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 Highlights  17 

- Future climate affects European power systems simulated with EURO-CORDEX 18 

models  19 

- Significant climate uncertainty in key power system properties (demand, renewables)  20 

- Climate uncertainty exacerbated in renewable-intensive power system scenarios  21 

- Spatio-temporal and multi-model aggregation masks complex patterns of change  22 

- Better understanding of climate uncertainty in power system design is needed  23 
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 33 

Abstract   34 

  35 

 Climate simulations consistently show an increase in European near-surface air 36 

temperature by the late 21st century, although projections for near-surface wind speeds 37 

and irradiance differ between models, and are accompanied by large natural variability. 38 

These factors make it difficult to estimate the effects of physical climate change on 39 

power system planning. Here, the impact of climate change on future European power 40 

systems is estimated.   41 

We show for the first time how a set of divergent future power system scenarios lead to 42 

marked differences in Europe’s total energy balance (demand-net-renewable supply) by 43 

2050, which dominate over the uncertainty associated with climate change (~50% and 44 

~5% respectively). However, within any given power system scenario, national power 45 

systems may be subject to considerable impacts from climate change, particularly for 46 

seasonal differences between renewable resources (e.g., wind power may be impacted 47 

by ~20% or more). There is little agreement between climate models in terms of the 48 

spatio-temporal pattern of these impacts, and even in the direction of change for wind 49 

and solar. More thorough consideration of climate uncertainty is therefore needed, as it 50 

is likely to be of great importance for robust future power system planning and design.  51 

  52 

 Keywords: Demand, wind power, Solar PV, climate change, uncertainty, scenarios 53 
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 73 

1 - Introduction   74 

 To meet carbon reduction targets, energy systems across the globe are changing their 75 

power systems rapidly to incorporate low-carbon generation. Substantial growth in the 76 

amount of installed wind and solar power generation has been seen in both advanced 77 

and developing economies (IEA, 2018). Large changes in electricity demand are also 78 

expected due to electrification of heating and transport, economic development, and 79 

changes in thermal comfort requirements (Isaac and Van Vuuren, 2009, IPCC, 2011). 80 

Collectively these changes lead to a growing sensitivity of supply and demand to 81 

meteorological conditions.  82 

 This large increase in weather sensitivity is also occurring at a time of rapid global 83 

climate change. It is well established that global and regional temperatures are 84 

increasing and will continue to increase with human-induced climate change, resulting in 85 

increasing electricity demand for residential cooling (IPCC, 2014, Mideksa, and 86 

Kallbekken, 2010). However, there is less certainty in the response of near surface wind 87 

speeds and surface solar radiation, two key meteorological variables for renewable 88 

power generation (IPCC, 2013). How these meteorological changes impact the 89 

characteristics of wind and solar power production is also less well known (IPCC, 2015). 90 

Europe is a particular region of interest due to the large amount of wind, solar and 91 

hydropower presently installed and planned, alongside the uncertainty regarding future 92 

European climate projections (Stoker et al. 2013; Gonzalez et al 2019). In the European 93 

Union, 17.5% of energy consumed in 2017 was from renewable sources (EUROSTAT, 94 

2019), with an aim of at least 32% renewable energy consumption by 2030 (EU 95 

Commission, 2014). The sensitivity of the European power system to climate is also 96 

likely to increase significantly, given the renewable capacity increases planned to meet 97 

the 1.5°/2° degree Paris agreement targets and multiple countries’ aims for “net-zero” 98 

emissions by 2050 (e.g. the UK; CCC, 2019, and France; HCplC 2019).   99 

 Recent studies investigating the impact of climate change on demand concur that 100 

annual heating-induced demand is likely to reduce, whereas cooling-induced demand is 101 

likely to increase (Mirasgedis et al. 2007, Isaac and van Vuuren 2009, Golombek et al. 102 

2011, Mideksa and Kallbekken, 2012, Damm et al. 2017, Auffhammer et al. 2017, 103 

Spinoni et al. 2018, Arnell et al. 2018). However, the realised trend is likely to depend 104 

strongly on a broader picture of socio-economic and technological change (e.g., 105 

Boßman and Staffell 2015, Kavvadias et al. 2019). By contrast, studies of climate 106 

change impacts on renewable generation potential are far less consistent. For wind, 107 

Jo
urn

al 
Pre-

pro
of



some studies find moderate reductions in projected wind power generation over Europe 108 

(Barstad et al, 2012, Tobin et al. 2016, Tobin et al. 2019) particularly in summer 109 

(Moemken et al. 2018) while others find increases (Cradden et al. 2012, Hueging et al. 110 

2013). Changes in the inter-annual and seasonal variability of wind power generation are 111 

also found across Europe (Hueging et al. 2013, Weber et al 2018). For solar photovoltaic 112 

(PV) power generation potential there is a similarly inconsistent climate change 113 

response: Jerez et al. (2015) suggest a reduction in solar PV potential across all of 114 

Europe, with largest reductions over Scandinavia, whereas other studies find that solar 115 

PV potential generally increases in Central-Southern Europe and decreases in Northern 116 

Europe, with an overall increase across Europe (Wild et al. 2015, Müller et al. 2019).   117 

 The previously discussed studies have shown potential impacts of climate change on 118 

electricity demand, wind and solar PV generation. A key limitation is that they are 119 

focussed on a single electricity variable and do not directly consider the integrated 120 

impact of climate change on power systems through simultaneous changes in demand 121 

and both wind and solar power generation. Recently, several integrated power system 122 

impact studies have emerged for individual countries or regions. Many of these have 123 

focussed on quantifying the role of “present-day” inter-annual clima te variability 124 

(Bloomfield et al. 2016, Staffell and Pfenninger 2018, Collins et al. 2018, Drew et al. 125 

2019, Wohland et al. 2019). There are, however, relatively few studies which address 126 

long-term (decadal scale) climate projections at continental scale.   127 

 Bloomfield (2017) investigated the impact of climate change on demand and wind 128 

power generation for the United Kingdom using a single global climate model, showing 129 

that with a quadrupling of CO2 emissions moderate reductions in annual demand are 130 

seen with little change in wind power generation. Tobin et al. (2018) studied the 131 

vulnerabilities of wind, solar, hydro and thermoelectric power generation across Europe 132 

under three different climate scenarios. In each case, the most consistent response 133 

across several climate models came from the temperature-sensitive aspects of the 134 

power system, primarily through demand (alongside consequences for the cooling 135 

efficiency of thermoelectric power generation). Although Tobin et al. (2018) rigorously 136 

analyse the weather-dependent power system components they do not compare 137 

different economic scenarios to benchmark the magnitude of the climate induced 138 

response. Kozarcanin et al. (2019), using six climate models, calculated power system 139 

infrastructure metrics (relating to transmission, storage and the total volume of electricity 140 

generation) based on a single Europe-wide power system model incorporating wind, 141 

solar and demand. They demonstrated that for most of these metrics, the impacts of 142 

21st century climate change are modest relative to the magnitude of present-day inter-143 

annual variability. Elsewhere, in the US, Craig et al. (2019) showed that although optimal 144 

power system design in Texas is potentially impacted by climate change through 145 

changes in wind and solar generation, the sign and magnitude of the changes – 146 

particularly in individual component technologies - are very dependent on the choice of 147 

climate model.   148 

 The aim of this study is therefore to understand the sensitivity of possible future 149 

European power systems to both the choice of power system scenario and the potential 150 

impacts of climate change (including identifying the roles of emission scenarios and 151 

climate model uncertainty). Although previous studies have addressed various individual 152 
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components of this problem to a limited extent, this is the first study to examine the 153 

impact of all these sources of change and uncertainty simultaneously. Having an 154 

understanding of the relative magnitude of both of these types of uncertainty (i.e., power 155 

system scenario and climate change projection) is important for future policy design in 156 

highly weather-dependent systems, for which the magnitude of the climate uncertainty 157 

has been shown to be increasing (Bloomfield et al., 2016). To do this the following three 158 

aims are addressed:  159 

- Firstly, we investigate the impact of climate change, within a chosen power system 160 

scenario, on relevant surface climate indicators and weather-dependent power-system 161 

components: i.e., the extent to which a given future power system scenario is affected by 162 

climate change and uncertainty.   163 

- Secondly, we investigate the extent to which these impacts of climate change and 164 

uncertainty can be understood in terms of differences between technologies (i.e. the 165 

amount of installed wind and solar power generation) and geographic location.   166 

- Finally we investigate if the gross operating characteristics of different high-level 167 

European energy policy scenarios (e.g. 100% renewable vs. large amounts of carbon-168 

capture and storage) are strongly impacted by climate change, making comparisons to 169 

the previous two aims.   170 

 This study makes use of country-level time series of meteorological variables, electricity 171 

demand, and wind and solar power generation from the Copernicus Climate Change 172 

Service (C3S) European Climate Energy Mixes (ECEM) project (Troccoli et al. 2018). As 173 

well as addressing the questions defined above, this paper also illustrates the potential 174 

use of ECEM data to motivate further investigation by the energy systems research 175 

community. The analysis presented here can be replicated and extended using this 176 

publicly available and easy-to-use dataset.  177 

 The paper is structured as follows. Section 2 describes the ECEM dataset in detail and 178 

introduces the modelling framework and energy system scenarios used for the analysis. 179 

Section 3 begins by showing the impact of climate change on a fixed present-day energy 180 

system, for a series of power system relevant climate variables (section 3.1), followed by 181 

demand (section 3.2), wind power generation (section 3.3) and solar power generation 182 

(section 3.4). Following this, a combined system approach is taken to assess how the 183 

uncertainty in the climate change projections is impacted when demand and wind/solar 184 

power are analysed together with increasing levels of renewable generation (section 185 

3.5). A storyline-based approach, to understanding system uncertainty (which explores 186 

contrasting but equally plausible scenarios) is then presented based on a comparison of 187 

two contrasting model responses (section 3.6). Finally, the impact of near-future (to 188 

2065) climate change on the choice of energy policy scenario is investigated (section 189 

3.7). The latter analysis enables context to be given to the magnitude of the climate 190 

uncertainty that is presented in the previous results sections. The paper concludes in 191 

section 4 with a discussion of the main sensitivities explored in this study and their 192 

implications for energy-climate research and policy.  193 

 194 

2 - Methods and Data  195 
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 2.1 - The ECEM climate and energy dataset  196 

  197 

 The data used in this study is taken from the C3S ECEM demonstrator (ECEM 2020, 198 

Troccoli et al. 2018; Goodess et al. 2019). They are derived from two underlying sources 199 

of climate data. Firstly, a bias-adjusted reanalysis (ERA-Interim, Dee et al. 2011; see 200 

Jones et al. 2017 for bias adjustment methodology) spanning the period 1979-2016; and 201 

secondly, regionally downscaled climate model projections covering the period 2006-202 

2100.   203 

 For the projections, two emissions scenarios are included (Representative 204 

Concentration Pathways RCP4.5 and RCP8.5), for a set of six EURO-CORDEX global-205 

regional climate model pairs (i.e., a global climate model is downscaled using a regional 206 

climate model over a limited spatial domain). The choice of climate models and 207 

emissions scenarios are described in detail in Bartok et al. (2019), but in summary, the 208 

subset of six EURO-CORDEX models selected is considered to provide a plausible 209 

representation of present-day European climate, while the inter-model range is intended 210 

to span a range of plausible climate change responses of the wider 11-member EURO-211 

CORDEX set.   212 

 For each climate model and emissions scenario, seasonal and annual-mean near-213 

surface temperature, near-surface wind speed, surface solar radiation, electricity 214 

demand, onshore wind power capacity factor and photovoltaic (PV) solar power capacity 215 

factor data are downloaded from the ECEM website. In our analysis, energy systems 216 

without significant storage are considered (i.e. energy generated from wind and solar PV 217 

must be prioritised and used to meet demand as soon as it is generated). Due to the 218 

more complex operating characteristics of hydropower generation, it is excluded from 219 

this analysis, and therefore reference to “renewables” is restricted to wind power and 220 

solar PV generation. Other aspects of present day power systems that may be impacted 221 

by climate change (either directly or indirectly depending on the relationship to 222 

meteorological variables) are: offshore wind power (see section 2.1.2 for the motivations 223 

for this choice), the efficiency of thermal power plants and transmission lines, availability 224 

of water for thermal cooling, availability of biomass resources, deep geothermal, 225 

concentrated solar power, and the potential for use of current and future energy storage. 226 

Wind and PV solar power are amongst the fastest growing renewable sources and this is 227 

why they have been considered. Moreover, it is by assessing individual demand, wind 228 

and solar power generation components, as well as at their aggregate values, that it is 229 

possible to better plan for the others (e.g. those listed in the previous paragraph). This 230 

type of assessment has previously been implemented in Bloomfield et al., (2016) to 231 

quantify the impacts of present day climate variability on a power system with various 232 

levels of wind power generation.  233 

 Future work with an increasingly developed dataset could begin to explore the impact of 234 

climate change on a more “complete” power system perspective. This is currently 235 

beyond the scope of this work. A full description of how the two renewable energy 236 

variables are created from the meteorological variables and validated is given in Saint-237 

Drenan et al. (2018) and Dubus et al. (2017a, 2017b) but a brief description of each 238 

conversion model is provided below.  239 
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 2.1.1 - Demand model  240 

 Daily electricity demand is modelled in two stages using a Generalised Additive Model 241 

(GAM) approach. The long term changes in demand (due to socio-economic and 242 

technological factors such as changes in population) and the daily weather-dependent 243 

residuals are modelled separately. Meteorological variables included in the modelling of 244 

the weather-dependent residuals include near-surface temperature, surface solar 245 

irradiation, relative humidity and wind speed. The two components can then be re-246 

combined to get a modelled time-series of an individual country’s demand.  247 

 For most of this paper, fixed demand data available from the ECEM Demonstrator is 248 

used. This therefore isolates the component of demand associated with physical 249 

changes in climate (see section 2.2.1 and Figure 1 for further definition). To compare the 250 

impact of climate change to the impact of policy-based decisions on European power 251 

systems, we use demand data modelled using five contrasting e-Highway20501 252 

scenarios, (evolving scenarios; see section 2.2.2 and Figure 1 for further definition). The 253 

evolving demand data is used in Section 3.6 to understand the impact of climate change 254 

on high level policy choices.  255 

 2.1.2 - Wind power model  256 

 National wind power capacity factor is calculated first at each individual bias-adjusted 257 

reanalysis grid box (by extrapolating near-surface winds to a constant hub-height of 100 258 

m and then converting them through a standard wind power curve), assuming a 259 

simplified homogeneous distribution of wind farms. The capacity factor is then 260 

aggregated to country level using a geographical averaging procedure that takes into 261 

account the cosine of the latitude, to account for the different areas of grid boxes. The 262 

national level wind energy generation is calculated by multiplying the capacity factor by 263 

the nationally-installed capacity as appropriate (see Figure 1 for the two possibilities of 264 

fixed or evolving installed wind power capacity scaling that are used). Note that, for 265 

future scenarios with increased wind capacity, it is assumed that the distribution of wind 266 

farms within the country is also homogeneous, giving the same weight to each individual 267 

model grid point regardless of how the wind farm distribution may have evolved.   268 

 In the ECEM project only onshore wind farms were considered due to bias-adjusted 269 

wind speed data only being available for these sites. Before bias correction the 270 

reanalysis data was interpolated onto a 0.5 degree grid (to be comparable with the 271 

observations used for bias correction), resulting in a general smoothing of the data. At 272 

this somewhat coarse resolution in some countries it is challenging to discriminate 273 

between grid points where wind power generation would or would not be permitted, 274 

hence the decision to apply a homogenous distribution of wind farms.   275 

 It is has previously shown that offshore wind power capacity factors are generally 276 

higher, and less variable than onshore wind power capacity factors (Drew et al., 2015) 277 

which could influence the results of this study. The chosen wind power model does 278 

however perform favourably over Europe, when compared to other state-of-the-art 279 

reanalysis-derived energy products (see Troccoli et al., 2018 for comparison of country-280 

level mean capacity factors).  281 

 2.1.3 - Solar power model  282 
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 Solar PV production is estimated first on a grid cell basis using a physical model of 283 

capacity factor. The meteorological inputs for the model are surface irradiance and 2 m 284 

temperature, as well as solar zenith angles. These are then passed through an empirical 285 

solar power curve to give a resultant solar power capacity factor at each grid box. The 286 

capacity factors are aggregated to country scale using a homogenous distribution of 287 

solar PV production across each country, as there is no comprehensive geographical 288 

data on installed solar PV capacity available spanning the whole of Europe. The 289 

characteristics of the PV modules included within the empirical model (e.g., module 290 

orientation, module power curves) are estimated using statistical techniques (see Saint-291 

Drenan et al. (2018) for further technical details of the methodology). The national 292 

capacity factors are then scaled by the nationally installed capacity as appropriate (see 293 

Figure 1 for the two possibilities of fixed or evolving installed solar power capacity 294 

scaling that are used). For future scenarios with increased solar PV capacity, it is 295 

assumed that the distribution of solar PV within the country remains homogeneous.   296 

 The impact of using a homogenous distribution of solar PV capacity within each country 297 

is discussed at length in Saint-Drenan et al. (2018), by comparing it’s performance 298 

against a models with detailed information on the spatial distribution of PV plants in 299 

France and Germany. There, it is noted that model performance is not significantly 300 

degraded by an assumption of uniform spatial distribution for these countries where 301 

spatial capacity data is readily available. It is, however, expected that solar PV would 302 

tend to be installed in regions that experience the largest number of hours of sunshine 303 

(typically the southern latitudes of each country) and the homogeneous spatial 304 

distribution assumption therefore provides a conservative estimate of future potential PV 305 

generation (and is particularly noticeable for countries with a larger latitudinal range, 306 

such as Norway and Sweden).  307 

 2.2 – Energy system evolution  308 

 Future electricity production depends on both the weather conditions and the socio-309 

technological evolution of demand and generating capacity, including the energy mix. To 310 

differentiate between these two drivers, the analysis is organised in two steps. First, the 311 

contribution of climate change and variability is isolated by considering a “fixed” power 312 

system configuration (i.e., the background demand-trend associated with socio-313 

economic drivers is removed and installed renewable capacities are held fixed at 2015 314 

levels; the fixed scenarios in Figure 1). Secondly, the complete ECEM future electricity 315 

system projections are analysed. Changes in demand and renewable generation from 316 

the second step are therefore associated with changes in the physical climate and an 317 

evolving energy system scenario (i.e., socio-economic drivers of demand, increased 318 

renewable generation capacity; the evolving scenarios from Figure 1).   319 

 2.2.1 – Step 1: Fixed demand and generation capacity portfolios  320 

 A fixed power-system, whereby the installed capacities and the background demand 321 

level is held constant, isolates the impacts of climate on the output energy variables (see 322 

Figure 1a-c). Here, two fixed systems are considered, one corresponding to the 323 

“present-day” system (circa 2015), and a second based on the European Reference 324 

scenario (EUREF, Capros et al., 2016) installed wind and solar capacities in 2050. The 325 

EUREF scenario is believed to be a highly plausible future energy pathway at the time of 326 
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writing. A key point to note is that, in each case, the fixed power system scenario 327 

(whether for 2015 or 2050) is applied across the whole of the climate time-series (i.e., 328 

from 1979-2065) for each of the RCPs.   329 

 The break-down of installed wind and solar power by country for each of the fixed 330 

scenarios is shown in Figure 2. A possible fixed future demand dataset has not been 331 

used in this study, as the analysis is focused around the impact of increasing renewable 332 

capacity on changes in residual-load. Due to the large volume of data which has been 333 

analysed (six climate models, 2 RCP scenarios, 26 countries) from here on we focus on 334 

the European-total response (i.e. the sum of all countries) and four representative case-335 

study countries. These are chosen to be geographically diverse and to have contrasting 336 

levels of installed wind and solar capacity in 2015. Details of the selected case-study 337 

countries are given in Table 1.   338 

 To demonstrate the impact of climate change on the fixed energy systems, results are 339 

displayed as differences between two 20-year time periods (1980-2000 and 2045-2065). 340 

An annual and seasonal breakdown of the differences is given for the European total 341 

and the four representative case-study countries. To assess the confidence in the results 342 

shown in sections 3.1-3.5 the change between the two 20 year periods is bootstrapped. 343 

To do this a randomly selected 1 year block of data is taken from each of the 20-year 344 

time periods from which the difference between these two sampled periods can be 345 

found. 2000 samples are taken to provide an estimate of how dependent the results are 346 

on the particular 20 years that were present in the original sample.  347 

 2.2.2 – Step 2: Evolving generation capacity portfolios  348 

 To compare the magnitudes of future climate and future energy system uncertainty 349 

(section 3.6) a set of evolving generation scenarios are required (see Figure 1d-f). 350 

Evolving energy projections are available from the ECEM project, based on five different 351 

scenarios from the European e-Highway2050 (2015) project. These energy scenarios 352 

were developed to span a diverse range of possible future energy pathways. Details of 353 

European demand, wind power and solar power capacities for each of the e-Highway 354 

scenarios are given in Table 2 and are compared to the more recent EUREF scenario 355 

(this was not available during the ECEM project, hence it not being included as an 356 

evolving scenario). The values of installed capacity for each renewable type are 357 

specified in the e-Highway2050 (2015) scenarios at only three snapshots in time: 2030, 358 

2040 and 2050. Therefore, to create the future energy system simulation, the capacities 359 

were interpolated in linear increments each year between these snapshots (and also in 360 

the period between 2015 and 2030).   361 

 362 

3 - Results   363 

 3.1 - Impact of climate change on European surface weather   364 

 Figure 3 shows the impact of climate change on the European-averaged 2m 365 

temperature, 10m wind speed and surface irradiance. There is an increase in 2m 366 

temperatures in the future period (2045-2065 compared to 1980-2000), which is 367 

exacerbated in the higher RCP scenario, and is clearly seen in all seasons (Figure 3a). 368 
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All of the climate models agree in the sign of the temperature response, although the 369 

magnitude of the response is sensitive to the choice of climate model. Similar results are 370 

seen in all the individual case-study countries (see Figure S1). The sampling uncertainty 371 

on the change in 2m temperature (assessed using a bootstrapping approach and 372 

represented by the black bars on the individual climate model simulations) is largest in 373 

winter, and of comparable magnitude to the mean difference between RCP4.5 and 374 

RCP8.5.   375 

 The response to climate change is far less clear for near-surface wind speeds (Figure 376 

3b). The multi-model annual-mean response is close to zero for both RCPs, but some 377 

models suggest moderate, statistically significant increases in annual mean wind speeds 378 

while others suggest reductions. The sampling uncertainty is much larger than for 379 

surface temperature and is largest over smaller spatial scales (compare Figure 3b with 380 

Figure S2). Climate models suggesting increases in RCP4.5 tend to also suggest 381 

increases in RCP8.5 and vice versa, suggesting that the inter-model differences are not 382 

simply due to sampling of internal variability. Overall, however, the impact of climate 383 

change on European annual-mean near surface wind speeds is very sensitive to the 384 

choice of climate model, with different models showing contrasting responses.  385 

 The annual-mean response of European surface irradiance to climate change is a ~1 386 

Wm-2 increase in RCP4.5 and ~1 Wm-2 decrease in RCP8.5. However the individual 387 

climate models exhibit a vast array of responses (Figure 3c) with some models having a 388 

drastically different response to climate change to the other models, emphasising the 389 

danger of relying on either an ensemble-mean climate response or a single model for 390 

impact assessments. High levels of sampling uncertainty and differences between 391 

models are also seen in the individual case-study countries (Figure S3), suggesting 392 

spatial variations are being averaged out in the European total.   393 

  394 

3.2 - Impact of climate change on electricity demand in a fixed present-day power 395 

system  396 

 To isolate the role of climate change and climate uncertainty in driving changes in 397 

power system behaviour, the “fixed” power system scenario approach is adopted here, 398 

as described in Section 2.2.1. Figure 4a shows the multi-model mean percentage 399 

change in European demand between 1980-2000 and 2045-2065 under a fixed 2015 400 

power system. Across Europe there is a ~1% reduction in annual demand which is 401 

slightly larger in RCP8.5 than RCP4.5. The seasonal breakdown of this response shows 402 

that in winter, spring and autumn a reduction in mean demand of ~2% is seen. In 403 

contrast, an increase in demand of ~1.5% is seen in summer. In both cases larger 404 

responses are seen for RCP8.5 than RCP4.5. The modest response in annual mean 405 

demand therefore occurs as a response to strongly compensating seasonal signals.   406 

Comparing the responses in individual models and their associated sampling 407 

uncertainties confirms that the sign of change is robust across all models. These 408 

responses are also consistent with the 2m temperature responses (Section 3.1) insofar 409 

as warmer temperatures lead to a reduction in demand for heating in cooler seasons 410 

and increased demand for air conditioning, and more general cooling needs, in summer 411 

(consistent with Damm et al. 2017 and Tobin et al. 2019).   412 
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 The modest climate change response in demand over the whole of Europe, however, 413 

masks considerable geographical diversity (Fig 4b to e). In Sweden a reduction in 414 

demand is seen in the annual mean (~3%) and in each season (~5%), although the 415 

reduction is smallest in summer. In contrast, Italy experiences increased annual-mean 416 

demand due to larger increases in summer (~5%) and autumn (~1%) than the 417 

reductions seen in other seasons. In Romania and Germany, the signs of the change in 418 

each season are the same as for Europe as a whole, however in Germany the 419 

percentage changes are much smaller. These differences in the temperature-driven 420 

response of demand between individual countries reflect the complex mixture of different 421 

temperature sensitivities between the demand models used in each country: for 422 

example, the relative share of electric vs. gas-based heating or the relative size of the 423 

residential sector. The differences also reflect the background meteorological conditions 424 

prevailing and the non-linear nature of the demand model: for example, a climate-425 

change induced 1°C increase in winter temperature may lead to less heating demand if it 426 

corresponds to a change from 8°C to 9°C, but the same 1°C increase may have less 427 

impact if it corresponds to a change from 16°C to 17°C.  428 

 3.3 - Impact of climate change on wind power generation in a fixed present-day power 429 

system  430 

 The mean changes in European wind power generation between 1980-2000 and 2045-431 

2065 are shown in Figure 5 for Europe and the four case-study countries, assuming a 432 

fixed 2015 power system. The European annual multi-model mean response to climate 433 

change is a ~1% reduction in generation, with a slightly smaller response in RCP8.5 434 

than RCP4.5 (Figure 5a). However, unlike demand there is considerable spread across 435 

the individual climate model simulations (up to ± ~8%), and the individual models do not 436 

even agree on the sign of the change. When the change is examined seasonally this 437 

uncertainty is exacerbated, particularly in summer. There is large sampling uncertainty, 438 

with differences between samples of years being greater than the sign of the projected 439 

change.   440 

 This large range of model responses and large sampling uncertainty is further 441 

exacerbated in each of the four individual country case-study countries (Figures 5b to d). 442 

For example, Italian summer wind power generation is projected to increase under 443 

RCP8.5 by >30% in two models (one not shown on the graph because of the scale). 444 

However, ~10% reductions are seen in three other models, and no change is seen in the 445 

remaining model. This is consistent with previous studies that show large uncertainty in 446 

the sign and magnitude of the response of wind power generation to climate change 447 

when comparing multiple models (e.g. Reyers et al. 2016, Tobin et al. 2019).   448 

 The first model in the six-model set (left hand point on each bar in Figure 5) has a very 449 

different response when compared to the rest of the models (consistent with the results 450 

for European wind speeds; Figure 3). The inclusion of this model within the 6-member 451 

ensemble (which we note are all chosen as plausible future climate projections; Bartok 452 

et al. 2019) emphasises that reliance on an ensemble-mean response to climate change 453 

can lead to misleading results.   454 

 In summary, while the impact of climate change on wind power generation appears 455 

relatively small when looking at the ensemble mean response, this masks the differing 456 
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responses of individual models, which is exacerbated by spatial and temporal averaging. 457 

In contrast to electricity demand, the sampling uncertainty associated with natural 458 

climate variability is very large for wind power generation compared to the impact of 459 

climate change.  460 

  461 

 3.4 - Impact of climate change on solar power generation in a fixed present-day power 462 

system  463 

 For the fixed present-day power system, the percentage multi-model mean change in 464 

European solar power generation is similar to that seen for demand (compare Figure 4 465 

and Figure 6). Across Europe there is a ~1% reduction in solar generation in the multi-466 

model mean, which is larger in RCP8.5 than RCP4.5. However, again this relatively 467 

modest change occurs as the product of competing responses seasonally, 468 

geographically, and across different climate models. Large mean reductions (3-5%) are 469 

seen in winter and spring, with moderate increases in summer and autumn. In contrast 470 

to the results for European demand, the individual models have a large range of 471 

responses (±5%). The changes are robust to sampling uncertainty within each climate 472 

model but are inconsistent across the multi-model ensemble. This again emphasises the 473 

potential dangers of using either an individual model or ensemble-mean for impact 474 

studies, as both result in a lack of range of potential climate response.  475 

 The responses from individual case-study countries are not all similar to the European 476 

total response. Sweden and Germany see reductions in the multi-model mean annual 477 

solar generation, which are consistent with projected increases in precipitation and 478 

cloudiness (Kjellstrӧm et al. 2010). In Romania there is a ~1% increase in the multi-479 

model mean solar generation in RCP4.5, but a ~1% reduction in RCP8.5, whereas only 480 

very small changes are seen for Italy. There is a large model spread around each of 481 

these responses, although within each model, the sampling uncertainty is small (in 482 

contract to the corresponding wind power generation results from Figure 5). The solar 483 

PV model uses both surface solar irradiance and 2m temperature. The trends observed 484 

here are then explained by the changes in both weather variables. A decrease in 485 

irradiance means a decrease in solar power generation, while increases in air 486 

temperature also lead to a reduction in solar power generation, as solar panel efficiency 487 

decreases for higher temperatures.  488 

 3.5 - Impact of climate change on residual-load in present-day and future power 489 

systems  490 

 Although the response of individual technologies is useful for scientific understanding 491 

and to inform the planning of solar and wind farms it is beneficial for decision makers to 492 

view the compound response of the weather-dependent energy system to climate 493 

change. For this reason, the impact of climate change on European level residual-load 494 

(i.e. demand minus wind and solar PV) is presented here.  495 

 Figure 7a shows the European-level response of residual-load to climate change, 496 

assuming the fixed 2015-like present-day power system. Almost all models agree with 497 

each other on the sign of the response. However, the spread between the climate 498 

models is larger than for demand only (compare Figure 7a and Figure 4a). This is due to 499 
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the large model spread in the wind power and solar power responses to climate change 500 

(Figures 5 and 6). The contribution of wind and solar PV generation also makes the 501 

changes more sensitive to sampling uncertainty.   502 

 In Figure 7a the total installed capacities of wind and solar PV are modest compared to 503 

the scale of total European demand. Figure 7b, however, shows how climate change 504 

would affect a power system with much higher renewable capacities (i.e. the fixed 2050-505 

like power system, see Section 2.2.1). Increasing the installed wind and solar capacity 506 

across Europe results in a moderate increase in the multi-model mean response of 507 

residual-load to climate change. This has the same sign as for the present-day system, 508 

but with much larger spread between the individual models (with models now often 509 

disagreeing on the sign of the multi-model mean response), and much larger sampling 510 

uncertainty. This suggests that for future power systems with high renewables 511 

penetration, there is considerably less certainty in the potential impacts of climate 512 

change, due to our limited understanding of the future responses of near-surface wind 513 

speeds and surface solar radiation to climate change.   514 

 3.6 A storylines-based approach to climate uncertainty in energy systems  515 

 One of the key challenges in studies which assess the uncertainty of future climate 516 

projections is how these results can be used by decision makers. To achieve this goal, 517 

results should be communicated in an easily digestible way. A possible way to do this is 518 

to reduce the number of simulations and look for coherence between model responses 519 

through a storylines-based approach (Shepherd et al. 2018, Shepherd et al. 2019, 520 

Zappa 2019).  The approach can strengthen decision-making by allowing the user to 521 

work backward from a particular vulnerability, question or decision point, for example 522 

“How much residual-load will be required over Europe by 2050?” A storyline is therefore 523 

presented here that discusses the European total climate response by comparing two 524 

climate models exhibiting grossly different model responses.   525 

 Figure 8 shows the multi-model mean change in residual-load between 1980-2000 and 526 

2045-2065 for RCP8.5. The multi-model mean response is a ~2% reduction in residual-527 

load, associated with a ~5% reduction in winter and ~5% increase in summer. However, 528 

examining the individual model simulations shows that no individual climate model 529 

exhibits a response that is similar to the multi-model mean. Two contrasting responses 530 

are shown in Figure 8 (these correspond to the first and fifth individual climate models 531 

indicated in the bar charts in Figures 3-7). Model 1 suggests a much more marked 532 

reduction in residual-loads than the multi-model mean, with these reductions occurring 533 

preferentially in winter.  By contrast, Model 2 suggests increases in annual-mean 534 

residual-load over much of western Europe with the strongest signal in summer.  535 

 A key point to emphasise is that, in the absence of any reason to discount one or more 536 

of these climate models, each of these scenarios should be considered equally plausible 537 

estimates of future climate. Moreover, as all climate models frequently share many 538 

elements of code, they cannot be considered as unbiased estimators. This means that, 539 

although it is difficult to detect a change in residual-load “signal” due to anthropogenic 540 

future climate change, it is still possible to identify plausible scenarios of future changes 541 

in residual-load that might occur. This raises a fundamental question regarding the 542 

purpose of climate information in power system planning: should future power system 543 
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design be robust to the signal of climate change, or the wider plausible range of climates 544 

it might face? The former approach is well suited to avoiding false-alarms (falsely 545 

identifying a climate change signal) but suffers from missed-warnings – i.e., it ignores 546 

possible outcomes because they cannot be reliably detected (Shepherd, 2019).  547 

 3.7 - Impact of climate change on high-level energy system policy choice  548 

 The widely differing power-system pathway scenarios outlined in Table 2 show that 549 

there are a broad range of plausible policy choices which could be taken to meet carbon 550 

reduction targets. These differences can be expected to lead to significant differences in 551 

projected renewable generation and consequent implications for residual-load.   552 

 Figure 9 shows the contrast between the magnitude of the impact of physical climate 553 

change to 2065 (and its attendant uncertainty – due to choice of climate model and 554 

emissions scenario), and the gross differences that are produced by these high-level 555 

policy choices. The “Fossil and Nuclear” energy scenario (see Table 2) is not included in 556 

Figure 9 due to its very low relevance to current energy policy, however this scenario is 557 

included in Figure S4 for completeness. A key result is that, after 2025, there is almost 558 

no overlap between the climate realisations produced under different energy system 559 

scenarios. The differences between individual climate model realisations and between 560 

different RCP scenarios for the same energy scenario are very small compared to the 561 

differences produced by the energy scenarios themselves. This shows that, while the 562 

choice between these high-level power system planning pathways is important for 563 

climate mitigation, levels of European total energy variables that will result are not 564 

themselves strongly influenced by the choice of these two emissions pathways. Viewed 565 

in this way, the uncertainty in power system behaviour associated with climate change is 566 

perhaps rather modest. We do however note that the RCP scenarios available from the 567 

ECEM data are not strong mitigation scenarios (such as RCP 2.6). The inclusion of this 568 

scenario would lead to greater distinction between the climate change scenarios. This 569 

conclusion does not, however, mean that the impact of physical climate change, 570 

including changes in extreme events, can be safely neglected. This is because 571 

eventually the future power system will be just one amongst all possible options or 572 

scenarios.   573 

 574 

4 Conclusions  575 

 Power systems are in a rapid period of change as countries around the world seek to 576 

decarbonise their economies. Power systems in Europe are faced with complex and 577 

profoundly different scenarios concerning the gross configuration of a future ~2050 578 

power system, from highly renewable to fossil-intensive. These power system changes 579 

also occur against a changing climate which may itself strongly impact on renewable 580 

resources and demand. This study has shown, for the first time, the extent to which 581 

gross aspects of national and European renewable supply and demand are affected by 582 

both physical climate change and the choice of power system pathway. We note that in 583 

this study we have not reproduced the behaviour of a real power system but rather the 584 

availability of renewable energy within a set of potential system pathways to meet 585 

demand.This work has been made possible by the creation of multiple constituent 586 
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European energy systems realisations available from the ECEM project. Novel highlights 587 

from this study are as follows:  588 

 The gross characteristics of European-total annual-average supply-demand balance in 589 

future power systems are dominated by policy-level questions around power system 590 

design.   591 

 Significant climate impacts are, however, found within any given energy pathway, 592 

particularly at sub-continental and sub-annual scales.  593 

 Averaging climate change responses over multiple climate models leads to small mean 594 

energy responses, which are not representative of individual climate model trajectories, 595 

or potential future energy system uncertainty. Adopting a storyline-based approach – 596 

whereby multiple plausible future climate scenarios are identified to test system design – 597 

may therefore be a more appropriate strategy for addressing future climate risk.  598 

 Aggregating over multiple models leads to a relatively modest average signal but this 599 

leads to two important questions of how this “aggregate result” should be interpreted. 600 

Firstly, there is an issue concerning the role of multi-climate-model averaging. Taking the 601 

multi-climate-model mean boosts the “signal” when seeking to identify the response to a 602 

particular level of climate forcing (see, e.g. Hueging et al. 2013, Devis et al. 2018 for 603 

wind power generation and Damm et al. 2017 for demand). The concept is that the 604 

random effects of sampling natural low-frequency variability and uncorrelated model 605 

error “noise” cancel to produce a better estimate of a forced climate-change “signal”. 606 

However, if it is assumed that each individual model projection is an equally plausible 607 

estimate of the future climate, then it is clear that for any given RCP climate forcing 608 

scenario there are a wide range of possible future climates that may occur. It is therefore 609 

prudent to assess power system performance against this whole range of possible future 610 

climates, rather than narrowing this range into a single “multi-model average” realisation. 611 

Moreover, it is important to recall that climate models share many common components 612 

and model development heritage, and this therefore implies that errors in the individual 613 

climate model may not be independent.   614 

 Secondly, it is important to define what constitutes a meaningful change in climate. It 615 

has been suggested that the impact of climate change on power system design is 616 

modest (or can even be neglected completely) because it is smaller than recent 617 

historical year-to-year variations in climate (e.g., Ravestein et al. 2018, Kozarcanin et al. 618 

2019). It must, however, be remembered that even the most naïve interpretation of a 619 

shift in the mean climate implies that the whole year-to-year distribution shifts by the 620 

same amount. When seeking to quantify climate change impacts as complex as those in 621 

power system design and planning, even modest shifts in the mean may lead to 622 

significant consequences. Furthermore, this naïve accounting neglects other potentially 623 

important shifts in the distribution, such as changes in the tails leading to 624 

disproportionally more frequent and/or severe extremes.   625 

 In the analysis discussed above, through utilising the ECEM datasets, six EURO-626 

CORDEX regional climate models applied to two commonly-used climate forcing 627 

scenarios (RCP4.5 and 8.5) have been considered. Clearly, the results presented from 628 

this type of study are always limited by the number of climate models and climate forcing 629 

scenarios that it is possible to include. The analysis, however, leads to the identification 630 
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of important questions concerning how this kind of result should be interpreted. In 631 

particular, the lack of consistency between climate models may be taken to suggest 632 

either a relatively weak forced response to climate change, or as a wide range of 633 

possible climate futures that must be adequately prepared for. It is therefore suggested 634 

that an important avenue for further research is how to more thoroughly incorporate 635 

climate uncertainty in power system design and planning.  Approaches such as 636 

emergent constraints (Smith et al. 2019), robust climate sampling (Hilbers et al. 2019) 637 

and combining probability distributions (Clemen et al. 1999, Lichtendahl et al. 2013) may 638 

help to make this challenging problem more conceptually and computationally tractable.   639 

 In conclusion, acknowledging the magnitudes of the uncertainty in future climate (be 640 

that mitigation pathway or the set of climate models used to make the projection) 641 

compared to the choice of future power system pathway is of crucial importance for 642 

decision makers planning future national decarbonisation strategies. The realisation that 643 

a multi-model mean climate response (commonly used to reduce the volume of 644 

information presented) masks the subtleties of the individual model response could have 645 

drastic impacts for future decarbonisation strategies. Finally, it is important to 646 

acknowledge that a larger installed capacity of wind and solar generation results in a 647 

greater degree of climate uncertainty, relative to the uncertainty in the choice of power 648 

system pathway.    649 
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 858 

Captions: 859 

Figure 1: Schematic showing how meteorological data (e.g. 2m temperature, 10m wind 860 

speed, surface solar radiation or weather-driven capacity factor) can be combined with 861 

an energy scenario to create either evolving (top) or fixed (bottom) demand or renewable 862 

generation. The first column in both types of experiment shows the relevant climate 863 

model data (with solid and dashed lines indicating the RCP4.5 and RCP8.5 scenarios). 864 

The middle columns show how this climate model data can then either be combined with 865 

a fixed (top) or evolving (bottom) time series of installed generation. The combination of 866 

this installed capacity data with the meteorological input results in the time evolving or 867 
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fixed energy data (third column) incorporating either changes in both climate and energy 868 

system structure (evolving) or just changes in climate (fixed). 869 

Figure 2: Installed wind power (blue) and solar power (yellow) capacity for a 2015 (bright 870 

colours) and 2050 (faint colours) power system. Data taken from the EUREF scenario 871 

(Capros et al. 2016). Countries are described using the ISO alpha-2 codes. Note Bosnia 872 

and Herzegovina (BA), Switzerland (CH), Montenegro (ME), Republic of North 873 

Macedonia (MK) Norway (NO) and Serbia (RS) are not included in EUREF but are 874 

included within the ECEM datasets. 875 

Figure 3: The impact of climate change on European-averaged annual-mean, and 876 

seasonal mean (a) 2m Temperature (b) 10m wind speed (c) Surface Irradiance. 877 

Changes are calculated as the difference between 2045-2065 mean and 1980-2000 878 

mean. Coloured bars show the multi-model mean for each RCP scenario, and individual 879 

models are shown by black points with the black bars showing 2 standard deviations of 880 

the change (calculated using a bootstrapping technique; see section 2.2 for further 881 

details) 882 

Figure 4: The impact of climate change on annual-mean and seasonal electricity 883 

demand (difference between 2045-2065 mean and 1980-2000 mean) using the fixed 884 

present-day (2015) power system scenario. Coloured bars show the multi-model mean 885 

for each RCP scenario, and individual models are given by black points with the black 886 

bars showing 2 standard deviations of the change based on a bootstrapping technique 887 

(see section 2.2 for further details). 888 

Figure 5: The impact of climate change on annual-mean and seasonal mean wind power 889 

generation (difference between 2045-2065 mean and 1980-2000 mean), using the fixed 890 

present-day (2015) power system scenario. Coloured bars show the multi-model mean 891 

for each RCP scenario, and individual models are given by black points with the black 892 

bars showing 2 standard deviations of the change based on a bootstrapping technique 893 

(see section 2.2 for further details). 894 

Figure 6: The impact of climate change on annual-mean and seasonal mean solar power 895 

generation (difference between 2045-2065 mean and 1980-2000 mean), using the fixed 896 

present-day (2015) power system scenario. Coloured bars show the multi-model mean 897 

for each RCP scenario, and individual models are given by black points with the black 898 

bars showing 2 standard deviations of the change based on a bootstrapping technique 899 

(see section 2.2 for further details). 900 

Figure 7: The impact of climate change on annual-mean, and seasonal-mean residual-901 

load (difference between 2045-2065 mean and 1980-2000 mean). Coloured bars show 902 

the multi-model mean for each RCP scenario, and individual models are given by 903 

symbols with black points with the error bars showing two standard deviations of the 904 

change based on a bootstrapping technique (see section 2.2 for further details). The top 905 

plot is for the fixed 2015 power system and the bottom is for the fixed 2050 power 906 

system (see Figure 2 for details of the installed renewable capacities). 907 

Figure 8: The impact of climate change on annual-mean, winter-mean and summer-908 

mean changes (columns) in residual-load for each European country. These are shown 909 

as the difference between 2045-2065 mean and 1980-2000 mean (yellow bars in 910 
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Figures 3-7). Rows show the multi-model mean response (average over the six climate 911 

models) and two example models, which are the models from the first and fifth bars in 912 

Figures 3-7. 913 

Figure 9: Annual-mean European total residual-load, Demand (load), Wind power 914 

generation (WP), and solar power generation (SP) time series for the six climate models 915 

(individual lines), two RCP scenarios (solid vs dashed lines showing RCP4.5 and 916 

RCP8.5 respectively) and four plausible e-highway2050 scenarios used in the ECEM 917 

project (for all five e-Highway2050 scenarios see Supplementary Figure S4). The bends 918 

in 2040 and 2020 are associated with the availability of projection pathways from e-919 

Highway2050 (see Section 2.2.1). 920 

Table 1: Details of Demand, Wind Power and Solar power generation for the four chosen 921 

case-study countries for 2015. WP+SP refers to the total of wind power and solar power 922 

generation produced for each country. 923 

Table 2: Details of gross power system properties in 2050 in the EUREF scenario 924 

(Capros et al., 2016) and five of the e-highway2050 scenarios (e-Highway2050 2015) 925 

properties, in terms of installed wind power generation (WP) solar power generation (SP) 926 

and annual-mean demand (D) 927 

Figure S1: The impact of climate change on annual-mean and seasonal-mean 2m 928 

temperatures (difference between 2045-2065 mean and 1980-2000 mean). Coloured 929 

bars show the multi-model mean for each RCP scenario, and individual models are 930 

given by black points with the error bars showing 2 standard deviations of the change 931 

(based on 1000 bootstrapped samples; see Figure 4 caption for more details). 932 

Figure S2: The impact of climate change on annual-mean, and seasonal-mean 10m 933 

wind speed (difference between 2045-2065 mean and 1980-2000 mean). Coloured bars 934 

show the multi-model mean for each RCP scenario, and individual models are given by 935 

black points with the error bars showing 2 standard deviations of the change (based on 936 

1000 bootstrapped samples; see Figure 4 caption for more details). 937 

Figure S3: The impact of climate change on annual-mean and seasonal-mean surface 938 

irradiance (difference between 2045-2065 mean and 1980-2000 mean). Coloured bars 939 

show the multi-model mean for each RCP scenario, and individual models are given by 940 

black points with the error bars showing 2 standard deviations of the change (based on 941 

1000 bootstrapped samples; see Figure 4 caption for more details). 942 

Figure S4: Annual-mean European total residual-load, Demand (load), Wind power 943 

generation (WP), and solar power generation (SP) time series for the six climate models 944 

(individual lines), two RCP scenarios (solid vs dashed lines showing RCP4.5 and 945 

RCP8.5 respectively) and five e-highway2050 scenarios used in the ECEM project. The 946 

bends in 2040 and 2020 are associated with the availability of projection pathways from 947 

e-Highway2050 (see Section 2.2.1). 948 

 949 

Footnote 1:  950 

 951 

Jo
urn

al 
Pre-

pro
of



e-Highway2050 was a research project funded by the 7th Framework Programme of the 952 

European Commission with the aim of developing a methodology for the construction of 953 

long-term scenarios for the pan-European transmission network for the period 2020-954 

2050. More information can be found here (https://www.entsoe.eu/outlooks/ehighways-955 

2050/) and here (https://www.dena.de/en/topics-projects/projects/energy-systems/e-956 

highway2050/) 957 

 958 
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Table 1: Details of Demand, Wind Power and Solar power generation for the four chosen 
case-study countries for 2015. WP+SP refers to the total of wind power and solar power 
generation produced for each country. 

Country 

(Fig. 2 country 
code) 

Annual 
demand 
(TWh) 

Total installed 
Wind and 
Solar capacity 
(GW) 

Ratio of 
installed 
Wind:Solar 
power 

Rationale 
for 
choosing 
country as 
a case-
study 

Sweden (SE) 139 6  98:2 Northern, 
small 
WP+SP, 
mostly 
wind 

Romania 
(RO) 

54 5 62:38 Eastern, 
large 
WP+SP, 
mostly 
wind 

Germany 
(DE) 

487 85 53:47 Central, 
large 
WP+SP, 
wind and 
solar 

Italy (IT) 296 28 32:68 Southern, 
large 
WP+SP, 
mostly 
solar 

 

 

 

Table 2: Details of gross power system properties in 2050 in the EUREF scenario (Capros 
et al., 2016) and five of the e-highway2050 scenarios (e-Highway2050 2015) properties, in 
terms of installed wind power generation (WP) solar power generation (SP) and annual-
mean demand (D) 

2050 
statistics 

EUREF Fossil and 
Nuclear 

Small and 
Local 

Big and 
Market 

Large Scale 
RES 

100% RES 

European 
Total WP 
(GW) 

317 303 387 512 813 874 
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SP (GW) 247 189 573 278 241 662 

D (TWh) 4250 4705 3186 4280 5195 4277 
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