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Abstract 

There is consensus that activation within distributed functional brain networks underlies 

human thought. The impact of this consensus is limited, however, by a gap that exists between 

data-driven correlational analyses that specify where functional brain activity is localized using 

fMRI, and neural process accounts that specify how neural activity unfolds through time to give 

rise to behavior. Here, we show how an integrative cognitive neuroscience approach may bridge 

this gap. In an exemplary study of visual working memory, we use multi-level Bayesian statistics 

to demonstrate that a neural dynamic model simultaneously explains behavioral data and predicts 

localized patterns of brain activity, outperforming standard analytic approaches to fMRI. The 

model explains performance on both correct trials and incorrect trials where errors in change 

detection emerge from neural fluctuations amplified by neural interaction. Critically, predictions 

of the model run counter to cognitive theories of the origin of errors in change detection. Results 

reveal neural patterns predicted by the model within regions of the dorsal attention network that 

have been the focus of much debate. The model-based analysis suggests that key areas in the 

dorsal attention network such as the intraparietal sulcus play a central role in change detection 

rather than working memory maintenance, counter to previous interpretations of fMRI studies. 

More generally, the integrative cognitive neuroscience approach used here establishes a 

framework for directly testing theories of cognitive and brain function using the combined power 

of behavioral and fMRI data.  
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Although great strides have been made in understanding the brain using data-driven 

methods (Smith et al., 2009), to understand the brain’s complexity, psychological and brain 

sciences will need sophisticated theories (Gerstner, Sprekeler, & Deco, 2012). But what would a 

good theory of brain function look like? (This question was posed in a July 11, 2014 New York 

Times Opinion Page by Gary Marcus: http://www.nytimes.com/2014/07/12/opinion/the-trouble-

with-brain-science.html). Addressing this question requires theories that bridge the disparate 

scientific languages of neuroscience and psychology: we must create psychological explanations 

for behavior using neural process accounts, and neuroscientific theories of brain function that 

make sense of behavior. In short, bridge theories must explain what the brain is doing in real-

time to generate specific patterns of neural and behavioral data (for related ideas see, O’Reilly, 

2006). 

Bridging brain and behavior may seem like a central goal in the psychological and brain 

sciences; however, this goal has rarely been directly realized. Many theories in psychology focus 

on cognitive processes with a primary goal of explaining behavioral data (Anderson et al., 2004; 

Bays, Catalao, & Husain, 2009; Brady & Tenenbaum, 2013). Other theories focus on neural 

processes with a primary goal of explaining neural data (Brunel & Wang, 2001; Deco, Rolls, & 

Horwitz, 2004; Domijan, 2011; Edin, Macoveanu, Olesen, Tegnér, & Klingberg, 2007; Raffone 

& Wolters, 2001). Rarely is the same model used to generate both behavioral and neural data, 

that is, simultaneously integrating both cognitive and neural processes (Wijeakumar, Ambrose, 

Spencer, & Curtu, 2016). This level of explanation is arguably the most critical, however, 

because it can explain how neural processes give rise to cognition and behavior (see Palmeri, 

Turner, & Love, 2017 for a special issue devoted to this topic). 

To illustrate, consider the current state of theory within the domain of visual working 
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memory (VWM). VWM is central cognitive system used to remember visual information during 

short term delays and compare visual items that cannot be simultaneously foveated (for a review 

see Luck & Vogel, 2013). For instance, VWM is often probed in the change detection task 

(Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988). In this task, participants are shown a 

memory array consisting of 1-8 objects (e.g., colored squares). After a brief delay (e.g., 1s), 

participants are shown a test array and asked to determine whether all the items are the same or 

different. Results from this task have revealed that VWM has a highly limited capacity. Although 

estimates vary across studies, it is generally accepted that people can store only 2-4 items in 

VWM at one time  (Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988; Rouder, Morey, Morey, 

& Cowan, 2011). 

According to one prominent view, these capacity limits reflect the functioning of a 

memory system that stores a limited number of fixed-resolution representations in independent 

memory ‘slots’ (Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988; Zhang & Luck, 2008). An 

alternative view holds that VWM is better conceived of as a shared resource that can be flexibly 

distributed among the items making up a scene, with no fixed upper limit on the number of items 

that can be stored (Bays et al., 2009; Bays & Husain, 2008; Wilken & Ma, 2004). There have 

been a host of recent modeling efforts designed to contrast these two perspectives using Bayesian 

approaches (e.g., Brady & Tenenbaum, 2013; Donkin et al., 2013; Kary et al., 2016; Rouder et 

al., 2008; Sims et al., 2012) and efforts to expand these views using drift diffusion models 

(Sewell, Lilburn, & Smith, 2016). In all cases, these studies use mathematical models to 

instantiate conceptual claims about VWM and test these claims at the level of behavior, typically 

using proportion correct, although some recent papers have also examined reaction times 

(Donkin et al., 2013; Sewell et al., 2016), VWM confidence (van den Berg, Yoo, & Ma, 2017), 
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feature chunking (Brady & Tenenbaum, 2013), and psychometric functions for difference 

detection (Sims et al., 2012) or feature estimation with models that do not have strict limits on 

slots or resources (Oberauer & Lin, 2017; Swan & Wyble, 2014). None of these models have 

been used to explain patterns of neural data, nor were they designed to do so.  

Other theories of VWM have focused on the neural bases of this cognitive system. fMRI 

research shows that a distributed network of frontal and posterior cortical regions underlies 

change detection performance. VWM representations are thought to be actively maintained in 

the intraparietal sulcus (IPS), the DLPFC, the ventral-occipital (VO) cortex for color stimuli, and 

the lateral-occipital complex (LOC) for shape stimuli (Todd & Marois, 2004, 2005). In addition, 

there is suppression of the temporo-parietal junction (TPJ) during the delay interval, and 

activation of the ACC during the comparison phase (Mitchell & Cusack, 2008; Todd, Fougnie, & 

Marois, 2005). Moreover, there is greater activation of this network on change versus no change 

trials, and the hemodynamic response on error trials tends to be less robust (Pessoa, Gutierrez, 

Bandettini, & Ungerleider, 2002; Pessoa & Ungerleider, 2004). 

Efforts to understand the theoretical bases of VWM at the neural level have focused on 

the biophysical properties that give rise to sustained activation—the putative neural basis of 

VWM representations (Constantinidis & Steinmetz, 1996; Fuster & Alexander, 1971; Miller, 

Erickson, & Desimone, 1996; Moody, Wise, di Pellegrino, & Zipser, 1998). There have been 

quite detailed biophysical accounts of how networks of neurons give rise to sustained activation. 

These models have been used to explain both neurophysiological data (Brunel & Wang, 2001; 

Compte, Brunel, Goldman-Rakic, & Wang, 2000) and, in some cases, aspects of fMRI signals 

(Deco et al., 2004; Domijan, 2011; Edin et al., 2007). Other models have explored the possibility 

that VWM representations are encoded in terms of neural synchrony across neuronal assemblies 
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(Raffone & Wolters, 2001), while recent work has also raised the possibility that working 

memory performance reflects the reactivation of representations from ‘memory-silent’ neural 

codes (Rose et al., 2016; Sprague, Ester, & Serences, 2016; cf., Schneegans & Bays, 2017). 

Although these models explain how neural processes can encode and maintain visual 

information, they have not been used to capture any behavioral data from VWM paradigms. This 

is not surprising. Biophysical models are computationally complex; thus, simulating behavioral 

performance across many iterations of the model is often not a realistic goal. 

There are some models that have the potential to bridge the gap between brain and 

behavior. These models use variants of neuronal dynamics. For instance, Swan and Wyble 

(2014) proposed a model of VWM with some neural dynamics; however, these dynamics were 

discrete and activation levels were updated in one-shot steps at encoding and retrieval making a 

direct link to real-time neural measures not possible. Similarly, Oberauer and Lin (2017) 

proposed a model inspired by a connectionist network using the concept of neural activation; 

however, there was no attempt to simulate real-time neural dynamics directly. In both of these 

papers, the focus was solely on simulating behavioral data.  

In summary, then, although understanding how the brain gives rise to behavior is clearly 

an important goal, this goal has been rarely addressed within the domain of visual working 

memory. We contend that research on VWM is not unique in this regard. Creating theories that 

bridge between these levels of analysis is fundamentally challenging as highlighted in a recent 

special issue on model-based fMRI (Turner, Forstmann, Love, Palmeri, & Van Maanen, 2016). 

Model-based fMRI is a promising approach to understanding human cognitive neuroscience that 

uses computational models of cognitive processes to link brain and behavior. Turner and 

colleagues reviewed the current state of the literature, highlighting many exciting approaches, 
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but they also revealed a fundamental challenge: very few approaches create a direct mapping 

between brain and behavior. This is what they call integrative cognitive neuroscience (ICN). The 

goal of ICN is to develop a model where one can tune parameters to achieve good fits to both 

brain and behavior and, reversely, that brain and behavioral measures can feed back to inform 

the quality of the model/theory. 

We pursue an ICN approach here within the domain of VWM. We begin with a Dynamic 

Field Theory (DFT) of VWM that has shown promise by generating novel, a priori behavioral 

predictions that run counter to other cognitive models of visual working memory (Johnson, 

Ambrose, van Lamsweerde, Dineva, & Spencer, submitted; Johnson, Spencer, Luck, & Schöner, 

2009). Critically, this theory also simulates neural population activation on a millisecond 

timescale and explains how neural activation in the brain is turned into a behavioral decision on 

each trial. This is not done using an algorithmic mapping of activation to behavioral measures; 

rather, the model actively generates a decision on each trial via the activation of a neural decision 

system engaged during the comparison process. Thus, in DFT there is not brain at one level and 

behavior at another. Rather, brain measures and behavioral outcomes both arise from neural 

population dynamics. The result is an integrative cognitive neuroscience (ICN) model that 

directly simulates both neural activation and behavior. 

The goal of the paper is to test the DF model of VWM with fMRI. We do this first by 

simulating previous fMRI findings from the literature, simultaneously fitting the model to both 

behavioral and fMRI data. This yields an initial set of model parameters we can use to generate 

novel neural predictions. It also leads to a discovery: what was thought to be a neural signature 

of working memory – an asymptote at high memory loads – may actually be a neural signature 

of brain regions coupled to working memory rather than a signature of working memory per se. 
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Our model also explains why this asymptote does not occur in paradigms using a longer memory 

delay. 

Next, we test a set of novel neural predictions generated by the DF model. One of the 

unique features of the model is that it specifies the neural processes that underlie both correct and 

incorrect trials in the change detection task (Johnson, Simmering, & Buss, 2014). Consequently, 

an optimal way to test the model is in a change detection task that has high numbers of correct 

and incorrect trials. Thus, we created a novel experiment that optimized participants’ 

performance so they generated many errors, but maintained performance at above-chance levels. 

We then used this paradigm in a task-based fMRI study conducted using a 3T MRI scanner.  

But how do we know if the DF model provides a good account of these data? Ideally, we 

would test the model against a competing theory of VWM; however, as our review above 

indicates, no other theory of VWM simultaneously predicts both neural and behavioral data. 

Thus, we tested the model against a standard statistical model. The idea here was simple: 

typically, fMRI data are analyzed using a general linear modelling (GLM) approach with 

regressors for each factor in the experiment. In order for the DF model to be useful, it should – at 

the very least – capture more variance than the standard statistical model. To evaluate this, we 

used Bayesian linear multi-variate modeling to evaluate the DF model’s ability to capture data 

from 23 regions of interest (ROIs) relative to different variants of a task-based GLM. A 

Variational Bayes algorithm (Roberts & Penny, 2002) was then used to estimate the model 

evidence which takes into account model fit but also penalizes models for their complexity 

(Bishop, 2006). Finding the best model over a group of subjects was then implemented using 

Random Effects Bayesian Model Selection (Rigoux, Stephan, Friston, & Daunizeau, 2014; 

Stephan, Penny, Daunizeau, Moran, & Friston, 2009). Results show that the DF model 
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outperforms the standard statistical model. Further, the mapping of model components to ROIs 

provides a novel functional picture of how the brain implements VWM across a distributed 

network. Critically, this analysis reveals not only where VWM lives in the brain, but which brain 

areas implement which functions. 

The paper is organized as follows. We first describe the theory we test, including 

background on the larger theoretical framework this theory is embedded within, Dynamic Field 

Theory. Next, we derive a mapping from neural activity in the model to hemodynamic responses 

measured with fMRI and contrast this with other approaches to model-based fMRI. Our 

objective here is to highlight how the dynamic field approach is an example of integrative 

cognitive neuroscience (Turner et al., 2016). We then ask if this approach yields useful 

information by simulating – for the first time – a key finding from the literature using a neural 

process model. We then generate a set of novel predictions and test them in an fMRI experiment, 

using a GLM-based approach to model testing. We conclude with an evaluation of our 

integrative cognitive neuroscience approach—have we achieved a model that effectively bridges 

between brain and behavior? We address this question by placing our approach within the 

context of the theoretical literature on VWM and contrasting our model with other psychological 

and neuroscience models in the field. 

 A Dynamic Field Theory of Visual Working Memory 

The model we evaluate was developed within the framework of Dynamic Field Theory 

(Schoner, Spencer, & DFT Research Group, 2016). Thus, we begin with a brief review of the 

concepts of DFT. This theoretical framework has a long history in psychology and neuroscience 

dating back almost 30 years (Buss & Spencer, 2014, 2018; Buss, Wifall, Hazeltine, & Spencer, 

2014; Erlhagen & Schöner, 2002; Kopecz & Schöner, 1995; Perone, Molitor, Buss, Spencer, & 
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Samuelson, 2015; Perone, Simmering, & Spencer, 2011; Schöner & Thelen, 2006; Schutte & 

Spencer, 2009; Schutte, Spencer, & Schoner, 2003; Simmering, 2016; Simmering & Spencer, 

2008; Thelen, Schöner, Scheier, & Smith, 2001). Readers are referred to our recent book for a 

more complete introduction (Gregor Schoner et al., 2016). 

Activity within populations of cortical neurons is hypothesized to be the best neural 

correlate of behavioral performance (Cohen & Newsome, 2008). Thus, we anchor our approach 

at this level. In particular, the theory we evaluate—a dynamic field theory (DFT) of VWM 

(Johnson, Spencer, Luck, et al., 2009; Johnson, Spencer, & Schöner, 2009)—simulates the 

activity of neural populations from millisecond-to-millisecond as the neural dynamic network 

engages in a particular working memory task.  

A central issue in neural population dynamics is stability—how does a neural population 

stabilize a particular pattern through time (Amari, 1977; Grossberg, 1982; Wilson & Cowan, 

1972). This can be formalized using the language of dynamical system theory. Specifically, one 

can think about how the activity of a neural population, u, changes through time, 𝑢̇, as a function 

of its current state and other inputs to the population. These dynamics can be formalized as 

follows: 

𝑢̇ = 	−𝑢 + ℎ (1) 

where 𝑢̇ is the rate of change in activation through time, u is the current state of 

activation, and h is a collection of inputs to the field that, when summed, modulate the resting 

level of the population. 

If we plot the phase portrait of this system, that is, a plot of the system in the space u by 

𝑢̇, we see that the system is a linear dynamical system (see red line in Figure 1A). There is a 

special place in this linear plot where 𝑢̇ = 0. If activation, u, is set to this value, then the rate of 
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change is 0 and the system will stay put—it won’t change through time. This special place in the 

phase portrait is called an attractor. In equation 1, h is the attractor state – when activation 

reaches this value, the rate of change in activation is zero (if u = h, then 𝑢̇ = 0). 

If we plot the behavior of this neural dynamic system through time, we can see that it 

stays near this attractor position. This is readily apparent when we add some neural noise to the 

equation, x(t). For instance, in Figure 1B, we start the neural population at a random value near h 

and simulate the dynamics through time, adding a random value to the system at each time point 

(see x-axis). For the first 250 time steps, we keep h at the value -4 (see green line), and the 

system randomly wanders up and down, but always stays near h. After 250 time steps, we then 

boost h to the value -2 (see the magenta line in Figure 1A). This is like boosting the overall 

excitability of the neural population (a common form of neural interaction in the brain, see 

Bastian, Riehle, Erlhagen, & Schöner, 1998). The system jumps up to the activation value -2 (see 

Figure 1B), quickly finding the new attractor state. After another 500 time steps, we return h to 

the value -4. Again, the activation quickly moves to the new attractor state and stays around this 

value.  

Although this captures some features of neural population dynamics, this simple 

dynamical system fails to capture that neural populations are inherently non-linear. For instance, 

neural populations often require a robust input to ‘turn on’, and once they are ‘on’, they are often 

‘sticky’ – they stay ‘on’ even when there is relatively little input (e.g., see Hock, Kelso, & 

Schöner, 1993). This type of non-linearity can be captured by adding a sigmoidal function to the 

equation: 

𝑢̇ = -u + h + c*g(u) + x(t) (2) 

Where  
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g(u) = 1 / (1 + exp(-β(u))) (3) 

The sigmoidal function, g(u), has ‘output’ that varies between 0 and 1. β defines the 

steepness of the transition from 0 to 1, and this function is typically centered around a threshold 

value of 0 activation. Thus, as activation, u, increases from a negative ‘resting’ level toward 0, 

the sigmoidal function starts producing positive output. At an activation value of 0, the sigmoidal 

function outputs a value of 0.5. And at higher positive activation values, the sigmoidal function 

saturates at an output of 1.0. Note that the ‘output’ of the sigmoidal function is multiplied by a 

connection strength, c, in equation 2.  

To understand the consequence of this sigmoidal function, consider the phase portrait of 

this new system in Figure 1C when h = -4 (red line). Notice the S-shaped bend in the system as it 

approaches the value u = 0 (the threshold value). We can see that at negative values of u (when 

g(u) = 0), the system follows the equation 𝑢̇	= -u + h, while at large positive values of u (when 

g(u) = 1), the system follows the equation 𝑢̇ = -u + h + c. Importantly, however, there is still 

only a single attractor state at h = -4 (see black square). Consequently, this system will always 

stay near this attractor state. This is shown in Figure 1D. Note how the system behaves just like 

the linear system for the first 250 time steps. 

Critically, when we boost h from -4 to -2 as before, the non-linear system goes through a 

bifurcation, that is, the attractor layout changes (see magenta line in Figure 1C). Now the system 

has two attractor states – one near -2 (the new ‘resting’ level defined by h) and one at +3 (the 

value h + c, where c = 5 in this example). Moreover, in between these two attractors is a repeller 

indicated by the diamond. Figure 1D shows that this changes how the neural population behaves 

through time. When the excitability of the neural population is boosted by raising h to -2, the 

system quickly moves to this new attractor state. However, after another 250 time steps (around 
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time point 500) the system jumps to the value h+c and remains stably activated in this ‘on’ state 

through time. The behavior of this system inspires an analogy—the neural population has 

detected the presence of a weak input, and the system has kicked itself into an ‘on’ state. Note 

that this state is stable, but not permanent. For instance, once we decrease h back to the initial 

‘resting’ value at time step 750 (see green line in Figure 1D), the activation eventually settles 

back to the original attractor state. This is reflected in Figure 1C—recall that at a low h value, 

there is only one stable attractor state. 

This non-linear dynamical system captures several key properties of neural population 

dynamics (e.g., bi-stability; see Tegnér, Compte, & Wang, 2002); however, the system can only 

represent that something is present or absent (i.e., that activation is high or low). To enrich the 

system, we need to think about how to represent the dimensions within which the neural system 

is embedded. In DFT, this is done by thinking about the tuning curves of neurons in a population. 

Neurons in cortex are sensitive to particular types of information, typically in a graded way. For 

instance, some neurons are ‘tuned’ to spatial dimensions (Constantinidis & Steinmetz, 2001)—

they prefer stimuli, say, to the left side of the retina. Other neurons are ‘tuned’ to color 

dimensions (Matsumora, Koida, & Komatsu, 2008; Xiao, Wang, & Felleman, 2003)—they like 

blue hues. Importantly, these tuning functions are typically quite broad (Wachtler, Sejnowski, & 

Albright, 2003); this means a color neuron will respond really vigorously to blue hues, but also 

quite a bit to cyan, and maybe even a bit to pink as well. 

How do we incorporate these tuning functions into the neuronal dynamics picture? We 

can integrate these concepts using dynamic fields (DFs) where each neuron contributes its tuning 

curve weighted by its current firing rate to an activation field (Erlhagen et al., 1999). This tuning 

of neural units creates a direct link between activation fields in DFT and task dimensions varied 
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in experiments that has predicted a wide range of behavioral data (Buss & Spencer, 2014; Buss 

et al., 2014; Johnson, Spencer, Luck, et al., 2009). To make this concrete, let’s start with 100 

neural sites instead of just one. Each site will have the same neural dynamics as before; however, 

now that we have 100 neural sites, we have to think about how they are connected to one another 

across the cortical field. We will wire them up using a canonical lateral connectivity pattern with 

local excitation and surround inhibition (Amari, 1977; Compte et al., 2000; Wilson & Cowan, 

1972), and the ‘ordering’ of sites along the represented dimension will be based on their tuning 

curves. This means that neurons that ‘like’ similar spatial locations or similar colors will pass 

strong, reciprocal excitation to one another because they are close together in the field, while 

neural sites that ‘like’ very different locations or colors will share reciprocal inhibition because 

they are far apart in the field. Mathematically, this can be summarized as follows (Amari, 1977; 

Wilson & Cowan, 1972): 

𝜏)𝑢̇(𝑥, 𝑡) = 	−𝑢(𝑥, 𝑡) + ℎ + 𝑠(𝑥, 𝑡) + ∫𝑐)2𝑥 − 𝑥′3𝑔 5𝑢2𝑥′, 𝑡36𝑑𝑥′ −

∫ 𝑐82𝑥 − 𝑥′3𝑔 5𝑢2𝑥′, 𝑡36𝑑𝑥′ + 	𝜉2𝑥′, 𝑡3							(4) 

Note the similarities to the neuronal dynamics in equation 2; however, now activation is 

distributed over the behavioral dimension, x (e.g., color). Similarly, inputs, s(x,t), are distributed 

over x; thus, a red input (x = 25) is different from a blue input (x = 60). The laterally excitatory 

connections are defined by ce (an excitatory Gaussian connection matrix), while the inhibitory 

connections are defined by ci (an inhibitory Gaussian connection matrix). As before, these are 

convolved with the sigmoidal function, g(u). This means that only above-threshold sites in the 

field contribute to neural interactions, that is, to local excitation and surround inhibition. Neural 

interactions for each location, x, are evaluated relative to every other position in the field, x’. 

Lastly, τe specifies the timescale over which excitation evolves in the field. 
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To understand the consequences of the lateral connectivity in a dynamic field – how 

neural sites talk to one another based on their neural tuning – it is useful to first plot activation 

with connectivity and the sigmoidal function turned off. Figure 1E shows the same type of 

simulation as in Figure 1A-B where we start with low excitability, then boost excitation locally, 

and then return to a lower resting level. Now, however, we do the boosting by giving a color 

input to the field centered at value 25 (see grey ‘shadow’ along the feature axis). Specifically, the 

input is off for 250 time steps, then on for 500 time steps, and then weaker for the last 250 time 

steps. As can be seen in Figure 1E, the activation in the dynamic field just mimics the input 

through time (see light grey ‘shadow’ projected along the back wall of the image). Thus, without 

any lateral connectivity or sigmoidal modulation, the activation is feed-forward / input-driven.  

Figure 1F shows the same input sequence, but now with lateral connectivity and 

sigmoidal modulation switched on (akin to the simulation in Figure 1C-D). Initially, the cortical 

field is stably at rest, that is, at the value defined by h. At time 250, the color is presented and 

sites that are ‘tuned’ to red are activated. Around time step 500, noise fluctuations boost several 

sites around color value 25 into the ‘on’ state – they go above-threshold as defined by the 

sigmoidal function. Consequently, these neural sites start passing activation to their ‘neighbors’. 

The result is the large ‘peak’ of activation centered over color value 25. The shadow along the 

feature axis shows the structure of this peak – one can see strong local excitation with inhibitory 

‘troughs’ on either side of the peak.  

Peaks in dynamic fields are the basic unit of representation accounting for detection, 

selection, and working memory cognitive states. Peaks are a stable attractor state of the neural 

population. Note how the peak in Figure 1F retains it shape through time, even amidst the neural 

noise evident in this simulation. This attractor state is not permanent, however; once the strength 
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of input is reduced, the peak reduces in strength, eventually relaxing back to the original resting 

level. More interestingly – as we show below – we can increase the strength of neural 

interactions in the field by increasing the strength of local excitation and surround inhibition and 

activation peaks show a form of working memory: peaks of activation can be stably maintained 

through time even when the input is removed (Fuster & Alexander, 1971).  

Recent work has offered more biophysically detailed models of these base functions 

(Deco et al., 2004; Durstewitz, Seamans, & Sejnowski, 2000; Wei, Wang, & Wang, 2012), 

showing how spiking networks together with synaptic dynamics can reproduce, for instance, a 

sustained activation ‘peak’ (often called a ‘bump’ attractor). Although these newer models are 

computationally more detailed, we can ask: is all of this detail necessary for linking brain and 

behavior? Critically, there are drawbacks to this level of detail: the link of biophysical models to 

behavioral data is much weaker than for DFT, and the number of parameters and range of 

dynamical states are much larger. Thus, we do not anchor our account at this level. Nevertheless, 

there are links between DFT and biophysical models: under simplified assumptions, the 

population-level neural dynamics of DFT may be obtained from the Mean Field approximation 

(Faugeras, Touboul, & Cessac, 2009). We leverage this understanding here to derive a 

relationship between DFT and fMRI, adapting biophysical accounts for how neural activity gives 

rise to the BOLD signal (Deco et al., 2004; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001). 

The link between DFT and the Mean Field approximation establishes that there is a 

theoretical connection between neural population dynamics in DFT and theories of spiking 

network activity. We can also ask if this connection extends beyond theory to practice—can we 

directly measure properties of neural population dynamics captured by DFT in real brains? This 
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issue was initially explored using multi-unit neurophysiology in the 1990s. In several studies of 

neural activity in premotor cortex, results showed that predictions of DF models of motor 

planning were evident in multi-unit recordings from premotor cortical neurons (Bastian et al., 

1998; Bastian, Schoner, & Riehle, 2003; Erlhagen et al., 1999; Jancke et al., 1999). More 

recently, this connection has been explored using voltage-sensitive dye imaging in visual cortex 

(Markounikau, Igel, Grinvald, & Jancke, 2010). Again, properties of neural population dynamics 

in DF models such as slowing of neural responses due to laterally-inhibitory interactions were 

evident in cortical recordings. From these examples, we conclude that DFT offers a good 

approximation of the dynamics of populations of neurons in cortex. This sets the stage to expand 

this line of work to human cognitive neuroscience techniques such as fMRI. 

We have now reviewed the basic concepts of neural population dynamics in cortical 

fields that underlie DFT. The next step is to couple multiple DFs together to create a neural 

architecture that implements specific cognitive processes in a neural way. In the next section, we 

describe a neural architecture designed to capture how people encode and consolidate features in 

VWM, how they remember these features during a delay, and how they compare these 

remembered features with the features in a test array to generate ‘same’ and ‘different’ decisions.  

A Dynamic Field model of VWM 

We situate the dynamic field (DF) model within the canonical task used to study VWM—

the change detection task (Luck & Vogel, 1997). Participants are shown a sample array with 

multiple objects. After a delay, a test array is displayed and participants decide whether the 

sample and test arrays are the ‘same’ or ‘different’. Previous work has focused on encoding and 

maintenance in this task, resulting in debates about whether VWM consists of fixed-resolution 

“slots” (Luck & Vogel, 1997) or a distributed resource (Bays & Husain, 2008). Other work has 
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investigated the biophysical properties of neural networks that give rise to sustained activation in 

VWM (Wei et al., 2012). Critically, detecting change requires that encoding and maintenance be 

integrated with comparison. The DF model provides the only formal account that specifies how 

this integration occurs in a neural system to generate ‘same’ and ‘different’ responses (Johnson 

et al., 2014; Johnson, Spencer, Luck, et al., 2009). 

Figure 2 shows the architecture of the DF model (see Supplemental Information for 

model equations and parameters). The model consists of four components that are interconnected 

yet serve particular functional roles (see Tables S1-S2 and Supplemental Information). The 

contrast field (CF) and WM layers have populations of color-sensitive neurons that build ‘peaks’ 

of activation through local-excitatory connections reflecting the presented colors (see also Engel 

& Wang, 2011). Inputs are presented strongly to the CF layer which leads to the formation of 

peaks of activation within this field during stimulus presentation. These peaks then send 

activation to the WM field which also builds peaks of activation at the location of the inputs (see 

peaks in WM layer in Figure 2). Both fields pass inhibition to one another through a shared 

inhibitory layer (not visualized in Figure 2 for simplicity). Through this pattern of coupling, the 

model dynamics operate such that CF becomes suppressed (see inhibitory profile in CF layer in 

Figure 2) once items are consolidated within the WM field and the inputs are removed. When 

items are re-presented at test, inputs that match peaks in WM will be suppressed in CF, while 

non-matching inputs will build peaks in CF. During this phase of the trial, the model engages in 

a winner-take-all comparison process by boosting the ‘same’ and ‘different’ nodes close to 

threshold (via activation of a ‘gate’ node; see Figure 2). The ‘different’ node receives input from 

CF; the ‘same’ node receives input from WM. Consequently, if the model detects non-matching 

inputs at test, ‘different’ will win the competition; if, however, no or few non-matching inputs 
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are detected, ‘same’ will win the competition due to strong input from WM. It is important to 

point out that the input to the ‘same’ node is effectively normalized by input from the inhibitory 

layer to enable equitable comparisons with the ‘different’ node as the set-size (SS) increases (see 

equation 7 in the supplemental information). That is, as the SS increases, more items will be 

activated in WM, generating more input to the ‘same’ node. This would create a large 

asymmetry between activation in the ‘same’ and ‘different’ systems, making it hard to detect 

differences at high SS. To help compensate for this asymmetry, the Inhib layer also sends 

inhibitory output to the ‘same’ node, effectively balancing the increase in excitation from WM at 

high SS with an increase in inhibition from Inhib (which also increases at high SS).  

Before describing the dynamics of the model in detail, it is useful to first consider the 

following dynamic field equation that defines the neural population dynamics of the CF layer to 

connect to the concepts introduced in the previous section: 

𝜏)𝑢̇(𝑥, 𝑡) = 	−𝑢(𝑥, 𝑡) + ℎ + 𝑠(𝑥, 𝑡) + : 𝑐;;2𝑥 − 𝑥′3𝑔 5𝑢2𝑥′, 𝑡36𝑑𝑥′

−:𝑐;<2𝑥 − 𝑥′3𝑔 5𝑣2𝑥′, 𝑡36𝑑𝑥′ − 𝑎;<?@ABC@ :𝑔 5𝑣2𝑥
′, 𝑡36𝑑𝑥′ 	

+ : 𝑐D2𝑥 − 𝑥′3𝜉2𝑥′, 𝑡3𝑑𝑥′ + 𝑎;E𝑔2𝑑(𝑡)3 − 𝑎;F𝑔2𝑚(𝑡)3												 

Activation, u, in CF evolves over the timescale determined by the τ parameter (see Supplemental 

Information). The first three terms term in Equation 5 are the same as in Equation 4. Next is local 

excitation, ∫ 𝑐;;2𝑥 − 𝑥′3𝑔 5𝑢2𝑥′, 𝑡36𝑑𝑥′, which is defined as the convolution of a Gaussian 

local excitation function, 𝑐;;2𝑥 − 𝑥′3, with the sigmoided output, g(u(x’,t)), from the CF layer. 

CF receives inhibition from an inhibitory layer, v. Lateral inhibitory contributions are specified 

by, −∫𝑐;<2𝑥 − 𝑥′3𝑔 5𝑣2𝑥′, 𝑡36 𝑑𝑥′, which is defined as the convolution of a Gaussian 

(5)	
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surround inhibition function and the sigmoided output from an inhibitory layer (v). There is also 

a global inhibitory contribution specified by, −𝑎;<_IJKLMJ ∫ 𝑔 5𝑣2𝑥′, 𝑡36𝑑𝑥′, which is applied 

homogenously across the field. These two inhibitory terms give rise to inhibitory troughs that 

surround local excitatory peaks in the contrast layer. The next term specifies spatially correlated 

noise, ∫𝑐D2𝑥 − 𝑥′3𝜉2𝑥′, 𝑡3𝑑𝑥′, which is defined as the convolution of a Gaussian kernel and 

a vector of white noise. This simulates a set of noisy inputs to CF reflecting neural noise 

impinging upon this local neural population. The last two terms specify inputs from the decision 

nodes (see Figure 2). Both of these inputs are modulated by the sigmoidal function (g). The 

‘different’ node (d) globally excites CF, 𝑎;E𝑔2𝑑(𝑡)3, while the same or “match” node (m) 

globally inhibits CF, −𝑎;F𝑔(𝑚(𝑡)). These excitatory and inhibitory inputs help maintain peaks 

in CF if a difference is detected, and help suppress activation in CF if ‘sameness’ is detected (see 

‘crossing’ inhibitory connections between the decision nodes and CF/WM in Figure 2). Note that 

there is no direct input from WM to CF. 

Figure 3 shows an exemplary simulation of a single change detection trail to show how 

activation changes through time as the model encodes items into memory, maintains memory 

representations during a delay, and then detects a difference in a subsequently presented stimulus 

array. Figure 3A shows activation across the feature space in CF and WM through time. Figure 

3B shows the node activations through time. The remaining panels show time slices through CF 

and WM at particular points during the simulation indicated by the boxes in Figure 3A (see also 

downward arrows marking the same time points in Figure 3B). 

At 100 ms into the simulation, 3 colored stimuli (3 Gaussian inputs) are presented to the 

model. Initially, this is associated with large increases in activation in CF; a bit later, peaks build 

in the WM layer (see Figure 3A). As activation builds in WM, activation in CF becomes 
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suppressed. After 600 ms into the simulation, the stimulus array is turned off. Now, activation 

within CF is strongly suppressed (see troughs in Figure 3C). However, activation in WM is 

sustained in the absence of the input throughout the delay period (see Figure 3D) due to strong 

recurrent interactions within this layer. At 1800 ms into the simulation, a second array of stimuli 

is presented to the model. At presentation of the test array, the gate node is activated (Figure 3B); 

this boosts the activation of the ‘same’ and ‘different’ nodes. At the same time, the presentation 

of the novel color (C4) leads to the formation of a new peak in CF (Figure 3E). This peak 

increases the activation of the ‘different’ node and this node goes above threshold (Figure 3B) 

leading to a ‘different’ decision on this trial.  

A key innovation of the DF model is that the model captures what happens on both 

correct and incorrect trials. Figure 4 shows exemplary simulations of instances in which the 

model performs correctly or incorrectly on each trial type in the change detection task. Figure 4A 

shows a correct rejection trial – correctly responding ‘same’ on a ‘same’ trial. Note that we are 

using terminology from the literature on visual change detection here (Cowan, 2001; Pashler, 

1988). A sample array of four colors is presented at the start of the simulation, generating peaks 

in CF. Peaks in CF drive the consolidation of the peaks in the WM field, after which activation 

within CF becomes suppressed. This is shown in the lower left panels of Figure 4A: at the offset 

of the memory array, 4 peaks are being actively maintained in WM while there is a profile of 

inhibitory troughs in CF. During the memory delay, activation is maintained within WM via 

recurrent interactions. When the same four colors are presented at test, no peaks are built in CF 

(see asterisks above CF input locations in Figure 4A). The decision nodes are plotted at the top. 

At the end of the trial, the ‘same’ decision is above threshold indicating the that the model has 

correctly generated a ‘same’ response.  
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Figure 4B shows a simulation of a hit trial – correctly detecting a change on a ‘different’ 

trial. The dynamics during the presentation of the memory array are comparable. In particular, at 

the offset of the memory array, four peaks are being actively maintained in WM, with a profile 

of inhibitory troughs in CF. During the test array, a new item is presented (C5) along with 3 of 

the original inputs (C2-C4); the new input generates a peak in CF at this color value because 

there is not enough inhibition at this site to prevent the peak from emerging (see asterisk above 

CF in Figure 4B). The peak in CF passes strong input to the ‘different’ node such that by the end 

of the trial, the ‘different’ node is above threshold indicating that the model has correctly 

generated a ‘different’ response. 

The bottom two panels in Figure 4 show the model’s performance on error trials. Figure 

4C shows a false alarm trial – incorrectly generating a ‘different’ response on a no change trial. 

False alarms are likely to arise in the model when a peak fails to consolidate in WM. This is 

shown in the lower left panels of Figure 4C: after presentation of the memory array, one peak 

fails to consolidate (fails to go above threshold; see asterisk) and activation at this site returns to 

baseline levels during the delay. Consequently, when the same colors are presented at test, the 

model falsely detects a change (see asterisk above CF in the right column of Figure 4C). In 

contrast to other models (Cowan, 2001; Pashler, 1988), therefore, false alarms reflect a failure of 

consolidation / maintenance rather than a guess.  

A ‘miss’ trial is shown in Figure 4D – incorrectly generating a ‘same’ response on a 

change trial. This simulation shows a typical state of the neural dynamics after presentation of 

the memory array, with four peaks being maintained in WM and an inhibitory profile in CF. 

Note, however, the strong inhibitory suppression on the left side of the feature space as there are 

three WM peaks relatively close together. Consequently, when a different color is presented in 
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that region of feature space, a weak activation bump is generated in CF (see asterisk above CF in 

Figure 4D). This bump is too weak to drive a ‘different’ response and the ‘same’ node wins the 

decision-making competition (see top panel in Figure 4D). Thus, in contrast to assumptions of 

other models (Cowan, 2001; Pashler, 1988), comparison is not a perfect process in the DF 

model; misses occur even when all items are remembered. This aspect of the DF model is 

consistent with more recent work illustrating how comparison errors can impact performance on 

WM tasks (Alvarez & Cavanagh, 2004; Awh, Barton, & Vogel, 2007). 

Note that errors in the DF model are impacted by stochastic noise in the equations--a 

realistic source of neural noise that is evident in actual neural systems. These fluctuations are 

amplified by local excitatory / inhibitory neural interactions and can influence the macroscopic 

patterns -- peaks in the model -- that impact different behavioral outcomes such as 'same' and 

'different' decisions. Notice, for instance, that the inputs across all four panels in Figure 4 are 

identical; the parameters of the model are identical as well. Thus, the only thing that differs is 

how the activation dyanmics unfold through time in the context of neural noise. Of course, noise 

is not the only factor that influences whether the model makes an error. The number of inputs 

plays a large role as does the metric similarity of the items. With more peaks to maintain, there is 

more competition among peaks as well as more global inhibition. Consequently, the likelihood 

of a false alarm increases because neighboring peaks might fail to consolidate in WM. At the 

same time, with more peaks in WM, there is also a greater overall suppression of CF and 

stronger input to the ‘same’ node. Consequently, the likelihood of a miss increases as well.  

Are there unique neural signatures of the processes illustrated in Figure 4? If so, that 

would provide a way to test our account of the origin of errors in change detection. To examine 

this question here, we used an integrative cognitive neuroscience approach initially developed in 
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Buss et al. (2014) and Wijeakumar et al. (2016). We describe this approach next.  

Turning neural population activation in DFT into hemodynamic predictions  

 In this section, we describe a linking hypothesis derived from the model-based fMRI 

literature that directly links neural dynamics in DFT to hemodynamics that can be measured with 

fMRI. This requires consideration of multiple factors, including what is measured by fMRI both 

in terms of hemodynamics and spatially in patterns of BOLD within voxels through time. Here, 

we make several simplifying assumptions which we discuss. The end product is a direct link—

millisecond by millisecond—between neural activation in the DF model and fMRI measures 

through time as well as to behavioral decisions on each trial. Although the timescale of fMRI 

does not allow for millisecond precision, the model is specified at that fine-grained timescale 

and, therefore, could be mapped to other technologies such as ERP in future work (we return to 

this issue in the General Discussion). Critically, this approach extends beyond previous model-

based approaches (Ashby & Waldschmidt, 2008; O’Doherty, Dayan, Friston, Critchley, & 

Dolan, 2003). Specifically, this approach specifies mechanisms that directly give rise to 

behavioral and neural responses; consequently, any modifications to these mechanisms directly 

impact the resultant behavioral and neural resposnes predicted by the model. To illustrate, we 

contrast our approach with model-based fMRI examples using the adaptive control of thought - 

rational (ACT-R) framework. We conclude that the DF-based approach is an example of an 

integrative cognitive neuroscience approach to fMRI (Turner et al., 2016).  

Our approach builds from the biophysiological literature examining the basis of the 

neural blood flow response. Logothetis and colleagues (2001) demonstrated that the local-field 

potential (LFP), a measure of dendritic activity within a population of neurons, is temporally 

correlated with the blood oxygen level dependent (BOLD) signal. Furthermore, the BOLD 
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response can be reconstructed by convolving the LFP with an impulse response function which 

specifies the time course of the blood flow response to the underlying neural activity. Deco and 

colleagues followed up on this work using an integrate-and-fire neural network to demonstrated 

that an LFP can be simulated by summing the absolute value of all of the forces that contribute to 

the rate of change in activation of the neural units (Deco et al., 2004). Attempts to simulate fMRI 

data using this approach were equivocal—some hemodynamic patterns produced by the network 

did qualitatively mimic fMRI data measured in experiment; however, no efforts were made to 

quantitatively evaluate the fit of the spiking network model to either the behavioral or fMRI data. 

Here, we adapt this approach to construct an LFP signal for each component of the DF 

model. To describe how we transform the real-time neural activation in the model into a neural 

prediction that can be measured with fMRI, re-consider the equation that defines the neural 

population dynamics of the CF layer (reproduced here for convenience): 

𝜏)𝑢̇(𝑥, 𝑡) = 	−𝑢(𝑥, 𝑡) + ℎ + 𝑠(𝑥, 𝑡) + :𝑐;;2𝑥 − 𝑥′3𝑔 5𝑢2𝑥′, 𝑡36 𝑑𝑥′

−:𝑐;<2𝑥 − 𝑥′3𝑔 5𝑣2𝑥′, 𝑡36 𝑑𝑥′ − 𝑎;<?@ABC@ :𝑔 5𝑣2𝑥
′, 𝑡36𝑑𝑥′ 	

+ :𝑐D2𝑥 − 𝑥′3𝜉2𝑥′, 𝑡3𝑑𝑥′ + 𝑎;E𝑔2𝑑(𝑡)3 − 𝑎;F𝑔2𝑚(𝑡)3												 

 To simulate hemodynamics, we transformed this equation into an LFP equation that we 

could track in real time (millisecond by millisecond) for each component of the model (see 

Equations 9-14 in Supplemental Information). This time-course was then convolved with an 

impulse response function to give rise to hemodynamic predictions that could be compared to 

BOLD data. To illustrate, equation 7 specifies the LFP for the contrast field: we summed the 

absolute value of all terms contributing to the rate of change in activation within the field, 

excluding the stability term, -u(x,t), and the neuronal resting level, h. We also excluded the 

(6)	
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stimulus input, s(x,t), because we applied inputs directly to the model rather than implementing 

these in a more neurally realistic manner (e.g., by using simulated input fields as in Lipinski et 

al., 2012). The resulting LFP equation was as follows:  

𝑢NOP(𝑡) =
|∬𝑐;;2𝑥 − 𝑥′3𝑔 5𝑢2𝑥′, 𝑡36 𝑑𝑥	𝑑𝑥′ |

𝜂

+
|∬𝑐;<2𝑥 − 𝑥′3𝑔 5𝑣2𝑥′, 𝑡36𝑑𝑥	𝑑𝑥′) |

𝜂 + T𝑎;<?@ABC@ :𝑔 5𝑣2𝑥
′, 𝑡36𝑑𝑥′T

+
|∬𝑐D2𝑥 − 𝑥′3𝜉2𝑥′, 𝑡3𝑑𝑥	𝑑𝑥′ |

𝜂 + U𝑎;E𝑔2𝑑(𝑡)3U

+ U𝑎;F𝑔2𝑚(𝑡)3U																																																																																																												 

It is important to note several simplifying assumptions here. First, neural activity in the 

CF field was aggregated into a single LFP (representing a single neural region). We consider this 

a starting point for explorations of this model-based fMRI approach. An alternative would be to 

use several basis functions to sample different parts of the field and then explore the mapping of 

these localized LFPs to voxel-based patterns in the brain. Later in the paper, we quantitatively 

map hemodynamic predictions from the DF model to BOLD signals measured from 1cm3 

spheres centered at regions of interest from a meta-analysis of the fMRI VWM literature 

(Wijeakumar, Spencer, Bohache, Boas, & Magnotta, 2015). At this resolution (1cm3), slight 

variations in hemodynamics due to which part of the field we are sampling from probably make 

little difference. By contrast, if we were studying population dynamics in visual cortex with a 7T 

scanner in different laminar layers, the use of basis functions to sample the field would be an 

interesting alternative to explore. 

Similarly, in equation 7 we normalized each contribution to the LFP by dividing by the 

number of units in that contribution, either by 1 (e.g., for the ‘same’ node) or by η, the field size. 

(7)	
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This way, contributions to the CF LFP from, say, the different node were of comparable 

magnitude to contributions from local excitatory interactions. Again, this is a simplifying 

assumption that can be explored in future work. For instance, there is an emerging literature 

examining how excitatory versus inhibitory neural interactions differentially contribute to the 

BOLD signal (Lee et al., 2010). It would be possible to differentially weight these types of 

contributions to the LFP in future work as clarity emerges on this front. In the simulations 

reported below, we down-weighted all inhibitory LFP components by a factor of 0.2. 

 Once an LFP has been calculated from each component of the DF model – one LFP for 

CF, one for WM, one for ‘different’, and one for ‘same’ – a hemodynamic response can then be 

calculated by convolving 𝑢NOP with an impulse response function that specifies the time-course 

of the slow blood-flow response to neural activation (see Equation 15 in the Supplemental 

Information). The simulated hemodynamic time course for each component was computed as a 

percent signal change relative to the maximum intensity across the run. Average responses for 

each trial-type within each component were then computed within the relevant time window (14s 

for the simulations of the Todd & Marois data and 20s for the Magen et al. data) as the amount 

of change relative to the onset of the trial (see Supplemental Information for full details). A 

group average for each trial type was then computed across the group of runs. 

Figure 5 shows an exemplary simulation of the model for a series of 8 trials with a 

memory load -- or set size (SS) -- of 2 items for the first two trials and 4 items for the subsequent 

six trials. Panels A-C show neural activation of the decision nodes and associated LFPs / 

hemodynamic predictions through time. In particular, panel C shows the activation of the 

decision and gate nodes, highlighting the evolution of decisions that reflect the overt behavior of 

the model. Going from left to right, the model makes 8 decisions in sequence (see labels at the 
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bottom of the figure): (1) “different” (correct), (2) “same” (correct), (3) “different” (correct), (4) 

“different” (incorrect), (5) “same” (incorrect), (6) “same” (correct), (7) “different” (correct), and 

(8) “same” (correct). Note that the long delays in-between trials accurately reflects the typical 

delays between trials in a neuroimaging experiment. We have fixed this time interval here to 

make it easier to see the hemodynamic response associated with each trial (which is delayed by 

several seconds reflecting the slow hemodynamic response); critically, however, we can match 

these inter-trial intervals precisely to reflect the actual timings used in experiment. 

Panels A and B in Figure 5 show the LFP and hemodynamic responses for the ‘same’ and 

‘different’ nodes, respecitvely. In general, the decision node hemodynamics are strongly 

influenced by the inhibition at test evident in the winner-take-all competition. For instance, the 

first trial is a ‘different’ (correct) trial. Here, the ‘different’ node wins the competition, but notice 

that the ‘same’ (Figure 5A) hemodynamic response is stronger than the ‘different’ hemodynamic 

response (Figure 5B); even though ‘different’ wins the competition with strong excitatory 

activation, the ‘same’ hemodynamic response is stronger due to the inhibitory input to this node. 

This is counterintuitive – the node with the stronger hemodynamic response is actually the one 

that loses the competition. We test this prediction using fMRI later in the paper. 

Note that it is possible we could reverse the counterintuitive decision-node prediction in 

the model in two ways. First, the magnitude of the inhibitory contribution to the decision node 

dynamics could be reduced via parameter tuning. This would be tricky to achieve, however, 

because the decision system dynamics have to balance ‘just right’ such that the full pattern of 

behavioral data are correctly modeled. If, for instance, inhibition is too weak, the model might 

respond ‘same’ at high memory loads simply because there are so many peaks in WM and, 

therefore, strong input to the ‘same’ node at test. Thus, there are strong constraints in model 
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parameters – if we try to ‘tune’ the neural / hemodynamic predictions so they make more 

intuitive sense, the model might no longer accurately fit the behavioral data. 

That said, there is a second way we could modify the hemodynamic predictions of the 

decision nodes more directly, making them less dominated by inhibition: we could down-weight 

the inhibitory contributions within the LFP equation itself. Doing so would be more akin to a 

‘two-stage’ approach as outlined by Turner et al. (2016) in which separate parameters are used to 

generate behavioral responses and neural responses. However, by doing so we could implement 

the hypothesis that inhibitory contributions to LFPs are weaker than excitatory contributions, a 

hypothesis that could be explored using optogenetics (e.g., Lee et al., 2010). To do this, we could 

add a new inhibitory weighting parameter to equation 7 to reduce the strength of the inhibitory 

contributions (i.e., the second, third, and sixth terms in the equation). Note that this would have 

to be applied to all inhibitiory terms in the full model; consequently, inhibition would have less 

of an effect on the decision-node hemodynamics, but it would also have less of an effect on the 

CF and WM hemodynamics as well. We explore this sense of parameter tuning in the first 

simulation experiment. 

Panels E and G in Figure 5 show the activation of CF and WM, respectively. Note that all 

of the activation dynamics highlighted in the field activities in Figure 3A still occur here; 

however, these dynamics are compressed in time as we are showing a sequence of 8 trials with 

relatively long inter-trial intervals. That said, on each trial, the sequence of stimulus 

presentations is evident in CF at the start and end of each trial (see peaks at the onset and offset 

of each inhibitory period in Figure 5E), while the active maintenance of peaks in WM is also 

readily apparent (Figure 5G).  

Panels D and F in Figure 5 show the LFP and hemodynamic predictions for CF and WM. 
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CF is influenced by whether the trial is ‘same’ or ‘different’, with a slightly stronger response in 

CF on ‘different’ trials (see, for instance, the large first and third hemodynamic peaks; we show 

this more clearly later in the paper when we aggregate LFPs across many simulation trials versus 

the individual simulations as shown here). WM is most strongly influenced by how many items 

are maintained during the delay; thus, this layer shows relatively weaker responses on the first 

two trials when the memory load is 2 items compared to the subsequent trials when the memory 

load is 4 items. 

In summary, Figure 5 illustrates over a series of trials how the model generates a complex 

pattern of predictions associated with the neural processes that undelie encoding and 

consolidation of items in WM, the maintenanace of those items during the memory delay, and 

decision-making and comparison processes at test. Importantly, LFPs and hemodyanmic 

responses are extracted from the same patterns of neural activation that drive neural function and 

behavioral responses on each trial. In this way, distinct neural dynamics are engaged across 

components of the model as different types of decisions unfold in the context of the change 

detection task and these directly lead to hemodynamic predictions. The distinctive nature of these 

simulated neural responses is important for being able to use the model to shed light on the 

functional role of different brain regions in VWM. For instance, if we find a good 

correspondence between model hemodynamics and hemodynamics measured with fMRI, this 

uniqueness gives us confidence that we can infer different functions are being carried out by 

those brain regions. 

Comparisons with other model-based fMRI approaches 

Beyond the literature on VWM, other model-based approaches to fMRI analysis have 

been implemented that bridge the gap between brain and behavior (see Turner et al. 2017 for an 
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excellent summary and classification of different approaches). In our previous paper exploring a 

model-based fMRI approach using DFT (Buss et al., 2014), we compared the DFT approach to 

the model-based fMRI approach using ACT-R. Comparing these approaches is a useful starting 

point as there are similarities in the broader goals of DFT and ACT-R. 

Anderson and colleagues have developed a technique for simulating fMRI data with the 

ACT-R framework (Anderson, Albert, & Fincham, 2005; Anderson et al., 2008; Anderson, Qin, 

Sohn, Stenger, & Carter, 2003; Borst & Anderson, 2013; Borst, Nijboer, Taatgen, van Rijn, & 

Anderson, 2015; Qin et al., 2003). ACT-R is a production system model that explains behavioral 

data based on the duration of engagement of processing modules and differential engagement of 

these modules across conditions. Specifically, ACT-R models posit a cognitive architecture 

consisting of separate modules that are recruited sequentially in a task. This generates a 

‘demand’ function for each module through time – a time course of 0s and 1s with 1s being 

generated when a module is active. The ‘demand’ function can then be convolved with an HRF 

for each module to generate a predicted BOLD signal for each component of the architecture. 

The predicted hemodynamic pattern can then be compared against brain activity measured with 

fMRI in specific brain regions to determine the correspondence between modules in the model 

and brain regions. 

This approach is similar to the DFT-based approach used here. Both ACT-R and DFT 

build architectures to realize particular cognitive functions. Both measure activation through time 

for each part of the larger architecture. These activation signals are then convolved with an 

impulse response function to generate predicted BOLD signals for each component. By 

comparing these predicted signals to fMRI data, the components can be mapped to brain regions 

and function can be inferred from this mapping. This can be done by qualitatively comparing 
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properties of the predicted brain response through time to measured HRFs (e.g., Buss et al., 

2014; Fincham, Carter, van Veen, Stenger, & Anderson, 2002). We adopt this approach in the 

first simulation experiment here. Model-predicted data can also be quantitatively compared to 

measured fMRI data using a general linear modeling approach (e.g., Anderson et al., 2007). We 

adopt this approach in the subsequent simulation experiment.  

In the review of model-based fMRI approaches by Turner and colleageus (Turner et al., 

2016), they used the ACT-R approach as an example of integrative cognitive neuroscience 

(ICN). Recall that the goal of ICN is to develop a single model capable of predicting both neural 

and behavioral measures. Formally, ICN approaches use a single model with a single set of 

parameters, θ, that jointly explain both neural and behavioral data. Consequently, such models 

must make a moment-by-moment prediction of neural data, and a trial-by-trial prediction of the 

behavioral data. One can see why ACT-R might be a good example of ICN: the model specifies 

the activation of each module in real time, and this activation affects the model’s neural 

predictions because it changes the ‘demand’ function (the vector of 0s and 1s through time). 

Differences in activation also affect behavior, for instance, modulating reaction times. 

Given the similarities between ACT-R and DFT, we can ask if DFT rises to the level of 

ICN as well. Like with ACT-R, DFT proposes a specific integration of brain and behavior. In 

particular, there are not separate neural vs. behavioral parameters; rather, there is one set of 

parameters in the neural model and changes in these parameters have direct consequences for 

both neural activity – the LFPs generated for each component – and for the behavioral decisions 

of the model – whether the ‘same’ or ‘different’ node enter the ‘on’ state and when in time this 

decision is made (yielding a reaction time for the model). 

These examples highlight that in DFT, brain and behavior do not live at different levels. 
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Instead, there is one level – the level of neural population dynamics. This level generates neural 

patterns through time on a millisecond timescale. This level also generates macroscopic 

decisions on every trial via the neural population activity of the ‘same’ and ‘different’ nodes. 

When one of these nodes enters the ‘on’ attractor state at the end of each trial, a behavioral 

decision is made. In this sense, we contend that DFT – like ACT-R – is an example of an ICN 

approach.  

Given the many similarities in these two approaches to model-based fMRI, we can ask 

the next question: are there key differences? The most substantive difference is in how the two 

frameworks conceptualize ‘activation’ and, relatedly, how they implement processes through 

time. As demonstrated in Figures 3-5, the activation patterns measured in each neural population 

in the DF model are more than just an index of the engagement of the population; rather, 

activation has meaning—it represents the colors presented in the task. This was emphasized in 

our introduction to DFT. Although ‘activation’ and, in particular, the neural dynamics that 

govern activation, are key concepts in DFT, we moved beyond the level of activation to think 

about what activation represents by modelling activation in a neural field distributed over a 

feature dimension. 

Critically, by grounding activation in a specific feature space we also had to specify the 

neural processes through time that do the job of consolidating features in WM, maintaining those 

features through time, and then comparing the features in WM with the features in the test array. 

Thus, our model not only specifies what activation means; it also specifies the neural processes 

that underlie behavior, that is, the neural processes that give rise to the macroscopic neural 

patterns that underlie same/different decisions on each trial. Importantly, the details of this neural 

implementation have consequences for the activation patterns produced by the model. If we, for 
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instance, changed how encoding and consolidation were done by adding new layers to the model 

to separate visual encoding from shifts of attention to each item (Schneegans, Spencer, & 

Schöner, 2016), the model would generate different activation patterns through time and, 

consequently, different hemodynamic predictions. 

By contrast, activation in ACT-R is abstract. Each module takes a specific amount of 

time which creates differences in the ‘demand’ or ‘activation’ function, but the modules in ACT-

R typically do not actually implement anything; rather, they instantiate how long the process 

would take if it were to implement a particular function. Sometimes modules are actually 

implemented (Jilk, Lebiere, O’Reilly, & Anderson, 2008), but this has not been done with any 

fMRI examples.  

Is this difference in how ‘activation’ is conceptualized important? To evaluate this 

question, consider a recent model of VWM using ACT-R (Veksler et al., 2017). At face value, 

this model sets up an ideal contrast—in theory, we could contrast the model-based fMRI 

prediction of our DF model with model-based fMRI predictions derived from the Veksler et al. 

ACT-R model. To explain why we cannot do this, it is useful to first describe the Veksler et al. 

model. 

The Veksler et al. model uses the ACT-R memory equation to implement a variant of 

VWM. Each item in the display is associated with an activation level in the memory module that 

is a function of whether it was fixated/encoded, how recently it was fixated/encoded, a decay 

rate, a base-level offset for activation, and logistically distributed noise with a mean of 0 and a 

specific SD. To place this model in the context of change detection, we must first make some 

decisions about how encoding works. For instance, in many change detection experiments, 

fixation is held constant, so we could assume that a specific number of items start off at a 
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baseline activation level. We could also hypothesize that each item takes a certain amount of 

time to encode and then let the model encode as many items as it can in the time allowed.  

After encoding, the next key issue is which items are still remembered after the delay 

when memory is tested. Concretely, the memory module specifies an activation value of each 

item through time. If that activation value is above a threshold when memory is tested, that item 

is remembered. If the activation is below threshold at test, that item is forgotten.  

The challenging question is what to do in this model at test. Each item is only represented 

by an activation level—there is no content. Consequently, it’s not clear how to do comparison. 

One idea is to assume that comparison is a perfect process. This is similar to assumptions in the 

original models of VWM by Pashler (1988) and Cowan (2001). Thus, if an item is remembered, 

we always get a correct response. If an item is forgotten, then we could just have the model 

randomly guess. Sometimes the model will generate a lucky guess. Other times the model will 

guess incorrectly, generating a false alarm or a miss.  

Although this approach sounds reasonable, it does not actually do a good job modelling 

behavior because performance varies as a function of whether the test array is the ‘same’ or 

‘different’. In particular, adults are typically more accurate on ‘same’ trials than ‘different’ trials 

(Luck & Vogel, 1997); interestingly, children and aging adults show this effect more 

dramatically (Costello & Buss, 2018; Simmering, 2016; Wijeakumar, Magnotta, & Spencer, 

2017). If the model has a perfect comparison process, it’s not clear how to account for such 

differences unless one simply builds in a bias in the guessing rate with more ‘same’ guesses than 

‘different’ guesses. More importantly, this approach to comparison does not generate any 

predictions about the activation level on ‘guess’ trials when an item is forgotten because the 

underlying demand function would be the same on all guess trials. This doesn’t match empirical 
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data because we know that fMRI data vary on ‘correct’ vs. ‘incorrect’ trials, as well as on false 

alarms vs. misses (Pessoa & Ungerleider, 2004). 

In sum, when we try to implement change detection in the ACT-R VWM model, we run 

into a host of questions with no clear solutions. Critically, many of these questions are centered 

on the main contrast with DFT that, in ACT-R, there is ‘activation’ but no details about what 

activation represents.  This example also highlights how important the comparison process is to 

predicting neural activation. On this front, we re-emphasize that to our knowledge, DFT is the 

only model of VWM that specifies a mechanism for how comparison is done. This observation 

will have consequences below—although there are many models of VWM, because none of 

them specify how comparison is done this means that no other models make hemodynamic 

predictions that we can contrast with DFT where comparison is part of the unfolding 

hemodynamic response. Instead, we opt for a different model-testing strategy by contrasting DFT 

with a standard statistical model.  

Simulations of Todd & Marois (2004) and Magen et al. (2009) 

The goal of this paper is to examine whether DFT is a useful bridge theory, 

simultaneously capturing both neural and behavioral data to directly address the neural 

mechanisms that underlie cognitive processes (Buss & Spencer, 2018; Buss et al., 2014; 

Wijeakumar et al., 2016). Here we ask whether the model can simulate two findings from the 

fMRI literature that describe different relationships between intraparietal sulcus (IPS) and VWM 

performance. One set of data show that neural activation as measured by BOLD asymptotes as 

people reach the putative limit of working memory capacity. In particular, Todd and Marois 

(2004) reported that the BOLD signal in the intraparietal sulcus (IPS) increases as more items 

must be remembered with an asymptote near the capacity of VWM. This suggests that the IPS 
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plays a direct role in VWM. This basic effect has been reported in multiple other studies as well 

(Todd & Marois, 2004; Xu & Chun, 2006; for related ideas using EEG, see Vogel & Machizawa, 

2004). In contrast, a second set of results shows that the BOLD response in the IPS does not 

asymptote when the memory delay is increased in duration (Magen, Emmanouil, McMains, 

Kastner, & Treisman, 2009). From this observation, Magen and colleagues proposed that the 

posterior parietal cortex is more involved with the rehearsal or attentional processes that mediate 

VWM, rather than being the site of VWM directly. Here we ask if the DF model can shed light 

on these differing brain-behavior relationships, explaining the seemingly contradictory set of 

results.  

These initial simulations serve two functions. First, they provide an initial exploration of 

whether the LFP-based linking hypothesis generates hemodynamics from the DF model that are 

qualitatively similar to measured BOLD responses. This is a non-trivial step because simulating 

both brain and behavior requires integrating the neural processes that underlie encoding, 

consolidation, maintenance, and comparison. The present experiment explores whether we get 

this integration approximately right. Second, this experiment serves to fix parameters of the DF 

model. Specifically, we allowed for some parameter modification here as we attempted to fit 

behavioral data from Todd and Marois (2004). We then fixed the model parameters when 

simulating data from Magen et al (2009) as well as in a subsequent experiment where we 

generated novel, a priori neural predictions that could be tested with fMRI.  

Methods 

Simulations were conducted in Matlab 7.5.0 (Mathworks, Inc.) on a PC with an Intel® i7 

3.33 GHz quad-core processor (the Matlab code is available at www.dynamicfieldtheory.org). 

For the purposes of mapping model dynamics to real-time, 1 time-step in the model was equal to 
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2 ms. For instance, to mimic the experimental paradigm of Todd and Marois (2004), the model 

was given a set of Gaussian inputs (e.g., 3 colors = 3 Gaussian inputs centered over different hue 

values) corresponding to the sample array for a duration of 75 time-steps (150 ms). This was 

followed by a delay of 600 time-steps (1200 ms) during which no inputs were presented. Finally, 

the test item was presented for 900 time-steps (1800 ms). For the simulation of the Magen et al. 

(2009) task (Experiment 3), the sample array was presented for 250 time-steps (500 ms), 

followed by a delay of 3000 time-steps (6000 ms) and a test array that was presented for 1200 

time-steps (2400 ms). For both simulations, the response of the model was determined based on 

which decision node became stably activated during the test array (see Figures 3-5). Recall that 

the local-excitation/lateral-inhibition operating on the decision nodes gives rise to a winner-take-

all dynamics that generates a single active (i.e., above 0) decision node at the end of every trial.  

 The central question here was whether the neural patterns generated by the model 

mimic the differing BOLD signatures reported by Todd and Marois (2004) and Magen et al. 

(2009). To examine this question, we first used the model to simulate the behavioral data from 

Todd and Marois (2004). We initialized the model using the parameters from Johnson et al. 

(2009a), then modified parameters iteratively until the model provided a good quantitative fit to 

the behavioral patterns from Todd and Marois (2004). For example, the resting level of the CF 

component had to be increased to accommodate for the shorter duration of the memory array in 

the Todd and Marois study. To compensate for the increased excitability of this component, we 

also had to reduce the strength of its self-excitation (see Appendix for full set of parameters and 

differences from the Johnson et al. 2009a model). We implemented the model to match the 

number of participants from the target studies to facilitate statistical comparison of the datasets. 

Specifically, we simulated the model 17 times in the Todd and Marois (2004) task to match the 
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17 participants in this study, and 12 times in the Magen et al. (2009) task to match the 12 

participants in their study. We adminstered 60 same and 60 different trials at each set size for 

each simulation run. Group data were then computed to compare with group data from these 

studies.Once the model provided a good fit to the Todd and Marois (2004) behavioral data, we 

then assessed whether components of the model produced the asymptote in the IPS 

hemodynamic response observed in the original report. This was indeed the case. These model 

parameters were then used to simulate data from Magen at al. (2009) as well as in the subsequent 

fMRI experiment to test novel predictions of the model. 

Results 

As shown in Figure 6A, the model captured the behavioral data from Todd and Marois 

(2004) well overall with RMSE = 0.063. It is important to note that the model was able to 

reproduce these data even though there were many differences in the behavioral task between 

this study and the study by Johnson et al (2009a) that was used to generate the model. The 

duration of the memory array was shorter in the Todd and Marois task (100ms compared to 

500ms in Johnson et al.) and the memory delay was longer (1,200 ms compared to 1,000 ms in 

Johnson et al.). To highlight these differences, Table 1 summarizes the different versions of the 

change detection task that have been previously modeled using DFT. 

Critically, the model showed a pattern of differences between activation over SS that 

reproduced the asymptote effect in CF (shown in panel B of Figure 6 along with fMRI data from 

IPS from Todd & Marios, 2004). Thus, the CF component replicated the pattern of activation 

reported by Todd and Marois from IPS. Comparing SS1-4 with each other, there was a 

significant increase in the average time course of the hemodynamic response for the contrast 

layer as SS increased (all p<.01). As reported by Todd and Marois (2004), there was not a 
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significant difference in the hemodynamic time course between SS4 and SS6 (t(16)= 0.1187, 

p=.907) or SS4 and SS8 (t(16)= 0.5188, p=.611). These data show a good correspondence 

between the neural dynamics from CF and the measured hemodynamic responses of IPS. 

To examine whether the asymptotic effect was unique to CF, we examined the 

hemodynamic patterns produced by the other model components (Figure 6C). The ‘same’ node 

also produced evidence of an asymptote in the simulated hemodynamic response (comparing 

SS1 through SS4: p < .001; SS4 v SS6: t(16)= 0.2589, p= .799). However, a decrease in 

activation was observed between SS4 and SS8 (t(16)= -7.927, p< .001). The WM field and the 

‘different’ node did not produce a statistical asymptote in activation. The WM field showed a 

systematic increase in the HDR over set sizes (all t(16) >16.1290, p< .001). The ‘different’ node 

showed a decrease in activation from SS1 to SS4 (t(16)>3.8783, p<.002), a trending difference 

between SS4 and SS6 (t(16) = 2.024, p= .06), and an increase in activation between SS6 and SS8 

(t(16)= 7.3788, p< .001). These results illustrate that different components of the model can yield 

distinct patterns of hemodynamics based on how these components are activated over the course 

of a task.   

We next examined whether the same model with the same parameters could also simulate 

behavioral and IPS data from Experiment 3 in Magen et al. (2009). Simulation results this task 

are shown in Figure 7. As can be seen, the model approximated the behavioral data well (now 

presented as capacity, Cowan’s K, instead of percent correct) with an overall RMSE = 0.477 

(Figure 7A). The hemodynamic data from the model did not show a double-humped pattern; 

however, none of the model components showed an asymptote in this long-delay paradigm, 

consistent with the steady increase in activation evident in data from posterior parietal cortex 

from Magen et al. (2009). In particular, activation increased across set sizes for the CF, WM, and 
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‘same’ node components (all t(11)> 3.031, p<.02). The hemodynamic response produced by the 

‘different’ node decreased in amplitude between SS1 and SS3 (t(11)= -10.817, p< .001) and from 

SS3 to SS5 (t(11)= -5.6792, p< .001). The amplitude of the hemodynamic response did not differ 

between SS5 and SS7 (t(11)= 0.006, p= .995). 

Discussion 

These results represent an important step in model-based approaches to fMRI. To our 

knowledge, this is the first demonstration of a fit to both behavioral and fMRI data from a neural 

process model in a working memory task. Simultaneously integrating behavioral and neural data 

within a neurocomputational model is an important achievement (Turner et al., 2016). This 

points to the utility of DFT as a bridge theory in psychology and neuroscience.  

The DF model is also the first neural process model to quantitatively reproduce the 

asymptotic pattern from IPS reported by Todd and Marois (2004). Interestingly, the asymptote in 

the HDR was observed most robustly in the CF component. The asymptote in CF was due to the 

dynamics that give rise to the inhibitory filter within this field. As more items are added to the 

WM field, each item carries weaker activation due to the buildup of lateral inhibition. 

Consequently, less inhibition is passed from the Inhib layer to CF as the set size increases. An 

asymptote was also partially observed in the ‘same’ node. In this case, the asymptote was due to 

the effect of inhibition weakening the average synaptic output per peak within the WM field.  

Interestingly, the hemodynamics within the WM field grew at each increase in set-size 

due to the combined influence of inhibitory and excitatory synaptic activity. Strictly speaking, 

the model does have a carrying capacity in terms of the number of peaks that can be 

simultaneously maintained (Spencer, Perone, & Johnson, 2009). The model is capacity-limited 

for two reasons. First, there are crowding effects: each new color peak that is added to the field 
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has an inhibitory surround that can suppress the activation of metrically similar color values (see, 

Franconeri et al., 2010). Second, each peak increases the amount of global inhibition across the 

field; consequently, it becomes harder to build new peaks at high set sizes (for detailed 

discussion, see Spencer et al., 2009). Importantly, however, there is not a direct correspondence 

in the model between the number of peaks that it can maintain and the capacity estimated by its 

performance, that is, the maximum number of peaks in WM is not the same as capacity estimated 

by K (see Johnson et al., 2014). In this sense, the continued increase in WM-related activation 

across set sizes evident in Figure 6 simply reflects that the model has not yet hit its neural 

capacity limit. 

This set of results challenges prior interpretations of neural activation in VWM. That is, a 

hypothesized signature of working memory – the asymptote in the BOLD signal at high working 

memory loads – is not directly reflected in cortical fields that serve a working memory function; 

rather, this effect is reflected in cortical fields directly coupled to working memory (CF and the 

‘same’ node in the case of the DF model) via the shared inhibitory layer. More concretely, the 

primary synaptic output impinging upon CF is the inhibitory projection from Inhib. As peaks are 

added to WM, activation saturates in this field as does the amount of activation within the 

inhibitory layer. Thus, the asymptotic effect is a signature of neural populations coupled to WM 

systems rather than the site of WM itself. 

Multiple empirical papers have reported evidence of an asymptote in IPS in VWM tasks, 

some using fMRI (Ambrose, Wijeakumar, Buss, & Spencer, 2016; Magen et al., 2009; Todd & 

Marois, 2004, 2005; Xu, 2007; Xu & Chun, 2006) and some using EEG (Sheremata, Bettencourt, 

& Somers, 2010; Vogel & Machizawa, 2004). Although the asymptote effect is consistent, there 

is variability in the details of the asymptote effect across studies and associated neural indices. 
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Several papers have reported that the asymptote effect varies systematically with individual 

differences in behavioral estimates of capacity (see Todd et al., 2005). For instance, Vogel and 

Machizawa (2004) showed that increases in the contralateral delay amplitude in parietal cortex 

from a memory load of 2 to 4 items correlates with individual differences in capacity measured 

with Cowan’s K. Other studies, however, have not replicated this link to individual differences. 

Xu and Chun (2006) found correlations between K and increases in brain activity in IPS for 

simple features, but no significant correlation for complex features. Magen et al. (2009) reported 

a divergence between behavioral estimates of capacity and brain activity in IPS. Similarly, 

Ambrose et al. (2016) found no robust correlations between behavioral estimates of capacity and 

brain activity across manipulations of colors and shapes.  

Other studies have used the asymptote effect to investigate the type of information stored 

in IPS. Xu (2007) reported that IPS activation varies with the total amount of featural 

information people must remember. Xu and Chen (2006) modified this conclusion, suggesting 

that superior IPS activity varies with featural complexity while inferior IPS activity varies with 

the number of objects that must be remembered. Variation with featural complexity was also 

reported by Ambrose et al. (2016), but this effect extended to multiple areas including ventral 

occipital cortex and occipital cortex. More recently, data from Sheremata et al. (2010) suggest 

that left IPS remembers contralateral items, but right IPS contains two populations, one for 

spatial indexing of the contralateral visual field and another involved in nonspatial memory 

processing. 

Critically, all of these studies adopt the same perspective – that the asymptote effect 

points towards a role for IPS in memory maintenance. We found one exception to this view:  

Magen et al. (2009) suggest that IPS activity may reflect the attentional demands of rehearsal 
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rather than capacity limitations per se as activation increases above capacity in some conditions. 

The perspective offered by the DF model may be most in line with Magen et al. (2009) in that 

our findings suggest IPS does not play a central role in maintenance but rather comparison.  

Critically, we showed that the same model could reproduce the pattern of hemodynamic 

responses reported by both Todd and Marois (2004) and Magen et al. (2009). In particular, the 

model showed an asymptote in the Todd and Marois short-delay paradigm as well as the absence 

of a asymptote in the Magen et al. long-delay paradigm. Why are there these differences? In 

large part, this comes down to the relative coarseness of the hemodynamic response. In the short-

delay paradigm, activation differences in CF at high set sizes are relatively short-lived and, 

therefore, fail to have a big impact on the slow hemodynamic response. In the long delay 

condition, by contrast, activation differences in CF at high set sizes extend across the entire 

delay; consequently, these differences are reflected even in the slow hemodynamic response.  

Although the DF model did a good job capturing the magnitude of the hemodynamic 

response in IPS, simulations of data from Magen et al. (2009) failed to capture the shape of the 

hemodynamic response – the double-humped hemodynamic response that has been observed 

across multiple studies (Todd, Han, Harrison, & Marois, 2011; Xu & Chun, 2006). We examined 

this issue in a series of exploratory simulations and found that the details of the HDR played a 

role in the non-optimal fit. In particular, if we re-run our simulations with a narrower HDR that 

starts later and lasts for less time (see blue line in Supplemental Figure 1A),  we still effectively 

simulate IPS data from both studies and see more of a double-humped hemodynamic response 

for simulations of data from Magen et al. (with ‘humps’ at the right points in time). That said, we 

were not able to show the dramatic dip in CF hemodynamics around 12s that is evident in the 

data. We suspect that this could be achieved by down-weighting the inhibitory contributions to 
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the LFP more strongly. This highlights a key direction for future work that adopts a two-stage 

approach to optimizing DF models – a first stage of getting the fits to neural data approximately 

right and a second stage where parameters of the HDR and the LFPàHDR mapping are 

iteratively optimized to fit neural data. 

More generally, the present simulations show how neural process models can usefully 

contribute to a deeper understanding of what particular fMRI signatures like the asymptote effect 

actually indicate. To our knowledge, the asymptote effect has only been simulated using abstract 

mathematical models (see Bays, 2018 for a recent comparison of plateau vs. saturation models). 

While this can be useful, it can be difficult to adjudicate between competing theories at this level 

as the myriad papers contrasting slot and resource models can attest (e.g., Brady & Tenenbaum, 

2013; Donkin et al., 2013; Kary et al., 2016; Rouder et al., 2008; Sims et al., 2012). Our results 

show that neural process models can shed new light on these debates, clarifying why particular 

neural and behavioral patterns are evident in some experiments and not others.  

In the next section, we seek more direct evidence of the neural processes implemented in 

the DF model. Importantly, the model not only simulates the asymptote in activation observed in 

IPS, but makes quantitative predictions regarding neural dynamics on both correct and incorrect 

trials. Thus, we describe an fMRI study optimized to test hemodynamic predictions of the DF 

model. We then use our integrative cognitive neuroscience approach combined with general 

linear modeling to create a mapping from the neural dynamics in the DF model to neural 

dynamics in the brain.   

Testing novel predictions of the DF model: An fMRI study of VWM 

Having fixed the model parameters via simulations of data from Todd and Marois (2004), 

we examined our central question—whether the DF model predicts the localized neural 
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dynamics measured with fMRI as people engage in the change detection task on both correct and 

incorrect trials. Because the model generates specific neural patterns on every type of trial (see 

Figure 4), an optimal way to test the model is in a task where each trial type occurs with high 

frequency. Thus, we developed a change detection task that would yield many correct and 

incorrect trials for analysis, but above-chance responding (ensuring that participants were not 

guessing). Below we describe the task and details of the fMRI data collection. We then present 

behavioral data from a preliminary behavioral study and the fMRI study along with behavioral 

simulation results from the DF model. This sets the stage for a detailed examination of whether 

the hemodynamic patterns predicted by the model are evident in the fMRI data and whether such 

patterns are localized to specific brain regions that can be said to implement the particular neural 

processes instantiated by model components. 

Materials and Methods 

Participants 

 Nineteen participants completed the fMRI study; data from three of these participants 

were not included in the final analyses due to equipment malfunction and unreadable fMR 

images (distribution of the final sample: 7 males; M age = 25.7 yrs, SD age = 4.2 yrs). Nine 

additional participants completed a preliminary behavioral study (3 males; M age = 23.4 yrs, SD 

age = 2.2 yrs). Informed consent was obtained from all participants and all research methods 

were approved by the Institutional Review Board at the University of Iowa. All participants were 

right-handed, had normal or corrected to normal vision, and did not have any medical condition 

which would interfere with the MR machine. 

Behavioral Task 

Each trial began with a verbal load (two aurally presented letters lasting for 1000 ms; see 
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Todd & Marois, 2004). Then an array of colored squares (24 x 24 pixels; 2° visual angle) was 

presented for 500 ms (randomly sampled from CIE*Lab color-space at least 60° apart in color 

space). Squares were randomly spaced at least 30° apart along an imaginary circle with a radius 

of 7° visual angle. Next was a delay (1200 ms) followed by the test array (1800 ms). Trials were 

separated by a jitter of either 1.5s, 3s, or 5s selected in a pseudorandom order in a ratio of 2:1:1 

ratio, respectively. On ‘same’ trials (50%), items were re-presented in their original locations. On 

‘different’ trials, items were again re-presented in the original locations but the color of a 

randomly-selected item was shifted 36° in color space (see Figure 8A). Participants responded 

with a button press. On 25% of trials, the verbal load was probed (adding 500 ms to the trial; see 

Todd and Marois, 2004; M correct = 75%; SD = 13%). This ensured that participants could not 

use verbal working memory to complete the task (because verbal working memory was occupied 

with the letter task). Participants completed 5 blocks of 120 trials (3 blocks at SS4; 1 block each 

of SS2, SS6) in one of two orders (2,4,6,4,4; 6,4,2,4,4). Each block was administered in an 

individual scan that lasted for 1,040 s. A robust number of error trials were obtained at SS4 (FA: 

M=28.7, SD= 10.4; Miss: M=65.8, SD= 15.3) and SS6 (FA: M=12.9, SD=4.5; Miss: M=31.1, 

SD=6.4). 

fMRI Acquisition 

The fMRI study used a 3T Siemens TIM Trio system using a 12-channel head coil. 

Anatomical T1 weighted volumes were collected using an MP-RAGE sequence. Functional 

BOLD imaging was acquired using an axial 2D echo-planar gradient echo sequence with the 

following parameters: TE=30ms, TR=2000ms, flip angle=70°, FOV=240x240mm, 

matrix=64x64, slice thickness/gap=4.0/1.0mm, and bandwidth=1920Hz/pixel.  

fMRI Preprocessing 
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Standard preprocessing was performed using AFNI (version 18.2.12) which included 

slice timing correction, outlier removal, motion correction, and spatial smoothing (Gaussian 

FWHM=5mm). The time series data were transformed into MNI space using an affine transform 

to warp the data to the common coordinate system. The T1-weighted images were used to define 

the transformation to the common coordinate system. T1 images were registered to the 

MNI_avg152T1+tlrc template. The coordinates for the regions of interest described by 

Wijeakumar et al. (2015) were used to define the centers of 1 cm3 spheres. Since the time series 

data was mapped to a common coordinate system, the average time course for each participant 

was then estimated using the defined sphere.  

Simulation Methods 

Simulations were conducted as described above with the inputs modified to reflect the 

timing and stimuli properties (e.g., color separation) in the task given to participants. Initial 

observations indicated that the small metric changes in the task made detecting changes difficult 

in the model. Thus, to obtain better fits to the behavior data we changed one model parameters 

governing the resting level of the “different” node. For the previous simulations this value was -

9, but for our version of the task with small metric changes we increased this value to -5 to be 

closer to threshold. 

Behavioral Results and Discussion 

Figure 8 shows the behavioral data from the preliminary behavioral study (Figure 8B), 

from the fMRI study (Figure 8C), and from the model (Figure 8D). Note that error bars were 

generated by running multiple iterations of the model and calculating standard deviation across 

runs. A two-way ANOVA (SS x Change trial) on the behavioral data from the fMRI study 

revealed main effects of SS (F(2,15)=153.06, p< .001) and Change trial (F(1,16)=88.90, p< .001) 
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and an interaction between SS and Change trial (F(2,15)=10.98, p< .001). Follow up t-tests 

showed that participants performed significantly better on SS2 compared to both SS4 (t(16)= 

16.29, p< .001) and SS6 (t(16)= 14.00, p< .001), and better on SS4 compared to SS6 (t(16)= 

7.31, p< .001). Participants performed better on Same trials compared to Different trials at SS2 

(t(16)= 3.843, p< .001), SS4 (t(16)= 8.47, p< .001), and SS6 (t(16)= 8.13, p< .001). Importantly, 

all participants performed better than chance suggesting that they were not simply guessing (all t 

values > 4.5, p < .001). 

The DF model that simulated data from Todd and Marois (2004) and Magen et al. (2009) 

also captured the data from the fMRI study and the preliminary behavioral study well (RMSE = 

0.11 across both datasets) demonstrating that the model generalizes to behavioral differences 

across tasks (see Table 1). In summary, behavioral data from the present study show that 

participants generated many correct and incorrect responses, yet remained above-chance in all 

conditions. This provides an optimal data set, therefore, to test the neural predictions of the DF 

model regarding the origin of errors in change detection. The model did a good job reproducing 

these behavioral data with a single modification to a parameter across simulations (changing the 

resting level of the “different’ node for our metric version of the task). This sets the stage to test 

the neural predictions of the DF model to determine whether the model can simultaneously 

capture both brain and behavior. 

Testing Predictions of the DF Model with GLM 

To test the hemodynamic predictions of the model, we adapted a general linear model 

(GLM) approach. As noted previously, it would be ideal to test the DF model against a 

competitor model, but no such competitor exists that predicts both brain and behavior. Instead, 

we asked whether the DF model out-performs the standard statistical modeling approach to fMRI 



MODEL-BASED	fMRI		 	 50	
	

data using GLM. 

In conventional fMRI analysis, a model of brain activity that has been parameterized for 

each stimulus condition is estimated via linear regression. A set of parametric maps for each 

condition is then constructed and used to infer locations in the brain where these model 

coefficients are statistically non-zero or different between conditions. The proposed innovation is 

to use the DF model to reparametize the GLMs because the DF model predicts the expected 

patterns across conditions. The DF model in this case constitutes a task-independent and 

transferable bridge theory with the ability to make simultaneous task-specific predictions of both 

brain and behavior. Note that this approach is novel relative to existing fMRI methods such as 

dynamic causal modeling (DCM; Penny, Stephan, Mechelli, & Friston, 2004) in that most 

common variants of DCM use deterministic state-space models while the DF model is stochastic 

(but see Daunizeau et al., 2012). Moreover, the DF model provides a direct link to behavioral 

measures while DCM does not (but see Rigoux and Daunizeau, 2015 for steps in this direction). 

More generally, DF and DCM have different goals with DCM using fMRI data to make 

hypothesis-led inferences about interactions among regions, and DF providing a predictive 

model of both brain and behavior. 

The next question was how to apply the GLM-based approach to the brain. One option is 

an exploratory whole-brain approach. We opted, however, for a more constrained approach using 

a recent meta-analysis of the VWM literature (Wijeakumar et al., 2015). In particular, we 

extracted the BOLD response from 23 regions of interest (ROIs) implicated in fMRI studies of 

VWM. Twenty-one of these ROIs were from Wijeakumar et al. (2015); we added two ROIs so 

all bilateral entries were present with the exception of lSFG which was centrally located.  

Consider what this GLM-based approach might reveal. It could be that specific model 
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components such as the WM field capture variance in just 1 or 2 ROIs. This would constitute 

evidence that the WM function was implemented in those cortical areas. It is also possible, 

however, that multiple components capture activation in the same ROI. In this case, we can 

conclude that multiple functionalities are evident in this ROI and the model does not unpack the 

specificity of the function. For instance, the CF and WM fields work together during the initial 

encoding and consolidation of the colors, while CF and the ‘different’ node conspire during 

comparison. In the brain, these functionalities might be handled by separate but coupled cortical 

fields. Indeed, we know this is the case already and have proposed a more complex DF 

architecture to pull functions like encoding and consolidation apart (see Schoner et al., 2015). 

Unfortunately, this new model is more complex, harder to fit to behavior, and has not been tested 

as fully as the model used here. We acknowledge up front, then, that there might be some lack of 

specificity in the mapping of model components to ROIs that suggests more work needs to be 

done to articulate what these brain regions are doing. Our hope is that the work we present here 

gives us a theoretical tool to use as we search for this more articulated understanding of VWM. 

To determine whether the model statistically outperforms the standard task-based GLM 

approach and makes accurate predictions about activation in specific cortical regions, we used a 

Bayesian Multilevel Model (MLM) approach using equation 8 with d ROIs, N time points, and p 

regressors where Y is an N by d data matrix, X is an N by p design matrix, W is a p by d matrix 

of regression coefficients, and E is an N by d matrix of errors (using functions provided by 

SPM12). The errors, E, have a zero-mean Normal distribution with [d x d] precision matrix Λ. 

Y= XW + E 

 A specific MLM can then be specified by the choice of the design matrix. In the 

following analyses, we use regressors derived from the DF model or sets of regressors capturing 

(8)	
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the factorial design of the experiment (e.g., main effects of set-size, accuracy, same/different, or 

interactions thereof). A Variational Bayes algorithm (Roberts & Penny, 2002) was then used to 

estimate the model evidence for each MLM, p(Y|m), and the posterior distributions over the 

regression coefficients p(W|Y,m) and noise precision p(Λ|Y,m). The model evidence takes into 

account model fit but also penalizes models for their complexity (Bishop, 2006; Penny et al., 

2004). It can be used in the context of random effects model selection to find the best model over 

a group. 

Methods 

To assess the quality of fit between the predicted hemodynamic responses from the 

model components and the BOLD data obtained from participants, we first ran the model 

through the fMRI paradigm 10 times, calculating the average LFP timecourse for each model 

component (‘different’ node, ‘same’ node, CF, WM) on each trial type (same correct, same 

incorrect, different correct, different incorrect) for each set-size (2, 4, and 6). Figure 9 shows the 

full set of hemodynamic predictions for all trial types and components calculated from these 

LFPs (showing M HDR signal change for simplicity). To the extent that the model captures what 

is happening in the brain during change detection, we should see these same patterns reflected in 

participants’ fMRI data. Note that these predictions are quite specific. For instance, as noted 

previously, the ‘same’ node shows a stronger hemodynamic response on hits than on correct 

rejections. This holds across memory loads. By contrast, the ‘different’ node shows a stronger 

hemodynamic response on hit and miss trials, except at the highest memory load where the 

strongest hemodynamic response is on false alarms. This reflects the strong ‘different’ signal on 

false alarm trials at high memory loads when a WM peak fails to consolidate. The other two 

layers in the model – CF and WM – show strong effects of the memory load, with an increase in 
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activation as the set size increases. Interestingly, differences across trial types emerge in WM as 

the memory load increases, with higher activation for miss and correct rejection trials, that is, 

when the model responds ‘same’.  

Next, the LFP timecourses were turned into subject-specific time courses. These time 

courses were created by setting the time windows corresponding to each trial equal to the 

average LFP timecourse based on the timing and type of each trial for each participant. For each 

participant, four separate time courses were created corresponding to the LFPs from the 

‘different’, ‘same’, CF, and WM model components. The variations in timing in the time courses 

for a participant reflect the random jitter between trials from the fMRI experiment, while the 

variations in the trial types reflect both the trial-by-trial randomization in trial types as well as 

participant’s performance—whether each trial was, for instance, a set size 2 ‘correct’ trial, a set 

size 4 ‘incorrect’ trial, and so on. The LFP time courses were then convolved with an impulse 

response function and down-sampled at 2 TR to match the fMRI experiment. Individual-level 

GLMs were first fit to each participant’s fMRI data. These results were then evaluated at the 

group level using Bayesian MLM.  

Results 

Categorical versus DF Model 

 In a first analysis, we generated standard task-based regressors that include the stimulus 

timing for each trial type. For example, a standard task-based analysis of the change detection 

task would model hemodynamic activation across voxels with regressors for correct-same trials, 

correct-change trials, incorrect-same trials, and incorrect-change trials at each set-size – 12 

categorical regressors in total (4 trial types * 3 set sizes).  To explore the full range of task-based 

models, we specified eight models based on combinations of task-based regressors: 1) a model 
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with three factors that categorize trials based on set-size, change, and accuracy (12 total task-

based regressors), 2) a model with two factors that categorize trials based on set-size and change 

(6 total task-based regressors), 3) a model with two factors that categorize trials based on set-size 

and accuracy (6 total task-based regressors), 4) a model with two factors that categorize trials 

based on change and accuracy (4 total task-based regressors), 5) a model with one factor that 

categorizes trials based on set-size (3 total task-based regressors), 6) a model with one factor that 

categorizes trials based on change (2 total task-based regressors), 7) a model with one factor that 

categorizes trials based on accuracy (2 total task-based regressors), and 8) a null model (1 

constant regressor). For all of these models, the hemodynamic response at each trial was 

modeled based on the GAM function in AFNI.  

Second, we generated regressors from the four components of the DF model as described 

above. Note that all nine models were individualized based on the specific sequence of trials for 

each participant. Additionally, all models included 6 regressors based on motion (roll, pitch, 

yaw, translations right-left, translations inferior-superior, and translations anterior-posterior), 6 

regressors based on the motion regressors with a time lag of 1 TR, and 25 baseline parameters 

reflecting a 4 degree polynomial model for the baseline of each of the five blocks. Lastly, all 

models were normalized to have zero-mean unit variance among columns prior to model 

estimation (for each column, the mean was subtracted and then divided by the standard 

deviation). 

 Random Effects Bayesian Model Comparison (Rigoux et al., 2014; Stephan et al., 2009) 

was then implemented across all models and participants using the statistical function provided 

by SPM12. This method uses the concept of model frequencies, which are the relative prevalence 

of models in the population from which the sample subjects were drawn. For example, model 
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frequencies of 0.90 and 0.10 indicate a prevalence of 90 percent for model 1 and 10 percent for 

model 2. Random Effects Bayesian Model Comparison provides for statistical inferences over 

model frequencies and Stephan et al. (2009) describe an iterative algorithm for computing them. 

Initial inspection of the data revealed that frequencies were non-uniform (Bayes Omnibus Risk 

(BOR) = 4.78 x 10-5). The DF model, accuracy categorical model, and change categorical model 

had the largest frequencies of 0.44, 0.20, and 0.12, respectively. The probability that the DF 

model had the highest model frequency (quantified using the “protected exceedance 

probability”) is PXP = 0.9312. This value is a posterior probability so has no simple relation to a 

classical p-value. One can also express posterior probabilities as Bayes Factors, with the Log 

Bayes Factor being the log-odds of the marginal likelihoods. For example, for PXP=0.9312, the 

log Bayes Factor is log [0.9312/(1-0.9312)]=2.61 and the Bayes Factor is exp(2.61)=13.5, 

meaning there is 13.5 times the evidence for the statement than against it. Conventionally, a 

Bayes factor of 1 to 3 is considered “Weak” evidence, 3 to 20 as “Positive” evidence, and 20 to 

150 as “Strong” evidence (Kass & Raftery, 1995). It is in this sense that the DF model “best” 

explains the fMRI data. In our group of 16 participants, the posterior model probabilities were 

highest for the DF model for 10 individuals, the accuracy categorical model for 4 individuals, 

and the change categorical model for 2 individuals. Table 2 shows the log Bayes Factors for the 

different models across participants. These results indicate that some individuals showed 

differences in activation across accuracy or change factors that were not effectively captured by 

the DF model. 

Testing the Specificity of the DF Model 

 It is an open question to what extent the dynamics implemented by the model are 

important for its explanatory value in the MLM results. One of our key claims is that the neural 
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dynamics that are implemented in the model provide an explanation of what the brain is doing to 

give rise to same/different decisions in the change detection task, both on correct and incorrect 

trials. To probe this issue, we generated new sets of four randomized DF regressors and re-ran 

the MLM analysis. For each participant and for each trial, an LFP was selected from a randomly 

determined trial type and component. These LFPs were slotted in based on the timing of trials for 

each individual participant and then convolved to generate sets of 4 DF model regressors as 

described above. We refer to this as the Random Trial and Component DF Model (DF-RTC). If 

the structure of activation within each component for each trial type is important for the 

explanatory value of the model, then this model should do poorly compared to the categorical 

model.  

Results from the MLM analysis showed that observed model frequencies were non-

uniform (BOR = 1.20 x 10-5). In contrast to the prior analysis, the DF model was not the most 

frequent; rather, the accuracy categorical model, change categorical model, and DF-RTC model 

had the largest frequencies of 0.47, 0.21, and 0.08, respectively. The probability that the 

accuracy categorical model had the highest model frequency is PXP = 0.9459. Thus, in this new 

analysis, the accuracy categorical model best explains the fMRI data. In our group of 16 

participants, the posterior model probabilities were highest for the accuracy categorical model 

for 11 individuals, the change categorical model for 2 individuals, and the DF-RTC model for 1 

individual. Importantly, these results show that the DF-RTC model regressors poorly explain the 

fMRI data when the trial and component structure is removed.  

 Next, we asked whether preserving the component structure but disrupting the trial 

structure would impact the explanatory power of the DF model. To accomplish this, we 

generated new sets of four DF regressors for each participant. In particular, an LFP was selected 
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from a randomly determined trial type on each trial, but each regressor was sampled from a 

single component to maintain the ingrity of the component-level predictions. As before, these 

LFPs were inserted into the predicted time series based on the timing of each individual trial for 

each participant, the individual-level GLMs were re-estimated, and the MLM analysis was 

repeated at the group level. We refer to this as the Random-Trial DF model (DF-RT). If the 

specific structure of activation pattern across trials within each component is important for the 

explanatory value of the model, then this model should do poorly compared to the categorical 

model. If, however, this model still captures the data well, then this would suggest that the 

relative differences in activation dynamics across components are an important contributor to the 

model’s explanation of the data. 

In this new analysis, we observed that frequencies were non-uniform (BOR = 4.78 x 10-

5). The DF-RT model, accuracy categorical model and change categorical model had the largest 

frequencies of 0.44, 0.20, and 0.12, respectively. The probability that the DF-RT model has 

higher model frequency than any other model is PXP = 0.9312. Thus, the DF-RT model still 

“best” explains the fMRI data. In our group of 16 participants, the posterior model probabilities 

were highest for the DF-RT model for 12 individuals, the accuracy categorical model for 2 

individuals, and the change categorical model for 2 individuals.  

We then asked whether the “standard” DF model provides a better fit to the data than the 

DF-RT model. In this comparison, we observed that frequencies were non-uniform (BOR = 

0.0396). The standard DF model had a frequency of 0.83 which was higher than the DF-RT 

model  frequency of 0.17 (PXP = 0.9789). Thus, the standard DF model better explains the fMRI 

data compared to the random-trial DF model. In our group of 16 participants, the posterior model 

probabilities were highest for the standard DF model for 15 individuals. Thus, the detailed 
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predictions of the DF model regarding how brain activity varies over trial types is, in fact, 

important in capturing the fMRI data from the present study. 

Are all DF model components necessary? 

The correlation among the DF regressors was very high, most likely reflecting the strong 

reciprocal connections between model components. Averaged over the group, the maximum 

correlation was between CF and WM (r2 = .93) and the minimum was between the ‘same’ node 

and WM (r2= .52). Thus, it is important to assess whether all model components are adding 

explanatory value.  

We compared the model evidence of the full model with all four regressors to four other 

models that eliminated one regressor. These results indicated that removing the ‘different’ node 

regressor yielded a better model. Specifically, the frequency of this model was higher than the 

other four models that were compared (PXP = .9998). The model frequencies were non-uniform 

(Bayes Omnibus Risk (BOR) = 5.72 x 10-7) indicating a very low probability that the model 

frequencies are equal (this is a posterior probability and can also be converted into a Bayes 

Factor as above). We examined whether further reducing the model would yield a better model. 

We compared the model with the ‘different’ node regressor removed to three other models with 

one of the remaining three regressors removed. Results from this comparison indicated that the 

model with three regressors had the highest model frequency, PXP = 1.0000, and the model 

frequencies were significantly non-uniform (BOR = 2.26 x 10-7). From this we concluded that 

the best variant of the DF model across participants was a 3-regressor model with CF, WM, and 

‘same’ regressors included. 

In an additional MLM analysis, we examined how the reduced model compared to the set 

of categorical models described above. We observed that frequencies were non-uniform (BOR = 
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4.34 x 10-6). The DF model, accuracy categorical model, and change categorical model  had the 

largest frequencies of 0.52, 0.12, and 0.12, respectively. The probability that the DF model has 

the highest model frequency is PXP = 0.9922. Thus, the reduced DF model still “best” explains 

the fMRI data. In our group of 16 participants, the posterior model probabilities were highest for 

the DF model for 12 individuals, the accuracy categorical model for 2 individuals, and the 

change categorical model for 2 individuals (see Table 2).  

To explore why the ‘different’ node regressor failed to contribute much to model 

performance, we explored the multicollinearity of the four DF regressors using Belsley 

collinearity diagnostics (Belsley, 1991). This revealed that the three remaining regressors were 

multicollinear (variance decompositions larger than .5), and that the ‘different’ node was 

independent of this collinearity (condIdx=56.97; ‘different’= 0.3155, ‘same’= 0.8212, CF= 

0.9945, WM= 0.9811). Interestingly, when we examined the connection weights between the 

‘different’ node and the regions of interest, all of the regions with relatively large ‘different’ 

weightings had negative weights. Thus, the ‘different’ hemodynamics in the model appear to be 

relatively distinct and inversely mapped to brain hemodynamics. This may indicate that 

difference detection in the model is too simplistic. For instance, evidence suggests that people 

typically both detect changes in the test array and shift attention to the changed location (Hyun, 

Woodman, Vogel, Hollingworth, & Luck, 2009); this second operation is not captured by our 

model.  

Mapping model components to cortical regions 

  The analyses thus far indicate that the DF model provides a better account of the fMRI 

data than 8 standard categorical models, the trial type and component structure of the DF model 

regressors both matter to the quality of the data fits, and a streamlined 3-regressor DF model 
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provides the most parsimonious account of the data. Our next goal was to understand how the 

model maps onto specific brain regions and which aspects of the fMRI data the model captures. 

In this context, it is important to emphasize that the beta weights for each component of the 

model are estimated together along with the other components that are being considered. That is, 

neural activation in a ROI is the dependent variable and the predicted neural activation from the 

model components are the independent variables. Since the model components are entered into 

the model together, the beta weight estimated for each component controls for the other 

predictors. At the group level, described below, the statistical comparison was performed 

individually on each component using a t-test. Here, the question is whether each component 

contributes significantly to prediction at the group level, allowing for inferences to be made 

about the partial correlation between each model component and each region of interest. 

We performed group-level t-tests (Bonferroni corrected) to examine which of the three 

components from the reduced DF model explained activation in different cortical regions across 

our group of participants. We focused on connections that were positive. Note that negative 

connections were observed (i.e., ‘same’ node: lIFG, lIPS, lOCC, lSFG, lsIPS, rIFG, rMFG, 

rOCC, rsIPS; CF: lTPJ, rTPJ; WM: alIPS, lIFG, lIPS, lsIPS, rIFG, rsIPS). In all but one case 

(rMFG), a negative connection was paired with a positive connection with another component. 

Thus, negative connections could be explained by the inverse nature of different components 

involved in “same” and “different” decisions, in which case it is easier to interpret the positive 

connection weights. The CF component explained significant activation in 9 regions (alIPS: 

t(14)=4.85, p< .001; lIFG: t(14)= 5.65, p< .001;  lIPS: t(14)= 5.60, p< .001; lOCC: t(14)= 4.41, 

p< .001; lSFG: t(14)= 4.67, p< .001; lsIPS: t(14)= 4.94, p< .001; rIFG: t(14)= 5.56, p< .001; 

rOCC: t(14)= 4.32, p< .001; and rsIPS: t(14)= 6.79, p< .001). Additionally, WM and the ‘same’ 
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node explained activation in lTPJ (t(14)= 8.25, p< .001; t(14)= 7.83, p< .001) and rTPJ (t(14)= 

9.59, p< .001; t(14)= 7.89, p< .001). Figure 10A shows the mapping of model components to 

cortical regions. A first observation from this pattern of results is that bilateral IPS is once again 

mapped to the contrast layer, consistent with our first simulation experiment. In addition to IPS, 

the CF regressor also captured significant variance in other regions associated with the dorsal 

frontoparietal network including bilateral OCC and IFG, as well as another brain region 

commonly linked to an aspect of the ventral right frontoparietal network –SFG (Corbetta & 

Shulman, 2002).  

Given the striking presence of bilateral activation in the t-test results, we tested if the 

regression vectors were significantly different between paired regions across hemispheres. In our 

sample of ROIs there were 11 such regions (e.g., left/right IPS, left/right IFG, etc). We tested for 

differences within-subject using the Savage-Dickey (Rosa, Friston, & Penny, 2012) 

approximation of model evidence and then examined consistency over the group (using random 

effects model comparison). For all pairs, no log Bayes Factors were decisively negative. This 

indicates that the regression vectors were different. Thus, although both hemispheres may be 

engaged in the same type of function (e.g., contrasting items with the content of VWM), 

activation profiles between hemispheres differ. This is consistent with data suggesting, for 

instance, that IPS might be most sensitive to visual information in the contralateral visual field 

(Gao et al., 2011; Robitaille, Grimault, & Jolicœur, 2009).  

To asses the quality of the data fits between the DF regressors and activation in these 

brain regions, we plotted the predicted data from the model against the fMRI timecourses. We 

selected three regions of interest – rTPJ which was mapped to the WM+Same component across 

the group (Figure 10B), lIPS which was mapped to the CF component across the group (Figure 
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10C), and a contrast area -- lMFG -- which was not robustly mapped to any component (Figure 

10D). In each panel, we show an example plot from one individual who ‘preferred’ the DF 

model based on our MLM analysis along with data from one individual who ‘preferred’ the 

accuracy categorical model. The annotation in each figure (see green ovals) show time epochs 

where the preferred model showed a better fit to the empirical data. For instance, in the top panel 

of Figure 10B, there are several epochs where the DF model fit the empirical data better; by 

contrast, the categorical model generally shows a negative undershoot relative to the data. In the 

lower panel, however, there is a run of trials where the categorical model provides a better fit. 

Figure 10C shows comparable results, with clear time epochs where the DF model (top panel) or 

categorical model (lower panel) provides a better data fit. Finally, in Figure 10D, one can see 

two examples where neither model fits the BOLD data particularly well. 

To explore individual differences in further detail, we examined whether the connection 

values (i.e., b weights) between model components and cortical regions were correlated 

(Spearman’s correlation) with an individual’s WM performance as indexed by the maximum 

value of Pashler’s K. Note that our sample size of 16 may not be large enough to provide strong 

evidence of  brain-behavior relationships. Further, we tested only positive b weights between 

regions and model components (13 total comparisons). Using the Benjamin-Hochberg 

(Benjamini & Hochberg, 1995) correction procedure and a false-discovery rate of .1 (given the 

exploratory nature of these comparisons), we found that capacity was significantly correlated 

with the connection weight between WM and lTPJ (r=-0.66, p=.0055; Figure 10E). As is evident 

in the scatter plot, higher capacity individuals show weaker b weights for the WM component in 

lTPJ. Recall from the behavioral data in Figure 8C that performance drops over set sizes, 

particularly in the ‘different’ condition; thus, higher capacity individuals (who had the highest 
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percent correct) show less of a ‘same’ bias and more selective responding on ‘different’ trials. 

This is consistent with the correlation in TPJ: higher capacity individuals show a weaker ‘same’ 

bias in TPJ (negative correlations between brain activation and the WM regressor).  

Assessing the quality of the mapping of model components to cortical regions 

One way to evaluate the mapping of model components to cortical regions was shown in 

Figure 10, where we highlighted both group-level data as well as data from individual 

participants. While this is helpful in evaluating model fits, in this final section we use a 

quantitative metric to help understand what details of the data the DF and categorical models are 

explaining. 

To quantitatively assess the quality of the fit for the DF model relative to the categorical 

models, we examined the precision of the different models. Precision was derived from the 

inverse covariance matrix for each model. Specificially, given the linear model Y = XW + 

E where the errors have covariance matrix C, the corresponding precision matrix is L (the 

inverse of C). The precision metric reflects the partial correlation between variables independent 

of covariation with other variables (Varoquaux & Craddock, 2013). We defined a diagonal 

version of the precision matrix to get region by region precisions: l = diag(L) such that l(r) is 

high if the model fit is good in region r, that is, if a lot of unique variance is captured in this 

region. Improvements in model precision were calculated as the relative percent improvement in 

precision for the DF model relative to the different categorical models. For instance, we can 

calculate the precision of the DF model for subject 1 in left IPS, the precision of a categorical 

model for subject 1 in left IPS, and then compute the relative percent increase (or decrease) in 

precision for the DF model. 

Figure 11A shows the average improvement in precision over subjects for the 23 brain 
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regions. The arrows below specific regions highlight the mapping of model components to 

regions shown in Figure 10A (yellow arrows = CF, red arrows = WM+Same). As can be seen in 

the figure, regions mapped to specific DF regressors in the group-level comparisons generally 

showed a large relative increase in precision for the DF model (positive values). Interestingly, 

some regions such as rFEF showed a large average change in precision even though this region 

was not mapped to a particular DF component in the group-level t-tests. Figure 11B shows the 

average improvement in precision over regions split by participants. The arrows below specific 

participants indicate the participants that ‘preferred’ a categorical model in the MLM analysis. 

These participants all have small changes in relative precision, indicating that the precision of the 

DF model was only slightly higher than the precision of the categorical model. Considered 

together, then, the data in Figure 11 largely mirror the group-level results that mapped DF 

components to ROIs as well as the MLM results showing which models were preferred by which 

subjects. 

Critically, the precision for some regions for the categorical-preferring participants 

showed higher precision for the categorical model of interest. This can give us a sense of what 

the DF model is failing to capture. Figure 12 shows two exemplary participants. Figure 12A 

shows data from subject 1 -- a DF ‘preferring’ participant with high relative precision in rIPS 

(relative precision = 1.7527), while Figure 12B shows data from subject 8 – a categorical 

‘preferring’ participant with a negative relative precision in this same ROI, that is, higher 

precision for the change categorical model (relative precision = -1.9862). Each panel shows the 

BOLD data, the DF time series predictions, and the categorical time series predictions with the 

data split by trial types. All time traces were constructed by averaging the time series data from 

trial onset (0s) through 10 s post-trial onset, where data were baselined at 0s.  
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As can be seen in Figure 12A, the DF-preferring participant showed a large 

hemodynamic response in the SS2-correct conditions as well as a large hemodynamic response 

on all SS6 trial types (bottom row). This highlights how brain activity is modulated by the 

memory load. Note that the SS4 condition had the most trials; this appears to have reduced the 

magnitude of the response (note the scale difference in the middle row). Comparing the DF time 

series data with the categorical time series data, the DF model data are closer to the empirical 

values for all SS2 trials, for SS4-same-correct trials, and SS6-same trials (both correct and 

incorrect), with mixed results in the other conditions. Thus, in this region, the DF model is doing 

relatively well, with weaker performance on high set size change trials. Note that the amplitude 

of the model predictions are low in all cases reflecting the limited degrees of freedom in the 

overall model (only 3 predictors).  

In Figure 12B, we see a similar modulation in the HDR over SS, although this participant 

shows a robust HDR across all SS2 conditions (top row). Looking at the relative accuracy of the 

DF and categorical time series data, the top row shows mixed results with one exception  -- the 

DF model is closer to the data on the SS2-different-incorrect trials. The categorical model 

generally fares better on the SS4 trials (middle row). SS6 is again mixed with the categorical 

model closer to the BOLD data, particularly early in the trial. Interestingly, even though this 

region showed high precision for the categorical model, this improved fit is subtle. We conclude, 

therefore, that the DF model is generally doing reasonably well -- even with categorical-

preferring participants – and is not overtly failing on a small subset of conditions. 

Finally, we examined the differences between the observed BOLD data measured from 

rIPS relative to the DF and categorical models. Here, we focused on the accuracy and change 

categorical models since these were the only categorical models ‘preferred’ by any participants. 
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First, we computed the average absolute difference between the DF model and the BOLD signal 

and the categorical models and the BOLD signal to determine how much these models deviated 

from the observed BOLD signal for each trial type. Plotted in Figure 13 is the difference in 

deviation between the two categorical models and the DF model averaged across participants. 

This visualization provides a sense of which trial types the DF model did well (where ther are 

large positive values in Figure 13) and where the DF model did poorer (where there are negative 

values in Figure 13). As can be seen, the DF model does very well relative to these categorical 

models on incorrect trials at SS2 and across trial types for SS6. Most notably, the DF model does 

the worst on correct change trials at SS2. Note, however, the degree of difference for this trial 

type is small relative to the degree of difference on other trial types in which the DF model does 

better.   

General Discussion 

The central goal of the current paper was to test whether a neural dynamic model of 

visual working memory could directly bridge between brain and behavior. We initially fit a 

model that simulates behavioral and hemodynamic data simultaneously to data from two fMRI 

studies that reported seemingly contradictory findings. The model simulated results from both 

studies. Interestingly, simulated results from the model’s contrast layer most closely mirrored 

fMRI data from IPS, suggesting that IPS plays more of a role in comparison and change 

detection than in the maintenance of items in VWM. Moreover, the model explained why IPS 

fails to show an asymptote in a long-delay paradigm – the longer-delay allows for more subtle 

variations in the neural dynamics of the contrast layer to be reflected in the hemodynamic 

response.  

We then used a Bayesian MLM approach to test model predictions against BOLD data 



MODEL-BASED	fMRI		 	 67	
	

from a set of ROIs to assess the fit of the model’s predicted patterns of hemodynamic activation. 

This method was used to shed light on the mechanisms that underlie VWM and change detection 

performance with a special emphasis on the neural processes that underlie errors in change 

detection. Results showed that the model-based regressors explained more variance in the BOLD 

data than standard task-based categorical regressors. Additional analyses showed that both the 

component structure of the model and the details of neural activation on each trial type mattered 

to the quality of the data fits. Evidence that the trial types matter is important because the DF 

model offers a novel account of why people make errors in change detection. In particular, the 

model predicts a false alarm when an item is not maintained in WM and a miss due to decision 

errors caused by widespread suppression of the contrast layer. By contrast, previous cognitive 

accounts hypothesized that misses occur when items are not maintained in WM and false alarms 

reflect decision errors / guessing (Cowan, 2001; Pashler, 1988). The fMRI data support the DF 

account. 

The model-based fMRI approach not only provided robust fits to the BOLD data in 

specific ROIs, this approach also conferred new understanding of the neural bases of VWM. In 

particular, group-level analyses mapped model components to patterns of activation in specific 

regions of the brain and this mapping offers an explanation of the functional significance of this 

brain activity. Although our results here are still correlational in nature, future work could use 

methods such as TMS to more directly probe model predictions that can push this explanation to 

the causal level. Notably, once again, the contrast layer provided the best account of data from 

IPS. This helps resolve on-going debates in the literature. Previous work has suggested IPS is a 

critical site for VWM because this area shows an asymptote in the BOLD signal at higher set 

sizes (Todd & Marois, 2004) while other work suggests IPS plays an attentional role 
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(Szczepanski, Pinsk, Douglas, Kastner, & Saalmann, 2013). Our results provide a new account 

of these data suggesting that IPS is critically involved in the comparison operation. This 

highlights how a model-based fMRI approach can lead to an integrated account when current 

experimental results have yielded contradictory findings.  

More generally, the contrast field provided a robust account of neural activation across 10 

regions linked to a dorsal frontoparietal network as well as key regions in a ventral right 

frontoparietal network (Corbetta & Shulman, 2002). One critique of the model is that it failed to 

make functional distinctions across these 10 ROIs. We suspect this reflects the simplicity of the 

model tested here. The model only had four components. While results show that these 

components were sufficient to capture key aspects of the behavioral and neural dynamics in the 

task, the model does not specify all the processes that underlie participants’ performance. For 

instance, in the current model, encoding and comparison both happen in the CF layer. In a more 

recent model of VWM and change detection (Schneegans, 2016; Schneegans, Spencer, Schoner, 

Hwang, & Hollingworth, 2014), we have unpacked these functions by including new cortical 

fields that implement encoding within lower-level visual fields as well as attentional fields that 

capture known shifts of attention that occur in change detection. If we were to test this more 

articulated VWM model using the tools developed here, it is possible that some of the CF ROIs 

like OCC would now show an encoding function while other ROIs like SFG would be mapped to 

an attentional function. Future work will be needed to explore these possibilities. Importantly, 

this work can directly use all of the tools developed here.  

Another key result in the present paper was the mapping of the WM and ‘same’ 

functionalities to brain activation in bilateral TPJ. The link between WM and TPJ is consistent 

with previous fMRI studies (Todd et al., 2005). Moreover, we found significant correlations 
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between the WM and ‘same’ b weights in rTPJ and individual differences in WM capacity. 

Although this suggests TPJ is a central hub for VWM, one could once again critique the 

specificity of the model predictions: shouldn’t the model reveal a neural site for VWM that is 

distinct from activation predicted by the ‘same’ node? We suspect there are two key limitations 

on this front. First, as noted above, the model is relatively simple. In our recent model of VWM, 

for instance, we tackle how working memories for features are bound to spatial positions to 

create an integrated working memory for objects in a scene that is distributed across multiple 

cortical fields. Moreover, working memory peaks in this new model build sequentially as 

attention is shifted from item to item. This leads to differences in the neural dynamics of working 

memory through time that are not captured by the model used here (which builds peaks in 

parallel). It is possible that this more articulated model of VWM would help pull part the details 

of neural processing in TPJ, potentially capturing data in other brain regions as well that the 

current model failed to detect. 

A second limitation of the present work was hinted at by our simulations of data from 

Magen et al. (2009). Those simulations show that short-delay change detection paradigms may 

provide only limited information about the neural dynamics that underlie VWM because subtle 

variations in the dynamics are not detected in the slow hemodynamic response. We suspect this 

contributed to the high collinearity of our model regressors which ultimately contributed to the 

removal of the ‘different’ regressor in our final model. That is, the design of the task may not 

have been optimized to elicit distinguishing patterns of activation from the model components. 

One way to reduce collinearity in future model-based fMRI would could be to vary the task. If, 

for instance, the model was put in a variety of task settings, including both short-delay and long-

delay trials as well as variations in the memory load, the collinearity would likely reduce. Indeed, 
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one advantage of having a neural process model is that the properties of the design matrix could 

be optimized in advance by simulating the model directly. To explore the relationship between 

model dynamics and hemodynamics in more detail, we ran additional simulations in which we 

varied the timing parameters of the canonical HRF function used to generate hemodynamics 

from the simulated LFP (see supplemental figure). This illustrates how future work can use an 

iterative process to not only inform interpretation of neural data but to influence the parameters 

used in the model. 

In summary, although there are limitations to our findings, the integrative cognitive 

neuroscience approach used here opens up a new way to assess how well a particular class of 

neural process theories explain and predict functional brain data and behavioral data. In this 

regard, the DF model presents a bridge between cognitive and neural concepts that can shed new 

light on the functional aspects of brain activation.  

Relations between the DF model and other theoretical accounts 

DFT provides a rich computational framework that generates novel predictions not 

explained by other accounts focusing on slots and resources (Bays et al., 2009; Bays & Husain, 

2009; Brady & Tenenbaum, 2013; Donkin et al., 2013; Kary et al., 2016; Rouder et al., 2008b; 

Sims et al., 2012; Wilken & Ma, 2004). One novel prediction previously reported using a DF 

model of VWM demonstrated enhanced change detection performance for items in memory that 

are metrically similar (Johnson, Spencer, Luck, et al., 2009). Other more recent models have also 

addressed metric effects. For example, Sim, Jacobs, and Knill (2012) explain such effects in 

terms of informational bits contained in the memory array. Items that are more similar to one 

another contain fewer informational bits, leading to items being encoded more precisely and 

change detection performance is improved. The model reported by Oberauer and Lin (2017) 
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implement neural processes that explain the benefits of have similarity between items in VWM. 

In this case, the benefit arises from the partial overlap of representations in VWM which 

mutually support one another. This contrasts with the explanation offered by the DNF model 

which suggests that benefits in performance arising from item similarity are due to the 

sharpening of representations through shared lateral inhibition (Johnson, Spencer, Luck, et al., 

2009).  

Here, we extended the DF model to also generate novel neural predictions which no other 

behaviorally-grounded model of VWM has achieved. Beyond the capability to generate both 

behavioral and neural predictions, the DF model of change detection is also the only model that 

specifies the neural processes that underlie comparison (Johnson et al., 2014). Swan and Wyble 

(2014) implement a comparison process in their model that calculates the difference between 

items held in VWM and items displayed in the test array. This calculation results in a vector 

whose angle is the degree of difference between a memory item and test display item and whose 

length is the confidence that the model has about the accuracy of that difference calculation. To 

make a ‘change’ decision, the vector must be sufficiently different and sufficiently confident. 

The response that the model generates is determined by an algorithm that sets thresholds on these 

two values which linearly scale with SS. Swan and Wyble (2014) also demonstrated how this 

same process could generate color reproduction responses, suggesting this a general process that 

can be used to both recollect items from memory and compare the recollected value with an 

available perceptual input. It should be noted that the DF model engages in a similar comparison 

process, but generates active neural responses based on non-linear neural dynamics without the 

need for a separate comparison algorithm. 

More recent debates about whether VWM is best explained via slots or resources have 
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examined color reproduction responses. Other variations of neural models discussed above have 

simulated these type of data using neural units that bind features and spatial locations (Oberauer 

& Lin, 2017; Swan & Wyble, 2014). In these models, the spatial or featural cue in the task is 

used to recollect a color or line orientation value from memory. Although the model we 

presented here has not been used to generate color reproduction responses, the model can be 

adapted in this direction (Johnson et al., 2014). For example, Johnson et al. (submitted) tested a 

novel prediction of the DF model that similar items in VWM should be repelled from one 

another during short-term delays and this should be reflected in color reproduction estimates. 

Recent extensions of the DF model have also been used to explain how object features are bound 

into integrated object representations (Gregor Schoner et al., 2016).  

Although there are ways in which DFT is unique, it also shares considerable overlap with 

other theories. The neural mechanism of self-sustaining activation is similar to the mechanism 

used in models proposed by Edin and colleagues (Edin et al., 2009, 2007) and Wang and 

colleagues (Compte et al., 2000). Additionally, capacity limitations in the DF model arise from 

competitive dynamics instantiated through inhibition among active representations, similar to the 

neural model reported by Swan and Wyble (2014). The model also overlaps with concepts from 

the slots and resources frameworks. Specifically, the non-linear nature of peak formation bears 

similarity to the qualitative nature of slots. Relatedly, the width of peaks and their shifting over 

time leads to spread of variance that is consistent with resource accounts. Moreover, the gradual 

rise in activation for each peak is consistent with the idea of the gradual accumulation of 

information over time in resource models. It is notable that there are inconsistencies regarding 

whether a slots or a resources account fit different datasets (Sim, Jacobs, & Knill, 2012; Rouder 

et al., 2008; Donkin et al., 2013; van den Berg & Ma, 2017). Since the DF model has aspects 
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consistent with both approaches, the model may have the flexibility needed to bridge these 

disparate findings in the literature (for discussion, see Johnson et al., 2014).  

The DNF model presented here is relatively simple, but has been extensively used to 

examine VWM from childhood to older adults (Costello & Buss, 2018; Johnson, Spencer, Luck, 

et al., 2009; Simmering, 2016). Other applications have implemented a more elaborated model 

that captures aspects of visual attention, saccade planning, and spatial-transformations (Ross-

Sheehy, Schneegans, & Spencer, 2015; Schneegans, 2016; Schneegans et al., 2014). These 

models incorporate a similar network to the model we presented here, but embedded it within a 

broader architecture that binds visual features to multiple different spatial frames of reference 

and performs spatial transformation across these reference frames (Schneegans, 2016). For 

example, this DF model architecture has been used to explain how VWM is updated across how 

eye movements (Schneegans et al., 2014) and how spontaneous exploration of an array of visual 

stimuli can build a representation of a scene (Grieben et al., 2020). Other applications have 

explained how change detection can occur if the same color occupies multiple spatial locations 

and how changes can be detected if two colors swap locations as well as differences in 

performance across these scenarios (Schneegans et al., 2016). Future work using the model-

based fMRI methods we describe here can explore how this fuller architecture accounts for 

patterns of cortical activation.  

Limitations and future directions 

It is important to highlight several limitations of the integrative cognitive neuroscience 

approach used here as well as future directions. One issue that will need to be addressed by 

future work is the strong collinearity between regressors generated from the model. The DF 

model is dominated by recurrent interactions meaning that many properties of the pattern of 
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activation, such as the timing or duration, are likely to be shared across components. The 

approach used here could be strengthened by designing tasks that are not only optimized for 

fMRI but also optimized from the perspective of the theory to be tested so that the regressors 

from a model are as independent as possible.  

Beyond such challenges, this work presents an important step forward in understanding 

brain-behavior relationships that opens up new avenues of future research. In particular, we are 

currently using this method to determine if model-based fMRI can adjudicate between competing 

neural process models to determine which provides a better explanation of brain data. If different 

models use different neural mechanisms or processes to produce the same pattern of behavior, 

can the Bayesian MLM and model-based fMRI methods be used to determine which model 

provides a better explanation of the functional brain data? 

We are also exploring the transferability of models. One way to achieve this might be to 

use one model to simulate two different tasks. If cortical fields implemented by the model 

correspond directly to processing in specific ROIs, we would expect the same field to map onto 

the same ROI across tasks. However, it is also possible that the function of specific cortical fields 

might be softly-assembled from interactions among different ROIs in the brain. In this case, the 

function implemented by a cortical field might correspond to different ROIs across different 

tasks. This exploration can determine whether the architecture of a model reflects the 

architecture of the brain, or if the functional mapping is more complex. 

Future work can also explore the relationship between the DF model and the large body 

of work examining VWM processes with EEG and ERP. Such efforts would complement the 

work presented here by evaluating the fine-grained temporal predictions of the model. The model 

is implemented with distinct neural processes corresponding to excitatory and inhibitory 
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interactions; thus, the model is well-positioned to generate simulated voltage changes and 

previous reports have provided initial comparisons between DF model activation and 

electrophysiological measures (Spencer, Barich, Goldberg, & Perone, 2012). 

Lastly, we are also exploring the brain-behavior relationship using other metrics of 

behavioral performance. In this project, we focused on accuracy as a measure of performance; 

however, reaction time can also be informative of the processes underlying VWM. Although the 

model’s behavior unfolds in real-time and previous DF models have been used to simulate 

reaction time as a target beahvior, the current model was not optimized to fit patterns of reaction 

time, nor was the task optimized to reveal differences in reaction times across memory loads. 

Future work can use this behavioral metric to further constrain model parameters and potentially 

reveal novel aspects of the neural dynamics of VWM.  

In conclusion, the DF account of VWM and change detection links behavioral and 

neuroimaging data in a new – and direct – way. We showed how a model that was initially 

constrained by behavioral data predicted patterns of fMRI data from a novel change detection 

paradigm, outperforming standard methods of analysis. The predicted and experimentally 

confirmed neural signatures of both correct and incorrect performance shed new light on the 

functional role of IPS, as well as lending support to the role of the TPJ in VWM maintenance. 

Critically, these functional neural signatures provide support for the neural dynamic account, 

contrasting with classic accounts of the origin of errors in change detection upon which more 

recent models are based. The model-based fMRI approach also raises new questions. For 

instance, how specific is the mapping between the different activation fields in the DF 

architecture and cortical sites in the brain? Integrating multiple different tasks within a single 

model and a single neural data set may be a way to address such questions about the mapping of 
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brain function to neural architecture. 
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Tables 
 

Table 1: Summary of variations in the CD task that have been simulated by the DF model. 
	 N	

Subjects	
	
SSs	

Array	1	
Duration	

Delay	
Duration	

Test	Array	
Type	

Johnson	et	al.	(2009a);	
Experiment	1a	

10	 3	 500	ms	 1,000	ms	 Single-item	

Todd	&	Marois	(2004);	
Experiment	1	

17	 1-4,	6,	8	 100	ms	 1,200	ms	 Single-item	

Magen	et	al	(2009);	
Experiment	3	

12	 1,	3,	5,	7	 500	ms	 6,000	ms	 Single-item	

Costello	&	Buss	(2017);	
Experiment	1	

26	 1,	3,	5	 500	ms	 1,200	ms	 Whole-array	

Current	report	
	

16	 2,	4,	6	 500	ms	 1,200	ms	 Whole-array	

 
 
 
 
 
Table 2: Log Bayes factors across models for all subjects. 
 

Participant Null Set size Accuracy Change SS*Acc SS*Ch SS*Ch*Acc DF 
1 813.1 447.9 402.3 388.2 526.7 530.7 464.7 638* 
2 986.2 421.9 357.7 348.2 514.4 510.3 410.7 635.9* 
3 1002 158.1 67.1 76.3 267.7 271.4 120.9 454.6* 
4 583.7 18.5 -47.8* -42 103.2 115.1 19.8 245.6 
5 529 167.2 94.3 127.8 214.3 252.3 135.1 302.1* 
6 604.8 180.7 102.8 122.9 251.6 293.5 177.1 414.5* 
7 844.8 -39.3 -91 -106.7* 91.5 63.3 -34 251.5 
8 230.9 -80.8 -131.8 -141.5* -9.7 -6.4 -90.5 88.7 
9 460.6 -15.1 -86* -79.4 56.6 69.5 -42.2 170.8 
10 286.1 284.9 278.9 281.2 285.7 286.8 281 286.5* 
11 1381 457 383.2 407.9 580.7 603.3 487.5 804.8* 
12 1052 298.4 243.9 260.1 400.1 419 333.7 596.9* 
13 261.2 115.1 58.4 58.5 157.7 178.9 102.9 202* 
14 1207 317 255.6 286.2 471.2 496.1 384.4 755.8* 
15± 420.9 54.6 -12.1* -1.4 123.9 128.2 39.8 231.7 
16± 691.1 68.5 -19.6* 21 177 215 77.2 392.7 

Preferred model is indicated by *. Negative values indicate cases in which a categorical model 
outperformed the DF model. The reduced DF model with three components was preferred by 
participants denoted with ±. 
 
 
 



MODEL-BASED	fMRI		 	 98	
	

 
Figures 

 

Figure 1 | Illustration of activation dynamics. A-B, the phase-space and activation over time 

of a neuron with linear dynamics. The purple line in panel A corresponds to the period of time in 

panel B during which activation is boosted by an input, the red line in panel A corresponds to the 

other time points. C-D, the phase-space and activation over time of a neuron with non-linear 

dynamics created through the addition of self-excitation (note the curves in phase-space around 

the activation value of 0). When the neuron is boosted by an input in panel D, self-excitation 

creates a non-linearity which pulls activation fluctuations push activation back below 0 and self-

exitation is disengaged. E-F, corresponding activation profiles for these two different systems in 

a field of interactive neurons. Note the correspondence in profiles between B-E and D-F. 
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Figure 2 | Model architecture. Excitatory connections are indicated by lines with pointed end 

and inhibitory connections are illustrated with lines with balled end. Connections with parallel 

lines (i.e., between “Different” and CF and between “Same” and WM) are engaged when the 

Gate node is activated. Connections with perpendicular lines (i.e., from CF to WM) are turned 

off when the Gate node is activated. 

 

  



MODEL-BASED	fMRI		 	 100	
	

 

Figure 3 | Model dynamics. A, activation of the model architecture on a set-size 3 trial. B, 

activation of the decision nodes over the course the trial. C-D, time-slices from CF and WM at 

the offset of the memory array (note the corresponding boxes in Panel A). E-F, time-slices from 

CF and WM during the presentation of the test array (note the corresponding boxes in Panel A). 

In this trial, a different color value is presented during the test array (note the above-threshold 

activation in Panel E) and the model responds “different” (note the activation profile of the 

decision nodes in panel B). 
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Figure 4 | Model performing different trial types. A, the model correctly performing a “same” 

trial. At the offset of the memory array, the WM field has built peaks corresponding to the four 

items in the memory array. During test when the same item are presented, activation in CF stays 

below threshold (note the asterisks above CF). Here, the model responds “same” (note the 

activation of the decision nodes). B, the model correctly performing a “different” trial. Now, 

during the test array, a new item is presented which goes above threshold in CF (note the asterisk 

above CF). C, the model performing a “same” trial but generating an incorrect response. At the 

offset of the memory array, the WM field has failed to consolidate one of the items into memory 

(note the asterisk above WM). Subsequently, during the presentation of the same items during 

the test array, the corresponding stimulus goes above threshold in CF (note the asterisk above 

CF) and the model generates a “different” response. D, the model performing a “different” trial 

but generating an incorrect response. In this example, the model has overly robust activation with 
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the WM field which leads to stronger inhibition within CF and a failure of the new item to go 

above threshold in CF (note the asterisk above CF). 
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Figure 5 | Illustration model activation dynamics and hemodynamics. A, B, D, and F, 

stimulated local field potential (solid lines) and corresponding hemodynamic responses (dashed 

lines) from the “same” node (A), “different” node (B), CF (D) and WM (F). C, E, and G, 

activation of model components over a series of 8 trials (note the labels at the bottom which 

categorize each trial type) for the decision nodes (C), CF (E), and WM (G). 
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Figure 6 | Simulations of Todd & Marois (2004). A, Behavioral performance and model 

simulations. B, BOLD response from IPS across memory loads of 1, 2, 3, 4, 6, and 8 items (left) 

and simulated hemodynamic response from CF layer (right). C, Simulated hemodynamic 

response from the other 3 components of the model. 
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Figure 7 | Simulations of Magen et al. (2009). A, Behavioral performance and model 

simulations. B, BOLD response from PPC across memory loads of 1, 3, 5, and 7 items (left) and 

simulated hemodynamic response from CF layer (right). C, Simulated hemodynamic response 

from the other 3 components of the model. 
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Figure 8 | Task design and behavioral / simulation data. A, A trial began with a sample array 

consisting of 2, 4, or 6 colored items. Next came a retention interval and presentation of a test 

array. On change trials (50% of trials), one randomly-selected item was shifted 36° in color 

space. B, Percent correct from behavioral study. C, Percent correct from fMRI study. In both 

studies, there were many errors at set-size four, but performance was above chance (t(27)=23.5, 

p<0.001). D, Simulations reproduced the behavioral pattern. Error bars show ± 1 SD. 
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Figure 9 | Average amplitude of hemodynamic response across model components and trial 

types. This figure shows the variations in the amplitude of the hemodynamic response when 

perofrming our version of the change detection task (correct change trial = hit; correct same trial 

= correct-rejection (CR); incorrect change trial = Miss; incorrect same trial = false alarm (FA)). 
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Figure 10 | Mapping of model components to ROIs. A, Yellow spheres show ROIs which 

corresponded to CF and red spheres show ROIs which corresponded to WM+“same”. B-C, 

Time-course plots showing the BOLD response and predicted time-courses from the DF model 

and from the accuracy categorical model within regions that were mapped by DF components. A 

participant is shown that preferred the DF model (P1) and a participant that preferred the 

accuracy categorical model (P8). D, The same time-courses and participants are shown within a 

region that was not mapped by a DF component. E, Scatter plot showing the correlation between 

participant-specific weights of the WM component from the DF model to rTPJ activation and 

individual capacity. 
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Figure 11 | Relative model precision. Average improvement in model precision for the DF 

model relative to the array of categorical models. Top panel shows relative improvement in 

model precision within the 23 ROIs. Yellow (CF) and red (WM+‘same’) arrows mark regions 

that were mapped to components of the DF model. Bottom panel shows relative improvement in 

model precision by participant. Arrows indicate participants that preferred a categorical model 

over the DF model with four components. Grey arrows indicate participants that switched to 

prefer the DF model when only three components of the DF model were included. 
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Figure 12 | Activation and model prediction across trial-types within lIPS. Activation (solid) 

and model predictions for the DF (dotted) and change categorical (dashed) models is plotted 

across trial-types and different set sizes. Left graphs represent activation for a participant that 

preferred the DF model. Right graphs represent activation for a participant that preferred the 

change categorical model. The bar graphs show the average absolute difference between 

activation and model predictions within the 10 second time window. 
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Figure 13 | Relative differences between activation in lIPS and model predictions by trial-

type. We first calculated the absolute average difference between activation and model 

predictions for the DF model, accuracy categorical model, and change categorical model within a 

10 second window for each trial type (as visualized in Figure 12). Next, the difference for the DF 

model was subtracted from the difference of each categorical model. Positive values, then, reflect 

instances where the categorical model deviated from observed activation more so than the DF 

model. Negative values indicate instances in which the DF model deviated from observed 

activation more so than the categorical model. 

 

  

 


