output Supply and Use
tables), and employment (source: ONS Labour Force Survey).

HCI Human capital intensity = (real payroll-(real unskilled wage*employment))/real GVA (source: as above).
Size Real GVA per firm (source: ONS (2018) Annual Business Survey and ONS (2012) Annual Respondents Database).

TFP
Total factor productivity (Olley and Pakes, 1996; Beveren, 2012) estimated using data from ONS (2018) Annual Business Survey and ONS (2012)
Annual Respondents Database.

HHI Herfindhal-Hirschman index estimated using data from ONS (2018) Annual Business Survey and ONS (2012) Annual Respondents Database.
Capital expenditure
intensity

Capital expenditure (source: ONS Gross Fixed Capital Formation chain volume measure) divided by real GVA (source: see above). Million
pounds of capital expenditure per million pounds sterling.

Table A2
Descriptive statistics.

Variables in levels

Variables Obs. Mean St. Dev. Min Max Skewness Kurtosis

SO2 emissions intensity 330 0.004 0.012 8.05E-06 0.118 5.202 37.177
NOx emissions intensity 360 0.002 0.004 4.83E-05 0.037 4.612 34.183
TAC emissions intensity 360 0.006 0.015 8.36E-05 0.156 5.317 39.989
CO emissions intensity 360 0.010 0.028 1.38E-04 0.284 5.006 34.803
PM10 emissions intensity 360 4.04E-04 0.001 8.19E-06 0.007 3.643 22.590
CO2 emissions intensity 360 1.433 3.221 0.034 33.742 4.941 37.365
N2O emissions intensity 360 0.025 0.125 1.74E-04 1.569 9.126 99.287
Energy intensity 360 0.595 1.679 0.014 19.108 6.212 53.544
Gas share 360 0.583 0.233 0.018 0.974 −0.813 2.886
Physical Capital Intensity 360 0.033 0.084 −0.110 1.111 7.568 83.333
Human Capital Intensity 360 0.290 0.228 −0.428 2.348 2.811 23.618
Size 354 88.723 274.207 0.227 3727.647 8.197 94.566
Total Factor Productivity 351 4.949 1.025 2.081 8.621 0.577 3.742
HHI 352 0.085 0.135 0.005 0.763 3.175 13.641
Capital expenditure int. 342 0.198 0.494 0.010 9.067 17.018 305.879

Variables in logs

Variables Obs. Mean St. Dev. Min Max Skewness Kurtosis

SO2 emissions intensity 330 −7.934 2.135 −11.730 −2.137 0.670 2.647
NOx emissions intensity 360 −7.198 1.306 −9.938 −3.291 0.513 2.711
TAC emissions intensity 360 −6.732 1.613 −9.390 −1.860 0.796 2.935
CO emissions intensity 360 −6.347 1.655 −8.886 −1.259 0.924 3.250
PM10 emissions intensity 360 −8.953 1.503 −11.713 −4.992 0.348 2.406
CO2 emissions intensity 360 −0.872 1.446 −3.375 3.519 0.720 2.860
N2O emissions intensity 360 −5.916 1.624 −8.658 0.451 1.138 4.839
Energy intensity 360 −1.847 1.409 −4.272 2.950 0.903 3.582
Gas share 360 −0.703 0.719 −4.007 −0.027 −2.183 7.448
Physical Capital Intensity 340 −4.155 1.170 −9.696 0.106 0.097 5.611
Human Capital Intensity 341 −1.787 2.852 −19.816 0.854 −5.450 32.449
Size 354 3.195 1.419 −1.484 8.224 0.364 4.943
Total Factor Productivity 351 1.578 0.207 0.733 2.154 −0.152 3.521
HHI 352 −3.219 1.172 −5.362 −0.271 0.471 2.572
HHI2 352 0.698 1.026 2.09E-07 6.401 2.545 10.594
Capital expenditure int. 342 −1.942 0.687 −4.637 2.205 0.211 7.286
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Table A3
Results from estimation of Eq. (1) when using a Fixed Effects estimator.

SO2 NOx TAC

(1) (2) (3)

FE FE FE

Energy intensity 0.766*** 0.724*** 0.727***
(0.000) (0.000) (0.000)

Physical capital intensity −0.098* −0.058*** −0.053***
(0.086) (0.000) (0.005)
CO PM10 CO2 N2O

(4) (5) (6) (7)

FE FE FE FE

0.677*** 0.702*** 0.904*** 0.525***
(0.000) (0.000) (0.000) (0.000)
0.01 −0.066*** −0.004 −0.036
(0.719) (0.004) (0.565) (0.252)

(continued on next page)



Table A3 (continued)

SO2 NOx TAC CO PM10 CO2 N2O

(1) (2) (3) (4) (5) (6) (7)

FE FE FE FE FE FE FE

Human capital intensity −0.062 −0.042** −0.052* −0.054 −0.098*** −0.01 −0.126**
(0.468) (0.019) (0.080) (0.203) (0.007) (0.326) (0.013)

Size 0.128*** 0.013 0.041*** −0.053** 0.052*** −0.015*** −0.017
(0.003) (0.145) (0.007) (0.015) (0.004) (0.004) (0.495)

TFP −0.013 0.093** 0.039 −0.162 −0.201** −0.077*** −0.353***
(0.949) (0.023) (0.570) (0.104) (0.016) (0.002) (0.003)

Capital expenditure int. −0.087 0.072** 0.047 0.044 −0.064 0.038** 0.107
(0.588) (0.028) (0.392) (0.571) (0.331) (0.050) (0.247)

Constant −6.880*** −6.034*** −5.418*** −4.435*** −7.964*** 0.995*** −4.448***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel groups 19 19 19 19 19 19 19
Observations 286 300 300 300 300 300 300
R2 between 0.807 0.931 0.947 0.862 0.755 0.963 0.562
R2 within 0.513 0.95 0.863 0.713 0.711 0.98 0.593
R2 overall 0.772 0.923 0.923 0.845 0.731 0.966 0.575
CD test X −2.51** −2.62*** −2.89*** −2.27** 3.23*** 1.28
CD p-value (x) (0.012) (0.009) (0.004) (0.023) (0.001) (0.199)

Notes: Values in parenthesis are p-values of the coefficient estimates. *. ** and *** indicate 10%, 5% and 1% stat. significance, respectively. CD test (Pesaran, 2004) tests regressions residuals
for cross section dependence and assumes a null of cross section independence. CD test cannot produce result for column 1 because of SO2 missing values. FE stands for Fixed Effects
estimator, respectively. Time dummies are included in all regressions.

Table A4
Results from estimation of Eq. (1) when using a Random Effects estimator.

SO2 NOx TAC CO PM10 CO2 N2O

(1) (2) (3) (4) (5) (6) (7)

RE RE RE RE RE RE RE

Energy intensity
0.923*** 0.787*** 0.842*** 0.920*** 0.785*** 0.919*** 0.566***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Physical capital intensity
−0.072 −0.066*** −0.045** −0.036 −0.078*** −0.008 −0.028
(0.172) (0.000) (0.012) (0.170) (0.001) (0.212) (0.349)

Human capital intensity
0.01 −0.045*** −0.033* −0.147*** −0.107*** −0.028*** −0.100**
(0.857) (0.000) (0.057) (0.000) (0.000) (0.000) (0.012)

Size
0.140*** 0.022** 0.053*** −0.029 0.063*** −0.011** −0.014
(0.001) (0.020) (0.000) (0.234) (0.003) (0.038) (0.588)

TFP
0.047 0.125*** 0.09 0.052 −0.101 −0.067*** −0.342***
(0.812) (0.006) (0.211) (0.661) (0.318) (0.008) (0.003)

Capital expenditure int.
−0.133 0.018 −0.002 −0.078 −0.038 0.027 0.104
(0.375) (0.575) (0.974) (0.244) (0.569) (0.162) (0.245)

Constant
−6.610*** −6.139*** −5.343*** −5.002*** −8.044*** 0.923*** −4.377***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel groups 19 19 19 19 19 19 19
Observations 286 300 300 300 300 300 300
R2 between 0.908 0.935 0.962 0.904 0.766 0.973 0.622
R2 within 0.509 0.948 0.86 0.692 0.707 0.98 0.593
R2 overall 0.842 0.929 0.939 0.88 0.741 0.971 0.617
CD test X −2.45** −2.66*** −2.76*** −1.85* 3.84*** 1.36
CD p-value (x) (0.014) (0.008) (0.006) (0.064) (0.000) 0.173

Notes: values in the parenthesis are p-values of coefficient estimates. *. ** and *** indicate 10%, 5% and 1% stat. significance, respectively. CD test (Pesaran, 2004) tests regressions residuals
for cross section dependence and assumes a null of cross section independence. CD test cannot produce result for column 1 because of SO2 missing values. RE stand for Random Effects
estimator, respectively. Time dummies are included in all regressions.

Table A5
CD test for regressors specified in Eq. (1) and Eq. (2).

Variables CD test p-Value Variables CD test p-Value

SO2 emissions intensity X (X) Gas share 2.73*** (0.00)
NOx emissions intensity 27.97*** (0.00) Physical Capital Intensity 8.03*** (0.00)
TAC emissions intensity 24.65*** (0.00) Human Capital Intensity 6.88*** (0.00)
CO emissions intensity 9.95*** (0.00) Size 1.03 (0.301)
PM10 emissions intensity 12.01*** (0.00) Total Factor Productivity 6.26*** (0.00)
CO2 emissions intensity 15.94*** (0.00) HHI 4.87*** (0.00)
N2O emissions intensity 15.36*** (0.00) HHI2 3.08*** (0.002)
Energy intensity 17.53*** (0.00) Capital expenditure int. 15.26*** (0.00)

CD test (Pesaran, 2004) tests regressors for cross section dependence and assumes null of cross section independence. CD test cannot produce result for SO2 emission intensity because of
missing values. Values in the parenthesis are p-values of CD test statistics. *. ** and *** indicate 10%, 5% and 1% stat. significance, respectively.
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Fig. A1. Total emissions for all industrial sectors expressed in thousand tonnes
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Fig. A3. CO2 emissions intensity per industrial sector - variable scaling across sectors
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Fig. A6. Relationship between market concentration and emissions intensities based on the estimated models in Table 3. Emission intensity under perfect competition can be seen in
spo
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Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.eneco.2018.12.005.
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