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Abstract

Predictive risk assessment and risk stratification models based on geodemographic

postcode-based consumer classification are widely used in the pension and life insur

ance industry. However, these are static socio-economic models not directly related

to health information. Health information is increasingly used for annuity underwrit

ing in the UK, using health status when the annuity is purchased. In real life, people

develop new health conditions and lifestyle habits and can start and stop a certain

treatment regime at any time. This requires the ability to dynamically classify clients

into time-varying risk profiles based on the presence of evolving health-related con

ditions, treatments and outcomes. We incorporate landmark analysis of electronic

health records (EHR), in combination with the baseline hazards described by Gom

pertz survival distributions, for dynamic prediction of survival probabilities and life

expectancy. We discuss a case-study based on landmark analysis of the surviva

experience of a cohort of 110,243 healthy participants who reached age 60 between

1990-2000.

Keywords Hazard Function; Health Data; Mortality; Population Health; Land

mark analysis; Gompertz distribution
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1 Introduction

Life expectancy (LE) and longevity projections are of the greatest importance both

to the pension and insurance industry and to their clients. Longevity-trend projec

tions are used for managing longevity risk in pricing and reserving for insurance and

annuity products as well as for costing of public and private pensions. Changes in

mortality projections directly affect annuities costs, especially in the decreasing inter

est rates environment. LE is also a paramount consideration to individuals planning

their financial goals and retirement strategies.

Predictive risk assessment and risk stratification models based on geodemographic

postcode-based consumer classification are widely used for life insurance/annuities

underwriting (Richards 2008, Villegas & Haberman 2014). These methods are based

on the anticipated differences in longevity among groups of people, such as by sex

age, and deprivation. However, these socio-economic models are not directly related

to health information.

Health information is increasingly used for annuity underwriting in the UK, using

health status when the annuity is purchased.

In medicine, availability of electronic health records (EHR) and other big health

data and the accompanying rapid development of analytical means to interpret such

data paves the way to the emergence of precision medicine (Hulsen et al. 2019)

Similar to precision medicine, precision actuarial products should aim to tailor un

derwriting and reserving to the individual and be changing over time with the health

characteristics of each client.

In real life, people develop new health conditions and lifestyle habits and can

start and stop a certain treatment regime at any time. Additionally, clinical guide

lines are regularly updated with new evidence, resulting in new eligibility criteria and

treatment courses. Moreover, in the UK, the introduction of the pension freedoms in

2015 resulted in an emergence of a variety of flexible retirement options, from draw

down to fixed-term annuities, necessitating dynamic decision-making with varying

time horizon both by the individuals and by the companies.

All this requires the ability to dynamically classify individuals into time-varying

subgroups with predictable life expectancy based on the presence of evolving health

related conditions, treatments and outcomes. The next paragraphs set out examples
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of this for individuals (or their financial advisers) and for insurance and pensions

providers.
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For an individual approaching retirement, using their pension savings pot to pur

chase an annuity is no longer the default option. Pension freedoms mean that, guided

by financial advice, each individual must make decisions about their own investment

and longevity risk. These decisions are made not just once at retirement but dynam

ically thereafter, allowing for emerging investment performance, changing lifestyle

changing attitudes to risk, and developing health conditions. For example, an indi

vidual might choose not to purchase an annuity when they retire, using an income

drawdown product and retaining their investment and longevity risk. Over the next

years, their changing health status will mean that their life expectancy will change

Based on this, they might decide to use some of their pensions savings to buy an

annuity, or they might feel able to increase the level of income that they take from

their savings, or they might feel that they have to decrease the income that they

take.

When pricing and reserving for their longevity risks, it is becoming increasingly

important that insurance and pensions providers allow for heterogeneity of health

conditions and lifestyle as well as socioeconomic status, how these change over time

and the impact of changes to treatment regimes. The premium calculation would ac

count for possible future health trajectories of the individual, appropriately weighted

according to the results of a dynamic model. In simple terms, this will involve pric

ing to allow for an individual’s medical conditions and lifestyle as with underwritten

annuities. Pricing for ‘healthy’ individuals with no serious medical conditions wil

be ‘select’ and will have longer life expectancy than an aggregate level. This ‘se

lect’ effect will also have to allow for the fact that the individual buying an annuity

has made an active decision to do so, as explained above. Life expectancies used in

pricing annuities will need to allow for possible future health trajectories. Premiums

based on historic mortality experience will reflect historic trajectories and this wil

need adjusting where expected future trajectories are different (e.g. due to changes

in treatment regimes, promotion of smoking cessation, obesity prevalence, etc.).

There are implications for both pricing and reserving assumptions used by annuity

providers. As an example, if a higher annuity rate is offered to a smoker at age 60

this price will need to allow for future changes to smoking habits, health trajectories

and treatment regimes. Ten years later, the longevity risk element of the reserve for

this individual, now 70 years old, will need to allow for the possible trajectory o
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that individual over the last ten years, which is unknown to the annuity provider.
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Unless the annuity provider requests updates from clients regarding their health and

lifestyle, the provider would not know the longevity trajectory of the client. The

individual might have given up smoking or developed serious health problems. This

longevity risk element will be different from the longevity risk of a 70-year-old smoker

who is applying for a new annuity because, for the latter, changes in health, etc. over

the previous 10-year period will be known to the annuity provider. The individual did

not give up smoking between the ages of 60 and 70, and health status is known, for

example. The landmark analysis presented in this paper provides a way of allowing

for this dynamically.

In medicine, the Cox proportional hazards model is the most popular method o

time-to-event analysis or survival analysis. The vast majority of clinical trials and

observational studies that analyse survival outcomes use this model. In our previous

work (Kulinskaya et al. 2020) we developed a method to incorporate proportiona

hazards modelling of EHRs into actuarial modelling of hypothetical changes in pop

ulation or group life expectancy due to medical advances and health interventions

To do this successfully, some parametric assumptions about the shapes of surviva

distributions are necessary. We demonstrated that both Gompertz and Weibull sur

vival distributions in combination with the Cox model can be successfully used for

actuarial calculations. We illustrated our methodology on the important example o

the survival benefits of statins.

Statin therapy for primary prevention of cardiovascular disease (CVD) has been

reported to improve life expectancy (Mihaylova et al. 2012) and is widely available

in the UK (NICE 2016). In Kulinskaya et al. (2020) we estimated the effect of statin

prescription on longevity at ages 70 and 75. We also calculated the hypothetica

changes in national life expectancy if all eligible people were to be prescribed a statin

However, these calculations were based on the health and lifestyle characteristics

and statin prescription or lack thereof only at the baseline Gitsels et al. (2016)

Additionally, an assumption of proportional hazards means that a treatment such as

statins or a risk factor such as smoking has the same effects at any age, but this does

not appear to be a realistic assumption.

In this paper, we incorporate landmark analysis, a dynamic method of surviva

analysis, in combination with the baseline hazards described by the Gompertz sur

vival distributions, to translate time-varying medical and lifestyle hazards into dy
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namic predictions of survival and life expectancy. We discuss a case study based on
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our landmark analysis on the use of statins, Gitsels et al. (2020). This case study

considers the EHRs of a cohort of 110,243 participants who reached age 60 between

1990-2000 with no previous history of cardiovascular disease or statin prescription

at baseline. Participants’ medical history was updated at ‘landmark’ time points

occurring every six months. Individual life expectancy depends on the individua

time-varying health trajectory. Changes in overall and group life expectancy de

pend on the composition of the population and these attributes. As an application

of our methodology, we developed a life expectancy calculator that is available on

https://mylongevity.org.

2 Basics of Landmark Analysis

This section briefly reviews the methodology of landmark analysis. Cox proportiona

hazards model is introduced in Section 2.1, and the main concepts of landmark

analysis are outlined in Section 2.2.

2.1 Cox Proportional Hazards Model

Cox proportional hazards model is a semi-parametric method of survival analysis

which is widely used in medical applications. In Cox regression, given a vector o

covariates Y , the hazard function or force of mortality at time t is factorised as

µ(t|Y ) = µ0(t) exp(Y Tβ) for a vector of parameters β. The baseline hazard µ0(t) is

not specified, and interest is centred on the hazard ratios µ(t|y1)/µ(t|y2) = exp((y1−
y2)Tβ), which do not depend on the baseline hazard and are constant over time

This is termed the proportional hazards assumption. However, some parametric

assumptions about the shape of the baseline hazard are necessary to estimate a

survival function or a life expectancy. The three common parametric distributions

easily combined with the proportional hazards assumption are exponential, Weibul

and Gompertz distributions. Denote the baseline log-hazard by λ0(t) = log µ0(t)

Then λ0(t) = a corresponds to the exponential, λ0(t) = a+ bt to Gompertz G(a, b)

and λ0(t) = a + b log t to Weibull baseline hazards. The respective proportiona

hazards models are called Cox-exponential, Cox-Gompertz and Cox-Weibull surviva

models (Bender et al. 2005).
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We shall concentrate on Cox-Gompertz model, as it is well accepted that the

Gompertz distribution provides a good description of human mortality between ages
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50 and 95 (Brenner et al. 1993, Spiegelhalter 2016, Vaupel 2010). Under this model

the increase in the annual hazard of mortality associated with ageing one year is

approximately constant. For England and Wales in 2010, this increase was 1.103 for

men and 1.111 for women.

We are aware of an ongoing debate on validity of the Gompertz law at high ages

Recent publications arguing for extension of the Gompertz law to 106 years and

beyond include Newman (2018) and Gavrilov & Gavrilova (2019a,b). A competing

view is that of mortality deceleration - distributions of this nature can result from

the heterogeneity of Gompertz or Makeham distributions across sub-populations

modelled by a gamma frailty, and can be represented by logistic models, see High

Age Mortality Working Party (2015) and Feehan (2018) for comprehensive discussion

The impact of a Gompertz mortality shape in comparison with S2PML tables which

assume mortality deceleration at high ages is -2.0% to -0.4% of annuity value at age

90 male, and -0.2% to -0.0% at age 65 (High Age Mortality Working Party 2015).

2.2 Landmark analysis

In the landmarking approach, dynamic predictions for the conditional survival after

t = tLM is based on current information for all patients still alive just prior to tLM

(van Houwelingen & Putter 2011). The sliding landmark model for a prediction

window w, at each landmark point tLM , is the simple Cox model

µ(t|Y, tLM , w) = µ0(t|tLM , w) exp(Y TβLM ), s ≤ t ≤ s+ w,

for the data set obtained by truncation at s = tLM and administrative censoring at

tLM + w. Here µ0(t|tLM , w) is the baseline hazard or force of mortality within the

window w. This is a convenient way to obtain a dynamic prediction without fitting

a complicated model with time-varying effects.

Such a prediction data set, called “strata” is created for each of a set of prediction

time points {s1, · · · , sL}, 20 ≤ L ≤ 100, keeping the window width w fixed. We

address the choice of window width in Section 4. All the strata are stacked into the

so-called super-prediction data set comprising the full data for landmark analysis

Passing from stratum s to s + 1 corresponds to sliding the window over the time

range. A set of Cox models fitted at each prediction data set is the so-called “crude
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model” of landmark analysis.

More sophisticated modeling is required to analyse the full super-prediction data

6



-

.

.

]

Journal Pre-proof
set. In the pseudo-partial log-likelihood landmark model ipl∗, the regression coeffi

cients βLM (s) are assumed to be the polynomials of time s, and the baseline hazard

is modelled as µ0(t|tLM , w) = µ0(t) exp(Θ(s)), resulting in a smooth time-varying

hazard

µ(t|Y, tLM = s, w) = µ0(t) exp(Θ(s) + Y TβLM (s)), s ≤ t ≤ s+ w, (1)

where βLM (s) and Θ(s) are the kth degree polynomials in s.

The risk set R(ti) for an event time ti is present in all strata with s ≤ ti ≤ s+w

An individual at risk at ti ≥ s has nis = #{s ≤ ti} copies in the risk set R(ti). For

an individual with an event at ti in the original data set, there are nis tied events

in the stacked data. The parameters of the ipl∗ model are estimated by maximizing

the integrated (over s) pseudo-partial log-likelihood introduced by Van Houwelingen

(2007).

It is worth noting, that in the ipl∗ model only the baseline hazard µ0(t) changes

within a window, but the intercept values Θ(s) and the covariate effects βLM (s)

are fixed at their starting values at xLM = s. Therefore, predictions for all s ∈
{s1, · · · , sL} are obtained from estimated cumulative hazards

M(s+ w|Y, xLM = s) = exp(Θ(s) + Y TβLM (s))(M0(s+ w)−M0(s−)),

where M0(s) =
∫ s

0 µ0(t) are the baseline cumulative hazards at s.

3 Linking landmark analysis results to a life

table

In this Section, we develop a method to translate the results from a landmark analysis

to prediction of survival and life expectancy for sub-populations with varying risk

profiles, i.e. with particular combinations of health, demographic and lifestyle factors

Our approach exploits the proportional hazards assumption within a window [s, s+w

to combine a population-based baseline hazard with a covariates-specific hazard ratio

terms estimated by landmark analysis on a different population or on a subpopulation

of a relevant population.

For a population, the period life table supposes 100,000 live births and shows
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the number lx surviving to exact age of x. The survival function at age x is S(x) =

lx/100000. There are typically separate life tables for males and females but otherwise
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this survival function is a weighted average of the survival functions of the people

with different risk profiles within the population. Suppose that the population at

an age x0 consists of multiple risk groups j = 1, · · · , J , each corresponding to a

particular set of covariates Yj(x0). Let fj(x0) = P (Yj(x0)) be the prevalence of risk

group j at age x0 (Σjfj(x0) = 1).

Then the value of the overall population survival function S(x) = P (T ≥ x) for

the random lifetime T , at age x ≥ x0 is the weighted mean of the survival functions

Sj(x) = P (t ≥ x|Yj(x0)) in the individual risk groups:

S(x) =
∑

j

fj(x0)Sj(x)/
∑

j

fj(x0). (2)

The sum of weights in the above equation is 1, but we kept the denominator as, in

real data, the estimated prevalences f̂j are subject to rounding and perhaps other

errors.

We use methodology developed in Kulinskaya et al. (2020) to find survival func

tions Sj(x) for each risk group j at age x.

3.1 Survival functions under Gompertz-Landmark mode

Given a window [s, s+w], the hazards in the ipl∗ model of landmark analysis (1) are

very similar to those in the Cox model. Landmark analysis also allows estimating the

cumulative baseline hazards M0(x). The goodness-of-fit of a particular parametric

survival distribution to the cumulative hazards estimated by the ipl∗ model needs

to be evaluated. In this Section we assume that these hazards are well described

by a Gompertz distribution G(a, b). Substituting the Gompertz baseline hazard

µ0(x) = exp(a+ bx) into (1), the hazards are

µ(x|Y, xLM = s, w) = exp(a(s) + bx+ Θ(s) + Y TβLM (s)), s ≤ x ≤ s+ w, (3)

where a(s) is the baseline value which may depend on the landmark s = xLM , and

the effects βLM are centred at the baseline, so that βLM = 0 provides the baseline

risk. The log-hazards in various risk subgroups Y = Yj differ by intercept but have

the same slope b.

The cumulative hazards, and the survival functions are obtained by integrating

the baseline hazards within the window. The survival function can be written as
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S(x|Y, xLM = s) = exp(−ea(s)+Θ(s)+Y T βLM b−1(ebx − 1)), s ≤ x ≤ s+ w. (4)
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3.2 Calibration of a predictive survival model

The hazard ratio term’s contribution to the survival model needs to be calibrated

to provide correct population hazard or survival function at a specific age. One

possible approach is to centre the hazard (1) to ensure that the baseline hazards

function represents, in some sense, an average risk. Royston (2012)suggests that this

may be achieved by centring the linear predictor Y Tβ to have zero mean over the

individuals in the dataset, i.e. adding up all these values over the dataset should

be zero. Instead, similar to Royston & Altman (2013) we average survival functions

across all risk subgroups and ensure that this equals the population survival function

Following Kulinskaya et al. (2020), for a set of the risk groups j = 1, · · · , J
substitute the survival functions (4) at age x ≥ xLM into Equation (2) to obtain the

overall survival function as

S(x|xLM ) =
∑

j

fj(xLM ) exp(−ea(xLM )+Θ(xLM )+Y T
j βLM b−1(ebx − 1)). (5)

At x = xLM , this is a non-linear equation with one unknown, a(xLM ). The left

hand side is given by the period life-table and the slope b should be determined for a

particular population of interest. As S(x) is a decreasing function of a, equation (5)

has a unique solution.

Substituting a set of estimated prevalences {f̂j(xLM )}, estimated landmark pa

rameters Θ̂ and β̂LM , and the estimated Gompertz slope b̂, and solving equation

(5) for a0(xLM ), the component estimated survival functions Ŝj(x|xLM = s) =

Ŝ(x|Yj , xLM = s) are found from (4).

3.3 Life expectancy at a landmark age

For a particular population, the parameters a = a(xLM ) and b of the underlying

Gompertz distribution G(a, b) can be estimated from a period life table. Next, the

component survival functions Sj(x|xLM = s) are estimated from (5). Note, that

these survival functions estimate the true survival for the risk group j only within

a window [s, s + w]. However, this is the best estimate of the survival function

available at age xLM for the people with Y = Yj(xLM ) even beyond the window

without knowledge of their future health trajectories.

By definition, the remaining life expectancy at age z, e(z) =
∫∞
z S(t)dt/S(z)
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Missov & Lenart (2013) state that the remaining LE at age z for a Gompertz dis-

tribution G(a, b) can be written as
∫∞
z G(a,b)(x)dx = b−1 exp(b−1ea)E1(b−1ea+bx),
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where E1(z) =
∞
z t−1 exp(−t)dt denotes the exponential integral. However, this

expression should be divided by the survival S(z), to provide a proper remaining LE

at z. Thus, the remaining life expectancy at age z for a Gompertz distribution is

obtained as

eG(a,b)(z) =
b−1 exp(b−1ea)E1(b−1ea+bz)

exp(−eab−1(ebz − 1))
. (6)

Similar to Kulinskaya et al. (2020), the component remaining life expectancies

ej(z) for each risk group j at age z ≥ xLM are obtained from (4) substituting a

component distribution G(aj , b), with aj = a(xLM ) + Θ(xLM ) + Y T
j βLM .

To calculate the population remaining life expectancy, consider the survival func

tion of the overall population at age x ≥ xLM , which is a finite mixture of subpopula

tions, S(x) =
∑
fj(xLM )Sj(x),

∑
fj(xLM ) = 1. Then the remaining life expectancy

at age z ≥ xLM is

e(z) =

∫∞
z S(x)dx

S(z)
=

∑
j fj(xLM )Sj(z)

∫∞
z Sj(x)dx/Sj(z)∑

fj(xLM )Sj(z)
=

∑
j fj(xLM )Sj(z)ej(z)∑

fj(xLM )Sj(z)
(7)

Using (7), we can estimate a hypothetical impact of changing prevalences of an

intervention or lifestyle at a landmark age. Consider one covariate (“intervention”)

denoted by y1, and coded as 0 or 1. By specifying fj(xLM ) = 0 for all risk groups with

y1(xLM ) = 1, we obtain a hypothetical remaining life expectancy e0(z), z ≥ xLM

if there was no intervention of interest, and, by specifying fj(xLM ) = 0 for all risk

groups with y1 = 0, a hypothetical remaining life expectancy e1(z), z ≥ xLM with

full uptake of the intervention.

3.4 Dynamic estimation of survival and life expectancy

The estimated survival function Ŝj(x) = Ŝ(x|Yj , xLM = x) and the estimated re

maining life expectancy êj(x) for a particular risk profile Yj(x) given by equations

(4) and (6) with coefficients Θ̂(x) and β̂LM (x) estimated from a landmark analysis

and with the Gompertz parameters â(x) and b̂ estimated from a population life table

are the best estimates available at the age x. These estimates can be easily updated

for the next landmark point x = s + 1 given that the risk profiles are updated to

Yj(s+ 1) and their prevalences fj(s+ 1) are available. As discussed in the Introduc

tion, this dynamic recalculation of the survival and remaining life expectancy may
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be of benefit both to institutions (such as pension schemes or insurance companies)

and to individuals planning a future course of their retirement.
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It is also possible to estimate a hypothetical survival function and remaining life

expectancy for a particular health/lifestyle trajectory over the life-course, such as the

healthiest people with particular lifestyle choices for the rest of their lives, or people

taking up a particular intervention for some time interval. To do this, we only need

to choose the covariate values Y (x) for every x ≥ x0, where x0 is the landmark age

of interest. The hypothetical survival function at any age x ≥ x0 is then defined as

SH(x|Y (x)), x ≥ x0), i.e. as in (4) with x = s. Note, that this survival function

conditional on the future heath/lifestyle trajectory, differs from the unconditiona

survival function S(x|Y (s), s ≤ x ≤ s + w) given in (4) that is based on the risk

profile at s and is averaged over all possible risk trajectories which start from Y (s).

To estimate the hypothetical remaining life expectancy eH(z|Y (x), x ≥ z) from a

landmark analysis between ages s1 = x0 and sL = xT , based on the survival function

SH(x|Y (x)), we simply use the trapeziodal rule from age z to age xT , and continue

with the Gompertz residual LE at age xT . Assume, for simplicity, that the landmark

points are ∆ apart. Then

eH(z) = ∆[SH(z)/2 +

(xT−z)/∆−∆∑

i=1

SH(z + i∆) + SH(xT )/2] + e(xT |Y (xT )). (8)

4 Case study: survival benefits of statins

Statins are a class of lipid-lowering drugs that are prescribed to prevent cardiovascu

lar disease (CVD). Statins became widely available from 2000 onward and first-line

treatment for patients with CVD in 2007 (NICE 2013). For primary prevention, the

eligibility criterium in the UK is based on the 10-year risk of a first cardiac event

calculated using QRISK2, which incorporates information on multiple demographic

medical, and lifestyle factors (https://www.qrisk.org/). These eligibility criteria were

consistently lowered over time, from ≥ 40% initially, to ≥ 20% in 2006 (Hippisley

Cox et al. 2008); and in 2014, when the cardiac risk threshold was further lowered

to a QRISK2 score ≥ 10% (NICE 2016). In 2017, 11.8 million people in England

almost all men over 60 and all women over 75, were eligible for statin prescription

Ueda et al. (2017).

Statins are life-long prescriptions in the prevention of cardiac events, yet little is

known about the overall survival benefit of long-term prescription. This is because
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clinical trials are expensive to carry out and therefore tend to be of relatively short

duration, with statins trials having on average two to five years of treatment expo-
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sure (Armitage et al. 2019). Observational studies contribute to the statin research

by assessing the effects of prolonged exposure (Collins et al. 2016). The availabil

ity of electronic health records (EHR) makes it easier to follow-up patients’ health

information for an extended period.

Furthermore, in clinical practice, patients are not fixed on a certain treatment

regime as during a randomised control trial but instead sequential treatment deci

sions are made in managing their changing cardiac risk and emerging morbidities

resulting in time-varying statin use in individual patients. Therefore there is a need

for dynamic survival prediction of long-term time-varying statin therapy.

In our previous work Kulinskaya et al. (2020), we used the hazard ratios associated

with statin prescription for primary and secondary prevention of CVD obtained from

Cox regressions at key retirement ages (Gitsels et al. 2016, 2017) to evaluate surviva

benefits of statins for an individual and their effect on the period life expectancy in

England and Wales.

In this Section, we use the results of our recent analysis of the survival benefits o

statins Gitsels et al. (2020) to demonstrate the use of landmark analysis for individua

and population life expectancy.

4.1 Landmark analysis of the survival benefits of statins

Our retrospective cohort study Gitsels et al. (2020) of the survival benefits of statins

used primary care records of The Health Improvement Network (THIN) UK database

The cohort included 110,243 patients who turned 60 between 1990 and 2000, were

neither diagnosed with cardiovascular disease nor prescribed statins, and were resi

dential in England or Wales. The cohort was followed up until January 2017 (16.6

years on average), where the medical history was updated every half a year. Land

mark analyses were carried out by fitting Cox proportional hazards regressions o

all-cause mortality associated with current statin prescription at each landmark from

age 60 to 85 (51-time points), adjusted for medical history.

38% of patients entered the study in 1990-95 and the remaining 62% entered in

1996-2000. Most patients (98%) were at the lowest cardiac risk with a QRISK2 score

of <20%. During follow-up, the cardiac risk of the study population increased, which

in general is largely driven by age.
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The median age at which the study population had its first statin prescription

was at 70 (interquartile range 66-74) years old. The prevalence of a history of statin
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prescription by ages 65, 70, 75, 80 and 85, was 8%, 27%, 47%, 54% and 57%. In

2015, current statin prescription in 75-year olds at low (QRISK2<20%, medium (20

40%), or high (≥ 40% or presence of CVD) cardiac risk was 10%, 35%, and 75%

respectively. Statin prescription was less common among older patients, where 80

and 85-year olds were prescribed approximately 10 and 30 percentage points lower

respectively, compared to the younger patients in the highest cardiac risk group

Adherence of statin prescription defined as a continuing prescription at least 75% o

follow-up time differed by birth cohort, from approximately 90% at any age in patients

born in 1936-40, to age-dependent and somewhat lower adherence in patients born

in 1930-35, increasing from 75% at age 61 to 90% at age 65, after which it slowly

levelled to 80% by age 75 and dropped down after age 82.

Landmark analyses with 5-, 10- and 30-years window were carried out to dynami

cally predict the survival effects associated with statin therapy. Potential confounders

consisted of sex, year of birth, Townsend deprivation quintile, chronic kidney disease

diabetes, treated hypertension, hypercholesterolaemia, aspirin, BMI, alcohol con

sumption status and smoking status. The final ipl∗ landmark model included the

medical history and the significant interaction between statin prescription and year

of birth. This interaction was defined as no statin prescription (reference level)

statin prescription in patients born in 1930-35, and statin prescription in patients

born in 1936-40. Our landmark model also produced time-varying estimated hazards

for all other risk factors in the model, of which high deprivation, the QRISK2 score

of ≥ 40% or CVD diagnosis, smoking and diabetes resulted in the most pronounced

survival harms Gitsels et al. (2020). The models were assessed on the proportiona

hazards assumption and discrimination (Antolini et al. 2005).

The adjusted hazards of all-cause mortality associated with current statin pre

scription, smoking and type II diabetes at each age are presented in Figure 1 and (for

key ages) in Table 1, which also includes obesity. Each of the plots depicts hazard

ratios from landmark analyses with 5-, 10- and 30-year window. For statins and

diabetes, the results of analyses from all three window widths are not significantly

different. However, for smoking the hazards decrease with the increase in the window

width. For ages 60 to 70, the hazards are significantly higher for a 5-year window

than for a 10- or a 30-year window (at 2.95 (95% confidence interval 2.77-3.15), 2.66

(2.54-2.78) and 2.34 (2.26-2.42), respectively, at age 65), though they converge by
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age 75. This is because in the landmark analysis, only the risk profile at the start
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ded cardiac risk, sex, deprivation, statin prescription, chronic kidney disease, diabetes,

pertension, hypercholesterolaemia, aspirin, body mass index, alcohol consumption and

oking.
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of a window is used regardless of possible future changes. Diabetes type II is a life

long chronic condition, and we mentioned high adherence to statins, but people may

change their lifestyle choices, such as stop smoking, in the longer term. This means

that the hazard of smoking in a 30-year window is averaged over persistent smokers

and people who stopped smoking at different points over 30 years, and is therefore

lower than the hazard for a 5-year window.

These differences in hazards at different window widths are only noticeable at

ages up to age 75. The oldest patients, born in 1930, would be 86 by the end of the

study, so the width of 30 years is, in fact 26 years for this cohort at age 60, and just

21 years for the oldest people in the younger birth cohort at age 60. When the oldest

participants are 75, they are observed at most for 11 years, therefore the results from

the 30-year window and 10-year window would be very similar for this birth cohort

by age 75. For the 1936-40 birth cohort, the 30-year window and the 5-year window

almost coincide at age 75.

There was a clear trend of improved survival prospects associated with statins

prescribed at increasing age with a significant survival benefit from approximately

age 63 onward. The survival prospects associated with statin prescription differed

by birth cohort, where patients born in 1936-40 had better prospects compared to

patients born in 1930-35. Compared to no statin prescription, statin prescription in

patients born in 1936-40 at ages 65, 70, 75 and 80 was associated with a hazard o

mortality of 0.80 (95% CI 0.75-0.85), 0.73 (0.69-0.76), 0.68 (0.65-0.73), and 0.63 (0.55

0.74), respectively. Similarly, for patients born in 1930-35, statin prescription at ages

65, 70, 75, 80 and 85 was associated with a hazard of mortality of 0.92 (0.83-1.01)

0.87 (0.82-0.91), 0.79 (0.75-0.83), 0.74 (0.70-0.78) and 0.76 (0.65-0.89), respectively

No other interactions with current statin prescription were found. Furthermore

among patients with a history of statin prescription, the survival prospects at any

landmark age did not differ by how long ago the first prescription was.

4.2 Estimating survival and life expectancy

In our previous article (Kulinskaya et al. 2020) we demonstrated that the Gompertz

distribution provides an adequate model for all-cause mortality, for the England and

Wales population. We used the period life table by Townsend score (TS) quintiles
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centred at 2010 provided by Office of National Statistics (2017) (ONS) to estimate

parameters a(x) and b(x) of the Gompertz distributions for each gender by TS quintile
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combination. The hazards clearly differ among the TS quintiles, from the highest at

TS quintile 5 (most deprived) to the lowest at TS quintile 1 (least deprived), and by

gender (higher for males).

In this case study, we established that the baseline hazards from the ipl∗ land

mark model were also well described by the Gompertz distribution. Figure 2, created

using the R package flexsurv, demonstrates the fit of several popular survival distribu

tions to the cumulative baseline hazards. The Gompertz distribution clearly provides

the best fit, also confirmed by the AIC values, 221298.2, 221467.9, 221930.3, and

225109.3 for Gompertz, Weibull, log-logistic and log-normal distributions, respec

tively.

The next step is to use equation (5) to estimate the component survival functions

Sj(x|xLM = s) for all risk profiles j at 51 landmark ages s. To do this, we need to

estimate the prevalences fj(x).

Due to the study recruitment period (1990-2000), the 1936-40 birth cohort par

ticipants were 76 to 80 years old by the end of the study in January 2017. Therefore

we used the observed prevalences in this cohort for ages 60-75, and the prevalences in

the two combined birth cohorts for ages 76 to 85, where the number of participants

considerably reduced with age due to death or attrition; see Table 2 for the tota

numbers for this selection.

We considered, for each sex and TS quintile, all combinations of statin use (2

levels), smoking (3), hypertension (3), diabetes (2), hypercholesterolaemia (2), BM

category (3) and cardiac risk (3), 648 combinations in total, where Table 3 provides

the numbers of diabetics, smokers and obese patients at key ages for TS quintiles 1

and 5, by cardiac risk. A large number of combinations were absent or very scarce in

the data, for example, cardiac risk increases with age and the presence of morbidities

and is strongly associated with lifestyle factors. Even though there were approxi

mately 2000 male patients with QRISK2< 20% at age 70 in TS quintile 1 (Table 2)

they had no diabetes and did not smoke. There were also no diabetics or smokers

among men at medium cardiac risk (QRISK2 20%-40%) from age 80 onward (Ta

ble 3). Females are somewhat better represented in these categories at 70, but not

at older ages.

Typically, at all ages, a set of 15-30 risk profiles with more than 50 participants

includes from 50% (at age 80) to 89% (at age 60) of all people. And there are only 5
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to 15 risk profiles with more than 100 participants, which include from 25% (at age
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80) to 82.5% (at age 60) of all people. As an example, for males in TS quintile 1, these

typical profiles include only non- and ex-smokers from age 75, and people without

untreated hypertension from age 70, whereas the QRISK2 increases with age. For

the numerous low-count risk profiles, the estimated prevalences f̂j , and therefore the

respective survival functions and LEs may not be robust.

We estimated the component survival functions (for all window widths) and the

life expectancies (based on the 30-year window) for non-zero count risk profiles at each

landmark age, using equations (5) and (6). Obtained LEs at age 65 by sex, QRISK2

category, TS quintile and statin use for healthy people, diabetics and smokers without

further morbidities are given in Table 4. As an application of our methodology, we

developed a life expectancy calculator that is available on https://mylongevity.org

This LE calculator uses LEs based on the 30-year window.

As an example, for a healthy female aged 65-years old and resident in the least

deprived postcode, Table 4 (and our calculator) provides a LE of 87.8 vs 89.5 years

with/without statins, and this is 86.4 vs 88.1 years for the male equivalent. Diabetes

decreases LE by more than 3 years; among diabetics, statins increase the LE from

84.6 to 86.2 years for females and from 83.1 to 84.8 years for males. Smoking decreases

LE by approximately 6 years; among smokers, statins increase the LE from 81.9 to

83.5 years for females and from 80.4 to 82.0 years for males.

We also considered in more detail three hypothetical risk trajectories over the

life-course: the “healthy” people with a healthy weight, no morbidities, and non

smokers; and the groups of “healthy diabetics” and “healthy smokers” who differ

only by a current diagnosis of diabetes type II and keep this diagnosis, or are current

smokers and do not quit. We assume no further morbidities over the life-course

We also assume the best possible cardiac health for all participants, i.e. the lowest

realistically QRISK2 category for this group at age 65, and a switch to a higher

cardiac risk category only when the majority in this cohort moved to the higher

QRISK2 score. This happens at different ages for different risk cohorts. See Appendix

for more details.

Probabilities of death within 10 years for these three trajectories, by statin pre

scription, sex and TS quintiles 1 and 5 are illustrated in Figure 3. These probability

curves are not smooth because the cardiac risk is changed step-wise once or twice

at particular ages over the life-course for each risk trajectory. In these plots, the
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absolute differences in survival probabilities with/without statins are visibly higher
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ndow width of 10 years.

in diabetics and smokers than in healthy people.

We also calculated hypothetical LEs (8) for our three risk trajectories at the three

window widths, which are given in Table 5. Comparing these LEs to the LEs from

Table 4, the hypothetical LEs for all three cohorts are considerably higher than the

static LEs obtained from the risk profile at age 65. Similarly, the LEs calculated

at the window width of 5 years are noticeably higher than the LE at larger window

widths. This is because we considered the healthiest possible life-course, and the

static LEs are averaged across all possible health trajectories within each window

including those in ill health. The 5-year window is more relevant for this calculation

of hypothetical LE.

5 Discussion

Kulinskaya et al. (2020) proposed a methodology to evaluate the potential impact o

recent medical advances and/or public health decisions on issues of actuarial interest

This methodology incorporated hazard ratios, obtained in medical studies by the

use of the Cox proportional hazards model, into underwriting individual lives, into
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pricing and reserving. This was achieved by the use of the Gompertz-Cox model for
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modelling potential changes in human life expectancy.

In this study, we extended this methodology to incorporate the results of the

landmark analysis, a statistical method which allows dynamic modelling of the force

of mortality. Combining age-dependent health and lifestyle hazard ratios obtained

from landmark analysis, with the baseline Gomperz hazards, we obtain dynamic

predictions of the survival and life expectancy for particular risk trajectories. We

illustrated our methodology on a case-study based on the landmark analysis of the

use of statins, Gitsels et al. (2020). In this analysis, we differentiated between 648

possible risk groups within each deprivation quintile and sex.

The calculation of LE at such a fine scale will not only be useful for individuals

for improving life expectancy by healthy lifestyle changes and/or exploring their

retirement options, but also for independent financial advisors and the insurance

industry for financial planning and reserving of actuarial products. To facilitate

calculation of LE, we developed a life expectancy calculator that is available on

https://mylongevity.org. Our R software which will enable bulk calculation of LE is

due to be released later in the year.

There are, however, some limitations to our current implementation of this method

ology. The calculation of component survival functions and LEs requires estimated

prevalences f̂j for each risk group. In general, these prevalences are calendar time

dependent, for example, the prevalence of smoking decreased while that of obesity

increased in the last decade. Our estimation procedure was constrained by the study

design and period, and the prevalences used are up-to-date only for the oldest birth

cohort. The up-to-date prevalences for all risk profiles at all ages are required to

better evaluate current LEs.

Additionally, for the low-count risk profiles, the estimated prevalences f̂j , and

therefore the respective survival functions and LEs might not be robust. A better

option may be to model the prevalences and to reduce the number of estimated

parameters. We intend to pursue this modelling in our further research.
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Appendix 1. QRISK2 changes for the three

health trajectories over the life-course

Healthy people

Age 65-74, QRISK2 less than 20.

Age 75-84, QRISK2 between 20 and 40.

Age 85+, QRISK2 40+ or CVD.

Diabetics

Males:

Age 65-74, QRISK2 20-40.

Age 75+, QRISK2 40+ or CVD

Females:

Age 65-79, QRISK2 20-40.

Age 80+, QRISK2 40+ or CVD.

Smokers

Males:

Age 65-79, QRISK2 20-40.

Age 80+, QRISK2 40+ or CVD

Females:

Age 65-74, QRISK2 ¡20.

Age 75-79, QRISK2 20-40.

Age 80+, QRISK2 40+ or CVD
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S Sex QRISK2 Age

uintile category 65 70 75 80 85

M <20 5895 2004 0 0 0

M 20-40 1431 3675 3829 1439 11

M 40+ 534 1095 1916 2558 500

F <20 8209 5959 1579 0 0

F 20-40 171 1135 4048 3197 34

F 40+ 293 612 1144 1800 688

M <20 1896 217 0 0 0

M 20-40 1401 2038 1237 417 1

M 40+ 373 774 1094 998 170

F <20 3419 1755 102 0 0

F 20-40 454 1221 1961 1055 56

F 40+ 293 618 897 1176 239

ble 2: Total number of people in Townsend score (TS) quintile 1 (least deprived)

ost deprived area) by sex (M/F) and cardiac risk (QRISK2) for birth cohort 1936

es 65-75, and for combined birth cohorts 1930-35 and 1936-40 at ages 75-85.
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Health
uintile category 65 70 75 80 85

M <20 diabetic 18 0 0 0 0

M 20-40 diabetic 443 473 144 0 0

M 40+ diabetic 88 293 726 656 85

F <20 diabetic 177 7 0 0 0

F 20-40 diabetic 135 447 338 10 0

F 40+ diabetic 32 100 358 624 91

M <20 diabetic 0 0 0 0 0

M 20-40 diabetic 248 167 35 0 0

M 40+ diabetic 96 310 466 335 42

F <20 diabetic 53 0 0 0 0

F 20-40 diabetic 217 293 172 6 0

F 40+ diabetic 64 209 388 462 54

M <20 smoker 242 0 0 0 0

M 20-40 smoker 829 521 166 0 0

M 40+ smoker 57 115 223 204 22

F <20 smoker 758 68 0 0 0

F 20-40 smoker 51 440 276 5 0

F 40+ smoker 39 58 100 224 25

M <20 smoker 5 0 0 0 0

M 20-40 smoker 968 552 157 0 0

M 40+ smoker 139 249 348 225 12

F <20 smoker 726 3 0 0 0

F 20-40 smoker 284 623 305 6 0

F 40+ smoker 95 187 233 292 23

M <20 obese 938 226 0 0 0

M 20-40 obese 320 818 652 127 0

M 40+ obese 112 259 510 517 63

F <20 obese 1493 1130 228 0 0

F 20-40 obese 79 344 983 568 1

F 40+ obese 62 151 348 454 126

M <20 obese 426 20 0 0 0

M 20-40 obese 311 502 281 64 0

M 40+ obese 93 243 367 274 32

F <20 obese 919 481 14 0 0

F 20-40 obese 174 386 605 282 10
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F 40+ obese 112 239 366 420 65

ble 3: Counts of diabetics, smokers and obese patients in Townsend score (TS) quintile

least deprived) and 5 (most deprived area) by sex (M/F) and cardiac risk (QRISK2) for

th cohort 1936-40 at ages 65-75 and for combined birth cohorts 1930-35 and 1936-40 at

es 75-85.
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Healthy Diabetes Smokers

S Sex No statin Statin No statin Statin No statin Statin

F 87.79 89.52 84.56 86.21 81.90 83.49

M 86.35 88.11 83.09 84.76 80.45 82.02

F 87.75 89.55 84.42 86.13 81.69 83.32

M 86.11 87.92 82.77 84.48 80.08 81.68

F 87.50 89.35 84.06 85.82 81.28 82.94

M 85.67 87.55 82.23 83.99 79.49 81.12

F 87.22 89.18 83.62 85.46 80.73 82.45

M 85.40 87.38 81.80 83.63 78.95 80.64

F 87.07 89.11 83.34 85.24 80.37 82.13

M 84.78 86.87 81.01 82.92 78.09 79.81

ble 4: Life expectancy at age 65 for healthy people, diabetics and smokers by stat

iption, sex and deprivation (TS1 least and TS5 most deprived area) and sex calc

window width of 30 years.
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year window Healthy Diabetes Smokers

S Sex No statin Statin No statin Statin No statin Ftatin

F 88.40 93.23 87.22 92.01 85.66 90.66

M 86.37 91.18 85.14 89.92 83.37 88.39

F 88.17 93.16 86.95 91.90 85.33 90.48

M 86.03 90.98 84.77 89.68 82.92 88.08

F 87.63 92.76 86.38 91.46 84.67 89.97

M 85.26 90.33 83.97 88.99 82.04 87.31

F 86.94 92.28 85.64 90.92 83.83 89.35

M 84.48 89.79 83.13 88.37 81.05 86.55

F 86.54 92.10 85.21 90.69 83.31 89.04

M 83.59 89.08 82.26 87.65 80.14 85.78

0 year window Healthy Diabetes Smokers

S Sex No statin Statin No statin Statin No statin Statin

F 88.43 92.23 87.38 91.19 85.75 89.71

M 86.50 90.33 85.40 89.25 83.60 87.62

F 88.19 92.11 87.11 91.04 85.41 89.50

M 86.16 90.11 85.03 88.99 83.16 87.30

F 87.72 91.78 86.61 90.66 84.83 89.05

M 85.43 89.48 84.27 88.33 82.32 86.56

F 87.07 91.31 85.91 90.15 84.03 88.44

M 84.72 88.99 83.50 87.77 81.41 85.85

F 86.63 91.03 85.43 89.82 83.47 88.03

M 83.92 88.36 82.70 87.13 80.56 85.14

0 year window Healthy Diabetes Smokers

S Sex No statin Statin No statin Statin No statin Statin

F 88.65 91.90 87.52 90.78 85.93 89.40

M 86.79 90.10 85.63 88.95 83.83 87.39

F 88.43 91.80 87.28 90.65 85.60 89.19

M 86.46 89.87 85.27 88.70 83.39 87.05

F 88.00 91.48 86.81 90.30 85.03 88.75

M 85.76 89.28 84.55 88.08 82.55 86.33

F 87.39 91.05 86.16 89.83 84.25 88.15

M 85.09 88.82 83.84 87.57 81.67 85.64

F 86.93 90.73 85.68 89.47 83.66 87.70

M 84.35 88.26 83.11 87.01 80.81 84.95
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ble 5: Hypothetical life expectancies for the healthiest people, diabetics and smokers by

tin prescription, sex and deprivation (TS1 least to TS5 most deprived area) calculated

window widths of 5, 10 and 30 years assuming the health/lifestyle stays the same over

e.
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