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Abstract
Tropical forests harbour the highest biodiversity on the planet and are essential to human
livelihoods and the global economy. However continued loss and degradation of forested
landscapes, coupled with a rapidly rising global population, is placing incredible pressure on
forests globally. The United Nations has developed the Reducing Emissions from Deforestation and
forest Degradation (REDD+) programme in response to the challenges facing tropical forests and
in recognition of the role they can play in climate mitigation. REDD+ requires consistent and
reliable monitoring of forests, however, national-level methodologies for measuring degradation
are often bespoke and, because of an inability to track degradation effectively, the majority of
countries combine reporting for deforestation and forest degradation into a single value. Here, we
extend a recent analysis that enabled the detection of selective logging at the scale of a logging
concession to a regional-scale estimation of selective logging activities. We utilized logging records
from across Brazil to train a supervised classification algorithm for detecting logged pixels in
Landsat imagery then predicted the extent of logging over a 20 year period throughout Rondônia,
Brazil. Approximately one-quarter of the forested lands in Rondônia were cleared between 2000
and 2019. We estimate that 11.0% of the forest area present in 2000 had been selectively logged by
2019, comprising >11 500 km2 of forest. In general, rates of selective logging were twice as high in
the first decade relative to the last decade of the period. Our approach is a considerable advance in
developing an operationalized selective logging monitoring system capable of detecting subtle
forest disturbances over large spatial scales.

1. Introduction

The ten countries reporting the highest forest losses
over the last 15 years are all in the tropics (FAO
2015). Tropical forests are among the most biodi-
verse ecosystems on Earth, play a crucial role in the
global carbon and hydrological cycles, and support
human livelihoods and the global economy (Pan et
al 2011, Lewis and Maslin 2015, Edwards et al 2019).
Moreover, there is increasing recognition that tropical
forests will be vital in nature-based solutions mitigat-
ing climate impacts and reaching targets in the Paris
Climate Agreement (Houghton et al 2015, Griscom

et al 2017). However continued loss and degrada-
tion of tropical forests, coupled with a rising global
population and growing energy demands, are putting
enormous pressure on forests globally (Edwards et al
2019).

In response to both the challenges and oppor-
tunities tropical forests present, the United Nations
(UN) has developed the Reducing Emissions from
Deforestation and forest Degradation (REDD +)
programme. REDD + aims to mitigate climate
impacts while maintaining the myriad of services
forests provide (e.g. flood prevention, control soil
erosion, maintain biodiversity, cultural traditions,
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etc) through sustainable forest management (UN-
REDD 2018). An essential component in REDD + is
consistent monitoring systems for national-level
reporting of anthropogenic greenhouse gas emissions
from activities affecting forests. Guidelines for estim-
ating and reporting emissions from forest degrada-
tion are based onmethods for land use change recom-
mended by the Intergovernmental Panel on Climate
Change (IPCC 2019) to facilitate a consistent frame-
work for estimating reference levels (GFOI 2016).
Yet the IPCC and REDD + lack specific methodo-
logical details on quantifying emissions from forest
degradation (IPCC 2006, Pearson et al 2014). This
is because degradation is notoriously difficult to
quantify, as it includes a variety of forest disturb-
ances (e.g. fire, selective logging, mining, fuelwood
consumption, hunting, invasive species), and forest
degradation often operates at spatial and temporal
scales incompatible with reporting at the national
level (Hosonuma et al 2012, Pearson et al 2014,
Ghazoul et al 2015). Consequently, national-level
methodologies for measuring degradation are often
bespoke and most countries report emissions from
both forest degradation and deforestation as a single,
combined value (Hosonuma et al 2012, Pearson et al
2017).

Advances in remote sensing have made satellite
data themost practical and cost-effective way tomon-
itor forests at large spatial scales. The spatial and
temporal accuracy of deforestation monitoring has
improved rapidly in the last decade (Hansen et al
2013, 2016, Reiche et al 2018), as have detection of the
spatial extent, severity, and impacts of fires (Peres et al
2006,Matricardi et al 2010). Yet, detection of selective
logging has shown little progress, despite being a key
driver of both deforestation and forest degradation
(Hosonuma et al 2012, Pearson et al 2017). Select-
ive logging often marks the onset of anthropogenic
disturbance affecting primary forests, with road net-
works and improved access to forested lands facil-
itating further degradation (e.g. fuel wood removal,
spread of invasive species, illegal logging, mining, and
fires) or forest clearance for pastures, agriculture, or
settlements. Furthermore, because of the role tropical
forests are poised to play in meeting climate targets
and growing concerns about the impacts to other ser-
vices, the amount of tropical forests logged at lower
intensity and with better management practices is
likely to grow.

Efforts to improve detection of selective logging
have appeared periodically in the literature (e.g.
Asner et al 2005, Souza et al 2005, 2013, Broad-
bent et al 2008, Matricardi et al 2010). In all cases
the approach was either a proof-of-concept and not
applied at scale or the intensity of selective logging
was so high that detections are mapped as forest
loss in the (Hansen et al 2013) data (e.g. Asner
et al 2006; see also figures S1 and S2 (available

online at stacks.iop.org/ERL/15/094057/mmedia).
The majority of researchers have utilized spectral
unmixing of before-after images to estimate forest
disturbance between time steps (e.g. Souza et al 2013).
Single-image analyses can miss forest disturbances
occurring later and/or regions covered by clouds dur-
ing scene acquisitions. More recently, advancements
in data handling (e.g. Google Earth Engine) have
enabled tracking individual pixels over a long period
to detect forest disturbances (Bullock et al 2018).
Google Earth Engine (GEE) has also allowed formore
complex image mosaics to be produced, in which an
image can be composed of individual pixels span-
ning any time period, minimizing information loss
from clouds (Gorelick et al 2017). Recently, Hethcoat
et al (2019) developed a method that used logging
records to train supervised classification algorithms
for detecting logging activities. Their methods were
only applied at the scale of the logging concession
and have not been demonstrated at larger spatial and
temporal scales. The primary objective of this paper
was to extend their methodology to a regional-scale
assessment of selective logging. We trained a super-
vised classification algorithm for detecting selective
logging using detailed logging records, then estimate
the extent of logging between 2000 and 2019 through-
out Rondônia, Brazil.

2. Methods

An overview of the methods described in the follow-
ing sections is given in figure 1.

2.1. Study area
The Brazilian state of Rondônia covers 237 576 km2

and is one of the most deforested regions in the
Amazon (Pedlowski et al 2005, Tyukavina et al
2017). Historically, Brazil encouraged logging and
land clearance as part of its settlement and devel-
opment policies between 1970 and 1990 (Asner et
al 2009). Widespread, unmanaged logging ravaged
large portions of Mato Grosso, Pará, and Rondônia,
accounting for more than 90% of timber harvest
within the Brazilian Amazon (Asner et al 2009). In
an effort to address some of the impacts rampant
deforestation and logging had caused, Brazil adop-
ted the CONAMA resolution (CONAMA 2009),
which recognized advances in forestry research in the
Brazilian Amazon and imposed a number of restric-
tions on logging, including limiting logging intens-
ities to 30 m3 ha−1. While Pará and Mato Grasso
have endured the highest rates of selective logging
(Tyukavina et al 2017), the smaller size of Rondônia
and the high availability of cloud-free imagery dur-
ing the dry season (in contrast to cloudier regions of
the Amazon basin) make it ideal for initially upscal-
ing the methodology proposed by Hethcoat et al
(2019).
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Figure 1.Workflow summarizing the methodology. The platform used for each step is in parentheses, with GEE being Google
earth engine and R being the statistical software developed by the R core team.

2.2. Data and processing
2.2.1. Selective logging data.
Selective logging data from four lowland tropical
forest regions in the Brazilian Amazon were used to
build the detection algorithm described in section
2.3. The Jacundá and Jamari regions were inside the
Jacundá and Jamari National Forests, in Rondônia,
while the Saracá and Cikel regions were in the Saracá-
TaqueraNational Forest and Paragominasmunicipal-
ity, Pará, respectively (figure 2). Forest inventory data
from 19 forest management units (FMUs) selectively
logged between 2010 and 2017 were used, comprising
over 55 000 individual tree locations (see Asner et al
2004 for a description of typical logging practices in
the Amazon). Data from three additional locations,
one inside each National Forest (Jacundá, Jamari,
and Saracá), comprised over 11 500 randomly selec-
ted point locations known to have remained unlogged
during the study period (table S1).

2.2.2. Satellite data and processing.
All available Landsat 5, 7 and 8 surface reflectance
data that coincided with the logging data were util-
ized in Google Earth Engine (GEE). At each FMU
the Landsat archives were queried to find a single
scene with the lowest cloud cover that was late into
the dry season, but before the onset of the rainy sea-
son, to ensure the majority of logging was completed
for that FMU (Hethcoat et al 2019). A linear spec-
tral unmixing model, developed and validated over a
range of forest disturbance types within the Amazon

(Souza et al 2005, Bullock et al 2018), was used to
convert surface reflectance into proportions of Bare
Ground (BG), Photosynthetic Vegetation (PV), and
Non-Photosynthetic Vegetation (NPV) in each pixel
(table S2). The normalized burn ratio (NBR) was
also calculated (equation (1)), because it highlights
changes in BG and NPV relative to PV and has
demonstrated strong change detection capabilities in
evergreen tropical forests (Grogan et al 2015, Shimizu
et al 2017, Langner et al 2018).

NBR=
NIR− SWIR2

NIR+ SWIR2
. (1)

Spectral unmixing fractions for BG were zero for
all logged locations, because of documented diffi-
culties distinguishing BG andNPVwithmultispectral
data in deterministic spectral unmixing algorithms
(Asner 1998, Okin et al 2001, Asner and Heidebrecht
2002). Consequently, PV and NPV values were com-
plementary and we only utilized PV fractions in the
analyses. To reduce variations arising from differ-
ing atmospheric conditions and solar illumination,
the PV and NBR values were spatially normalized in
a self-referencing step (equations (2a) and (2b)) by
subtracting the centre pixel value from the median
value in a 150 m radius window (Langner et al 2018):

PVn = PVmedian − PV. (2a)

3
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Figure 2. Location of the Cikel (triangle), Saracá (diamond), Jacundá (circle), and Jamari (square) study regions in the Brazilian
Amazon. Cikel and Saracá are in Pará and Jacundá and Jamari are in Rondônia.

and

NBRn = NBRmedian −NBR. (2b)

Normalized PV and NBR values ranged between −1
and 1. This step was necessary to prevent highly
inconsistent predictions along adjacent Landsat paths
acquired at different dates (figure S3). The spa-
tially normalized PV and NBR values for the logged

and unlogged observations were then compiled for
algorithm training (section 2.3).

2.3. Building the detection algorithm
We built Random Forest (RF) models using the ran-
domForest package (version 4.6) in the R program,
version 3.5.1 (Liaw and Wiener 2002, R Core Team
2018). We randomly allocated 90% of the data for
training and withheld 10% for validation. In addi-
tion, to ensure training and validation datasets were
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independent, we assessed spatial autocorrelation of
predictor variables and spatially filtered the data such
that no observations in the validation dataset were
within 90 m of an observation in the training data-
set (figure S4; see Supplementary Materials, sections
S1 and S2 for further details on model specification
and training).

2.4. Predicting selective logging through time
All available Landsat 5, 7, and 8 data over Rondônia
were utilized in GEE. A cloud-free mosaic was con-
structed from the latest cloud-free pixel within the
dry season (see table S4 for date ranges in each year).
Clouds were masked using the QA band and an addi-
tional 300 m radius buffer was applied to cloudy
pixels to minimize cloud shadows not identified by
the QA mask. For the first year of analysis (2000) we
only included pixels with forest cover >90% (Hansen
et al 2013; Hansen data hereafter) to exclude open
canopy forests, regenerating secondary forests, and
areas generally not suitable for selective logging con-
cessions that might result in false positives.

At each time step, pixels identified in the Hansen
data as being deforested in that year were removed. In
addition, deforested pixels in the preceding year had
a one pixel buffer removed from its edges to reduce
spurious logging detections associated with deforest-
ation. Pixels identified by the Moderate Resolution
Imaging Spectrometer (MODIS) monthly burned
area product (MCD64A1.006) were also removed.
Thus, the pixels used to estimate the occurrence of
logging in each year were in regions with tree cover
exceeding 90% in 2000, that had not been deforested
that year (or prior years), and had not burned.

2.5. Post-processing of logging predictions
In order to remove isolated logging detections
amongst undisturbed forest we removed any detec-
tion with fewer than three other detections within
a 7 × 7 pixel window neighbourhood. The window
size and number of additional detections were chosen
through extensive testing of different values over the
Jamari region.

2.6. Evaluating map errors
Methods in Olofsson et al (2014) were used to assess
agreement, calculate unbiased error estimates, and
produce 95% confidence intervals of the mapped
classes. We only assessed the accuracies of select-
ive logging and undisturbed forest (i.e. logged and
unlogged pixels) and did not consider deforestation
and fires, as these have been estimated elsewhere
(Hansen et al 2013, Turubanova et al 2018, Giglio et
al 2018).

3. Results

We mapped logging across 44% of Rondônia, as the
remaining 56% had already been deforested by 2000

or was below 90% canopy cover (e.g. rivers, lakes,
savanna, cerrado, gallery forest). Of the forested lands
present in 2000, 26.5% were deforested by 2019 (fig-
ure 3). We estimate that 11.0% of the forest area
present in 2000 had been selectively logged by 2019,
comprising >11 500 km2 of forest (table 1). Logging
detectionswere highest in the north central part of the
state, in the region of the Bom Futuro National Forest
(figure S7), a hotspot for logging and land clearance
over the period (Pedlowski et al 2005). In general, the
amount of selective logging was about twice as high in
the first 10 years of the period than in the last 10 years,
generally coinciding with logging restrictions imple-
mented under the CONAMA resolution (CONAMA
2009).

The bias-adjusted confusion matrix, summariz-
ing errors and confidence intervals for the propor-
tions of mapped classes (Olofsson et al 2014), is
shown in table 1 and is consistent with the results
from model validation (section S2, figure S5, table
S3). These findings reiterate a roughly 55% omission
of logging detections and 5% commission error for
unlogged forest (i.e. an estimated 5.4% of the area
mapped as unlogged forest, roughly 4500 km2, was
actually logged). For these reasons, and because we
further limited our detection rate by excluding high
intensity logging detected in the Hansen data (figures
S1 and S2), our estimates of selective logging should
be viewed as conservative and the annual amounts
of selective logging are likely closer to double what is
reported here.

We explored the results in more detail over two
FMUs where we had general knowledge of logging
but limited field data. First, an FMU selectively logged
in 2018 with no data on logging locations showed
some false detections in the years preceding 2018 (at
roughly the expected rate), but the year of logging
and an internal logging road constructed in 2015 are
accurately identified (figure 4). Similarly, the num-
ber of false detections over an area known to have
remained unlogged (a forest reserve area associated
with the logging concession) was approximately 2%
over the 20 year period (figure 5).

Many of the detections were obviously logging
road networks, both main access roads and smaller
internal roads, which generally go undetected by the
Hansen dataset (figure 6). In addition, many detec-
tions preceded deforestation by a year or two (figure
7), demonstrated by logging detections occurring in
areas later identified as deforested (i.e. subtle forest
disturbance preceding total clearance was detected).
Consistently, about 55% (±8% SD) of selective log-
ging detections were within 1 km of deforestation
activities occurring in the same year (figure 8).
Thus, the majority of selective logging activities in
Rondônia occurred in close proximity to deforesta-
tion presently detectable through the weekly Global
Land Analysis &Discovery alerts system (Hansen et al
2016). This result is in line with the well documented
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Figure 3. Annual amount of deforestation (from Hansen et al 2013) and selectively logged (this study) in the state of Rondônia,
Brazil. Deforestation data from 2019 were unavailable at the time of analyses.

Table 1. Confusion matrix summarizing unbiased (Olofsson et al 2014) error estimates and 95% confidence intervals (in parentheses)
from mapping logged and unlogged forest in Rondônia, Brazil between 2000 and 2019. Also shown are the unbiased estimates of overall
accuracy (OA) and the total area for logged and unlogged forest in the final map.

OA: 94.11± 0.26%
Logged: 11 529.28± 18.53 km2 Reference Class

Unlogged: 93 079.71± 249.62 km2 Logged Unlogged Commission
Error (%)

Logged 0.06 0.01 12.9 (1.8)
Predicted Class

Unlogged 0.05 0.88 5.4 (0.2)

Omission Error (%) 45.5 (1.2) 1.0 (0.1)

cycle involving selective logging as a driver of and pre-
cursor to land clearance (Curtis et al 2018).

4. Discussion

We have demonstrated that the approach in Heth-
coat et al (2019) to map tropical selective logging
with Landsat data can be extended beyond the scale
of a logging concession or forest management unit to
regional-scale assessments of logging activities using
historical data. This required changes to the original

methodology, moving away from surface reflectance
values and utilizing a spatial normalization step to
mitigate abrupt changes in image mosaic values res-
ulting from varying solar illumination and atmo-
spheric conditions. We show that about 11% of the
forested land present in 2000 was selectively logged
by 2019, comprising >11 500 km2 of tropical forest.
Yet, our estimates of annual logging rates are likely
underestimated for two reasons. First, only about half
of the logging was actually detected in a given year
(tables 1 and S3). We abandoned higher detection
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Figure 4. Example forest management unit (FMU) showing detections of logging over the entire period. The logging roads
detected in 2015 are in accordance with field data (white lines) and the detections along the southern FMU border are a main
access road winding into the logging concession. The year the FMU was actually logged (2018) shows an order of magnitude more
detections (histogram in upper right). Stable forest is in black, Hansen forest loss is in grey shades, and white squares are areas
burned. The FMU is approximately 1700 hectares. The map is centred on 63.002 W, 9.406 S.

Figure 5. Example forest reserve area (i.e. unlogged forest) inside a logging concession in the Jamari national forest showing false
detections over the entire period. Stable forest is in black, Hansen forest loss is in grey shades, and white areas are burned forest
and water. Only 2.3% of pixels (n= 796) are false alarms within the reserve over the 20 year period. The reserve is approximately
3000 hectares. The map is centred on 63.022 W, 9.266 S.

rates to ensure a very low number of false detections
(section S2). Second, forest disturbances from select-
ive logging (canopy gaps, skid trails, and log landings)

affect patches of forest, not isolated pixels. Indeed, the
amount of disturbed forest within a selectively logged
FMU can vary from 25%–50% (Putz et al 2019),
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Figure 6. Example region showing detected selective logging road networks, with stable forest in black, Hansen forest loss in grey
shades, and the Preto river in white. The map is centred on 62.875 W, 8.478 S.

Figure 7. Example region showing early detection of deforestation. The expansion of roads and early forest disturbances (A, in
green-yellow-orange colors) were detected before the deforestation events occurred and are on top of the forest loss layer from
Hansen (in grey shades). Stable forest is in black, burned areas are white squares, and the Jiparaná river is the in upper right in
white. The map is centred on 62.722 W, 8.410 S.

despite the proportion of pixels where a tree was
removed being closer to 10%. Robust methods are
needed that incorporate these additional disturbances
as true detections in the absence of field data. Some
have utilized a buffer (often 180 m) around logging
road networks or landing decks (Souza and Barreto
2000, Monteiro et al 2003, Matricardi et al 2010) to
account for missed detections, yet these authors have
acknowledged high commission and omission errors
associated with this approach.

We almost certainly underestimate the amount of
selective logging for 2010 and overestimate it for 2011

because of two concurrent factors affecting the pre-
dictions for these years. First, the cloud-free window
was earlier and narrower in 2010 than most other
years (table S4). The cloudiness of 2010 has been
documented in other forest mapping exercises in the
Brazilian Amazon (Qin et al 2019). This would res-
ult in fewer detections, because the dry season period
was about three weeks shorter than average and fewer
pixels would have been logged over the shorter time
period. Second, 2010 was a particularly high fire year
within the Amazon (Aragão et al 2018), consequently
large regions excluded from our analyses probably
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Figure 8. Selective logging detections over four distance categories from deforestation activities in the same year. Deforestation
data from 2000 and 2019 were unavailable at the time of analyses.

coincided with some logging locations (figure S8).
In contrast, logging detections increased dramatically
in 2011 (figure 3), likely because of delayed detec-
tion of logging activities missed in 2010 (i.e. showing
up a year later), combined with additional detections
from the fire scars from 2010 that were insufficiently
mapped by the MODIS burned area product. While
such anomalies would affect an annual estimate of
logging, they would be dampened in an operational
product that utilized the 5-year rolling average under
reference level reporting for REDD+ (GFOI 2016).

It is difficult to compare our results with other
studies, since none have dealt exclusively with select-
ive logging. However, our estimates are gener-
ally higher than other estimates of degradation in
Rondônia. The only other studies assessing degrad-
ation over a similar time period combined all forms
of degradation (Souza et al 2013, Bullock et al 2018).
Souza et al (2013) estimated about 5000 km2 yr−1 of
degradation within the whole of the Amazon from
2001 to 2010 (but twice that in 2008), with ~7%
occurring in Rondônia (~350 km2 yr−1). Bullock et
al (2018) estimated ~500 km2 yr−1 from 2000 to
2005 and >750 km2 yr−1 from 2006 to 2013 within
Rondônia. Our estimates are closer to those fromBul-
lock et al (2019) and the total area selectively logged
over the period (5%) is just under the 6% they found
for all forms of degradation. However, our 1% omis-
sion error of unlogged forest (table 1) translates to
about 970 km2 of unlogged forest being identified as
logged over the 20 year period (i.e. <20 km2 yr−1).
Thus, our estimates are unlikely to be erroneously
inflated and they reflect an improvement in the detec-
tion of selective logging.

Immediately noticeable in the detections of select-
ive logging are an abundance of linear features (i.e.

logging roads). Road building has big implications
for primary tropical forests (Kleinschroth et al 2015,
2016, Kleinschroth and Healey 2017) and improv-
ing their detection is critical to understanding their
lifecycle and the continued loss of intact forest land-
scapes (Potapov et al 2008, 2017). Roads create forest
edges that can alter abiotic processes like microcli-
mate (Williams-Linera et al 1998), change plant and
animal species composition (Tabarelli et al 2012),
increase fire susceptibility (Armenteras et al 2013),
and ultimately weaken forest resilience (Murcia 1995,
Kleinschroth and Healey 2017). Moreover recent
work has shown that tropical forests globally may
be nearing a tipping point where fragmentation will
begin to increase dramatically (Taubert et al 2018).
The tropics are estimated to have around 50 million
forest fragments, encompassing nearly 50 million km
of edge (Brinck et al 2017).Monitoring the emergence
and spread of roads is critical to understanding the
disturbance frontiers of intact forests and ourmethod
clearly improves early detection of cryptic roads.

Some important caveats are needed regarding our
approach and results. First, like all studies in the trop-
ics that exclusively use optical data, some areas were
excluded from analyses each year because of clouds.
Despite creating amosaic of all available pixels in each
year, ~1% of Rondônia was affected by clouds annu-
ally (mean = 2600 km2 ± 2400 km2 SD) and was
included in the subsequent year assuming no disturb-
ance had occurred. Second, each mosaic consisted of
only a single pixel per location and any selective log-
ging that occurred after the date of the latest cloud-
free pixel in the mosaic would remain undetected.
Third, our approach cannot distinguish between log-
ging and fire. We limited this by removing burned
areas annually, using the MCD64 burn product, but
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the different scale of these datasets (500m) and Land-
sat (30 m) is certain to result in commission and
omission of burned area. Collectively, these factors
will tend to cause underestimation of the area select-
ive logging annually. Finally, our complete dataset on
selective logging covered only a subset of the years
(2011–2017) we mapped (2000–2019) and could not
be used to properly validate annual maps from years
without logging data (i.e. 2000–2010, 2018, 2019).
Consequently, we only validated the final map against
the validation data. Thus, if a logging detection was
temporally inaccurate, it was technically regarded as
correctly classified. Figures 4 and 5 were included
to provide some perspective on this issue, where we
show the false alarm rate (FAR) in regions where we
had general knowledge that logging had occurred in
a particular year (figure 4) and where we knew it had
not occurred (figure 5). Both figures display very low
FARs (the temporally inaccurate detections in figure 4
and any detection in figure 5) that suggest our results
were not impacted.

Moving forward, we are exploring the sensitivity
of the logging estimates to the choices of the value
of the classification threshold used to detect logging
(sections S1, S2, and figure S5) and the window size
and the number of detections in the post-processing
step (section 2.5). In particular, it is desirable to
decrease the omission of logging by lowering the
threshold and/or altering the window size and detec-
tion requirements in the post-processing step. How-
ever, such changes will also modify the commission
error when predicting unlogged forest so both must
be considered together. An additional decision affect-
ing logging estimates was the exclusion of forests with
canopy cover <90% as defined within the Hansen
data. Brazil defines a forest as having >10% canopy
cover and >5 m height (GFOI 2016), but we sought
to restrict our analyses to continuous tropical forests
(i.e. not secondary forest, cerrado, gallery forests, or
otherwise modified forests) where commercial log-
ging leases tend to occur.

Tropical forests store billions of tons of carbon.
While the emissions estimates from selective logging
are much lower than those from deforestation (Asner
et al 2010), recent work has shown that taking full
accounting of degradation activities suggests much
higher emissions than previously thought Maxwell
et al (2019). However, Maxwell et al (2019) simu-
lated selective logging in proximity to road networks
because large-scale maps are lacking. The extent of
logged forest in the tropic is likely to be vast, yet
they represent the next best alternative to the pro-
tection of primary forest (Edwards et al 2014). Given
that financially viable pathways for global action on
forest degradation will be linked to climate mitiga-
tion potential, with the aim of achieving secondary
benefits for biodiversity and human livelihoods, reli-
able logging maps will enable a better accounting of

the relationships between timber harvest and the full
suite of goods and services tropical forests provide.
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