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Abstract.  With rapid development of advanced manufacturing technologies and high demands for 

innovative lightweight constructions to mitigate the environmental and economic impacts, design 

optimization has attracted increasing attention in many engineering subjects, such as civil, structural, 

aerospace, automotive and energy engineering. For nonconvex nonlinear constrained optimization problems 

with continuous variables, evaluations of the fitness and constraint functions by means of finite element 

simulations can be extremely expensive. To address this problem by algorithms with sufficient accuracy as 

well as less computational cost, an extended multipoint approximation method (EMAM) and an adaptive 

weighting-coefficient strategy are proposed to efficiently seek the optimum by the integration of metamodels 

with sequential quadratic programming (SQP). The developed EMAM stems from the principle of the 

polynomial approximation and assimilates the advantages of Taylor’s expansion for improving the 

sub-optimal continuous solution. Results demonstrate the superiority of the proposed EMAM over other 

evolutionary algorithms (e.g. particle swarm optimization technique, firefly algorithm, genetic algorithm, 

metaheuristic methods and other metamodeling techniques) in terms of the computational efficiency and 

accuracy by four well-established engineering problems. The developed EMAM reduces the number of 

simulations during the design phase and provides wealth of information for designers to effectively tailor the 

parameters for optimal solutions with computational efficiency in the simulation–based engineering 

optimization problems.   

Keywords: Metamodel, Multipoint Approximation Method, Taylor’s Expansion, Sequential 

Quadratic Programming, Adaptive Weighting-Coefficient Selection   

 

1. Introduction 
 

Solving nonlinear optimization problems is a hot issue in design optimization of practical 

engineering systems. In this class of optimization problems, both the objective function and 

the constraints are nonlinear and extremely expensive when solved using numerical methods 

for example, finite element methods. In order to obtain solutions with high computational 

accuracy in reasonable time, the hybrid optimization method has become increasingly popular 

for solving nonlinear optimization problems because it can reduce the computational burden 

during the analysis by replacing the complex physical systems with the mathematical models 

and improve the accuracy of the optimal solution with the use of the combined heuristic 

methods and mathematical programming techniques.  
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The Multipoint Approximation Method (MAM) [1,2] is one of the best-known 

metamodel-based optimization methods with the integration of Sequential Quadratic 

Programming (SQP) technique and it replaces the original optimization problem with a 

sequence of mathematical approximations that use much simpler objective and constraint 

functions. MAM stemmed from previous work [3,4] and was further generalized to multipoint 

approximations [2,5]. Recently, Liu and Toropov [6] have implemented the discrete capability 

into the MAM to solve mixed continuous-discrete optimization problems. In MAM, the 

process of constructing metamodels can be described as an assembly of multiple metamodels 

into a single metamodel using linear regression. The coefficients of the model assembly are 

not weights of the individual models but tuning parameters determined by the least squares 

method.  

In inexpensive engineering design problems, such as a cantilever beam design [7], the 

hypersonic wing [8], and the wind farm layout design [9], evolutionary algorithms can be a 

good choice to find globally optimal solutions. Genetic Algorithm (GA) [10,11] is inspired by 

natural evolution in biology and the population of candidate solutions experience a process 

similar to natural selection and genetic variation. GA has been well-recognized as an 

optimization method handling nonsmooth and nonlinear problems, where traditional methods 

generally fail.  

Similarly, intrigued by the group foraging such as fish schooling and bird flocking, 

Particle Swarm Optimization (PSO) technique developed by Kennedy [12] has become one of 

the dominant optimization algorithms in many fields. The advantages of using various 

variants of this technique have been validated in the civil engineering applications in terms of 

convergence rate and success rate. Chen et al [13] proposed Improved Particle Swarm 

Optimization (IPSO)-based form-finding method for suspension bridge design and 

construction with the test on the design analysis on Yingwuzhou Yangtze River Bridge. 

Ghamisi and Benediktsson [14] applied integration PSO on feature selection and 

demonstrated the usefulness on road detection. Meanwhile, PSO has also been widely applied 

for solving structural mechanics problems [15]. Firefly Algorithm (FA), inspired by social 

behavior of fireflies which is related to the rate and rhythmic of flash [16], is another very 

promising method. This novel technique has played an important role in the research of truss 

structures [17] and composite reinforced bridges [18]. Futhermore, the integration of 

numerical algorithms with neural networks to solve complex problems has been recently 

investigated by Moghadas et al.[19], Cao et al. [20], Li et al [21]. 

Besides the aforementioned metaheuristic algorithms, metamodel-based algorithms have 

become increasingly popular in recent years. Widely used metamodels include polynomial 

regression (PR) [22], radial basis function (RBF) [23], Kriging [24], multivariate adaptive 

regression splines (MARS) [25], artificial neural networks (ANN) [26] and support vector 

regression (SVR) [27]. Currently, there are lots of novel techniques and approaches in the 

area of metamodel-based optimization. Jones et al. [28] proposed efficient global optimization 

(EGO), which employs the Kriging metamodel for solving black-box problems. The 

optimization progress is guided by both the prediction and error estimations. Regis [29] 

developed COBRA, an efficient solver which makes use of RBF interpolation to approximate 

objective and constraint functions. A new iterate in COBRA is selected according to the 

violation of constraints within some small margins. An application of multi-fidelity 

metamodel can be found in [30–32], where genetic algorithms are responsible for exploring 

the global design space. 

As stated in Haftka et al. [33], there is still much room for the development of efficient 

and accurate algorithms to tackle high-fidelity design optimization. To address complex 

nonlinear optimization problems involving multi-scale/multi-level/ multi-disciplinary analysis 

within reasonable time, more attention has been paid to the research in relevant fields. Taking 

into account the above situations, MAM has been gradually developed and become one of the 
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algorithms demonstrating good performance on efficiently solving mid-range constrained 

engineering optimization problems with the use of the combined heuristic methods and SQP 

technique. Based on the authors’ previous work [2,6], an extended MAM (EMAM) 

framework is proposed in this paper to further improve the computational efficiency during 

the entire simulation process. First, a novel metamodel model inspired by the Taylor’s 

expansion technique is developed to effectively construct the approximations. To implement 

the Taylor’s expansion metamodel into the framework of MAM, the function of Euclidean 

distance for the determination of weighting coefficients during the process of approximations 

is replaced by a proposed strategy for adaptive selection of weighting coefficients. Then, the 

SQP technique is applied on the approximations to obtain the optimal solutions. The 

correctness of this enhanced EMAM is validated by comparing with the results from several 

nonconvex benchmark problems [34, 35], which were successfully solved by researchers in 

use of the state-of-art algorithms, such as Genetic Algorithms (GA) [36–38], Evolution 

Strategies (ES) [39], Particle Swarm Optimization (PSO) [40], Charged System Search (CSS) 

[41], Colliding Bodies Optimization (CBO) [42] and Firefly Algorithm (FA) [43]. Although 

there were some primary tests and rudimentary findings in previous work [44], robust 

numerical results are found in this paper to extensively demonstrate the advantages and 

superiority of the developed hybrid algorithm over evolutionary algorithms and MAM in 

terms of the computational efficiency and accuracy during the optimization process. With the 

implementation of the effective Taylor’s expansion in the current MAM optimization 

framework, the developed EMAM does not deteriorate the ability to solve the mid-range 

optimization problems, which is the distinctive feature of MAM optimization framework.   

 

2. Multipoint Approximation Method (MAM) 

 

Based on response surface methodology [22], the Multipoint approximation method 

(MAM) aims at constructing mid-range approximations [4,5] and is suitable to solve 

large-scale optimization problems by producing better quality approximations that are 

sufficiently accurate in a current trust region and inexpensive in terms of computational costs 

required for their building. These approximation functions have a relatively small number 

(N+1 where N is the number of design variables) of regression coefficients to be determined 

and the corresponding least squares problem can be solved easily.   

In general, an optimization problem can be formulated as:   

              min𝑭𝟎(𝒙),  𝑭𝒋(𝒙) ≤ 𝟏(𝒋 = 𝟏, … , 𝑴), 𝑨𝒊 ≤ 𝒙𝒊 ≤ 𝑩𝒊(𝒊 = 𝟏, … , 𝑵)               (1)        

where 𝒙 refers to the vector of design variables; 𝑨𝒊 and 𝑩𝒊 are the given lower and upper 

bounds on the design variable 𝒙𝒊 ; 𝑵 is the total number of the design variables; 𝑭𝟎(𝒙) is an 

objective function;  𝑭𝒋(𝒙)  is the constraint function and  𝑴  is the total number of the 

constraint functions. 

 In order to present the detailed physical model using the response functions and reduce 

the number of calls for the response function evaluations, the MAM replaces the optimization 

problem by a sequence of approximate optimization problems: 

min 𝑭̃𝟎
𝒌(𝒙), 𝑭̃𝒋

𝒌(𝒙) ≤ 𝟏(𝒋 = 𝟏, … , 𝑴), 𝑨𝒊
𝒌 ≤ 𝒙𝒊 ≤ 𝑩𝒊

𝒌, 𝑨𝒊
𝒌 ≥ 𝑨𝒊, 𝑩𝒊

𝒌 ≤ 𝑩𝒊(𝒊 = 𝟏, … , 𝑵)    (2)       

where 𝑭̃𝟎
𝒌(𝒙)  and  𝑭̃𝒋

𝒌(𝒙)  are the functions which approximate the functions 𝑭𝟎(𝒙) 

and 𝑭𝒋(𝒙) defined in Eq.(1), 𝑨𝒊
𝒌 and 𝑩𝒊

𝒌 are the side constraints of a trust sub-region, k is 

the iteration number.   

The selection strategy of the approximate response functions  𝑭̃𝒋
𝒌(𝒙)(j = 0, … , M) 

outlines that their evaluations are inexpensive as compared to the evaluations of the actual 

response functions  𝑭𝒋(𝒙) and are intended to be adequate in a current trust region. This is 
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achieved by appropriate planning of numerical experiments and use of the trust region defined 

by the side constraints 𝑨𝒊
𝒌 and 𝑩𝒊

𝒌.  

In the present work, constructing the metamodels for the objective and constraint 

functions includes two stages. In the first stage, the parameters aj involved in building a 

single metamodel φl is formulated as follows: 

 ∑ 𝒘𝒑[𝑭(𝒙𝒑) − 𝝋𝒍(𝒙𝒑, 𝒂𝒋)]
𝟐

→ 𝒎𝒊𝒏

𝑷

𝒑=𝟏

 (3) 

where 𝐹 is the function to be approximated; P means the total number of sampling points; 

the coefficient wp denotes the weight of each point 𝒙𝑝, in other words, it represents the 

inequality of each sample point in the sample space [45]; aj indicates the tuning parameter 

associated with the specific metamodel 𝝋𝒍 in Eq (4) and it is determined by the weighted 

least squares method .  

 

𝜑1(𝒙) = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖

𝑁

𝑖=1

 

𝜑2(𝒙) = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
2

𝑁

𝑖=1

 

𝜑3(𝒙) = 𝑎0 + ∑ 𝑎𝑖/𝑥𝑖

𝑁

𝑖=1

 

𝜑4(𝒙) = 𝑎0 + ∑ 𝑎𝑖/𝑥𝑖
2

𝑁

𝑖=1

 

𝜑5(𝒙) = 𝑎0 ∏ 𝑥𝑖
𝑎𝑖

𝑁

𝑖=1

 

    (4) 

In the second stage, different approximate models are assembled into one metamodel 

described by Eq. (5) and (6). Also, Eq (5) is built in the same manner as Eq. (3). It should be 

noted here that the design of experiments is fixed when different approximate model φl is 

constructed. 

 ∑ 𝒘𝒑[𝑭(𝒙𝒑) − 𝑭̃(𝒙𝒑, 𝒃𝒍)]
𝟐

→ 𝒎𝒊𝒏

𝑷

𝒑=𝟏

 (5) 

where the assembly metamodel 𝑭̃ is expressed as Eq. (6): 

  𝑭̃(𝒙) = ∑ 𝒃𝒍 ∙ 𝝋𝒍(𝒙)

𝑵𝑭

𝒍=𝟏

 (6) 

NF is the number of regressors in the model bank {𝝋
𝒍
(𝒙)}, the coefficients 𝒃𝒍 are 

regression coefficients that should not be considered as weight factors, e.g. could be positive 

or negateve.  

Finally, the above two-step metamodel building strategy leads to solving the linear 

system of NF equations with NF unknowns 𝒃𝒍.  

 

 

3. Extended MAM and Adaptive Selection of Weighting Coefficients  
 

Moving Least Square Method (MLSM) is a metamodel building technique that has been 

suggested for the use in the meshless form of the Finite Element method [46], and then 

advocated to build the highly-dependent metamodels around the specific point in the local 
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space for design optimization [47–49]. Intrigued by MLSM, an extended MAM (EMAM) is 

proposed in this paper to explore the full potential of the polynomial regression-based 

metamodels through the entire optimization process. Since MLSM can more accurately 

predict the response function around the point at which the approximation is made, EMAM 

has the ability to capture values of the response function around the point with a high level of 

accuracy. 

In current research, a novel metamodel called Taylor’s expansion metamodel is 

developed to construct the linearly combined metamodel and it is given as follows: 

                       𝝋(𝒙) = 𝝋(𝒙𝟎) + ∑ (
𝝏𝝋(𝒙)

𝝏𝒙𝒊
|𝒙=𝒙𝟎 ∙ ∆𝒊)

𝑵
𝒊=𝟏                     

                                ∆i= xi − xi
0  (7) 

where 𝝋(𝒙𝟎)  is the initial function value at the starting point 𝒙𝟎 , which is the 

sub-optimal point obtained in the previous iteration during the optimization loop, N is the 

number of design variables. It is noted that the quality of the above metamodel highly 

depends on the sub-optimal point 𝒙𝟎 because the approximation around 𝒙𝟎 is constructed 

with high levels of accuracy and efficiency by linear expansion. This enables EMAM to 

outperform other metamodel methods in local search for the optimal solution and also 

improve the quality of the optimal solution . 

As described in Section 2, the explicit metamodel will be determined on the basis of 

implicit response evaluations by the weighted least-squares fitting. Apparently, values of the 

weighting coefficient   𝒘𝒑 in Eqs. (3) and (5) directly control the quality of the approximation. 

Generally, the optimal solution in an optimization problem lies on the boundary of the 

feasible region. In other words, there is at least one constraint to be activated when the 

optimum is found in the constrained optimization problems. Therefore, it is necessary to 

propose a strategy for adaptive selection of weighting coefficients in the current optimization 

framework so that the approximation function 𝑭̃(𝒙) could improve its accuracy near the 

promising region. As a result, the optimal solution will be more likely to locate in the vicinity 

of a boundary. 

To implement the Taylor’s expansion metamodel into this approximation-based 

framework, the weighting coefficient wp is defined as follows: 

 

    𝒘𝒑 = ∏ 𝒘𝒑
𝒋

𝑴

𝒋=𝟏

𝒘𝒑
𝒋

= {

(𝑭𝒋(𝒙) + 𝟎. 𝟏)𝜶 𝒊𝒇 𝟎. 𝟗 ≤ 𝑭𝒋(𝒙) < 1

𝑭𝒋
−𝜷(𝒙) 𝒊𝒇 𝑭𝒋(𝒙) > 1

𝟏 𝒆𝒍𝒔𝒆

 (8) 

where α and β are user-defined positive constants and α = 4, β = 5 are determined by 

authors’ experience from a lot of tests performed. It is noted that the bigger weightings should 

be adaptively assigned to the points which are located more closely to the boundaries between 

the feasible and infeasible regions. As can be seen from Eq (8), the maximum constraint 

weighting factor 𝒘𝒑
𝒋
 is assigned when the constraint evaluation equals 1. With β > 𝛼, the 

quality of the metamodel to approximate response functions in the feasible region is much 

‘better’ than the one in the infeasible region. 

As compared to the formulations of the weighting coefficient   𝒘𝒑 in [45], which is 

defined in Eq. (9)  
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   𝒘𝒑 = 𝒘𝒑
𝒐 ⋅ 𝒘𝒑

𝒋
 (𝒋 = 𝟏, . . . , 𝑴)

𝒘𝒑
𝒋

= {
𝑭𝒋

𝜶(𝒙) 𝑭𝒋(𝒙) ≤ 𝟏

𝑭𝒋
−𝜶(𝒙) 𝑭𝒋(𝒙) ≥ 𝟏

𝒘𝒑
𝒐 = [

𝑭𝟎(𝒙𝟏)

𝑭𝟎(𝒙𝒑)
]

𝜷

 

                        

(9) 

 

                         𝜶 = 𝟒 and 𝜷 = 𝟏. 𝟓,  
the objective weighting factor 𝒘𝒑

𝒐 has not been used in the proposed strategy. There are two 

reasons: 1) The weighting factor wp
o will sometimes be allocated a wrong weight value for 

an infeasible point. Considering that an infeasible solution 𝒙𝑝  with an extremely low 

objective value 𝐹0(𝒙𝑝), this weight [(𝐹0(𝑥1))/(𝐹0(𝑥𝑝))]𝛽 would approach infinity. As a result, 

the quality of the metamodel is severely damaged; 2) Even if the objective weighting factor 

𝒘𝒑
𝒐 is well defined , the influence of 𝒘𝒑

𝒐 on the quality of metamodels is much less than that 

of the constraint weighting factor 𝒘𝒑
𝒋
. 

In Eq. (9), the constraint weighting coefficient 𝒘𝒑 only considers the contribution from 

each constraint during the process of the constraint metamodel building. Therefore,  𝒘𝒑 is 

only affected by a single constraint for a given design point. In the proposed strategy for 

adaptive selection of weighting coefficients, all information of different constraints is 

considered by the product of a bunch of weighting factor 𝒘𝒑
𝒋
. Obviously, one design point 

and its corresponding constraints are not isolated one from another. The optimal behavior of a 

design point should be judged by the information of the whole set of constraints, rather than 

the information from a single constraint. By combining the constraints with multiplication 

shown in Eq. (8), the more the constraints are active, the larger the weighting of a point. On 

the contrary, the less weighting value is given when the point is far away from the feasible 

region. It is noted that the proposed strategy for adaptive selection of weighting coefficients 

leads to the approximation function with a high level of accuracy in the feasible region, which 

results in a high probability of identifying feasible solutions during the optimization process. 

 

 

 
Fig.1 Extended MAM flowchart 
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Based on these facts, the flowchart of the EMAM as an enhanced optimization 

framework is shown in Figure 1. At the beginning, an initial feasible design is given to trigger 

the entire optimization process and the corresponding trust region is defined. Then, a number 

of sampling points (N+5, N means the number of design variables) are uniformly distributed 

over the trust region. The objective and constraint values at these points are obtained by 

evaluating the response functions. In this paper, we assume the response functions are 

computationally expensive in simulation-based optimization and any design point will never 

cause a crash during the simulations. Based on the obtained data about design variables and 

responses, the Taylor’s expansion regressor defined by Eq (7) and five other forms of 

regressors represented by Eq (4) are built in sequence. Following that, these six regressors are 

assembled into one metamodel for the evaluations of all response functions of the interests. 

Thus, numerical simulations are performed on the metamodels inside the trust region and the 

optimal solution of the subproblem is found by SQP (sequential quadratic programming) 

solver. To update the trust region in next iteration, it will be resized and moved based on 

several indicators [2] and then, the next iteration starts. When the size of the trust region is 

small enough, the entire optimization process will terminate and the final solution will be 

achieved. 

 

4. Examples  

 

4.1 Design of a Tension/Compression Spring 

 

This problem first described by Belegundu [34] and Arora [50] has arisen from the wide 

applications of vibration resistant structures in civil engineering. The design objective is to 

minimize the weight of a tension/compression spring subject to constraints on shear stress, 

surge frequency and minimum deflections as shown in Fig. 2. The design variables include 

the wire diameter d, the mean coil diameter D, and the number of active coils N. Detailed 

information on constraint functions g1, g2, g3, and g4 can be found in reference [50]. 

 

 
Fig. 2 Schematic of the tension/compression spring 

 

In Table 1, the results obtained by extended MAM are compared to those by other 

methods, such as mathematical programming methods [34,50], Genetic Algorithms (GA) 

[36–38], Evolution Strategies (ES) [39], and Charged System Search (CSS) [41]. As is shown 

in Table 1, the optimal design (0.0126653) found by extended MAM has a good agreement 

with the one by MAM and it also represents the lightest weight design among all the feasible 

solutions indicated in Table 2. Actually, Kaveh & Talatahari [41] obtained a slightly better 

design (0.0126384) using CSS. However, this optimal design can be noted that at least 0.11% 

design constraint violation (g2) was clearly observed in Table 2. 

By choosing different starting points that are randomly gererated for each example in this 

section, both extended MAM and MAM have ability to obtain the lightest design (0.0126653) 

shown in Table 3, when eight sampling points are selected to build the metamodels in each 

iteration of the optimization process. Taking into account the randomness in the developed 

algorithm, the mean value and standard deviation (S.D.) of the results have also been 
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provided in Table 3 to reveal the method’s robustness. To compare methods using a 

probabilistic metric, more details can be found in [51]. In general, the number of evaluations 

called by the extended MAM is less than the number of analyses by MAM and the former can 

obtain the more robust optimum as well. In conclusion, the extended MAM effectively 

enhances search performance with the higher robustness and accuracy of the optimal solution 

than metaheuristic algorithms. 

 

 

Table 1 Comparison of optimal designs of the spring using different algorithms  

Methods 𝒅 𝑫 𝑵 Weight  

 Mathematical programming 

[34] 
0.050000 0.315900 14.250000 0.0128334 

 Mathematical programming 

[50] 
0.053396 0.399180 9.185400 0.0127303 

GA-based [37] 0.051480 0.351661 11.632201 0.0127048 

GA-based [38] 0.051989 0.363965 10.890522 0.0126810 

ES-based [39] 0.051643 0.355360 11.397926 0.012698 

CSS [41] 0.051744 0.358532 11.165704 0.0126384 

MAM 0.051604352 0.35468326 11.409247 0.0126653 

Extended MAM 0.051656017 0.35592318 11.3357128 0.0126653 
 

Table 2 Constraint results of the optimal designs 

Methods 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 

 Mathematical 

programming [34] 
-0.000014 -0.003782 -3.938302 -0.756067 

 Mathematical 

programming [50] 
0.000019 -0.000018 -4.123832 -0.698283 

GA-based [37] -0.002080 -0.000110 -4.026318 -4.026318 

GA-based [38] -0.000013 -0.000021 -4.061338 -0.722698 

ES-based [39] -0.001732 -0.0000567 -4.039301 -0.728664 

CSS [41] 8.78603e-6 0.0011043 -4.063371 -0.726483 

MAM -1.0843e-7 -6.10541e-8 -4.0497478 -7.291416 

Extended MAM -6.3091e-7 -3.2158e-7 -4.052208 -7.282805 
 
 

Table 3 Optimal designs of the spring using MAM and extended MAM algorithms with different 

starting points 

Starting point (𝒅, 𝑫, 𝑵) 

MAM Extended MAM 

Output Value 
No. of 

iteration 

Output 

Value 

No. of 

iteration 

0.05 0.4 9 0.01311 71 0.01269 17 

0.08 1.0 10 0.01311 19 0.01289 26 

0.06 0.5 11 0.0126684 14 0.0126653 15 

0.09 0.7 9 0.01268 14 0.01280 22 

0.06 0.6 12 0.0126653 14 0.0126653 14 

Average 0.01284674 26.4 0.01274212 18.8 

S.D. 2.15e-4 22.4 8.91e-5 4.5 
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4.2 A Reactor Pressure Vessel Example 
 

The second case study focuses on the design optimization of a cylindrical pressure vessel 

capped at both ends by hemispherical heads (Fig. 3). The main purpose of this research is to 

minimize the total manufacturing cost of the vessel including the combination of welding, 

material and forming costs. The design variables consist of the shell thickness Ts, the 

spherical head thickness Th, the radius of cylindrical shell R, and the shell length L. The 

detailed problem formulation was given in [35].   

 
Fig. 3 Pressure vessel with the indication of design variables 

 

 

The comparison of results obtained by the extended MAM and other metamodel-based 

methods (SCGOSR [52], eDIRECT-C [53], ConstrLMSRBF [53], CORBA [53], CiMPS [53]) 

has been presented in Table 4. The cost computed using the extended MAM or MAM has 

been further reduced to 5885.268 by 0.0009% from 5885.33, which was the best design 

referred in [52]. To build the metamodels at each iteration of the optimization process, nine 

sampling points are used in this example. It is noted that the optimized solutions by MAM 

and extended MAM are the best feasible designs since no violated constraints are observed in 

Table 5. SCGOSR [52] could find a near-optimal design with the cost of 5885.3653, which is 

a slight heavier than the result by extended MAM, but the first and second constraints are 

violated. Averagely, the extended MAM outperforms the MAM to seek the optimum in terms 

of the number of iterations used in the case studies with different starting points shown in 

Table 6. Taking into account the above advantages of extended MAM for seeking optimal 

solutions, the superiority of the proposed method over other metamodel-based techniques has 

been demonstrated in terms of the accuracy and efficiency. It is concluded that hybrid 

algorithms such as the extended MAM and MAM, are quite robust algorithms to consistently 

achieve higher accuracy of the solution than other metamodel-based algorithms used for 

solving problems with multiple local optima, and the extended MAM has a slightly faster rate 

of convergence than MAM. 

 

 

Table 4 Comparison of the optimal solution with literature on pressure vessel designs 

Methods 𝐓𝐬 𝐓𝐡 𝐑 𝐋 Cost 

SCGOSR [52] 0.778187 0.384658 40.320586 199.986548 5885.3653 

eDIRECT-C [53] 1.00000 0.62500 51.81347 84.57855 7006.7816 

ConstrLMSRBF [53] 1.00000 0.62501 51.81035 84.60683 7007.2309 

CORBA [53] 1.00000 0.62503 51.80156 84.66651 7007.8352 

CiMPS [53] 1.10000 0.62500 56.99482 51.00125 7163.7390 

MAM 0.7781687 0.3846492 40.319619 200.000 5885.268 

Extended MAM 0.7781687 0.3846492 40.319619 200.000 5885.268 
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Table 5 Comparison of present constraint values with literature for the pressure vessel 

Methods 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 

SCGOSR [52] 2.8e-2 9.7e-3 -6.5e-2 -4.0e+1 

eDIRECT-C [53] -2.9e-8 -1.3e-1 -1.0e-1 -1.6e+2 

ConstrLMSRBF [53] -6.0e-5 -1.3e-1 -4.7e+1 -1.6e+2 

CORBA [53] -2.3e-4 -1.3e-1 -1.2e+1 -1.6e+2 

CiMPS [53] 3.7e-2 -8.1e-2 -6.2e-2 -1.9e+2 

MAM -5.3e-8 -0.0012 -0.01962 -40.000 

Extended MAM -5.3e-8 -0.0012 -0.01962 -40.000 

 

Table 6 Optimal pressure vessel designs using MAM and extended MAM algorithms with different 

starting points 

Methods MAM Extended MAM 

Starting point (𝑻𝒔, 𝑻𝒉, 𝑹, 𝑳) Output Value No. of iteration Output Value No. of iteration 

1.0 1.0 100 150 5885.268 10 5885.268 10 

0.8 0.5 50 150 5885.268 10 5885.268 9 

0.5 0.5 100 100 5885.268 21 5885.268 17 

1.5 1.5 50 50 5885.268 9 5885.268 10 

Average 5885.268 12.5 5885.268 11.5 

S.D. 5885.268 4.9 5885.268 3.2 

 
 

4.3 Welded Beam Design   

 

Design optimization of a welded beam shown in Fig.4 is a complex and challenging 

problem in nature with many variables and constraints. Usually, conventional optimization 

methods fail to find global optimal solution. Hence, the welded beam design problem is often 

used to evaluate the performance of different optimization methods. To determine the best set 

of design variables for minimizing the total fabrication cost of the structure, the minimum 

cost optimization is performed considering shear stress (τ), bending stress (σ), buckling load 

(pc), and end deflection (δ) constraints. The constants in this study are chosen as follows: 

𝑷 = 6000 𝑙𝑏, 𝑳 = 14 𝑖𝑛,  𝑬 = 30 × 106 𝑝𝑠𝑖,  𝑮 = 12 × 106 𝑝𝑠𝑖, 

 𝝉𝒎𝒂𝒙 = 13600 𝑝𝑠𝑖, 𝝈𝒎𝒂𝒙 = 30000 𝑝𝑠𝑖, 𝜹𝒎𝒂𝒙 = 0.25 𝑖𝑛. 

Taking into account design variables x1 = h , x2 = l , x3 = t , and x4 = b , the 

mathematical optimization of the problem can be formulated as: 
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Fig. 4 Design variables of a welded beam structure in parametric optimization 

 

 

 

Objective: Minimize the cost 

𝒄𝒐𝒔𝒕(𝒙) = 𝟏. 𝟏𝟎𝟒𝟕𝟏𝒙𝟏
𝟐𝒙𝟐 + 𝟎. 𝟎𝟒𝟖𝟏𝟏𝒙𝟑𝒙𝟒(𝟏𝟒 + 𝒙𝟐) 

The bounds on the design variables are 

𝟎. 𝟏 ≤ 𝒙𝟏 ≤ 𝟐, 𝟎. 𝟏 ≤ 𝒙𝟐 ≤ 𝟏𝟎, 𝟎. 𝟏 ≤ 𝒙𝟑 ≤ 𝟏𝟎, 𝟎. 𝟏 ≤ 𝒙𝟒 ≤ 𝟐 

Subjected to 

                                                               𝒈𝟏(𝒙) = 𝝉(𝒙) − 𝝉𝒎𝒂𝒙 ≤ 𝟎 

                                                              𝒈𝟐(𝒙) = 𝝈(𝒙) − 𝝈𝒎𝒂𝒙 ≤ 𝟎 

                                                              𝒈𝟑(𝒙) = 𝒙𝟏 − 𝒙𝟒 ≤ 𝟎 

                         𝒈𝟒(𝒙) = [𝟎. 𝟏𝟎𝟒𝟕𝟏𝒙𝟏
𝟐 + 𝟎. 𝟎𝟒𝟖𝟏𝟏𝒙𝟑𝒙𝟒(𝟏𝟒 + 𝒙𝟐)] − 𝟓 ≤ 𝟎 

                                                             𝒈𝟓(𝒙) = 𝟎. 𝟏𝟐𝟓 − 𝒙𝟏 ≤ 𝟎 

                                                             𝒈𝟔(𝒙) = 𝜹(𝒙) − 𝜹𝒎𝒂𝒙 ≤ 𝟎 

                                                             𝒈𝟕(𝒙) = 𝒑 − 𝒑𝒄(𝒙) ≤ 𝟎 

Where  𝝉′ =
𝑷

√𝟐𝒙𝟏𝒙𝟐
, 𝝉′′ =

𝑴𝑹

𝑱
, 𝑴 = 𝑷(𝑳 +

𝒙𝟐

𝟐
), 𝑹 = √

𝒙𝟐
𝟐

𝟒
+ (

𝒙𝟏+𝒙𝟑

𝟐
)𝟐, 

𝝉(𝒙) = √(𝝉′)𝟐 + 𝟐𝝉′𝝉′′
𝒙𝟐
𝟐𝑹 + (𝝉′′)𝟐, 𝑱 = 𝟐{√𝟐𝒙𝟏𝒙𝟐[

𝒙𝟐
𝟐

𝟏𝟐
+ (

𝒙𝟏+𝒙𝟑

𝟐
)𝟐]}, 𝝈(𝒙) =

𝟔𝑷𝑳

𝒙𝟒𝒙𝟑
𝟐, 

       𝜹(𝒙) =
𝟒𝑷𝑳𝟑

𝑬𝒙𝟑
𝟑𝒙𝟒

, 𝒑𝒄(𝒙) =

𝟒.𝟎𝟏𝟑√𝑬(
𝒙𝟑

𝟐𝒙𝟒
𝟔

𝟑𝟔
)

𝑳𝟐 (𝟏 −
𝒙𝟑

𝟐𝑳
√

𝑬

𝟒𝑮
). 

 

In this example, the best combination of design variables and the lowest cost by hybrid 

algorithms (MAM and extended MAM) are compared with those obtained using GA [36–38], 

PSO [40,54], FA [43], colliding bodies optimization (CBO) [42], CMA-ES [55] and 

differentail evolution [56] in Table 7. Nine sampling points are applied to construct the 

metamodels in each iteration of the optimization process. Although Kaveh & Mahdavi [42] 

claimed that the minimum cost design was 1.724663 indicated in table 7, the corresponding 

fabrication cost of the structure was acturally 1.724983, which can be easily evaluated by 

substituting the values of design variables for the optimal design into the objective function 

cost (x). The cost of this design is higher than the result (1.724852) by the extended MAM, 

which is one of the best feasible designs shown in Table 7. CMA-ES, IAPSO and iDEaSm 
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could also find the best design, however the required number of function evaluations are 4658, 

12500 and 4425 respectively. MAM and EMAM only need about 120 function evaluations 

(about 13 iterations) as shown in Table 8, where the statistical results of four randomly tests 

are given to demonstrate the robustness of the solution. It is concluded that both extended 

MAM and MAM demonstrate the superiority over the other methods to solve the complex 

optimization problem with respect to the efficiency and accuracy of the solution.  

 

Table 7 Comparison of present optimized designs with literature for the welded beam 
 

Methods 𝒙𝟏(𝒉) 𝒙𝟐(𝒍) 𝒙𝟑(𝒕) 𝒙𝟒(𝒃) cost 

GA-based [36] 0.248900 6.173000 8.178900 0.253300 2.433116 

GA-based [37] 0.208800 3.420500 8.997500 0.210000 1.748309 

GA-based [38]  0.205986 3.471328 9.020224 0.20648 1.728226 

CPSO [40] 0.202369 3.544214 9.04821 0.205723 1.728024 

ES-based [39] 0.199742 3.612060 9.037500 0.206082 1.737300 

CSS [41] 0.205820 3.468109 9.038024 0.205723 1.724866 

CBO [42] 0.205722 3.47041 9.037276 0.205735 1.724663 

FA [43] 0.201500 3.56200 9.041400 0.205700 1.731210 

CMA-ES [55] N.A. N.A. N.A. N.A. 1.724852 

IAPSO [54] 0.2057296 3.47048866 9.03662391 0.20572964 1.724852 

IDEaSm [56] 0.20572963 3.4704888 9.0366238 0.20572965 1.724852 

MAM 0.2057296 3.4704893 9.0366242 0.2057297 1.724852 

Extended MAM 0.2057296 3.4704894 9.0366242 0.2057297 1.724852 

 

Table 8 Optimal designs of the welded beam using MAM and extended MAM algorithms with 

different starting points 

Methods MAM Extended MAM 

Starting point 

(𝒉, 𝒍, 𝒕, 𝒃) 

Output 

value 

Iteration 

number 

Output 

value 

Iteration 

number 

0.6 1.0 5.0 0.6 1.724852 14 1.724853 13 

0.5 3.5 9.0 0.5 1.724852 12 1.724853 14 

0.6 2.0 7.0 0.6 1.724852 14 1.724852 12 

1.0 3.0 7.0 0.5 1.724853 13 1.724853 13 

Average 1.724852 13.3 1.724853 13.0 

S.D. 4.3e-7 0.8 4.3e-7 0.7 

 
 

4.4 A Ten-bar Truss Structure 

To further demonstrate the computational efficiency of the extended MAM, the 

well-known ten-bar truss benchmark problem [6] shown in Figure 5 is used to explore the 

potential. The optimization formulation of this problem is defined to minimize the weight of 

the structure by varying the cross-sectional areas (from 0.1 in2 to 12.7 in2) of the truss 

members subject to stress constraints. The allowable stress in each truss member is the same 

in tension and compression and is set to 25 ksi for all members except member 9 for which 

it is 75 ksi. The density of the truss material is 0.1 lb/in3, the member size L = 360 in, the 

loads P1 = P2 = 100 Kips and P3 = 0. 
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Fig. 5 Ten-bar truss structure 

 

In order to demonstrate the superiority of the extended MAM over other optimization 

methods such as PSO [57], FA [58] and SQP in HyperStudy [59], a comparison of optimal 

designs of ten-bar truss structure has been given in Table 9. It should be noted that for PSO, 

FA, MAM and the extended MAM, the objective function value, the number of iterations and 

the number of response analyses are actually the average results over 5 independent runs. The 

best design (1497.0) was achieved by Haftka [60], however some constraints indicated in 

Table 10 had been violated. The same conclusion can be drawn for the optimal design (1497.6) 

by SQP in HyperStudy. The results by PSO (1519.2) and FA (1558.1) are feasible solutions, 

however they are not the best design. For the best feasible design (1497.6) by extended MAM 

and MAM, the higher efficiency and accuracy of these two algorithms have been 

demonstrated, for example, the average number of iterations used by the extended MAM has 

been reduced by an order of magnitude from 520 (PSO) or 400 (FA) to 28. It is also noted 

that the average number of response analyses (420) called by extended MAM is 24% less than 

the one (555) by MAM. Summarily, the extended MAM outperforms the other methods in 

seeking the optimal solution of the complex engineering design problems in terms of the 

efficiency and accuracy.  

Table 9 Comparison of present optimized designs for ten-bar truss structure 

Design variables Haftka [60] 
Hyper 

study[59] 
PSO[57] FA[58] MAM 

Extended 

MAM 

𝒙𝟏 7.9 7.9 7.5395 7.4269 7.9 7.9 

𝒙𝟐 0.1 0.1 0.4605 0.8070 0.1 0.1 

𝒙𝟑 8.1 8.1 8.4605 8.6498 8.1 8.1 

𝒙𝟒 3.9 3.9 3.5395 3.6580 3.9 3.9 

𝒙𝟓 0.1 0.1 0.1 0.1424 0.1 0.1 

𝒙𝟔 0.1 0.1 0.4605 0.6316 0.1 0.1 

𝒙𝟕 5.8 5.8 6.3081 6.5491 5.798276 5.798275 

𝒙𝟖 5.51 5.52 5.0056 4.7649 5.514327 5.515434 

𝒙𝟗 3.68 3.68 3.3370 3.3244 3.676959 3.676927 

𝒙𝟏𝟎 0.14 0.14 0.6513 0.8937 0.141421 0.141430 

Weight (lb) 1497.0 1497.6 1519.2 1558.1 1497.6 1497.6 

No. of iterations N/A 13 520 400 37 28 

No. of response analyses N/A 144 5200 20000 555 420 
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Table 10 Constraints results of the continuous optimization using different techniques 

Constraints 

(ksi) 
Haftka [60] 

HyperStudy 

[59] 
PSO[57] FA[58] MAM 

Extended 

MAM 

𝒈𝟏 6.4e-4 6.4e-4 -2.1e-4 -0.153 -2.073e-5 -2.706e-6 

𝒈𝟐 -0.12 -0.12 -1.3e-4 -4.4e-2 -2.255e-5 -2.231e-5 

𝒈𝟑 -6.2e-4 -6.2e-4 -2.8e-10 -9.86e-3 -4.629e-7 -4.470e-7 

𝒈𝟒 3.1e-3 3.1e-3 -1.1e-3 -2.2 -1.281e-6 -1.350e-6 

𝒈𝟓 -24.93 -24.93 -25.00 -25.00 -25.00 -25.00 

𝒈𝟔 -0.12 -0.12 -0.31 -9.1e-2 -2.255e-5 -2.231e-5 

𝒈𝟕 -8.6e-3 -8.6e-3 -2.8e-10 -3.2e-2 -2.1e-6 -2.1e-6 

𝒈𝟖 2.6e-2 2.6e-2 -1.3e-9 -9.7e-4 -4.77e-7 -4.088e-6 

𝒈𝟗 -37.53 -37.53 -37.66 -36.44 -37.50 -37.50 

𝒈𝟏𝟎 0.1315 0.1315 -4.0e-9 -0.024 -1.261e-5 -1.237e-5 

 

 

5. Conclusions 
 

The paper focuses on obtaining the high efficiency and accuracy solution of complex 

simulation-based optimization problems by developing an extended multipoint approximation 

method. A novel metamodel inspired by the Taylor’s expansion technique is proposed as well 

as a strategy for adaptive selection of weighting coefficients so that the approximation of 

responses of the interests in the computationally expensive design problems can be performed 

more efficiently. The superiority of the extended MAM over SQP, metaheuristic algorithms, 

metamodel-based algorithms and MAM has been demonstrated by four nonconvex 

benchmark examples in terms of the computational efficiency and accuracy. In the current 

implementation, there are some limitations of EMAM. First, the optimization performance 

needs improvement to solve mixed-variable optimization problems. Second, the moving trust 

region strategy has certain drawbacks of balancing exploration and exploitation. Finally, the 

metamodel has difficulty in modelling highly multi-modal and high-dimensional responses. 

However, possessing the potential of remarkably reducing the computational effort in the 

simulation-based optimization, the extended MAM can pose great influence on solving highly 

nonlinear engineering problems and provide valuable insights into the development of 

effective algorithms applied during the simulation-driven design process.  
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