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Abstract

Motivation: Single nucleotide polymorphism (SNP) discovery is an important preliminary for

understanding genetic variation. With current sequencing methods, we can sample genomes

comprehensively. SNPs are found by aligning sequence reads against longer assembled refer-

ences. De Bruijn graphs are efficient data structures that can deal with the vast amount of data

from modern technologies. Recent work has shown that the topology of these graphs captures

enough information to allow the detection and characterization of genetic variants, offering an

alternative to alignment-based methods. Such methods rely on depth-first walks of the graph to

identify closing bifurcations. These methods are conservative or generate many false-positive

results, particularly when traversing highly inter-connected (complex) regions of the graph or in

regions of very high coverage.

Results: We devised an algorithm that calls SNPs in converted De Bruijn graphs by enumerating

2kþ 2 cycles. We evaluated the accuracy of predicted SNPs by comparison with SNP lists

from alignment-based methods. We tested accuracy of the SNP calling using sequence data from

16 ecotypes of Arabidopsis thaliana and found that accuracy was high. We found that SNP calling

was even across the genome and genomic feature types. Using sequence-based attributes of the

graph to train a decision tree allowed us to increase accuracy of SNP calls further. Together these

results indicate that our algorithm is capable of finding SNPs accurately in complex sub-graphs

and potentially comprehensively from whole genome graphs.

Availability and implementation: The source code for a Cþþ implementation of our algorithm is

available under the GNU Public Licence v3 at: https://github.com/danmaclean/2kplus2. The datasets

used in this study are available at the European Nucleotide Archive, reference ERP00565, http://

www.ebi.ac.uk/ena/data/view/ERP000565

Contact: dan.maclean@tsl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single nucleotide polymorphisms (SNPs) between genomes of

individuals are valuable markers for tracing the genetic basis of in-

heritable traits or diseases. Rapid detection and creation of large

libraries of SNPs is vital for timely investigation and identification

of genes associated with important phenotypes. Contemporary

sequencing technology can sample genomes comprehensively in only

hours, with these data SNP detection is typically achieved by align-

ing reads to a reference genome and identifying SNPs as a difference

between consensus and the reference (Leggett and MacLean, 2014).

Factors such as the need for a reference sequence and the assumption

of a monomorphic sample mean that the consensus approach is lim-

ited in organisms for which we lack a reference genome, in outbred

diploid samples, bulked population data or analysis of
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metagenomes. To deal with the very large amount of sequence data

that current sequencing technologies produce, De Bruijn graphs

have been used to represent k-mer (nucleotide subsequences of arbi-

trary length k) overlap patterns in sequence reads. These k-mer

graphs have been implemented into efficient data structures for large

collections of k-mers and have proven to be of great utility as the

underlying data model over which numerous de novo genome as-

sembly algorithms have been implemented (Pevzner et al., 2001,

Zerbino and Birney, 2008, Simpson et al., 2009). Methods based on

the De Bruijn graph have been implemented recently that can effi-

ciently identify sample differences in sequence read sets (Iqbal et al.,

2012, Leggett et al., 2013). Iqbal et al. (2012) produced the first

model and de novo assembly algorithms for variant discovery and

genotyping directly from sequence data without using a reference

genome. They incorporated a colour attribute for the edges in the

graph that represents the sample from which the sequence is derived.

In these multi-sample graphs polymorphisms appear as bubbles, a

closing bifurcation of length 2kþ2 with separate colours on each

branch of the bifurcation 1. Discovering bubbles is a promising tac-

tic for identifying SNPs in the graph, the bubble caller in Iqbal et al.

and the more computationally intensive depth-first search method in

Leggett et al. (2013) proceeds by marking the vertices in the graph

that have at least two edges departing from them as starting points

and following vertices sequentially until a vertex with at least two

edges entering it is reached (Fig. 1). An alternative micro-assembly

approach (Peterlongo et al., 2010) begins by producing a tree of k-

mers for an input read set picking a seed k-mer and assuming that it

lies on one path through a SNP and then looks for an opposite k-

mer, one substitution different, which would lie on another path

through the bubble. If this can be found in the k-mer tree, then a re-

cursive algorithm builds paths left and right of each k-mer until they

join or no k-mer can be found. Further to graph structure, the attri-

butes of the sample and sampled sequence reads can be used.

2 Approach

De Bruijn graphs of sequence reads are typically very large with

the vast majority of vertices having only a single in and out edge,

as such no complex bubbles can exist in these areas and much of the

graph need not be searched. Thus, we first build a sub-graph from a

branching vertex that has at least two out edges and search sub-

graphs for cycles. We retain only cycles of length 2kþ2 with two

equidistant branching vertices in which the edge paths on each

branch are a different colour. Internal nodes may be branching.

These constraints allow us to simplify the search for cycles by only

checking the locality of the starting branching vertex. Once the algo-

rithm terminates, a simple walk of the vertices in the bubble, collect-

ing the labels, gives the sequence. The two coloured kþ1 walks

result in separate nucleotide sequences of length kþ1 in which the

first nucleotide differs between the samples. Our method’s very

precise description of a bubble means that it has the potential to be

extremely specific and generate highly accurate lists of SNPs from

graph structure alone.

3 Methods

3.1 Datasets
We used thirteen sets of Illumina sequence reads from different eco-

types of the model plant A.thaliana with the A.thaliana ecotype Col-

0 genome as the common reference (AGI, 2000). For each of these,

high-quality SNP lists are available at the European Nucleotide

Archive under reference ERP000565 (Gan et al., 2011). Reads are

of 36 and 51 bp long with 200- and 400-bp inserts, respectively,

with between 27- and 60-fold coverage. Arabidopsis thaliana has a

small (126 Mbp) tractable genome with only a relatively small re-

peat content and well-catalogued genetic diversity, making it an

ideal test organism.

3.2 2k 1 2 Bubble detection algorithm
We used Cortex (Iqbal et al., 2012) to build a graph directly from

sequence data, removing paths of vertices with coverage 2 or below

and tips less than 100 nucleotides in length. The resulting graph is

exported and is then transformed to an undirected graph, retaining

the edge attributes. Then 2kþ2 (Algorithm 1) is applied to create

short contigs bearing SNPs. The search is based around identifying

sub-graphs to search. The size of the sub-graphs is user defined and

Fig. 1. De Bruijn graph fragment with edge and vertex attributes as repre-

sented in the Cortex software and used in this study. Vertices represent

k-mers from sequence fragments and their reverse complements, edges rep-

resent directional overlap between sequence and edge annotations represent

the changed base between edges. Coloured numbers in vertices indicate

coverage (times the k-mer is observed) in the respective ’orange’ or ’green’

coloured sample

Algorithm 1. A bubble detection algorithm (2kþ2)

1. G is an undirected graph; G ¼ ðV;EÞ, edges have attri-

butes sequence and colour 2 ðorange; green;mixedÞ
2. T is the maximum number of sub-graphs to be created,

T 2 N

3. S is an initially empty set of found cycles, S ¼ �
4. C is an initially empty set of computed contigs, C ¼ �
5. k is the length of the string in the sequence edge attribute,

k 2 N

6. b is a list of all branching vertices in G

7. while t 6¼ T do

8. Build sub-graph gG

9. Select a vertex v from b

10. Traverse 2kþ2 edges in g, store vertices passed as s

11. if v is the current vertex and s has 2 equidistant branch-

ing vertices with distinct variant colours then

12. S s

13. end if

14. end while

15. for s in S do

16. for colour in (orange, green, mixed) do

17. c is empty string

18. Traverse edges of s that have attribute colour

19. Append last character from edge attribute string se-

quence to c

20. end for

21. C c

22. end for

23. Output: Set of contigs C
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chosen depending on the complexity of the graph. A small sub-graph

in a simple graph structure can return no SNPs and a sub-graph in a

very complex structure has a prohibitive running time, there is no algo-

rithmic bound. The algorithm as a whole is fast and can be easily

modified for parallel processing. For the datasets used in this study

searches ran from 4 to 48h depending on the structure of the graph.

In addition, the algorithm has a free parameter to choose the number

of predicted SNPs to call and a time limit parameter to run.

The algorithm allows flexible graph search strategies and by cutting

the graphs into sub-graphs using a neighbourhood technique, we can

speed up the search process and make the search extremely parallel,

and therefore, potentially extremely scalable.

3.3 Using canonical SNP lists to assess accuracy

of the algorithm
To assess the accuracy of the SNPs predicted by 2kþ2, we com-

pared our predictions against published lists of SNPs called in the

Xiangchao et al. (2011) study. The contigs generated by the 2kþ2

algorithm were used as query sequence in a BLASTn search with de-

fault settings (Altschul et al., 1990) against the A.thaliana Col-0

reference sequence and used the top hit in the BLASTn to find the

position of the predicted SNP in the genome. By comparing the pos-

ition of the published SNPs with those from our algorithm, we could

then calculate the number of SNPs accurately predicted by our algo-

rithm as the number found in the published lists, accuracy is calcu-

lated as proportion of predicted SNPs that were included in the

known SNP list. We used three measures of accuracy; sensitivity

(true positive/true positiveþ false negative), specificity (true nega-

tive/true negativeþ false positive) and accuracy (proportion of pre-

dicted SNPs that were included in the known SNP list). Specificity in

this analysis is always very close to 100% because of the very large

number of non-SNP genome sites. As our algorithm searches only a

subset of the graph defined in parameter T (Algorithm 1), we do not

search the whole graph. In experiments here, we search a maximum

of 200 000 sub-graphs and call accuracy on the number of SNPs

retrieved in that set, not the whole graph.

3.4 Using bubble attributes to filter and improve

accuracy
To use a classification algorithm such as decision trees (Quinlan,

1986), 2kþ2 bubble edge attributes were used to create a vector of

values describing each bubble. We used coverage, summed coverage

over each branch of the bubble and the mean number of branching

vertices of the sub-graph where the bubble resides (See

Supplementary Table S1 for summaries of the datasets used for clas-

sification). Each bubble in a graph was classified as a Real SNP or a

false positive according to its presence in the SNP list and were div-

ided into a training set and testing set. Two-third of the dataset is

used for training the classifier and one third for testing. To train, we

used a decision tree found in the freely available WEKA package

(Hall, 2009) and kept the default parameters of the classifier.

4 Results and discussion

4.1 SNP prediction based on structure alone is highly

accurate.
We ran the 2kþ2 algorithm on graphs built with k¼21 and pre-

dicted SNPs in the thirteen A.thaliana ecotypes. On average, we pre-

dicted 144541.6146741.96 19560.318183.2 SNPs. The total

number of SNPs we predicted increases fairly linearly with the genetic

distance of the test ecotype from the reference Col-0 (using the

number of canonical SNPs between Col-0 and each ecotype as a proxy

for distance, Fig. 2B) and we achieved mean accuracy of

83.2783.76 3.83.5% of correctly predicted SNPs (Fig. 2B), indicating

that bubble retrieval with our bubble search algorithm alone produces

highly accurate SNP predictions and that the algorithm can detect

more SNPs when there are more to be detected. The genetic distance

of the ecotype from the Col-0 reference does not have a marked effect

on accuracy in the majority of cases we examined. For 912 of the eco-

types, we observed accuracy clustered around the 85% mark (Fig.

2C), indicating a natural limit on the accuracy of the prediction when

using bubbles. Four of the ecotypes had lower than 80% accuracy.

The accuracy is higher than that seen in the unsorted output of the

Cortex (Iqbal et al., 2012) variant caller, which we reported at around

40% but equivalent to that seen when the output from that program

is sorted according to the Bubbleparse metric described in Leggett et

al. (2013). Independent runs of a later and improved Cortex on a se-

lection of the datasets used here show higher accuracy (936 0.15%,

see Supplementary Data), but recalling a smaller number of the

known SNPs than seen in Leggett et al. (2013) perhaps indicating a

tradeoff between recall and accuracy now available in Cortex.

4.2 Accuracy of SNP calling is consistent across the

genome
To determine whether our strategy suffered from bias towards par-

ticular genomic regions, we compared the position of SNPs pre-

dicted by the 2kþ2 structure with those from the canonical lists for

Col-0 and Tsu-1. Analysis of the proportion of published SNPs

found by 2kþ2 in windows of 20 kbp across the genome showed

consistently high recovery of SNPs. Average recall in the windows

was 73% (Fig. 3). The number of published SNPs detected fell

substantially in regions corresponding to the centromeres, though

the proportion detected increased due to lower numbers of SNPs in

these windows.

Fig. 2. Accuracy of SNP prediction using the 2kþ2 algorithm on 13 A.thaliana

ecotypes. Panel A (left side) shows distribution of accuracy over all 16 eco-

types. Panel B (top right) gives the number of SNPs predicted found by 2kþ 2

as a function of the SNPs expected from the canonical list. Panel C (bottom

right) gives the number of SNPs accurately predicted as a function of the

number of SNPs in the canonical set
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To determine whether SNPs in any particular genomic feature types

were preferentially missed by our algorithm, we examined enrichment

of feature types in the 2.5% least sensitive 20 kbp windows. The distri-

bution of accuracy–sensitivity estimates in the windows was observed

to be approximately normal, and we applied a Bonferroni-corrected

hypergeometric test to each feature type, comparing the proportion in

the TAIR 9 Gene Ontology annotation of the genome with the propor-

tion in the bottom 2.5% of accuracy–sensitivity windows. We saw that

non-coding regions such as pseudogenes and transposable elements

were enriched in the sample (P<0.001; Table 1), it is likely because

centromeric regions are enriched in these features (AGI, 2000). The lack

of bias towards successful SNP calls in any particular genomic feature or

region indicates that the random search strategy we are using to create

sub-graphs does not result in bias towards any specific parts of the gen-

ome, and we conclude that the 2kþ2 algorithm has the potential to be

part of a general SNP finding pipeline.

4.3 The 2k 1 2 algorithm finds SNPs in complex

portions of the graph
To establish the performance of the algorithm in complex regions

of the graph, we compared the total number of branching vertices in

a 100 vertex sub-graph with the number of SNPs that were predicted

when each sub-graph was searched exhaustively. We looked at

54 616, 35 043 and 36 483 randomly sampled sub-graphs with

more than two branching vertices for ecotypes Can-0, Bur-0 and

Po-0, respectively. The majority of sub-graphs have just a few

branching vertices though there are a few very heavily branched

sub-graphs with more than 20 out of 100 vertices with branches

(Fig. 4A). The number of SNPs predicted in each sub-graph is most

usually 1 (49, 36 and 43 of sub-graphs contain only 1 SNP for

Can-0, Bur-0 and Po-0, see Supplementary Data) regardless of the

number of branching vertices. We would expect the total number of

SNPs predicted to increase as graph complexity increases, since

SNPs nearby in the genome (in particular within k of each other)

would increase graph complexity. However, this is not observed, for

sub-graphs with more than 15 branching vertices, we predict only

one SNP in any ecotype (Fig. 4). Intuitively, we would expect the

total number of SNPs predicted to increase as complexity increases

as SNPs nearby to each in the genome other would increase graph

complexity but this is not observed and for sub-graphs with more

than 15 branching vertices, we predict only one SNP in any ecotype

4. Above 90% of predicted SNPs are in sub-graphs with only 2–5

branching vertices (Fig. 4B and Supplementary Data). The result in-

dicates that the algorithm is most successful at retrieving SNPs in

sub-graphs with only two branching vertices, though can handle

Fig. 3. The proportion of consensus-called SNPs predicted by the 2kþ2 algo-

rithm in 20 kb windows of the five Arabidopsis thaliana nuclear chromo-

somes SNPs were called on graphs composed of reads from ecotype Tsu-1

relative to the Col-0 common reference. Red peaks indicate the proportion of

all SNPs (blue area) found by 2kþ2 in each window. Windows reaching

100% likely contain a small number of canonical SNPs, particularly in centro-

mere associated regions

Table 1. Genomic feature enrichment in the A.thaliana genomic

20 kb windows that had the lowest 2.5% called SNP sensitivity

rates in Col-0/Tsu-1 data

Feature Genome

Proportion

Sample

Proportion

P

Exon 0.74 0.72 1

5’ UTR 0.12 0.08 1

3’ UTR 0.11 0.11 1

miRNA 0.00 0.00 1

tRNA 0.00 0.00 1

ncRNA 0.00 0.01 <0.001

Pseudogene 0.00 0.01 <0.001

Pseudogenic transcript 0.00 0.01 <0.001

Pseudogenic exon 0.00 0.01 <0.001

Transposable element gene 0.01 0.05 <0.001

snoRNA 0.00 0.00 1

snRNA 0.00 0.00 1

rRNA 0.00 0.00 1

For each feature type, the proportion of all features in the genome and

in the sample and a Bonferroni corrected P-value from the hypergeometric

test is presented.

Fig. 4. Distribution of number of sub-graphs with given number of branching

nodes (A, top panel) and the number of SNPs predicted in all sub-graphs with

given number of branching nodes (B, bottom panel). Data from three eco-

types Can-0, Bur-0 and Po-0 are presented. Colour scale represents natural

log of counts, see Supplementary Data for real values

Topographical detection of SNPs 645

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/642/2748197 by U
niversity of East Anglia user on 09 N

ovem
ber 2020

accuracysensitivity
accuracysensitivity
p < 
) (
)
 &plus; 
 &plus; 
,
,
,
ure
 &percnt;,
&percnt; 
&percnt; 
subgraphs
supplemental data
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu706/-/DC1
ure
)
 - 
ure
supplemental data
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu706/-/DC1


moderately complex graphs and successfully identify SNPs within

those sub-graphs. We have not been able to confirm whether SNP

density does truly increase with graph complexity, and therefore,

cannot rule out whether SNP prediction drop off in more complex

regions is a true property of the graph or a failure of the 2kþ2 algo-

rithm to detect in these regions.

4.4 Accuracy is improved by filtering candidate bubbles

using a decision tree
We trained a decision tree to distinguish between known SNPs

and non-SNP bubbles and applied it to the predicted bubbles

from 16 ecotypes to successfully classify bubbles that represented

real SNPs with higher accuracy whilst maintaining similar sensitivity

and specificity than using bubble structure alone (Fig. 5).

The specificity ranged between 97.22 and 86.33%, and sensitivities

vary between 84.63 and 68.71% each of which is similar to the val-

ues seen when using structure alone. Accuracy in the predicted SNP

set was from 86.33 to 97.04%, much higher than from structure.

This result indicates that structure and extra bubble attributes

can give very highly accurate sets of predicted SNP sets. In a similar

approach, with very similar A.thaliana data Leggett et al. (2013)

used a ranking heuristic to classify SNPs after initial prediction but

found that accuracy of that heuristic was compromised as the num-

ber of SNPs predicted increased and in SNP sets of over 100 000

each newly predicted SNP has only a 40% likelihood of being

accurate such that SNP sets of the size we predict contained very

high numbers of false-positive SNP calls, the 2kþ2 algorithm and

classifier outperforms that approach significantly returning better

than 90% accurate SNP calls for very large SNP sets.

5 Conclusion

The 2kþ2 algorithm takes a graph theoretical approach to identify-

ing topological structures, namely 2kþ2 cycles in undirected graphs

that can represent SNPs in sequences input to a donor De Bruijn

graph. We have shown that 2kþ2 can be used to generate sets of

SNPs in graphs at high accuracy in the A.thaliana genome which is

increased by application of the decision tree classifier. 2kþ2 found

SNPs across all portions of the A.thaliana genome without bias to-

wards feature type or region. We did not find that all SNPs seen in

alignment-based methods using a reference could be detected with

this algorithm and in all our experiments, we found that around

70% of SNPs seen by alignment could be predicted. The 2kþ2

strategy is, therefore, a useful algorithm that should find general use

in reference-free SNP calling strategies in the future.
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