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SUMMARY

Hepatitis B viruses (HBVs), which are enveloped
viruses with reverse-transcribed DNA genomes,
constitute the familyHepadnaviridae. An outstanding
feature of HBVs is their streamlined genome organi-
zation with extensive gene overlap. Remarkably, the
�1,100 bp open reading frame (ORF) encoding the
envelope proteins is fully nested within the ORF of
the viral replicase P. Here, we report the discovery
of a diversified family of fish viruses, designated
nackednaviruses, which lack the envelope protein
gene, but otherwise exhibit key characteristics of
HBVs including genome replication via protein-
primed reverse-transcription and utilization of struc-
turally related capsids. Phylogenetic reconstruction
indicates that these two virus families separated
more than 400 million years ago before the rise of
tetrapods. We show that HBVs are of ancient origin,
descending from non-enveloped progenitors in
fishes. Their envelope protein gene emerged de
novo, leading to a major transition in viral lifestyle,
followed by co-evolution with their hosts over
geologic eras.

INTRODUCTION

Hepatitis B virus (HBV) is a human pathogen of global impor-

tance that has infected around two-fifths of the world population.

At least 250 million people are chronic HBV carriers living at high

risk of developing liver cirrhosis and hepatocellular carcinoma

(WHO, 2017; Yang and Roberts, 2010). HBV infections account
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for �890,000 deaths annually (WHO, 2017). HBV represents

the prototype member of Hepadnaviridae, a family of small

enveloped DNA viruses (Seeger and Mason, 2000). Their �3.2

kb circular genomes are reverse-transcribed from an RNA inter-

mediate by the viral P protein (Seeger and Mason, 2000; Beck

and Nassal, 2007). DNA synthesis is initiated by a unique priming

mechanism involving the covalent attachment of the first nucle-

otide to the terminal protein domain (TP) of P and proceeds by

the action of the reverse transcriptase (RT) and RNase H (RH)

domains, which are separated from TP by a flexible spacer

region (Figure 1A) (Bartenschlager and Schaller, 1988; Beck

and Nassal, 2007). This complex replication process takes place

within the viral capsids. Consequently, the genomes cannot

expand in size beyond a certain upper limit (Chirico et al.,

2010). Hepadnaviruses overcome this constraint partly by

increasing information density through extensive gene overlap.

Themost peculiar feature in this regard is the open reading frame

(ORF) for the envelope glycoproteins (PreS/S), which spans >1.1

kb and lies completely within the P gene, but is frameshifted

downstream by one nucleotide (Figures 1A and 1E). The

sequence coding for the N-terminal PreS domains corresponds

to that for the spacer region in P. The S coding sequence over-

laps with the essential part of the RT domain. Such gene over-

laps typically evolve through a process called ‘‘overprinting,’’

i.e., the emergence of a novel ORF within the coding sequence

of a pre-existing ancestral gene (Keese and Gibbs, 1992; Pavesi

et al., 2013).

Until recently, hepadnaviruses were only known from mam-

mals (genusOrthohepadnavirus) and birds (genusAvihepadnavi-

rus) (Schaefer, 2007). Previous age estimates for the split

between both genera ranged from 30,000 to 125,000 years

before the present time, and the divergence of species within

the mammalian virus clade was proposed to have occurred

10,000 to 25,000 years ago (Orito et al., 1989; Mizokami and Or-

ito, 1999; van Hemert et al., 2011). The discovery of endogenous
ber 13, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 387
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Figure 1. Genome Organization of Hepadna- and Nackednaviruses

(A) Human hepatitis B virus (HBV).

(B) Tetra metahepadnavirus (TMDV) of the Mexican tetra (Astyanax mexicanus). An ORF X is absent.

(C) Rockfish nackednavirus (RNDV).

(D) Sockeye salmon nackednavirus (SSNDV).

(E) Comparison of the RNDV andHBVPORF. All three reading frames are depicted (+1, +2, +3).White vertical bars: stop codons. TP, terminal protein; RT, reverse

transcriptase; RH, RNaseH.

(F) Amino acid sequence alignments of selected parts of P (+1) and S (+2) reading frames, including four representatives of nackednaviruses (N) and five of

hepadnaviruses (H). Nackednaviruses harbor multiple stop codons in the region of the (+2) frame corresponding to the hepadnaviral RT/S overlap.

See also Table S1 and Figures S1 and S2.
hepadnaviruses in the genomes of birds (Gilbert and Feschotte,

2010; Liu et al., 2012; Suh et al., 2013), crocodilians, turtles, and

snakes (Gilbert et al., 2014; Suh et al., 2014) has shifted the

absolute age estimate for the entire virus family substantially

into the past, since these endogenization events occurred up

to 231 million years ago (mya) (Suh et al., 2014). The recent

identification of several hepadnavirus species in teleost fishes

(Hahn et al., 2015; Dill et al., 2016) and an amphibian implied

an even more complex, mixed evolutionary pattern assumed to

be driven both by virus-host cospeciation events and cross-spe-

cies transmissions (Dill et al., 2016; Geoghegan et al., 2017).

Hence, the origin of HBVs remains enigmatic and, as yet, no

conclusive phylogenetic hypothesis of Hepadnaviridae exists: it

is unknown when and how they became enveloped, diversified

into separate lineages, and spread among tetrapods. Here, we

describe a family of non-enveloped (naked), HBV-related fish

viruses, allowing us to trace the evolutionary history of hepadna-

viruses to a root more than 400 mya.
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RESULTS

Nackednaviruses Are Non-enveloped HBV-Related
Viruses of Teleost Fishes
We identified HBV-related viruses by homology searching in

public sequence databases at the National Center for Biotech-

nology Information (NCBI). We used the protein sequence of

the TP domain as the search query, since it is unique to these

viruses. Among the screened data were >25,000 entries of

bony fishes in the Sequence Read Archive (SRA). By this means,

we retrieved 17 complete or nearly complete genome sequences

of exogenous HBV-related viruses in teleost fishes (synopsis in

Table S1, genome maps in Figure S1, annotated sequences in

Data S1). Notably, these viruses are present in a wide variety

of tissues and do not exhibit a marked liver tropism (Table S1).

Furthermore, we discovered full genomes of exogenous hepad-

naviruses in the skink Saproscincus basiliscus (SkHBV) and

the spiny lizard Sceloporus adleri (SLHBV-1), as well as an



Figure 2. Virological Assays

(A) Release of naked capsids from RNDV-trans-

fected cells. HuH-7 cells were transfected with

expression plasmids containing terminally redun-

dant genomes of RNDV, HBV, or HBV env(�), an

envelope protein-deficient HBV mutant. Cell cul-

ture supernatants were subjected to CsCl density

gradient centrifugation followed by detection of

viral DNA in gradient fractions by DNA-dot blot

hybridization. Similar results were obtained in the

HEK cell line HEK293T and in the rainbow trout

gonad cell line RTG-2 (data not shown).

(B) P priming assays. RNDV and duck hepatitis B

virus (DHBV) wild-type (WT) P proteins produced in

a coupled in vitro transcription/translation system

were incubated with [a-32P]dGTP and subjected to

SDS-PAGE followed by autoradiography (lanes 1

and6). Todemonstrate templatedependencyof the

priming reaction, RNase A digests were performed

prior to incubationwith [a-32P]dGTP (lanes 2 and 5).

An RNDV YMDD-motif mutant in P was included to

show dependency of the priming reaction on an

intact RT domain (YMHD; lane 8). As control for

proper protein production, P proteins were meta-

bolically radiolabeled with [35S]methionine without

addition of [a-32P]dGTP (lanes 3, 4, and 7).
actively transcribed endogenous viral element in the dark-eyed

Junco (eJHBV), a North American sparrow (Junco hyemalis)

(Table S1; Figure S2).

As exemplified by the Mexican tetra metahepadnavirus

(TMDV) (termed after its position in the viral phylogeny; see

below), four of the piscine viruses display the typical genome

structure with an envelope protein ORF, which is completely

overlapped by ORF P and shows the characteristic bipartition

into PreS and S regions (Figure 1B). An ORF X encoding a trans-

activator as in mammalian HBVs is absent.

Owing to their peculiar genome organization, the 13 remaining

fish viruses constitute a distinct group that we termed nacked-

naviruses (Swabian German for ‘‘naked DNA viruses’’). The

genome sizes within this group range from 2,766 to 3,105 bp

(Figure S1). As exemplified with the rockfish nackednavirus

(RNDV) (Figure 1C) and the sockeye salmon nackednavirus

(SSNDV) (Figure 1D), the circular genomes comprise two

partially overlapping, major ORFs, encoding for a Core (C) and

a P protein, the latter being composed of TP, RT, and RH

domains. Two short direct repeats (DR1 and DR2), essential for

replication in hepadnaviruses (Beck and Nassal, 2007), are

located in the non-translated region and within the 30 region of

the RH domain. Between DR1 and ORF C, all nackednaviruses

contain two small ORFs (Figure S1). In sharp contrast to hepad-

naviruses, a PreS/S ORF for envelope proteins is missing (Fig-

ures 1C and 1D).

The TP, RT, and RH domains of the P proteins are homologous

to the hepadnaviral counterparts, with an average degree of

sequence similarity <50% between both groups (Figures 1E

and 1F). Notably, all functionally important motifs are conserved

(Figure 1F; full alignment in Data S2 and S3). In nackednaviruses,

however, TP is directly linked to RT via a short hinge region (Fig-

ure 1E). They lack a long spacer that, in the case of hepadnavi-

ruses, encodes the PreS domains of the envelope proteins in

its second reading frame. In the region of the RT/S overlap of
hepadnaviruses, all nackednaviruses contain multiple stop co-

dons in the S-congruent reading frame (Figures 1E and 1F).

None of the genomes of the non-enveloped or enveloped fish

viruses, respectively, features signs indicative of endogenous

viral elements, e.g., flanking host genome sequences, inactivat-

ing frameshift mutations or premature stop codons. To date, we

have not detected any example of endogenized HBV-related

viral sequences in genomes of teleost fishes.

Nackednaviruses Are Replication-Competent
Exogenous Viruses
Some nackednavirus genomes were retrieved from transcrip-

tome-sequencing projects indicating active transcription of

poly(A)-tailed full-length viral RNA in infected fish (Table S1). To

elucidate replication competence, we synthesized the complete

genome sequence of RNDV and inserted it into a eukaryotic

expression vector. We transfected the human hepatoma cell

line HuH-7 with this construct and harvested the culture superna-

tant after 10 days. HBV replicating cells are known to secrete en-

veloped virions and (via an independent trafficking pathway) also

naked capsids (Ni et al., 2010; Bardens et al., 2011). While we de-

tected both particle types in the supernatant of control cells ex-

pressingHBV, the cells expressing theRNDVgenome exclusively

released viral DNA-containing particles with a buoyant density of

1.34–1.45 g/cm3, corresponding to naked capsids (Figure 2A).

To test RNDV P for the characteristic mode of protein-primed

replication initiation, we performed priming assays as estab-

lished for duck hepatitis B virus (DHBV) (Figure 2B) (Weber

et al., 1994). Accordingly, we generated P in a coupled in vitro

transcription-translation system and offered [a-32P]dGTP as

substrate. Full-length RNDV P appeared as a 32P-labeled

74 kDa protein revealing covalent attachment of the nucleotide

as marker for protein priming (Figure 2B, lane 6). The enzymatic

activity depended on the presence of viral template RNA (Fig-

ure 2B, lane 5 versus 6) and required the integrity of the YMDD
Cell Host & Microbe 22, 387–399, September 13, 2017 389



motif in the catalytic center of the RT domain (Figure 2B, lane 6

versus 8). Together, these results demonstrate that RNDV is

replication-competent and capable of producing non-enveloped

extracellular progeny particles. The genome replication mecha-

nism is similar to HBVs in involving protein-primed reverse-tran-

scription of an RNA intermediate.

Ultrastructure of Nackednavirus Capsids
The nackednaviral C proteins showed little sequence similarity

with those of hepadnaviruses, and only two regions appeared

to be weakly conserved (alignment in Data S4). However, sec-

ondary structure predictions revealed the conserved arrange-

ment of a helices characteristic for the C protein of HBV (Wynne

et al., 1999), as well as an additional short helix (a+) at the

extreme N terminus (Figure 3A).

HBV capsids are spherical particles with a holey shell and

protruding spikes (Crowther et al., 1994). The vast majority of

HBV capsids display an icosahedral T=4 symmetry (Crowther

et al., 1994), while about 5% of the capsid particles are smaller

and exhibit T=3 symmetry. We expressed C proteins of the

African cichlid nackednavirus (ACNDV) in E. coli, purified self-

assembled capsids, and performed cryoelectron microscopy

(Figures S3A–S3C). The 3D particle reconstruction showed T=3

icosahedral symmetry (Figure 3B, top and middle panel) where

the overall fold of the ACNDV C protein was similar to that of

HBV (Figure S3D). In contrast to HBV, at the local (pseudo-)3-

fold axes the holes in the particle shell were plugged by the addi-

tional N-terminal helices, which might aid protecting the ge-

nomes of the non-enveloped viruses against environmental

damage (Figure 3B, middle and bottom panels).

Long-Term Virus-Host Evolution Patterns
To clarify the phylogenetic relationship between nackednavi-

ruses and hepadnaviruses, we inferred rooted Bayesian trees

based on the protein alignment of conserved parts of TP, RT,

and RH (alignment in Data S2 and S3; uncalibrated trees in

Figure S4). Rooting of the P phylogeny was independently

confirmed by an analysis including a set of caulimoviruses and

retroviruses as outgroups (Figure S5A). Nackednaviruses

demarcated as a well-supported distinct branch constituting a

sister taxon to hepadnaviruses (Figure 4; see also C protein

phylogeny in Figure S5B). They formed two subgroups, desig-

nated RNDV-type and SSNDV-type. A third branch arose with

KNDV-Lp-2 currently representing its only member.

In the clade of enveloped viruses, the first diverging lineage

(termed parahepadnaviruses) comprised the recently described

WSHBV from white sucker (Catostomus commersonii) (Hahn

et al., 2015) and CSKV from coho salmon (Oncorhynchus

kisutch) (Figure 4). The three other enveloped fish viruses,

TMDV, AMDV (from astatotilapia), and IMDV (from the icefish),

appeared as a sister group to the mammalian orthohepadnavi-

ruses. This position was consistent with them having a so-

called a-determinant (an insertion in the S domain [Glebe and

Urban, 2007]) as a synapomorphic character. Hence, we

named them metahepadnaviruses (Figure 4). Likewise, the

exogenous viruses from the Tibetan frog and lizards (coined

herpetohepadnaviruses) formed a separate lineage related to

avihepadnaviruses, with which they share enlarged C proteins

(alignment in Data S4).
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The phylogenetic relatedness of nackednavirus species did

not coincide with that of their extant hosts, which hints at

frequent host switches across the tree of teleost fishes (Figure 5).

Contrarily, the diversification pattern within hepadnaviruses

largely reflected that of the respective host taxa, indicating

cospeciation as predominant mode of virus-host evolution,

although several exceptions were observed (Figure 5). Impor-

tantly, we also found a tight matching of the relative distances

at those very nodes where the tree topologies are congruent

between hepadnaviruses and their hosts (Figure S6A).

To infer divergence times, we included P protein sequences of

an endogenous avihepadnaviral element (eAHBV-FRY) inte-

grated in the genomes of Neoaves (Suh et al., 2013) (Figures 4

and S7A). Assuming concomitant diversification, we used the

onset of the adaptive radiation of Neoaves (69–67 mya) (Jarvis

et al., 2014; Prum et al., 2015; Claramunt and Cracraft, 2015)

as the age for the eAHBV-FRY root, thus allowing for dating

the other branching points in the virus tree. For nodes repre-

senting putative virus-host cospeciation events of exogenous

hepadnaviruses (Figure 5), our age estimates were in excellent

agreement with the divergence times of the respective host

lineages (Figures 6 and S6B). Vice versa, independent calibra-

tions based on the host split ages of these exogenous viruses

yielded a mean age of 67.9 mya (± 13.6 mya SD) for the

eAHBV-FRY node (Figure 6). Notably, with both calibration stra-

tegies we observed a tight and statistically well-supported

congruence of the mutual divergence times in the investigated

virus-host pairings with congruent tree topologies (Figure 6).

Similar results were obtained in tree calibrations based on the

age of an endogenous hepadnaviral element in the genomes of

snakes (Figure S7B). These findings are remarkable, since they

hint at comparable long-term substitution rates for exogenous

and endogenized viral P protein sequences, thus implying syn-

chronous evolution of hepadnaviruses with their hosts, probably

for more than 400 million years.

De Novo Emergence of the PreS/S ORF in the
Hepadnaviral Lineage
The most prominent difference between nackednaviruses and

hepadnaviruses is the absence or presence of an envelope

protein gene, respectively. Two explanations are possible: either

the last common ancestor of both families was a naked virus and

PreS/S appeared as an innovation in the hepadnaviral lineage

(Pavesi, 2015), or PreS/S evolved in the common ancestry of

both families and nackednaviruses lost it secondarily. In the

latter instance, one might still find vestiges of a past envelope

protein gene imprinted in the genomes of nackednaviruses.

Since evolution of the PreS part must have involved an inser-

tion/deletion event precluding comparative analyses (Figure 1E),

we analyzed the S part, which overlaps with the RT domain of P.

For HBV, the nucleotide variability in this region was described to

be reduced at the third codon position of P, which equals codon

position 2 of the S ORF (P3/S2) (Zaaijer et al., 2007). We

extended this approach to a comprehensive set of viral ge-

nomes, including caulimo- and retroviruses as controls, and

found the P3/S2 nucleotide variability to be diminished exclu-

sively in the RT/S overlap of hepadnaviruses (Figure 7A).

Moreover, hepadnaviruses exhibited a decreased frequency of

adenine (A) at position P3/S2 in this region indicating selection



Figure 3. Capsid Ultrastructure

(A) Alignment of the C proteins of African cichlid

nackednavirus (ACNDV) and HBV. a helices of

HBV C indicated in the bottom refer to the crystal

structure (Wynne et al., 1999). Secondary struc-

tures of ACNDV C predicted with jpred (Drozdetskiy

et al., 2015) and psipred (ppred) (Jones, 1999) are

given in the top. Blue, a helices; yellow, b sheets;

red, additional, N-terminal a helix (a+).

(B) Comparison of the capsid structure of HBV (T=4)

(Yu et al., 2013) and ACNDV (T=3). Cryoelectron

microscopymaps low-pass filtered at 12 Å (top row)

and 8 Å (middle row). Bottom row: zoomed view

onto a local (pseudo-)3-fold axis. Additional a+

helices in ACNDV highlighted by red arcs.

See also Figure S3.
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Figure 4. Phylogenetic Relationship of

Hepadna- and Nackednaviruses

Rooted Bayesian phylogenetic tree based on

protein sequence alignments of conserved regions

in the TP, RT, andRHdomains of P (437 amino acid

positions). For details on parameter optimization of

the Bayesian phylogenetic model, see the STAR

Methods. Viruses discovered in this study are in

color; lineages with piscine hosts in blue. A fourth

member of the metahepadnavirus clade was

described in a study by Dill et al. (2016). Scale bar,

millions of years. Numbers at branching points:

posterior probability support values. Red arrows:

most parsimonious periods of major evolutionary

innovations. The X ORF is an evolutionary novelty

of orthohepadnaviruses.

See also Figures S4, S5, and S7 and Tables S2

and S3.
against stop codons in both reading frames (Figure 7B). None of

these patterns were observed in nackednaviruses, which resem-

bled the control groups one to one. This exceptional situation in

hepadnaviruses supports the more parsimonious model of S

gain in this lineage.

To further strengthen this model, we backtracked the evolu-

tionary history of the S ORF by ancestral sequence reconstruc-

tions. The inferred hepadnaviral ancestor had an intact S frame,

while that of nackednaviruses contained nine stop codons, and

the inferred common ancestor of both groups was interrupted

by 13 stop codons, indicating that S is an evolutionary novelty

of hepadnaviruses (Figure 7C). To corroborate this finding inde-

pendently, we sought to detect signatures of positive selection

in the S-corresponding reading frame of the hepadnaviral ances-

tral lineage. Since branch lengths in phylogenetic trees quantify

the amount of mutational change between two speciation events,

we performed a differential tree inference for the two affected

frames of the RT/S overlap. We found that the relative evolu-

tionary change in the reading frame corresponding to S is

elevated asymmetrically by a factor larger than 2 on the side of

hepadnaviruses during the relevant time window after the split

from nackednaviruses and before the first intragroup speciation

event, while the P frame was under concomitant conservation
392 Cell Host & Microbe 22, 387–399, September 13, 2017
in both lineages (Figures 7D–7F). In sum-

mary, we did not find evidence for a sec-

ondary loss of the envelope protein gene

in nackednaviruses, but unveiled signs of

an extensive adaptation process in the

branch leading to hepadnaviruses. This

suggests that nackednavirusesmost likely

retained an ancestral genome organiza-

tion, while the PreS/S ORF was shaped

de novo in the hepadnaviral lineage.

DISCUSSION

The peculiar characteristics of the non-

enveloped fish viruses described in this

study justify assigning them into a distinct

virus family apart from hepadnaviruses,
and we propose the name ‘‘Nackednaviridae.’’ They constitute

the most suitable outgroup to safely root the phylogeny of their

enveloped counterparts for the very first time, enabling us to

perform a meticulous cross-examination of the virus-host evolu-

tionary pattern by taking into account both tree topology and

relative branch lengths in the respective phylogenies (Figures 5

and S6A). This combined approach permits discerning whether

present-day virus-host associations result from cospeciation or

involved host switches, even in instances where topology alone

is ambiguous. Moreover, the inclusion of an endogenized, ‘‘fos-

sil’’ hepadnaviral element found in the genomes of Neoaves into

our taxon sampling allowed for tightly controlled inference of

time-calibrated phylogenies, thus retrieving absolute age esti-

mates for viral speciation events (Figures 6 and S6B). According

to these analyses, both virus families separated from a common

ancestor most likely in the Silurian, ca. 432 mya (Figure 4). This

age estimate is in agreement with the separation between ray-

finned fishes (Actinopterygii) and lobe-finned fishes (Sarcoptery-

gii, including Tetrapoda) dating back to about 429–425 mya

(Betancur et al., 2013; The Timetree of Life, 2016). Consequently,

we suggest a virus-host cospeciation event to be most plausible

(Figures 5 and 6). The subsequent branch-off of para- and

metahepadnaviruses took place about 360 and 240 mya,



Figure 5. Tanglegram Juxtaposing the Host and Virus Phylogenies
Left panel: ultrametric phylogenetic tree of the host species. Right panel: ultrametric phylogenetic tree of the virus species. Middle panel: virus-host associations.

To increase the virus-host spectrum, we included endogenous hepadnaviruses from crocodilians (eCrHBV-1) (Suh et al., 2014), snakes (eSnHBV-1) (Gilbert et al.,

2014; Suh et al., 2014), and spiny lizards (eSLHBV). Abbreviations for geographic regions: Aa, Antarctica; Af, Africa; As, Asia; Eu, Europe; Na, North America; Nh,

Northern Hemisphere; Nt, Neotropics. Solid lines in the virus tree indicate probable separation of viral daughter lineages due to a virus-host cospeciation event;

dashed lines indicate probable virus duplication, i.e., virus speciation predating separation of the extant host lineages; and dashed lines with arrow indicate a host

switch and its direction, i.e., virus speciation postdating separation of the extant host lineages. Nodesmarked with open circles and labeled with Arabic numerals

represent putative cospeciation events that were used in our time-calibration analysis (Figures 6 and S6B). The three putative cospeciation events on the side of

nackednaviruses are labeled with Roman numerals (N I—N III).
respectively, indicating independent secondary invasions of

actinopterygians through host switches by enveloped viruses

that originated on the ‘‘sarcopterygian side’’ of the viral phylog-

eny (Figures 5, 6, and S6A). This result contradicts the model

that hepadnaviruses arose in teleost fishes and colonized

mammals and birds much more recently through cross-species

transmission, as suggested in a study based on an exclusively

cladistic comparison of tree topologies (Geoghegan et al.,

2017). Since the mammalian and sauropsid (reptile and bird)

hepadnaviruses each belong to ancient lineages, probably with

>300 million years of segregated history (Figure 4), the latter

ones could have integrated into the genomes of their hosts

several times during the last 231 million years (Suh et al.,

2014). This intimate association of hepadnaviruses with their

hosts since the late Palaeozoic also provided ample time for

a fine adaptation, possibly explaining their successfulness in

establishing persistent infections that can remain largely asymp-

tomatic in the affected individual for decades. From an evolu-

tionary point of view, the question arises whether HBVs became

symbionts, which (apart from their pathogenic potential) also

provide advantages to their hosts (Hong et al., 2015).

According to our analyses, the genotypes of human HBV

(including the isolates from apes) emerged during the last 30
mya (Figure S7C), coinciding with the origin, radiation, and

dispersal of early Hominoidea (= apes) across Africa and Eurasia

(Begun, 2003; Springer et al., 2012; Stevens et al., 2013). Since

there is no barrier for HBV to be transmitted between humans

and extant apes, we suggest that these host taxa represent,

from a non-zoologist’s but mere virologist’s point of view, just

slightly different variants of one and the same, unsegregated

‘‘host superspecies.’’ In addition to the hypotheses under debate

(reviewed in Littlejohn et al., 2016), we therefore propose that

HBV might have been freely floating within and between the

plethora of stem and crown hominoids whenever these animals

(including humans) came into local contact with each other

during their complex evolutionary history since the late

Oligocene.

The divergence date estimates for nodes on the hepadnaviral

branch of the phylogeny differ drastically from previously deter-

mined divergence times (see Introduction). These former time

inferences were based onmolecular clocks in which substitution

rate estimates were derived by relating the genetic distances be-

tween viral sequences to the year of virus isolation (so-called

heterochronous sampling). Our results are, however, in agree-

ment with the observation by Gilbert and Feschotte (2010) that

long-term evolutionary rates of exogenous hepadnaviruses are
Cell Host & Microbe 22, 387–399, September 13, 2017 393



Figure 6. Correlation of Mean Divergence Times between Hepadnaviruses and Their Hosts

For the nodes in the hepadnaviral phylogeny representing putative virus-host cospeciation events (Figures 5 and S6A), the mean virus divergence times obtained

with the calibrations based on eAHBV-FRY (blue) and the 11 independent calibrations based on the branching of exogenous hepadnaviruses in addition (black),

were plotted against the mean host divergence times as retrieved from the literature (The Timetree of Life, 2016; Betancur et al., 2013; Bininda-Emonds et al.,

2007; Hedges et al., 2015; Wang et al., 2013) (raw data in Table S2). Vertical and horizontal bars: SD. The nodes (N1–N8) are numbered as in Figures 5 and S6B.

The linear regression of the eAHBV-FRY-calibrated nodes indicates a tight congruence between the related virus and host speciation times (blue line; 95%

confidence interval: light blue background). Of note, the mean age estimate for the node of eAHBV-FRY resulting from the control calibrations (N5; 67.9 ± 13.6

mya SD) was consistent with the onset of the diversification of Neoaves (69–67 mya), implying that the long-term substitution rate of P proteins does not

significantly differ between exogenous and endogenous hepadnaviruses. Both linear regressions had a significant deviation of the slope from 0, a non-significant

deviation of the slope from 1, and the differences between the related virus and host divergence times (DTV/H) did not significantly differ from 0 (box with gray

background). Red squares: the eAHBV-FRY-based node age estimates for the major viral nodes with disparate or ambiguous virus-host topology (Figures 5

and S6A) were plotted against the divergence times of the corresponding present-day hosts. The significant deviation of these nodes from the linear correlation of

such nodes with congruent virus-host topology indicates a host switch to have occurred. The red lines and question marks indicate the expected age of the

putative initial host reservoir, if these viruses also originated from a virus-host cospeciation event before they switched into a new host. For example

parahepadnaviruses, i.e., WSHBV and CSKV, split off from all other hepadnaviruses 359 mya, i.e., at about the same time, when amphibians and amniotes

diverged (352 mya according to http://timetree.org/). Likewise, TBHBV, so far the only known hepadnavirus from a South American bat (Drexler et al., 2013),

separated from the other orthohepadnaviruses 158 mya, i.e., at about the same time, when placental and marsupial mammals diverged (159 mya according to

http://timetree.org/). These observations might at least give a clue where to search for similar viruses.
at least 1,000-fold slower than expected from those former coa-

lescent approaches representing short-term evolution. This in-

verse correlation between substitution rates and depth of time

was confirmed in a study on intra- and inter-host evolution of

human HBV in a family of chronic carriers over an �100 year

period of virus diversification (Lin et al., 2015). The discrepancy

between fast short-term and slow long-term evolutionary rates

has been widely recognized for hepadnaviruses by now (Godoy

et al., 2013; Zehender et al., 2014; Littlejohn et al., 2016), and it

turned out as a general rule probably applying to all major groups
394 Cell Host & Microbe 22, 387–399, September 13, 2017
of viruses (Sharp and Simmonds, 2011; Patel et al., 2011;

Feschotte and Gilbert, 2012). Importantly, Lin et al. (2015) found

a significant variability of the mutation frequencies across

different regions of the HBV genome with non-synonymous

substitutions clustering at immune epitopes of structural genes.

In our phylogenetic analyses we focused on the conserved parts

of the viral replicase P and blanked out the highly variable

sequence blocks that readily become saturated (Data S3). P is

not a major target of the immune system, exerts its function in

the cytoplasm, an evolutionary stable environment, and depends

http://timetree.org/
http://timetree.org/


Figure 7. De Novo Emergence of PreS/S in Hepadnaviruses

(A) Weighted substitution rates at codon position 3 in the P frame, which equals codon position 2 in the S frame (P3/S2) for conserved regions in TP, RT, and RH.

RT/S overlap region (OV) in hepadnaviruses highlighted by light-yellow background. NOV, non-overlapping regions.

(B) Adenine frequencies at P3/S2 positions.

(C) Hypothetical ancestral sequences for the overlap region reconstructed for the ancestors of hepadnaviruses (H), nackednaviruses (N), and hepadna- and

nackednaviruses (H + N). Predicted stop codons in the S frame are highlighted.

(D) Phylogeny for the RT/S overlap region translated in the P frame. Scale bar, substitutions per site. Branches representing the relevant timewindow after the split

between nackedna- and hepadnaviruses and before the first intragroup speciation events are colored and their lengths are indicated.

(E) Phylogeny for the RT/S overlap region translated in the S frame.

(F) Ratio of analogous branches in the P and S frame-based phylogenies for the RT/S overlap, estimating the relative evolutionary change in the S frame between

viral lineages.
on interaction with slowly evolving cellular housekeeping factors

such as chaperones, e.g., Hsp90, Hsp70, and Hsp40, to form a

functional replication complex (Nassal, 2008; Nguyen et al.,

2008). We would therefore expect the fittest P sequences to

evolve over deep timescales mainly in response to the slow

changes of the cytoplasmic environment. Consequently, it is

not surprising for us to find evolutionary rates for the conserved

parts of P from exogenous hepadnaviruses equaling those

after endogenization, thus providing a proof of principle for the

feasibility to use selected sequences of endogenous viral

elements for time calibrations. Interestingly, our observations

comply with the ‘‘covarion model,’’ according to which the

requirement to cooperate with host proteins imposes functional

constraints on the number of viral protein residues that can

accept substitutions at a given point in time, thus decelerating

viral protein divergence (Koonin and Gorbalenya, 1989). In this

respect, our results invite critical rethinking regarding the

frequent use of molecular clocks reflecting short-term evolution

to infer time estimates for deep viral phylogenies, and we hope

that our taxon sampling provides a suitable test system to

develop and evaluate additional methods for dating the long-
term evolutionary history of viruses, as previously suggested

(Sharp and Simmonds, 2011).

To explain the slowdown of the evolutionary rates over time,

Lin et al. (2015) proposed a model of continuous switching of

the viral mutant spectrum between colonization and adaptation.

According to this, ‘‘colonizers’’ are optimally replicating viruses

that are in advantage early after transmission into an immuno-

logically naive host, while ‘‘adaptors’’ diversify under pressure

of the host immune system during the late inflammatory phase

of chronic infection at the cost of replicative fitness. The fast

short-term evolutionary rates are hence attributed to the intra-

host divergence of the ‘‘adaptors,’’ whereas the back-selection

toward ‘‘colonizers’’ succeeding each transmission event is

thought to be responsible for the slow long-term evolution.

Episomally persisting, circular viral DNA is supposed to repre-

sent a permanent reservoir of ‘‘colonizer’’ genomes in thismodel.

Noteworthy, natural infections with hepadnaviruses are typically

acquired early in the lifetime of the host and somatic integration

of non-canonical, linearized viral DNA species into the genomes

of hepatocytes can be detected within hours after transmission

(Chauhan et al., 2017; Mason et al., 2016; Sung et al., 2012).
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Such integrated viral genome copies will evolve at the substitu-

tion rate of the host cell genome, and if they had the potential

to constantly replenish the quasispecies of circulating virus

during lifelong chronic infection with particles resembling the

initial inoculum, the viral generation times could approximate

host generation times. This in turn might contribute to the

synchronous long-term virus-host evolution, as we observe it

for P.

We speculate that the co-evolution of tetrapod hepadnavi-

ruses with their hosts over geologic eras could be a direct con-

sequence of their specialization to a single organ, the liver, while

the fish viruses reside in a broad spectrum of tissues and organs,

which might favor frequent host switches. The liver tropism of

tetrapod hepadnaviruses in turn is primarily determined by the

interaction of PreS with receptor molecules on the hepatocyte

surface during virus entry (Glebe and Urban, 2007). All lines of

evidence argue for the de novo emergence of PreS/S in the hep-

adnaviral lineage after 432 mya and before 360 mya (Figure 4).

The evolution of the surface protein gene must have involved

two distinct processes: first, the insertion of additional nucleic

acid between the TP and RT domains of P that led to the spacer

and the PreS region in the two respective reading frames; sec-

ond, the generation of the S part by overprinting of the pre-exist-

ing RT-coding sequence in the alternative reading frame. The

accompanying increase in genome size might then have trig-

gered a symmetry switch from small T=3 to large T=4 particles

as predominant capsid type. In this regard, it is worth remem-

bering that HBV-infected cells do not only secrete enveloped

virions, but also naked capsids (Ni et al., 2010; Bardens et al.,

2011). This might be a mere vestigial feature retained from their

distant past as non-enveloped viruses. However, an intriguing

possibility is that these naked capsids may still play an important

role in establishing or maintaining an infection with HBV.

To our knowledge, it is the first reported case of the de novo

emergence of a completely overlapping gene encoding for

essential structural proteins by such a mechanism. Typical

examples for the evolution of gene overlap by overprinting are

small accessory genes coding for regulatory factors (Rancurel

et al., 2009), e.g., those found in the genomes of deltaretrovi-

ruses (Pavesi et al., 2013). Becoming enveloped, on the other

hand, frequently involves incorporation of yet fully functional

genetic modules from other viruses through heterologous

recombination, as was described for different invertebrate retro-

transposons (familyMetaviridae), which independently captured

envelope protein genes from phlebo-, herpes-, or baculoviruses,

respectively (Malik et al., 2000; Kim et al., 2004). The twinned

virus families presented in our study therefore constitute an

unprecedented example for a fundamental transition in viral

lifestyle.
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Construct for eukaryotic RNDV genome
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Construct for wt RNDV P protein in vitro
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This paper pT7/AMV-RNDVpol
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transcription/translation

This paper pT7/AMV-RNDVpol-YMHD

Construct for bacterial expression of

full-length ACNDV capsid protein

This paper pET28a2-ACNDVc1-174

Construct for bacterial expression of

truncated ACNDV capsid protein

This paper pET28a2-ACNDVc1-146
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prottest2_server.html

BEAST Drummond et al., 2012 http://beast.bio.ed.ac.uk/;
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Tracer Rambaut, 2016 http://tree.bio.ed.ac.uk/software/tracer/
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Jane4 Conow et al., 2010 https://www.cs.hmc.edu/�hadas/jane/

MACSE Ranwez et al., 2011 http://mbb.univ-montp2.fr/MBB/

subsection/softExec.php?soft=macse

PhyML 3 Guindon et al., 2010 http://www.atgc-montpellier.fr/phyml/;

RRID: SCR_014629

MEGA 6 Tamura et al., 2013 http://www.megasoftware.net/;
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FigTree Rambaut, 2016 http://tree.bio.ed.ac.uk/software/figtree/;

RRID: SCR_008515

EPU FEI https://www.fei.com/software/epu/

CTFFIND3 Mindell and Grigorieff, 2003 http://grigoriefflab.janelia.org/ctf

EMAN2 Tang et al., 2007 http://blake.bcm.edu/emanwiki/EMAN2

RELION 1.2 Scheres, 2012 http://www2.mrc-lmb.cam.ac.uk/relion/

index.php/Main_Page

IMAGIC van Heel et al., 1996 https://www.imagescience.de/imagic.html;
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources, reagents, and data should be directed to and will be fulfilled by the Lead Contact,

Stefan Seitz (stefan.seitz@med.uni-heidelberg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Line HuH-7
HuH-7 is a human cell line derived from a hepatocellular carcinoma. Sex: male. Culture conditions: 37�C, 5% CO2 atmosphere, in

Dulbecco’s modified Eagle medium supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 U of penicillin/ml, and

100 mg of streptomycin/ml (Ni et al., 2010). Cells have not been authenticated.

METHOD DETAILS

Search and Assembly of Viral Genomes
We used tblastn (Altschul et al., 1990) to screen the Whole-genome Shotgun Assembly (WGS), Transcriptome Shotgun Assembly

(TSA), and Sequence Read Archives (SRA) accessible at NCBI for the presence of unknown HBV-related sequences. The screened

data included more than 25,000 individual SRA experiments from bony fish sequencing projects. Initially, we used the TP protein

sequence of DHBV as single query. To increase sensitivity of the search, we later extended the query list by adding the TP sequences

of several of the discovered hepadna- and nackednaviruses. A Blast hit was considered for downstream analysis (i) if it had a very

good E-value of 10-4, or (ii) if it had amoderate E-value of 10 and the same sequence readwas found by at least two queries, or (iii) if at

least two sequencing reads gave hits of 50% or better sequence identity. Moreover, all potential hits were verified manually by in-

spection of the Blast outputs. Raw sequencing reads of verified hits were downloaded from NCBI/SRA. FastQC (Andrews, 2010)

was used for quality control and Cutadapt (Martin, 2011) for trimming adapter sequences and low-quality bases. For de novo assem-

bly of a viral genome we used ABySS (Simpson et al., 2009) and SPAdes (Bankevich et al., 2012) with different kmer values ranging

from 12 to 96 and chose the longest viral contig. Both ends of the linear assembly were completed manually to account for circularity

of the viral genomes. For cases of very low read coverage resulting in fragmental genomes, we manually joined the fragments using

closely related complete genomes as reference.

In Vitro Virological Assays
The whole genome sequence of RNDV was custom synthesized and inserted into the eukaryotic expression vector pcDNA3.1(+).

Analogous HBV constructs (wild-type and an envelope protein deficient mutant) were used as control. HuH-7 cells on 10-cm diam-

eter dishes were transfected with 10mg of plasmid DNA using the TransIT-LT1 reagent. To remove cell-associated plasmid DNA,

cells were washed 3 times with PBS on day one and day two after transfection. In addition, cells were treated with DNase at day

one. Culture supernatants were collected at day 10 after transfection. To separate enveloped and non-enveloped viral particles,
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the supernatants were subjected to CsCl density gradient ultracentrifugation, followed by DNA-dot-blot analysis of gradient fractions

as described previously for HBV (Ni et al., 2010).

RNDV P priming assays were performed as described previously for DHBV (Weber et al., 1994). In brief, DHBV P in vitro translated

from plasmid pT7/AMV-pol16 (Weber et al., 1994) served as positive control. An analogous RNDV P construct (pT7/AMV-RNDVpol)

was generated by inserting downstream of a T7 promoter a subgenomic fragment of RNDV (nt 1066 to 223) comprising the entire

P ORF plus downstream sequences. The YMHD mutant was obtained by site-directed mutagenesis changing RNDV P codon 335

from GAT (Asp) to CAC (His). P proteins were expressed in vitro using the TNT Quick Coupled Transcription/Translation System

(Promega) according to the manufacturer’s instructions. To verify P protein translation, control reactions were performed in the pres-

ence of [35S]methionine. For priming assays, P proteins were synthesized in the presence of unlabeled methionine. Subsequently,

aliquots of the reaction mixes were either treated with RNase A or left untreated. After addition of priming buffer containing

[a-32P]dGTP (3000 Ci/mmol) samples were incubated for 60 min at 37�C (DHBV) or 23�C (RNDV). Priming reactions were terminated

by adding SDS protein sample buffer. Samples were subjected to SDS-PAGE followed by detection of labeled protein bands by

phospho-imaging.

Ultrastructure of Nackednavirus Capsids
Full-length ORF C of ACNDV (aa 1-174) and a truncated variant lacking the C-terminal nucleic acid binding domain (aa 1-146) were

PCR-amplified from a cDNA library of pooled organs from Ophthalmotilapia ventralis (Baldo et al., 2011). Both sequences were

inserted into the bacterial expression vector pET28a2 (Vogel et al., 2005). After transformation with the respective constructs,

E. coli were grown overnight in 50 ml starter cultures, transferred to 1 L Terrific Broth and further incubated at 37�C until the cultures

reached an OD600 of 0.6. Heterologous protein expression was induced by addition of 100 mM IPTG. To reduce sequestration of C

proteins in inclusion bodies, the culture medium was supplemented with 3% ethanol (v/v) and cells were subsequently shaken at

25�C for 4 h. After cell lysis in amicrofluidizer, bacterial debris was pelleted two times and the supernatants containing soluble capsid

particles were filtered through 0.45 mm filter units. Capsid particles were purified by i) pelleting through a 30% (w/w) sucrose cushion

(104,000 x g, 12 h, 4�C), ii) sucrose equilibrium density gradient centrifugation (202,000 x g, 12 h, 4�C), and iii) size exclusion

chromatography on a Superose-6 column (GE Healthcare). Particle-containing fractions were identified and quality-controlled by

SDS-PAGE and Coomassie stain (Figure S3A). A similar attempt to express and purify RNDV capsids did not result in sufficient

particle concentrations since the vast majority of RNDV C protein became deposited in insoluble inclusion bodies (a phenomenon

well-known e.g. from DHBV C protein).

For cryo-electron microscopy, 2.5 ml aliquots of purified ACNDV capsids were applied to C-Flat 2/2-2C grids glow discharged

for 30 s at 20 mA. Grids were blotted for 1-2 s and plunge frozen in liquid ethane using an FEI VitRobot Mark 2. Data acquisition

was performed on an FEI Titan Krios (for full-length ACNDV), or an FEI Tecnai F30 Polara (for truncated ACNDV and HBV), both

equipped with an FEI Falcon-II direct electron detector and operated at 300 keV.

For full-length ACNDV, 1,548 micrographs were acquired using FEI EPU software package, with a total dose per micrograph of

25 e-/Å2, a calibrated pixel size of 1.08 Å, and defocus ranging from -1 to -4 mm. Contrast transfer function (CTF) parameters for

each micrograph were estimated using CTFFIND3 (Mindell and Grigorieff, 2003). Particle picking was performed using e2boxer

from the EMAN2 software package (Tang et al., 2007). The 53,431 picked particles were extracted using RELION 1.2 (Scheres,

2012). After extraction, 2D classification was performed using IMAGIC (van Heel et al., 1996) and RELION 1.2 to select regular, intact

particles and remove disrupted particles. 2,547 selected particles were further analysed with RELION 1.2 using a spherical density

with diameter of 40 nm as an initial reference and imposing icosahedral symmetry. Two initial classes were generated, the first of

which showed features consistent with hepadnavirus morphology. This structure was used as a starting model to refine the full

dataset generating a final structure with a measured resolution of 8.0 Å. The structure was sharpened using the relion_postprocess

program with a B factor of -500.

For truncated ACNDV, 1,018 micrographs were acquired using Serial EM software package, with a total dose per micrograph of

35 e-/Å2, a calibrated pixel size of 1.18 Å, and defocus ranging from -1 to -4 mm. Contrast transfer function (CTF) parameters for each

micrograph were estimated using CTFFIND4. 781 particles were manually picked and extracted using RELION 1.3 from binned data

with pixel size of 2.36 Å. After extraction, 2D classification was performed using RELION 1.3 to select regular, intact particles and

remove disrupted particles. 771 selected particles were further analyzed with RELION 1.3 using the ACNDV full-length structure

low-pass filtered at 100 Å as initial reference and imposing icosahedral symmetry. Three initial classes were generated, the first of

which showed features consistent with ACNDV full-length morphology. The 360 particles assigned to this class were unbinned

and further refined against the obtained structure generating a final reconstruction with a measured resolution of 9 Å. The structure

was sharpened using the relion_postprocess program with a B factor of -500.

Sequence Alignments
P nucleotide sequences of known ortho- and avihepadnavirus representatives and all viruses discovered in this study were loaded

into SeaView (Gouy et al., 2010) which allows switching between nucleotide and protein level and has built-in alignment computation

functionalities. In a first step, groups of closely related sequences (for instance the genotypes of human HBV and the woolly monkey

hepatitis B virus) were aligned on the protein level using Muscle (Edgar, 2004) with default parameters followed by manual correction

of alignment mistakes. In a second step, the group-specific alignments were iteratively joined – from low to high sequence diver-

gence – using Muscle in profile-vs-profile mode followed by manual correction of alignment mistakes (Data S2 provides the
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P alignment in fasta format). A PreS/S protein alignment was obtained by in silico translating the Pol nucleotide alignment in the

PreS/S reading frame. To obtain a C amino acid sequence alignment of hepadna- and nackednaviruses (Data S4), we followed

the strategy used for P with the addition that predicted protein secondary structure was taken into account during profile-based

alignments. To this end, we used the HHalign program of HHsuite v2.0.16 (Remmert et al., 2012) with the default parameter config-

uration. HHalign results were incorporated manually into the SeaView-based alignment construction. Graphical representations of

sequence alignments were compiled using Jalview (Waterhouse et al., 2009).

Phylogenetic Reconstructions
For all phylogenetic reconstruction analyses we used ProtTest v2.4 (Abascal et al., 2005) to select the best-fitting amino acid sub-

stitution model. Uncalibrated Bayesian trees were reconstructed using BEAST v1.8.0 (Drummond et al., 2012) with the substitution

model selected by ProtTest and a Yules speciation prior. Two chains were run for five million steps and convergence of the runs was

verified using Tracer (Rambaut et al., 2016a). A variable rate molecular clock model with lognormal distribution was applied (Drum-

mond et al., 2006). For details on parameter optimization of the Bayesian phylogenetic model see below and Table S3.

Virus-Host Cophylogeny Testing
To analyze the concordance of the virus and host tree topologies as measure for the degree of coevolution, we applied ParaFit

(implemented in the R package APE) as distance–based method (Legendre et al., 2002) and Jane4 as event-based method (Conow

et al., 2010). ParaFit statistically tests the extent to which the data fit to the null hypothesis of independent evolution, i.e. random

association of viruses and hosts. Global ParaFit p-values – indicating the probability of the null hypothesis to be true – were calculated

for the whole virus taxon sampling, and independently for nackednaviruses only and hepadnaviruses only. Two separate runs were

performed, one in which the cladistic tree topology was considered solely, and one in which the relative genetic distances of the virus

and host lineages were taken into account in addition (results presented in the legend of Figure S6A). Jane4 is a genetic algorithm

computing solutions to map a parasite tree onto the host tree with least costs for five types of possible events, i.e. parasite-host

cospeciation, parasite duplication, host switch, parasite loss and failure to diverge, respectively. In a first experiment, we used

cladistic trees and performed 13 runs with varying cost values for duplication and host switch events. Statistical post-testing demon-

strated that the costs for all solutions were below the least costs gained under the assumption of random virus-host associations.

Cospeciation events in the nackednaviral and hepadnaviral clade were counted separately in the two largest classes of isomorphic

solutions from each of the 13 runs. In a second experiment, we used virus and host trees divided into eight time zones reflecting the

relative branch lengths. A single run was performed with default cost values and a population size of 1300 at a generation size of 30,

resulting in eight classes of isomorphic solutions which invariantly showed the same pattern of events. The results are presented in

the legend of Figure S6A.

Identifying and Reconstructing eAHBV-FRY
To allow for a time-calibration of the viral phylogeny, we recovered sequences of endogenous avihepadnaviral elements (eAHBV) in

recently publishedwhole-genome sequence data of birds (Jarvis et al., 2014). To this end, we screened theWGSdatabase at NCBI in

tblastn mode using the DHBV C+P protein sequence as query. We retrieved more than 100 hits and selected 35 nearly full-length

eAHBV elements which are orthologues of the previously described eZHBV C element from passerine birds (Suh et al., 2013)

(corresponding to the endogenous zebra finch hepatitis B virus eZHBVbk, as it was first described by Gilbert and Feschotte,

2010). This element results from an integration near the FRY gene and is present in representative genomes of all Neoaves orders

(Figure S7A), but absent in the genomes of Galloanserae (Suh et al., 2013). Hence, the element originated from an ancient exogenous

avihepadnavirus which invaded the genome of a host bird species in the common ancestry of Neoaves after divergence from

galloanserine birds. According to the time-calibration of the phylogeny of modern birds (Jarvis et al., 2014), the endogenization event

must have occurred between 89 and 69 mya. P ORF sequences of the 35 eAHBV-FRY elements were reconstructed using

MACSE v1.01b (Ranwez et al., 2011) with parameters ‘-fs 500 -stop 500 -fs lr 15 -stop lr 10’. The extant DHBV and actively tran-

scribed eJHBV P sequences were used as reference to correct indels and stop codons which were introduced after integration

into the bird genome.

Time-Calibration of the Viral Phylogeny
Time-calibrated Bayesian trees based on 437 conserved amino acid positions of the P protein alignment were reconstructed using

BEAST with the substitution model selected by ProtTest, a calibrated Yules speciation prior, and a variable rate molecular clock

model with log-normal distribution. For details on parameter optimization of the Bayesian phylogenetic model see below and Table

S3. As control for the obtained topology, uncalibrated Maximum likelihood phylogenetic trees were reconstructed using PhyML v3.0

(Guindon et al., 2010) with the same substitution models as in BEAST and 100 non-parametric bootstraps. We followed two ap-

proaches. First, we calibrated the phylogeny by dating the root of the eAHBV-FRY cluster according to the onset of the diversification

of Neoaves. Specifically, we used the slightly different calibration dates of 67.4 mya (Prum et al., 2015), 69 mya (Jarvis et al., 2014),

and 69.2 mya (Claramunt and Cracraft, 2015) for three independent reconstructions, and a consensus tree was obtained from the

joint posterior sets of trees of these three experiments. Second, we performed control calibrations in order to rule out a bias towards
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too high age estimates due to a potentially reduced substitution rate after integration of eAHBV-FRY into the Neoavian host genome.

To this end, we computed 11 independent time-calibrated trees in addition, each of which was based on the dating of one of seven

major diversification events of exogenous hepadnaviruses according to the related host divergence time retrieved from the literature

(The Timetree of Life, 2016; Betancur et al., 2013; Bininda-Emonds et al., 2007; Hedges et al., 2015; Wang et al., 2013) (raw data in

Table S2).

Bayesian Phylogenetic Model Optimization
Parameters of the uncalibrated and time-calibrated Bayesian phylogenetic models were selected using path sampling (PS) and

stepping stone sampling (SS) analysis implemented in BEAST (Baele et al., 2012). The marginal likelihood estimation results are

provided in Table S3.We run in total 28 analyses based on our P alignment, testing various combinations of three different, commonly

used amino acid substitution models, three different clock models, four different speciation priors, and two different chain lengths.

For all priors we used the default distribution in Beauti with the exception of the time-calibrated calculations (analysis 7-10, 17-19, and

26-28 in Table S3) for which we (i) set a uniform prior for the mean clock rate and (ii) used a normally distributed prior with mean of

69.2 and standard deviation of 1.735 for the age of the eAHBV-FRY root according to Jarvis et al. (2014). For the marginal likelihood

estimation we used 64 path steps, chain lengths of 275,000 plus 27,500 burn-in, and the default Beta path step distribution in Beauti.

Two independent runs were performed for each of the 28 analyses and Tracer was used to assess their proper mixing and conver-

gence. Specifically, we compared the JTT (analysis 1-10), LG (analysis 11-19), and WAG (analysis 20-28) substitution models each

with rate heterogeneity across sites modeled through a gamma distribution with four categories (+G). We did not consider substitu-

tion models with site rate homogeneity because they never ranked high in ProtTest. Moreover, we compared the strict clock

(STRICT), the uncorrelated relaxed clock with log-normal distribution (UCLN), and the uncorrelated relaxed clock with exponential

distribution (UCED) models. We also compared the Yule, the Birth-death, the Birth-death with incomplete sampling, and the cali-

brated Yule speciation priors. Other tree priors were not considered due to their inappropriateness for our family-level analysis.

The model parameter configuration chosen for the main analysis – JTT+G with UCLN and Yule speciation prior (uncalibrated model)

or calibrated Yule speciation prior (time-calibrated model) – outperformed all other tested parameter configurations in terms of mar-

ginal likelihood according to both path sampling and stepping stone sampling. Using this parameter configuration, we additionally

run the time-calibrated analysis without data ensuring that the results are not exclusively driven by the prior and with data and for

20 million states (analysis 10) verifying that convergence was reached. The combined traces after burn-in removal of the latter anal-

ysis showed an Effective Sample Size (ESS) of 87.8, which we consider sufficient for proper mixing as the two independent chains

converged to the same solution.

S Protein Evolution
Weighted substitution rates were calculated for sets of 25 hepadnaviruses, 13 nackednaviruses, 7 caulimoviruses, and 6 retroviruses

at each position along the protein-guided codon alignment of P. Non-conserved N-terminal, C-terminal, and spacer regions were

excluded from the analysis. The included viruses represent the available species diversity of the four virus families. The weighted

substitution frequency at a position was calculated as the weighted average of the number of nucleotide differences at that position

between all virus pairs of the family. The weights were calculated as e-PEDwhere PED is the pairwise evolutionary distance estimated

as the sum of branch lengths separating the two viruses in the P phylogeny. In this way, nucleotide differences between closely

related viruses have a higher impact on the weighted substitution frequency than differences between highly divergent virus pairs.

For the same alignment relative frequencies of adenine residues were counted for each position of P. The weighted substitution fre-

quencies and the adenine frequencies were plotted separately for first, second, and third codon positions. Curves were smoothed

using a sliding window approach with a window size of ten and a shift of two codons.

Hypothetical ancestral sequences (HAS) for the S-corresponding reading frame were generated in MEGA6 (Tamura et al., 2013)

based on a nucleotide sequence alignment which comprised the hepadnaviral S ORF and included the sequences of 39 hepadna-

viruses, 13 nackednaviruses, 7 caulimoviruses and 6 retroviruses. The topology of the phylogenetic tree shown in Figure 4 of themain

text served as guide to yield themost probable ancestral nucleotide state for each alignment position. The following parameters were

used for computation: maximum likelihood analysis, GTR model, gamma-distributed rates among sites with invariant sites option.

For the separate HAS of hepadnaviruses or nackednaviruses, respectively, we conducted 15 rounds of randomly subsampling

each of the major ingroup taxa, inferred HAS during each round in MEGA6, and then manually generated a majority-rule HAS

consensus derived from these 15 rounds. In the taxon subsampling for the HAS of the hepadnaviral ancestor, we chose RNDV

and SSNDV as outgroups, and randomly picked one representative of orthohepadnaviruses, metahepadnaviruses, avihepadnavi-

ruses, herpetohepadnaviruses, and parahepadnaviruses, respectively. The subsampling for the HAS of the nackednaviral ancestor

comprised HBV_ayw_Z35716 and DHBV_AY494851 as outgroups, as well as a random sample from the three major nackednaviral

lineages (i.e., RNDV-type, SSNDV-type, and KNDV-Lp-2), respectively. For the reconstruction of the common ancestor of hepadna-

and nackednaviruses, the retro- and caulimoviral sequences served as outgroups.

To determine ancestral branch lengths (Figures 7D–7F), we performed a differential phylogenetic tree inference for those parts of

RT which overlap with S in hepadnaviruses and are conserved across the ingroup and outgroup viruses. The respective nucleotide

alignment was translated to protein level in the P and S-corresponding reading frames and Bayesian trees were reconstructed for

both protein sequences using BEAST (Drummond et al., 2012) with the substitution model selected by ProtTest (Abascal et al.,
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2005) and a Yules speciation prior. Lengths of the branches (measured as amino acid substitutions per site) were determined in

FigTree (Rambaut, 2016) in order to calculate the branch length ratio between the S- and P-frame-based trees.

DATA AVAILABILITY

Annotated genome sequences of all viruses described in this study in gb-format: Data S1. P protein alignment of viral sequences

used in this study in fasta format: Data S2. EM structures of full-length (aa1-174) and truncated (aa1-146) ACNDV capsids, respec-

tively, have been deposited in the Electron Microscopy Data Bank with accession numbers EMDB: EMD-3822 and EMD-3823.
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