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Abstract For a classical group over a non-archimedean local field of odd
residual characteristic p, we prove that two cuspidal types, defined over an
algebraically closed fieldC of characteristic different from p, intertwine if and
only if they are conjugate. This completes work of the first and third authors
who showed that every irreducible cuspidal C-representation of a classical
group is compactly induced from a cuspidal type. We generalize Bushnell and
Henniart’s notion of endo-equivalence to semisimple characters of general
linear groups and to self-dual semisimple characters of classical groups, and
introduce (self-dual) endo-parameters. We prove that these parametrize inter-
twining classes of (self-dual) semisimple characters and conjecture that they
are in bijection with wild Langlands parameters, compatibly with the local
Langlands correspondence.
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1 Introduction

1.1. One approach to study smooth representations of a reductive p-adic group
on modules over a commutative ring intrinsically is by restriction to compact
open subgroups. For p-adic general linear groups this has yielded detailed
classification results, for example Bushnell and Kutzko’s monograph [12] for
complex representations and its subsequent partial generalizations to other
coefficient rings, see for example [23,28,44].

At the base of the work of Bushnell and Kutzko is an explicit construction of
characters of compact open pro-p subgroups of p-adic general linear groups
called simple characters, constructed from certain arithmetic data. However,
there is a lot of flexibility in the choice of arithmetic data leading to, for
example, simple characters contained in isomorphic cuspidal representations.
Moreover, there are functorial relations between simple characters defined on
compact open subgroups of different rank p-adic general linear groups. To
control this flexibility and encapsulate these relations, Bushnell and Henniart
[8] collected simple characters into families called ps-characters and intro-
duced an equivalence relation on ps-characters called endo-equivalence.

Endo-classes (endo-equivalence classes of ps-characters) have subsequently
been extended to inner forms of general linear groups [5], and have proved
fundamental in understanding fine properties of the local Langlands corre-
spondence [10,11] and the Jacquet–Langlands correspondence [19,37], as
well as in the study of Galois-distinguished cuspidal representations [1,33]
and in Bernstein decompositions of the category of smooth representations
over fields of positive characteristic [36].

1.2. Let Go be a p-adic classical group: that is, the group of Fo-points of a uni-
tary, symplectic, or special orthogonal group defined over a non-archimedean
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local field Fo of odd residual characteristic p. LetC be an algebraically closed
field of characteristic different from p.

Building on the work of Bushnell and Kutzko, all cuspidal representations
of Go on C-vector spaces have been constructed in [26,43], and for complex
representations types have been constructed for all Bernstein components [29].
Fundamental to this approach are the self-dual semisimple characters of com-
pact open pro-p subgroups of Go constructed in [42].1 There are functorial
relations between the self-dual semisimple characters of different p-adic clas-
sical groups, and their definition is cursed by the same flexibility as for general
linear groups.

In this article, we generalize Bushnell andHenniart’s notions of ps-character
and endo-equivalence to self-dual pss-characters and endo-equivalence for
p-adic classical groups, and along the way to the semisimple setting of pss-
characters and endo-equivalence for p-adic general linear groups. We then
prove two applications.

(i) We complete the classification of isomorphism classes of cuspidal
(smooth) representations of Go onC-vector spaces by conjugacy classes
of cuspidal types, following the exhaustive constructions of [26,43].

(ii) We parametrize the intertwining classes of self-dual semisimple charac-
ters by self-dual endo-parameters.

1.3. We expect self-dual endo-parameters to have a natural interpretation via
the local Langlands correspondence in terms of the restriction to wild iner-
tia of (extended) Langlands parameters, generalizing Bushnell and Henniart’s
ramification theorem [10, 6.1 Theorem] to classical groups and refining work
of the third author with Blondel and Henniart [4, Theorem 7.1]. See the end
of the introduction for a precise conjecture. The added complexity in endo-
parameters for p-adic classical groups in comparison to p-adic general linear
groups is explained in the parametrization of L-indistinguishable representa-
tions.

Another application of endo-parameters is found in current work of the first
and third authors which gives a decomposition of the category of all smooth
C-representations of Go by self-dual endo-parameters, refining the decom-
position by depth [44, II 5.8]. This decomposition is particularly interesting
when C has positive characteristic where a block decomposition of the cate-
gory is not yet known, but where there has been recent progress in depth zero
[27]. We expect using endo-parameters that there is a reduction of the block
decomposition for Go to the depth zero block decompositions of twisted Levi

1 In previous works, including [42], only semisimple characters valued in C are considered.
However, the constructions and results also apply to characters valued inC because semisimple
characters are (smooth) characters of pro-p groups and C contains a full set of p-power roots
of unity.
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subgroups of Go. This fits with work of Chinello for general linear groups [15]
and with general predictions of Dat [17] .

1.4. We now state our results precisely. Henceforth, all representations are
assumed to be smooth.We assume that Go is not isomorphic to SO(1, 1)(Fo) �
F×o , whose representation theory, in any case, is well-known.

In [43] for complex representations, extended to representations on C vec-
tor spaces in [26], an explicit list of pairs (J, λ), called cuspidal types, are
constructed consisting of a compact open subgroup J of Go and an irreducible
representation λ of J such that the induced representation indG

o

J λ is irreducible
and cuspidal. The main results of the cited works say that every irreducible
cuspidal representation π of Go contains a cuspidal type (J, λ), i.e. it is com-
pactly induced π � indG

o

J λ. In other words, this gives an explicit model of π
in terms of the cuspidal type (J, λ).

There is a precise recipe to construct cuspidal types whence cuspidal rep-
resentations, however it is a recipe which requires many choices and it is far
from clear when the procedure results in isomorphic representations.We prove
the following intertwining implies conjugacy result:

Theorem (Theorem 11.9). For i = 1, 2, let (Ji , λi ) be cuspidal types and put
πi � indG

o

Ji
λi . Then π1 � π2 if and only if there exists g ∈ Go such that

Jg
1 = J2 and λ

g
1 � λ2.

Hereλg
1 is the representation of J

g
1 = g−1J1g defined byλg

1( j) = λ1(g jg−1)
for all j ∈ Jg

1 . This result is not unexpected, by analogy with results for
inner forms of general linear groups [12,34], but the proof for classical groups
requires considerablymore technicalmachinery. Amajor reason for this added
complexity can be interpreted via the local Langlands correspondence: L-
packets for classical groups are not singletons.

A special case of Theorem 11.9, where the self-dual semisimple characters
underlying the cuspidal types are assumed to be closely related, is proved in
[26]. The proof of Theorem 11.9 combines the work of this paper to control
the choice in arithmetic data in the construction of cuspidal representations,
together with an intertwining implies conjugacy result for semisimple char-
acters of [39], to show that it is always possible to arrange for this to be the
case.

1.5. In the main theme of this paper, we generalize Bushnell and Henniart’s
theory of potential simple character and endo-equivalence, originally defined
in [8], to potential semisimple characters and semisimple endo-equivalence for
general linear groups, and to self-dual potential semisimple characters and self-
dual semisimple endo-equivalence for classical groups.Aswell as appearing in
an essentialway in our proof ofTheorem11.9, this theorywarrants independent
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study and forms a key part of our parametrization of intertwining classes of
(self-dual) semisimple characters via endo-parameters which we introduce at
the end of the paper.

1.6. To proceed further,we need to introducemore notation. Firstwe realize our
classical group as a subgroup of the group of isometries of a signed hermitian
form.

Let � = 〈σ 〉 denote an abstract finite group of order two. Let F/Fo be a
quadratic or trivial extension of non-archimedean local fields of odd residual
characteristic p, and let denote the generator of Gal(F/Fo). Let V be an
F-vector space and ˜G = AutF(V). Let ε = ±1 and h : V × V → F be
an ε-hermitian form defining a unitary, symplectic or orthogonal group G =
U(V, h):

G = {g ∈ ˜G | h(gv, gw) = h(v,w) for all v,w ∈ V} = ˜G�,

where σ acts on ˜G by the inverse of the adjoint anti-involution of h.
We let Go denote G in the unitary and symplectic cases, and the subgroup of

all isometries of determinant one in the orthogonal case; we call Go a classical
group. We fix a non-trivial character ψo of the additive group of Fo, of level
one, and put ψ = ψo ◦ TrF/Fo .

We consider our sign ε and extension F/Fo fixed. However, we will vary our
F-vector space V and ε-hermitian form h : V×V→ F. Indeed, this flexibility
will be one of the charms of the theory of endo-equivalence. We still use the
notation˜G = GLF(V), G for the group of isometries of h, and Go its classical
subgroup. While the notation ˜G does not specify V, nor G or Go specify h,
we trust this will cause no confusion. Indeed, non-isometric ε-hermitian forms
can define the same isometry group up to isomorphism.

1.7. We now introduce an abstraction of the data underlying the construction
of semisimple characters, following Bushnell and Henniart in the simple case
[8]. Let (k, β) be a semisimple pair, that is E = F[β] is a sum⊕

i∈I Ei of field
extensions Ei of F and k is an integer satisfying a certain technical bound (see
Definition 9.1). We call I the indexing set.

We let Q(k, β) denote the class of all quadruples (V, ϕ,
, r) consisting
of an F-vector space V, an embedding ϕ : E → EndF(V), a ϕ(oE)-lattice
sequence 
 in V, and an integer r closely related to k, see Sect. 9.

Using work of Bushnell–Kutzko [12] and the third author [42], to
(V, ϕ,
, r) ∈ Q(k, β) we associate a set C (
, r, ϕ(β)) of semisimple char-
acters (which depend on our initial fixed character ψ) of a compact open
subgroup Hr+1(ϕ(β),
) of G. In the special case where E is a field we call
the characters in C (
, r, ϕ(β)) simple characters.
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Corresponding to the decomposition β = ∑

i∈I βi of β in
⊕

i∈I Ei , we
have decompositions V =⊕

i∈I Vi and 
 =⊕

i∈I 
i . Moreover, there are a
natural embedding

Hr+1(ϕ(βi ),

i ) ↪→ Hr+1(ϕ(β),
) and a map C (
, r, ϕ(β))→ C (
i , r, ϕ(βi )),

whichwewrite θ �→ θi . Thus froma semisimple character θ weget a collection
of simple characters θi , for i ∈ I, which we call its simple block restrictions.

1.8. Let (k, β) and (k, β ′) be semisimple pairs with indexing sets I and I′
respectively, (V, ϕ,
, r) ∈ Q(k, β) and (V, ϕ′,
′, r ′) ∈ Q(k, β ′) with 


and 
′ of the same period as oF-lattice sequences.
Suppose we have semisimple characters θ ∈ C (
, r, ϕ(β)) and θ ′ ∈

C (
′, r ′, ϕ′(β ′)) which intertwine in ˜G = AutF(V). The matching theorem
of the second and third authors [39, Theorem 10.1], tells us that there exists a
unique bijection ζ : I→ I′ and g ∈ ˜G such that gVi = Vζ(i) and gθi and θ ′ζ(i)
intertwine in AutF(Vζ(i)). In this case, we say that θ intertwines with θ ′ with
matching ζ .

1.9. There are natural (bijective) transfer maps between the sets of semisimple
characters defined by a pair of quadruples in Q(k, β) (see Lemma 9.3). Fol-
lowing the methodology of Bushnell and Henniart [8], we collect together the
semisimple characters related by transfer, into pss-characters: a pss-character
� supported on (k, β) is a function fromQ(k, β) to the class of all semisimple
characters, such that�(V, ϕ,
, r) ∈ C (
, r, ϕ(β)), whose values are related
by transfer.

We call a value of a pss-character a realization of the pss-character. Thus,
by definition, a pss-character is determined by any one of its realizations. This
definition generalizes the definition of [8] of ps-characters - which forms the
special case where F[β] is a field. The degree of a pss-character � supported
on (k, β) is deg(�) = [F[β] : F].

A pss-character� supported on (k, β)with index set I gives rise to a collec-
tion of ps-characters �i , for i ∈ I, supported on simple pairs (ki , βi ), which
we call its component ps-characters. See Lemma 9.6 for more details on this
decomposition and Definition 9.1 for the definition of ki .

Our next step is to generalize Bushnell and Henniart’s notion of endo-
equivalence from ps-characters to pss-characters. Let � be a pss-character
supported on the semisimple pair (k, β) and �′ be a pss-character supported
on the semisimple pair (k′, β ′). We say that � and �′ are endo-equivalent,
written � ≈ �′, if
(i) k = k′ and deg(�) = deg(�′); and
(ii) there exist realizations on a common F-vector space V which intertwine

in ˜G = GLF(V).
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We relate endo-equivalence of pss-characters with endo-equivalence of their
component ps-characters:

Theorem (Part of Theorem 9.9). Let � and �′ be pss-characters supported
on semisimple pairs (k, β) and (k, β ′) respectively, with index sets I and I′
respectively.

(i) We have � ≈ �′ if and only if there is a bijection ζ : I→ I′ such that, for
all i ∈ I, the component ps-characters�i and �ζ(i) are endo-equivalent.
Moreover, if � ≈ �′ then the map ζ is uniquely determined.

(ii) Suppose that � ≈ �′ and let ζ : I → I′ be the bijection of (i). Let
(V, ϕ,
, r) ∈ Q(k, β) and (V, ϕ′,
′, r ′) ∈ Q(k, β ′). If dimF(Vi ) =
dimF(Vζ(i)), for all i ∈ I, then�(V, ϕ,
, r) and�′(V, ϕ′,
′, r ′) inter-
twine in ˜G with matching ζ .

(iii) Endo-equivalence of pss-characters is an equivalence relation.

We call the endo-equivalence classes of pss-characters semisimple endo-
classes. Given endo-equivalent pss-characters as in Theorem 9.9, we call the
map ζ of (i) a matching. The condition, dimF(Vi ) = dimF(Vζ(i)) for all i ∈ I,
in (ii) is necessary, as follows from [39, Theorem 10.1]. In the special case of
ps-characters, of course, this condition is automatic.

1.10. Now we turn to the analogous constructions for our classical group G,
so consider the action of the involution σ on the data involved. Let (k, β) be a
semisimple pair with indexing set I and E = F[β]. We call (k, β) self-dual if
the Galois involution generatingGal(F/Fo) extends to aGalois involution on E
sending β to−β; in this case we call the F-algebra E = F[β] self-dual (though
self-duality is really a property of the pair (E, β)). In this case, the Galois
involution induces an action of σ on the indexing set I, which decomposes as
I = I+ ∪ I0 ∪ I− with I0 the σ -fixed indices, I+ a set of representatives for the
orbits of size 2 and I− = σ(I+).

Suppose that (k, β) is self-dual. We let Q−(k, β) denote the class of all
quadruples ((V, h), ϕ,
, r) such that (V, ϕ,
, r) ∈ Q(k, β), the F-vector
space V is equipped with an ε-hermitian form h : V × V → F and ϕ,


are self-dual. If ((V, h), ϕ,
, r) ∈ Q−(k, β) then Hr+1(β,
) is �-stable
and � acts on C (
, r, ϕ(β)) with fixed points C�(
, r, ϕ(β)), where as
before σ acts via the inverse of the adjoint anti-involution of h. We set
Hr+1− (β,
) = Hr+1(β,
)� and define the set of self-dual semisimple char-
acters C−(
, r, ϕ(β)) of Hr+1− (β,
) by restriction from C�(
, r, ϕ(β)). By
the Glauberman correspondence, this restriction is injective and, given θ− ∈
C−(
, r, ϕ(β)) we call the unique semisimple character in C�(
, r, ϕ(β))
whose restriction is θ− its lift.

1.11. Since, for self-dual semisimple pairs, the transfer maps commute with
the action of σ , there are natural (bijective) transfer maps between the sets of
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self-dual semisimple characters defined by a pair of quadruples in Q−(k, β)
(see Sect. 9.2). Thus we can follow the methodology of Bushnell and Henniart
[8] once more.

A self-dual pss-character, supported on a self-dual semisimple pair (k, β),
is a function�− fromQ−(k, β) to the class of all self-dual semisimple charac-
ters, such that�−((V, h), ϕ,
, r) ∈ C−(
, r, ϕ(β)),whose values are related
by transfer. We call a value of a self-dual pss-character a self-dual realization
of the self-dual pss-character. Thus a self-dual pss-character is determined by
any one of its self-dual realizations.

A pss-character� supported on the self-dual semisimple pair (k, β) is called
σ -invariant if, for any (or equivalently, some) ((V, h), ϕ,
, r) ∈ Q−(k, β)
the realization �(V, ϕ,
, r) is σ -invariant. By the Glauberman correspon-
dence, a self-dual pss-character �− comes uniquely from the restriction of a
σ -invariant pss-character� (see Sect. 9.3 for the precise statement), which we
call its lift, and we set deg(�−) = deg(�).

Let �− be a self-dual pss-character supported on the self-dual semisimple
pair (k, β) and �′− be a self-dual pss-character supported on the self-dual
semisimple pair (k′, β ′). We say that �− and �′− are endo-equivalent if

(i) k = k′ and deg(�−) = deg(�′−); and
(ii) there exist self-dual realizations on a common ε-hermitian F-space (V, h)

which intertwine in G = U(V, h).

1.12. Let (k, β) be a self-dual simple pair, �− a self-dual ps-character sup-
ported on (k, β), and

((V, h), ϕ,
, r), ((V, h), ϕ′,
′, r ′) ∈ Q−(k, β).

It follows from [39, Theorem 5.2] that �−((V, h), ϕ,
, r) intertwines with
�−((V, h), ϕ′,
′, r ′) in G if and only if ϕ and ϕ′ are conjugate inG. However,
to develop endo-equivalence of self-dual pss-characters—where we may be
dealing with embeddings of non-isomorphic fields—we need a more general
notion than conjugacy. With this in mind, in Sect. 3 we go back to the start
and the theory of ε-hermitian spaces and Witt groups.

We introduce an equivalence relation, which we call concordance, on the
set of self-dual embeddings of self-dual field extensions into EndF(V) (where
the embedding is self-dual with respect to a hermitian form on V), see Def-
inition 3.25; more precisely, this is a relation on pairs (β, ϕ). This relation
generalizes conjugacy: if ϕ, ϕ′ : F[β] ↪→ EndF(V) are self-dual embeddings,
then (β, ϕ) and (β, ϕ′) are concordant if and only if ϕ(β) and ϕ′(β) are con-
jugate in G, see Remark 3.26.

1.13. We carry concordance through the construction of self-dual simple char-
acters, leading to the following result:
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Proposition (Proposition 6.10). Let θ− ∈ C−(
, r, ϕ(β)) and θ ′− ∈
C−(
′, r, ϕ′(β ′)) be self-dual simple characters, and suppose that the periods
of 
 and 
′ as sequences of oF-lattices coincide. Then θ− and θ ′− intertwine
in G if and only if their lifts intertwine in ˜G and the pairs (β, ϕ) and (β ′, ϕ′)
are concordant.

In fact, the additional concordance hypothesis is only necessary in the sym-
plectic case when ε = −1 and F = Fo; it is implied by the intertwining of the
lifts in all other cases.

1.14. In Definition 9.15, we extend our notion of concordance to self-
dual embeddings of self-dual F-algebras. Let (k, β) and (k, β ′) be self-dual
semisimple pairs with indexing sets I and I′ respectively, and E = F[β],
E′ = F[β ′]. Let (V, h) be an ε-hermitian space and ϕ : E ↪→ EndF(V) and
ϕ′ : E′ ↪→ EndF(V) self-dual F-algebra embeddings. Suppose we have a
bijection ζ : I → I′. We say that (β, ϕ) and (β ′, ϕ′) are ζ -concordant if, for
all i ∈ I0, the restrictions of (β, ϕ) and (β, ϕ′) to Ei and E′ζ(i) respectively are
concordant.

1.15. We can now state our main result on endo-equivalence of self-dual pss-
characters:

Theorem (Theorem 9.16) Let �− and �′− be self-dual pss-characters sup-
ported on (k, β) and (k, β ′), respectively, and � and �′ their respective lifts.
Then, the following assertions are equivalent:

(i) The self-dual pss-characters �− and �′− are endo-equivalent;
(ii) The lifts � and �′ are endo-equivalent.

(iii) deg(�−) = deg(�′−) and there is a bijection ζ : I → I′ which
commutes with σ with the following property: if ((V, h), ϕ,
, r) ∈
Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈ Q(k, β ′) are such that (ϕ, β) and
(ϕ′, β ′) are ζ -concordant and dimF Vi = dimF V′ζ(i), for i ∈ I, then
the realizations �−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) inter-
twine in G = U(V, h) with matching ζ .

As a consequence of Theorems 9.9 and 9.16, we obtain that endo-
equivalence of self-dual pss-characters is an equivalence relation.

1.16. We turn now to the notion of endo-parameter. We call a semisimple
character full if it lies in a set of semisimple charactersC (
, 0, β), and we call
an endo-class full if it contains a pss-character supported on a semisimple pair
(0, β). Likewise, we call a self-dual pss-character, endo-class or semisimple
character full if the corresponding lift is full. Every smooth representation
of ˜G (respectively Go) contains a full (respectively, full self-dual) semisimple
character by [16, Propositions 7.5,8.5].
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We call full (self-dual) semisimple characters endo-equivalent if they are
realizations of endo-equivalent full (self-dual) pss-characters. By [9, Intertwin-
ing Theorem], full simple characters of ˜G intertwine if and only if they are
endo-equivalent. This not only implies that intertwining of full simple charac-
ters is transitive, it also shows that the simple endo-classes of degree dividing
dimF(V) parametrize the intertwining classes of simple characters of˜G. In the
final section we prove a broad generalization of this result to semisimple and
self-dual semisimple characters, introducing endo-parameters to parametrize
the intertwining classes.

First we recall, in the special case of full characters, the transitivity of
intertwining statements obtained from Theorems 9.9 and 9.16:

Proposition (Corollaries 9.13, 9.19).

(i) Suppose θ(l) ∈ C (
(l), 0, β(l)), for l = 1, 2, 3, are semisimple charac-
ters such that θ(1) intertwines with θ(2), and θ(2) intertwines with θ(3),
and [F[β(l)] : F] is independent of l. Then θ(1) and θ(3) intertwine.

(ii) Suppose θ(l)− ∈ C−(
(l), 0, β(l)), for l = 1, 2, 3, are self-dual semisimple

characters such that θ(1)− intertwines with θ
(2)
− in G, and θ

(2)
− intertwines

with θ
(3)
− in G, and [F[β(l)] : F] is independent of l. Then θ

(1)
− and θ

(3)
−

intertwine in G.

In Corollary 10.3 we prove the analogous transitivity statement for inter-
twining of self-dual semisimple characters inGo for special orthogonal groups.
This transitivity of intertwining reflects the structure in the collection of
semisimple characters.

1.17. Let E denote the set of all endo-classes of full ps-characters. An endo-
parameter is a function f from the set E to the set N0 of non-negative integers,
with finite support. We define the degree of an endo-parameter f by

deg(f) :=
∑

c∈E
deg(c)f(c).

Our main theorem on endo-parameters for general linear groups is then:

Theorem (Theorem 12.9). The set of intertwining classes of full semisimple
characters for ˜G = GLF(V) is in canonical bijection with the set of endo-
parameters f of degree dimF(V).

See the statement of Theorem 12.9 for the description of this map.

1.18. The definition of endo-parameters for classical groups is more intricate.
Let (0, β) and (0, β ′) be self-dual simple pairs, and �− and �′− be self-dual
ps-characters supported on (0, β) and (0, β ′) respectively. If �− and �′− are
endo-equivalent then:
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(i) the extensions F[β]/F and F[β ′]/F share many arithmetic invariants—in
particular, by Corollary 7.12, the extensions are similar, in the sense of
Definition 3.33;

(ii) if ((V, h), ϕ,
, r) ∈ Q−(0, β) and ((V, h), ϕ′,
′, r ′) ∈ Q−(0, β ′),
then �−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine in G =
U(V, h) if and only if (β, ϕ) and (β ′, ϕ′) are concordant, (Proposi-
tion 7.10).

Thus, by (ii) to parametrize the G-intertwining class of a self-dual simple
character we need to take into account the concordance class of the embedding
for which it is a realization of a self-dual ps-character and not just the self-
dual endo-class of the ps-character. Moreover, by (i) we only need to consider
similar extensions.

Our involutions induce an action of � on E , see Definition 12.13, and we
denote by E /� the set of orbits. Note that orbits of length one correspond
precisely to (the lifts of) endo-classes of self-dual simple ps-characters, but
there are also orbits of length two. Using the theory of concordance, we attach
to an element of O ∈ E /� a set WT(O) of invariants to carry this concordance
information, which we call the set of Witt types for O. When O has cardinality
one, so corresponds to the endo-class of a self-dual simple ps-character sup-
ported on some (0, β) with E = F[β], the set WT(O) is in bijection with the
Witt group of ε-hermitian forms over E/Eo; on the other hand, when O has
cardinality two, WT(O) is a singleton. A self-dual endo-parameter f− is then
a section of the map

⊔

O∈E /�
WT(O)× N0 → E /�, (w, a)O �→ O

with finite support. Attached to f−, we have its degree deg(f−) and an element
hermF/Fo(f−)of theWitt groupof ε-hermitian formsover F/Fo (seeSect. 12.4).

We denote by EP(h,G) the set of self-dual endo-parameters with
hermF/F0(f−) = [h] and deg(f−) = dimF V, and we call it the set of endo-
parameters for (h,G). Note that these depend not only on the isomorphism
class of G, but on the isometry class of the hermitian form h too. Our main
theorem on endo-parameters for G is then:

Theorem (Theorem 12.29) The set of intertwining classes of full self-dual
semisimple characters for G is in canonical bijection with the set EP(h,G).

See the statement of Theorem 12.29 for the description of this map, which
depends on the hermitian form h, not only on its isometry class.

1.19. In the case that Go is a special orthogonal group, the partition of the set
of all self-dual semisimple characters for G into Go-intertwining classes is in
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general finer than the partition into G-intertwining classes (see Theorem 10.2).
It is therefore necessary to augment the set of self-dual endo-parameters of
Theorem 12.29: in Sect. 12.5 we define a set EP(h,Go) of endo-parameters for
(h,Go) and prove that it is in canonical bijectionwith the set ofGo-intertwining
classes of full self-dual semisimple characters (Corollary 12.34).

1.20. We now conjecture a Galois-theoretic interpretation of endo-parameters
via the conjectural local Langlands correspondence. Although our results are
for arbitrary classical groups and we expect a similar picture in that situation,
we only make a precise conjecture in the case of a quasi-split classical group
G.

Let WFo denote the Weil group of Fo with inertia subgroup IFo . Let PFo
denote the wild inertia subgroup of WFo , that is the pro-p Sylow subgroup
of IFo . Let W

′
Fo
= WFo × SL2(C) denote the Weil–Deligne group, and let

GL o = ̂Go �WFo the Langlands dual group of G
o over the complex numbers.

For a group H we write Z(H) for its centre and CH(X) for the centralizer in H
of a subgroup X of H.

Let (�, χ�) be an (extended) Langlands parameter for Go. As these appear
in various guises in the literature, we recall one formulation:

(i) � :W′
Fo
→ GL o is a continuous homomorphism such that

(a) �(IFo) is finite, � is Frobenius-semisimple, and � : SL2(C)→ ̂Go is
algebraic,

(b) the composition WFo
�−→ GL o →WFo is the identity;

(ii) χ� is an irreducible complex representation of the group

S� := C
̂Go(�(W′

Fo))/ĈGo(�(W′
Fo))

◦Z(̂Go)WFo .

We write Lang(Go) for the set of equivalence classes of (extended) Langlands
parameters for Go under ̂Go-conjugacy.

The local Langlands correspondence for Go predicts a natural bijection
(dependent on fixing a non-degenerate character of the unipotent radical of a
Borel subgroup of Go)

LL : Irr(Go)→ Lang(Go),

where Irr(Go) denotes the set of isomorphism classes of irreducible smooth
representations of Go on complex vector spaces. When Fo has characteris-
tic zero, LL is known for tempered representations of split classical groups
[2] and quasi-split unitary groups [30]. There is also work in progress in a
generalization to inner forms of unitary groups [25]. When Fo has positive
characteristic, Arthur’s results for split classical groups have been extended in
some characteristics [21].
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1.21. Let ρ be a wild inertial parameter for Go, that is a homomorphism
ρ : PFo → GL o which extends to a Langlands parameter � : W′

Fo
→ GL o.

Set

C GL o (ρ) = {(g, w) ∈ GL o | (g, w)ρ(w−1 pw)(g, w)−1 = ρ(p), for all p ∈ PFo }.

As in [18], we notice that C GL o(ρ) � C
̂Go(ρ) �Ad� WFo which implies that

Z(̂Go)WFo � Z(C GL o(ρ)) � Z(C
̂Go(ρ))

�(WFo ) � C
̂Go(�(W′

Fo)), (1.1)

as the centre of WFo is trivial and �(SL2(C)) ⊆ C
̂Go(ρ). We set

Sρ := Z(C GL o(ρ))/Z(̂Go)WFo .

By (1.1), we thus have a map from representations of S� to representations
ofSρ by considering a representation ofS� as a representation ofĈGo(�(W′

Fo
))

(trivial on C
̂Go(�(W′

Fo
))◦Z(̂Go)WFo ) and restricting to Z(C GL o(ρ)).

An extended wild inertial parameter for Go is a pair (ρ, χρ) such that
ρ : PFo → GL o is a homomorphism and χρ is a representation of Sρ

such that there is an extended Langlands parameter (�, χ�) with (ρ, χρ) =
(�|PFo , χ�|Z(C GL o (ρ))). We write Wild(Go) for the set of equivalence classes

of extended wild inertial parameters for Go under ̂Go-conjugacy. Thus we
have a well-defined restriction map Res : Lang(Go) → Wild(Go) given by
(�, χ�) �→ (�|PFo , χ�|Z(C GL o (ρ))).

Let EP(h,Go) denote the set of self-dual endo-parameters for Go ⊆
U(V, h). We have a map ϑ : Irr(Go)→ EP(h,Go) which takes π ∈ Irr(Go)

to the self-dual endo-parameter attached to the intertwining class of any full
self-dual semisimple character contained in π , we note that this map depends
on the hermitian form h.

Conjecture (Wild local Langlands) There is a unique bijection

LLp : EP(h,Go)→Wild(Go)

compatible with the local Langlands correspondence; that is, the following
diagram commutes

Irr(Go)
LL ��

ϑ
��

Lang(Go)

Res
��

EP(h,Go)
LLp �� Wild(Go)

(1.2)
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In the special case of cuspidal representations of symplectic groups, and
assuming LL, work of the third author with Blondel and Henniart [4, Theorem
7.6] (together with Theorem 12.29 to define the map ϑ as above) shows that if
we further project from the set of endo-parameters for Go by forgetting their
Witt type data and further project from Wild(Go) to the set of (non-extended)
wild parameters for Go, then we get a bijection for which the resulting diagram
commutes.

1.22. In an orthogonal direction to Bushnell and Kutzko’s generalization [12]
of Howe’s construction of cuspidal representations of p-adic general linear
groups in the tame case [24], Yu constructed cuspidal representations of a
broad class of p-adic connected reductive groups H defined over Fo [45], a
construction which Fintzen recently proved exhausts all cuspidal representa-
tions whenever the residual characteristic of Fo does not divide the order of the
Weyl group of H [20]. Hakim andMurnaghan [22] considered the flexibility in
the data definingYu’s cuspidal representations and developed a refactorization
procedure to classify isomorphism classes of Yu’s cuspidal representations by
equivalence classes of these data. It would be interesting to develop notions of
pss-characters, endo-equivalence, and endo-parameters in this setting of more
general groups H.

2 Notation

Let F/Fo be an extension of locally compact nonarchimedean local fields of
odd residual characteristic p, of degree at most two, and denote by x �→ x
the generator of Gal(F/Fo). For E/Fo any finite extension, we use the usual
notation: oE its ring of integers, pE its maximal ideal, kE its residue field, valE
the additive valuation on E with image Z. We also set Un

E = 1+pn
E, for n � 1.

If E/L is any finite extension of fields, we usually write NE/L for the norm
map and TE/L for the trace map; if the fields are nonarchimedean local then
we write e(E/L) for the ramification index and f (E/L) for the residue degree.

Let C be an algebraically closed field of characteristic � 
= p. Throughout,
we consider smooth representations of locally compact topological groups on
vector spaces over C.

Let G be a locally compact topological group, and let H and H′ be compact
open subgroups of G. Let ρ and ρ′ be representations of H and H′ respectively.
For g ∈ G, we define Ig(ρ, ρ′) to be the C-vector space

Ig(ρ, ρ
′) = HomgH∩H′(gρ, ρ′),

where gH = gHg−1 and gρ is the representation of gH defined by gρ(x) =
ρ(g−1xg) for all x ∈ gH. Moreover, we set
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IG(ρ, ρ
′) = {g ∈ G : Ig(ρ, ρ′) 
= 0}.

We say that g intertwines ρ with ρ′ if Ig(ρ, ρ′) 
= 0, and that ρ intertwines
with ρ′ in G if IG(ρ, ρ′) 
= ∅. If C = C or ρ and ρ′ are characters, then the
definition is symmetric, because then the map g �→ g−1 restricts to a bijection
from IG(ρ, ρ′) to IG(ρ′, ρ). In this case, we just say that ρ and ρ′ intertwine
in G. When ρ′ = ρ we abbreviate IG(ρ) = IG(ρ, ρ).

Finally, we denote by � = {1, σ } an abstract group of order two, which
will act on various objects.

3 Witt groups and transfer

In this section we cover the necessary background for our results from the
theory of signed hermitian spaces and introduce a new notion: concordance
of self-dual embeddings of field extensions.

3.1 Self-dual extensions

We begin with some basic results on quadratic extensions. For E a finite exten-
sion of Fo, we write

Eeven = {x ∈ E× | valE(x) is even}, Eodd = {x ∈ E× | valE(x) is odd}.

Lemma 3.1 Suppose F/Fo is quadratic. Then,

NF/Fo(F
×) = ((F×)2 ∩ Feven

o ) ∪ ((−(F×)2) ∩ Fodd
o ). (3.2)

In particular:

(i) −1 ∈ (F×)2 if and only if −1 ∈ NF/Fo(F
×);

(ii) if −1 ∈ (F×)2 then NF/Fo(F
×) = (F×)2 ∩ F×o ;

(iii) if F/Fo is unramified then NF/Fo(F
×) = Feven

o .

Proof The assertions (i)–(iii) are immediate consequences of (3.2). We first
prove

NF/Fo(o
×
F ) = (o×F )

2 ∩ F×o . (3.3)

Since 1+ pFo is a subset of (o
×
Fo
)2, by Hensel’s lemma, it suffices to show

NF/Fo(o
×
F )/(1+ pFo) = ((o×F )

2 ∩ F×o )/(1+ pFo).
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Writing also NF/Fo for the map on the residue field kF induced by the norm,
this is equivalent to

NF/Fo(k
×
F ) = (k×F )

2 ∩ k×Fo .

If F/Fo is unramified then both sides are equal to k×Fo , while if F/Fo is ramified,

then both sides are (k×Fo)
2. Thus we have proved (3.3).

Now both sides of (3.2) are subgroups of F×o , containing the subgroup
in (3.3). If F/Fo is unramified then (−(F×)2) ∩ Fodd

o is empty and both sides
of (3.2) are generated by the square of a uniformizer of Fo and (3.3), If F/Fo

is ramified then, if �F is a uniformizer of F satisfying�F = −�F, then both
sides of (3.2) are generated by −� 2

F and (3.3). This completes the proof. ��
Let E = F[β] be a field extension of F with a distinguished generator β. If

the generator for Gal(F/Fo) extends to an involution on E whichmaps β to−β
then we say the pair (E, β) is a self-dual extension of F/Fo. We again denote
by x �→ x this involution on E, and by Eo the subfield of fixed points. Note
that, provided β 
= 0, the extension E/Eo is always quadratic, since β /∈ Eo.

Corollary 3.4 If (E, β) is a self-dual extension of F/Fo with β 
= 0, then
−1 ∈ (E×)2 if and only if β2 ∈ NE/Eo(E

×).

Proof By Lemma 3.1(ii), if−1 ∈ (E×)2 then β2 ∈ NE/Eo(E
×). Conversely, if

−1 /∈ (E×)2 then E/Eo is ramified and valE(β) is odd since β = −β. Hence
valEo(β

2) is odd, and it follows from (3.2) that β2 /∈ NE/Eo(E
×). ��

We will also need the following lemma on norms through self-dual exten-
sions.

Lemma 3.5 Suppose F/Fo is quadratic. Let Eo/Fo be a finite extension in an
algebraic closure of F which does not contain F and set E = FEo. Then

NE/Eo(E
×) = {α ∈ E×o | NEo/Fo(α) ∈ NF/Fo(F

×)}.
We note also that, in the situation of the lemma, for α ∈ Eo, we have

NEo/Fo(α) = NE/F(α), since anyFo-basis forEo is also anF-basis forE = FEo.

Proof We denote the right hand side of the asserted equation by RE/F. If L/F
is a subextension of E and Lo = L ∩ Eo then we have

RE/F = {α ∈ E×o | NEo/Lo(α) ∈ RL/F}
so the lemma follows from the special cases where E/F is separable or purely
inseparable.
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Suppose first that E/F is purely inseparable, so has odd degree. Then any
element of F×o which is not in the image of NF/Fo lies in Eo but not in RE/F;
in particular RE/F 
= E×o . Since certainly NE/Eo(E

×) ⊆ RE/F ⊆ E×o , while
NE/Eo(E

×) has index two in E×o , it follows that E×o 
= RE/F = NE/Eo(E
×).

Now suppose E/F is separable, so the same is true of Eo/Fo. By local class
field theory, for any finite abelian extension of local fields L/K (contained in
a given separable closure) we have the Artin reciprocity isomorphism

ArtL/K : K×/NL/K(L
×) � Gal(L/K).

Applying this to the extensions E/Eo and F/Fo, the base change property of
class field theory implies that on E×o /NE/Eo(E

×) we have

ResEF ◦ArtE/Eo = ArtF/Fo ◦NEo/Fo .

The restriction map induces an isomorphism Gal(E/Eo) → Gal(F/Fo) and
the Artin reciprocity maps are isomorphisms so we see that ArtE/Eo is trivial
on the class of α ∈ E×o if and only if ArtF/Fo is trivial on the class of NEo/Fo(α),
and the claim follows. ��

Finally, we have the following result on ramification indices.

Lemma 3.6 Suppose (E, β) is a self-dual extension of F/Fo with β 
= 0 and
ramification index e(E/Eo) = 2. Then valE(β) is odd and either

(i) F = Fo; or
(ii) F/Fo is quadratic ramified and the ramification index e(E/F) is odd.

Proof Since β = −β and e(E/Eo) = 2, the first assertion is clear. If F/Fo

is quadratic unramified then there is a unit ζ ∈ o×F such that ζ = −ζ ; since
ζ ∈ o×E , this contradicts the assumption that E/Eo is ramified. For the final
assertion, suppose e(E/F) = e(Eo/Fo) = 2r is even, let�o be a uniformizer of
Eo and let�F be a uniformizer of F such that�F = −�F; then ζ = �F�

−r
o

is a unit of E× satisfying ζ = −ζ , again contradicting the assumption that
E/Eo is ramified. ��

3.2 Hermitian spaces

Let ε = ±1. By an ε-hermitian space over F/Fo, wemean a finite-dimensional
F-vector space V equipped with a non-degenerate ε-hermitian form h : V ×
V → F, that is, a non-degenerate sesquilinear form (linear in the second
variable) such that

h(w, v) = εh(v,w), for all v,w ∈ V.
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Given two such spaces (Vi , hi ), for i = 1, 2, for the same ε, we can form their
orthogonal direct sum, which is the space V = V1 ⊕ V2 equipped with the
form h = h1 ⊕ h2 defined by

h(v1 + v2,w1 + w2) = h1(v1,w1)+ h2(v2,w2), for vi ,wi ∈ Vi .

If (V, h) and (V′, h′) are ε-hermitian spaces over F/Fo, then an isometry
from (V, h) to (V′, h′) is an F-linear isomorphism f : V→ V′ such that

h′( f (v), f (w)) = h(v,w), for all v,w ∈ V.

When there is such an isometry, we say that (V, h) and (V′, h′) are isometric,
and write (V, h) ∼= (V′, h′), or just h ∼= h′ for short. Note that orthogonal
direct sums behave well with respect to isometry: that is, if h1 ∼= h′1 and
h2 ∼= h′2 then h1 ⊕ h′1 ∼= h2 ⊕ h′2.

We write Hε(F/Fo) for the set of isometry classes of ε-hermitian spaces
over F/Fo. It is a monoid with the operation induced by the orthogonal direct
sum and identity element the (class of the) zero space.

The Gram matrix of an ε-hermitian space (V, h) with respect to a basis
v1, . . . , vn is the n × n matrix J whose (i, j)-entry is h(vi , v j ). This is an
ε-hermitian matrix: that is J T = εJ , where J T denotes the transpose of J
and J denotes the matrix obtained by applying the Galois involution x �→ x
to each entry. The Gram matrix of (V, h) with respect to any other basis takes

the form B
T

J B, where B is the change of basis matrix to v1, . . . , vn . The
determinant det(J ) of the Gram matrix satisfies det(J ) = εdimF V det(J ).

The determinant det(V) (or det(h)) of an ε-hermitian space (V, h) is defined
to be the class in F×/NF of the determinant of any Gram matrix for (V, h),
where

NF =
{

NF/Fo(F
×), if F/Fo is quadratic,

(F×)2, otherwise.

This is well-defined and moreover depends only on the isometry class of
(V, h). Thus we get a morphism of monoids

det : Hε(F/Fo)→ F×/NF.

An ε-hermitian space (V, h) is called isotropic if there is a non-zero v ∈ V
such that h(v, v) = 0, and anisotropic otherwise. (Note that the zero space is
anisotropic.) In particular, we have the smallest isotropic ε-hermitian space,
the hyperbolic plane (H, hH): it is two-dimensional with basis e−1, e1 such
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that

hH(e−1, e1) = 1 and hH(ei , ei ) = 0, for i = ±1.

Thus the Gram matrix of H with respect to the basis e−1, e1 is
(

0 1
ε 0

)

,

so that det(H) = (−ε)NF. Up to isometry, H is the unique two-dimensional
isotropic ε-hermitian space. For n � 0 an integer, we write n(H, hH) for the
orthogonal sum of n copies of (H, hH). An ε-hermitian space (V, h) isometric
to n(H, hH) for some n is called a hyperbolic space; these spaces possess a
complete polarization, i.e. a direct sum decomposition

V = V1 ⊕ V−1

with totally isotropic spaces V1 and V−1.

Remark 3.7 The notation (H, hH) for hyperbolic plane does not specify either
the extension F/Fo or ε, which will be left implicit. We trust this will cause
no confusion, even where it is used for different fields.

At the opposite extreme, we have the smallest non-trivial anisotropic
spaces, which are one-dimensional when they exist. (There are no non-trivial
anisotropic spaces when F = Fo and ε = −1, the symplectic case.) They
are given by a single element α ∈ F× such that α = εα, and we denote the
corresponding space (or its isometry class) by 〈α〉: it has a basis with Gram
matrix (α).

Remark 3.8 Again, the notation 〈α〉, while standard, does not specify F/Fo,
and for example we consider 〈1〉 as a (+1)-hermitian space over different
fields.

The isometry class of 〈α〉 is determined precisely by the coset ofα in F×/NF.
Thus we have the following isometry classes of one-dimensional spaces in
Hε(F/Fo):

• if F/Fo is quadratic, β ∈ F× satisfies β = −β and α ∈ F×o \ NF/Fo(F
×),

then

〈1〉 and 〈α〉, if ε = 1,

〈β〉 and 〈βα〉, if ε = −1;
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• if F = Fo has uniformizer � , and α is a non-square unit of F×, then

〈1〉, 〈α〉, 〈� 〉, and 〈�α〉.

Any anisotropic space is an orthogonal direct sum of one-dimensional
anisotropic subspaces so, with respect to a suitable basis, has a diagonal Gram
matrix.

Remark 3.9 Up to isomorphism, there is a unique maximal anisotropic ε-
hermitian space over F/Fo. More precisely, and with the notation above, it
is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

〈1〉 ⊕ 〈−α〉, if F/Fo is quadratic and ε = 1,

〈β〉 ⊕ 〈−βα〉, if F/Fo is quadratic and ε = −1,
〈1〉 ⊕ 〈−α〉 ⊕ 〈� 〉 ⊕ 〈−�α〉, if F = Fo and ε = 1,

0 if F = Fo and ε = −1.

ByWitt’s Theorem, for any ε-hermitian space (V, h), we have an isometry

(V, h) ∼= n(H, hH)⊕ (Van, han),

with (Van, han) an anisotropic space; moreover, the Witt index n and the isom-
etry class of (Van, han) are uniquely determined by (V, h). We write [h] for
the isometry class of (Van, han) and call it the anisotropic class of (V, h). We
also write diman(V) = dimF(Van) and call it the anisotropic dimension of
(V, h).

Remark 3.10 If F/Fo is quadratic, the isometry class of an ε-hermitian space
(V, h) is uniquely determined by the pair (dim(V), det(V)). If F = Fo and
ε = −1 (the symplectic case) then the isometry class of an ε-hermitian space
(V, h) is uniquely determined by dim(V), which is necessarily even.

3.3 Unitary groups

Let (V, h) be an ε-hermitian space over F/Fo. The ring EndF(V) is equipped
with the adjoint anti-involution a �→ a induced by h, defined by

h(av,w) = h(v, aw), for all v,w ∈ V.

We set

U(V, h) = {a ∈ AutF(V) : aa = 1}
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which is the group of all isometries from V to itself. This is the group of
Fo-points of a reductive group defined over Fo: more precisely, it is a unitary
group if F/Fo is quadratic, a symplectic group if F = Fo and ε = −1, and a
full orthogonal group if F = Fo and ε = 1.

Remark 3.11 If (V, h) and (V′, h′) are isometric ε-hermitian space over F/Fo

then the isometry induces an isomorphism U(V, h) � U(V′, h′). The con-
verse, however, is false: for example, if F 
= Fo and n is odd then there are
two isometry classes of n-dimensional hermitian spaces over F/Fo but their
isometry groups are isomorphic.

We introduce the following useful technique which will sometimes allow us
to reduce to cases which are easier to treat (in particular, the non-symplectic
case). Given an element a ∈ EndF(V) such that a = ηa, with η = ±, we
define the twisted form a∗(h) on V by

a∗(h)(v,w) = h(v, aw), for v,w ∈ V.

If a is invertible then (V, a∗(h)) is an ηε-hermitian space over F/Fo.Moreover,
the adjoint anti-involution on EndF(V) induced by the form a∗(h) is given by
b �→ a−1ba, for b ∈ EndF(V).

A particular case of this twisting occurswhen a = γ ∈ F× satisfies γ = ηγ .
Given such a γ , the twisted form γ ∗(h)makes sense for any ε-hermitian space
(V, h) over F/Fo.

3.4 Witt groups

The Witt group Wε(F/Fo) is defined to be the set of isometry classes of
anisotropic ε-hermitian spaces over F/Fo, equippedwith the operation induced
by taking the orthogonal sum, that is, the unique (well-defined) operation such
that the following commutes:

Hε(F/Fo)×Hε(F/Fo)
⊕ ��

��

Hε(F/Fo)

��
Wε(F/Fo)×Wε(F/Fo)

⊕ �� Wε(F/Fo)

where the map Hε(F/Fo)→Wε(F/Fo) sends the isometry class of (V, h) to
its anisotropic class [h]. We will sometimes refer to elements of theWitt group
as Witt towers: that is, we will identify an element ofWε(F/Fo) with its fibre
under the map Hε(F/Fo) → Wε(F/Fo). Note that Wε(F/Fo) is an abelian
group, and the inverse of the isometry class of an anisotropic space (V, h) is
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given by the class of (V,−h). We write 0 for the identity inWε(F/Fo), which
is the Witt tower of sums of hyperbolic planes nH.

The structure of theWitt group is given by the following proposition, where
Cn denotes the cyclic group of order n.

Proposition 3.12 (i) Unitary case: if F/Fo is quadratic then Wε(F/Fo) is
of order 4 and

Wε(F/Fo) �
{

C2 × C2 if − 1 ∈ NF,

C4 otherwise.

(ii) Symplectic case: if F = Fo and ε = −1 then Wε(F/Fo) is trivial.
(iii) Orthogonal case: if F = Fo and ε = 1 then Wε(F/Fo) is of order 16 and

Wε(F/Fo) �
{

C2 × C2 × C2 × C2 if − 1 ∈ NF,

C4 × C4 otherwise.

TheWitt group is generated by (the classes of) one-dimensional anisotropic
spaces 〈α〉 and we use the same notation to represent the class in Wε(F/Fo).
For example, we see that 〈1〉 ⊕ 〈1〉 = 0 inW1(F/Fo) if and only if −1 ∈ NF.
We also call the (class of) the unique maximal anisotropic ε-hermitian space
over F/Fo the maximal element of Wε(F/Fo), or the Witt tower of maximal
anisotropic dimension. (See Remark 3.9 above for an explicit description of
this maximal element.)

If γ ∈ F× satisfies γ = ηγ , with η = ±, and (V, h) is an ε-hermitian
space over F/Fo, then we defined the twisted form γ ∗(h) on V in the previous
subsection so that (V, γ ∗(h)) is anηε-hermitian space. Twisting byγ preserves
orthogonal direct sums, isometries and hyperbolic spaces and thus induces a
homomorphism

γ ∗ :Wε(F/Fo)→Wεη(F/Fo),

which is an isomorphism since it has inverse (γ−1)∗.

3.5 Transfer

Let (E, β) be a self-dual extension of F/Fo and set n = [E : F]. Let λ : E→ F
be any non-zero F-linear form on E which is Galois-equivariant, that is

λ(x) = λ(x), for all x ∈ E.
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Such forms always exist and we have the particular F-linear form λβ given by
setting

λβ(β
i ) =

{

1 for i = 0,

0 for 1 � i � n − 1.

Moreover, every such form can be written uniquely as λ(x) = λβ(γ x), for
some γ ∈ E×o : indeed, every non-trivial F-linear form can be written in this
way for some γ ∈ E×, and the Galois-equivariance implies that γ ∈ Eo.

Now suppose E/F is any finite extension of degree n to which the Galois
involution on F extends, with fixed field Eo. Let (V, h) be an ε-hermitian space
over E/Eo and let λ : E→ F be a non-zero Galois-equivariant F-linear form
on E. Then it is easy to check that (V, λ◦h) is an ε-hermitian space over F/Fo,
called the transfer (V, λ∗h) of (V, h). Transfer preserves orthogonal direct
sums and isometries, so induces a morphism of monoids

λ∗ : Hε(E/Eo)→ Hε(F/Fo)

Moreover, we have λ∗(H) = nH, so it also induces a group homomorphism
of Witt groups

λ∗ :Wε(E/Eo)→Wε(F/Fo)

This map depends on the choice of λ but nonetheless all these maps share
some properties.

Proposition 3.13 (i) The image λ∗(Wε(E/Eo)) is independent of the choice
of λ.

(ii) The map λ∗ sends the maximal element of Wε(E/Eo) to the maximal
element of Wε(F/Fo).

Proof For arbitrary choices λ and λ′, we know that λ(x) = λ′(γ x), for some
γ ∈ E×o , so that λ∗ = λ′∗ ◦ γ ∗. Now (i) follows since γ ∗ is an isomorphism.
On the other hand, (ii) is given by [39, Theorem 4.4] for a particular linear
form, and follows in general by the proof of (i) since γ ∗ maps the maximal
element to itself. ��

The transfer map λ∗ is in general neither injective nor surjective, as can be
seen by taking E/F of even degree. However, we have the following rather sur-
prising result.WewriteWeven

ε (E/Eo) for the subgroupofWε(E/Eo) consisting
of Witt towers of even anisotropic dimension; ifWε(E/Eo) is non-trivial then
it is a subgroup of index two, and we write Wodd

ε (E/Eo) for its non-identity
coset, consisting of Witt towers of odd anisotropic dimension.
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Proposition 3.14 Let (E, β) be a self-dual extension of F/Fo and suppose we
are not in the symplectic case:F/Fo is quadratic or ε = 1. Then the restrictions
of λ∗ to Weven

ε (E/Eo) and to Wodd
ε (E/Eo) are both injective.

Proof Note that by the choice of E we have β = 0 or E 
= Eo. The proof of
Proposition 3.13 also shows that λ∗(Weven

ε (E/Eo)) and λ∗(Wodd
ε (E/Eo)) do

not depend on the choice of λ so it is sufficient to prove the result for a single
choice of λ.

If β = 0 then λ∗β is the identity, and the result is immediate. If E 
= Eo then

Weven
ε (E/Eo) and Wodd

ε (E/Eo) each contain two elements, whose difference
is always the maximal element of Wε(E/Eo); injectivity follows, since the
image of this maximal element is non-zero, by Proposition 3.13(ii). ��

Wewill also needmore precise information on the transfer map in particular
instances.

Proposition 3.15 Let (E, β) be a self-dual extension of F/Fo and set n = [E :
F].

(i) For (V, h) an ε-hermitian space over E/Eo, we have

det(λ∗(V)) = det(λ∗〈1〉)dimE(V)NE/F(det(V)).

(ii) In W1(F/Fo), we have:

λ∗β(〈1〉) =
{

〈1〉 if n is odd,

〈1〉 ⊕ 〈(−1) n
2+1NE/F(β)〉 otherwise,

and, if β is non-zero, in W−1(F/Fo):

λ∗β(〈β〉) =
{

〈(−1) n−1
2 NE/F(β)〉 if n is odd,

0 otherwise.

Proof The analogue of these statements for the transfer of quadratic forms are
proved by Scharlau in [31, Lemma 5.8, Theorem 5.12]. The hermitian case
follows mutatis mutandis, taking care of the extra signs which appear; for
this reason, we sketch the proof of (ii). Suppose β has minimal polynomial
Xn+bn−1Xn−1+· · ·+b1X+b0. Thenwe can easily calculate theGrammatrix
of the ε-hermitian space λ∗β(〈1〉) with respect to the basis 1, β, . . . , βn−1,
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which looks like

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · · · · · · · 0

0 0 · · · · · · 0 +b0
...

... . . . −b0 �
...

... . . . . . . � �
... 0 (−1)n−1b0 � � �

0 (−1)nb0 � � � �

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

If n = [E : F] is odd then the space λ∗β(〈1〉) is the orthogonal direct sum of the

subspace 〈1〉 spanned by 1 and the subspace X spanned by β, β2, . . . , βn−1;
but X has a totally isotropic subspace of half its dimension, generated by

β, β2, . . . , β
n−1
2 , hence is hyperbolic. Thus λ∗β(〈1〉) ∼= n−1

2 H⊕ 〈1〉.
Similarly, if n = [E : F] is even then we find that λ∗β(〈1〉) ∼= n−2

2 H⊕ 〈1〉 ⊕
〈γ 〉, where γ = (−1) n

2+1NE/F(β). The proof of the second assertion in (ii) is
similar. ��
Remark 3.16 In the case that F/Fo is quadratic, since the isometry class of an
ε-hermitian space is determined by its dimension and its determinant modulo
the norm group NF, Proposition 3.15 completely characterizes the standard
transfer map λ∗β , for (E, β) a self-dual extension of F/Fo.

3.6 Embeddings

Eventually, we will need to make comparisons of Witt towers for different
self-dual extensions. In a first instance, we begin by considering the case of
the same extension but embedded in different ways. Thus let (E, β) be a self-
dual extension of F/Fo, and fix a non-zero Galois-equivariant F-linear form λ

as in the previous subsection.
Let (V, h) be an ε-hermitian space over F/Fo and let A = EndF(V). We

say that an embedding ϕ : E ↪→ A is self-dual if

ϕ(x) = ϕ(x), for all x ∈ E,

where we recall that x �→ x denotes the Galois involution on E, while, on the
right hand side, a �→ a is the adjoint anti-involution on A. Such an embedding
gives V the structure of an E-vector space, and we write Vϕ when we want to
emphasize that we are considering V as an E-vector space via ϕ in this way.
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The F-linear map

HomE(Vϕ,E)→ HomF(V,F)

ψ �→ λ ◦ ψ

is an isomorphism of F-vector spaces. For each v ∈ V, there is a unique E-
linear map ψv ∈ HomE(Vϕ,E) such that h(v,−) = λ ◦ ψv and we define
hϕ : Vϕ × Vϕ → E by

hϕ(v,w) = ψv(w), for v,w ∈ Vϕ.

Lemma 3.17 [6, Lemma 5.3] The map hϕ : Vϕ×Vϕ → E is a nondegenerate
ε-hermitian form. Moreover, it is the unique ε-hermitian form on Vϕ such that
h(v,w) = λ(hϕ(v,w)), for all v,w ∈ V.

Suppose now that we have a second self-dual embedding ϕ′ : E ↪→ A and
let (Vϕ′, hϕ′) be the corresponding ε-hermitian space over E/Eo. We have the
following useful corollary of Lemma 3.17.

Corollary 3.18 [38, Proposition 1.3] The ε-hermitian spaces (Vϕ, hϕ) and
(Vϕ′, hϕ′) over E/Eo are isometric if and only if the embeddings ϕ, ϕ′ are
conjugate in U(V, h).

Proof Any isometry from (Vϕ, hϕ) to (Vϕ′, hϕ′) is an element of U(V, h)
which conjugates ϕ to ϕ′. Conversely, an element g of U(V, h) conjugating ϕ
to ϕ′ is an isometry from (Vϕ, hϕ) to (Vϕ′, hϕ′), because hϕ′ ◦ (g× g) and hϕ

coincide by the uniqueness part of Lemma 3.17. ��
Remark 3.19 Suppose we have a self-dual embedding ϕ of E into A. Since
dimE Vϕ is independent of the embedding, Corollary 3.18 implies that the
U(V, h)-orbits of self-dual embeddings of E are in bijection with the set of
classes in the fibre of the transfer map λ∗ above [h] which have dimension of
the same parity as dimE Vϕ . In particular, Proposition 3.14 then implies the
following:

(i) Provided we are not in the symplectic case, there is a unique U(V, h)-
orbit of self-dual embeddings of E;

(ii) In the symplectic case there are precisely two orbits of embeddings if
β 
= 0.

It will be useful also to observe the relationship between this lifting process
of forms and the twisting of forms introduced previously. The following lemma
comes immediately from the definitions and the uniqueness in Lemma 3.17.
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Lemma 3.20 Let (V, h) be an ε-hermitian space over F/Fo, letA = EndF(V)
and let ϕ : E ↪→ A be a self-dual embedding. Then

β∗(hϕ) = (β∗h)ϕ.

Note that this asserts the equality of two (−ε)-hermitian E/Eo-forms on the
space Vϕ .

3.7 Comparison

We suppose now that we are given two self-dual extensions (E, β) and (E′, β ′)
of F/Fo, so that we have Witt groups Wε(E/Eo) and Wε(E′/E′o). We assume
moreover that β, β ′ are both non-zero, so that these Witt groups are both of
order four. There are then unique bijections

wε,β ′,β :Wε(E/Eo)→Wε(E
′/E′o)

which preserve anisotropic dimension and such that

w−1,β ′,β(〈β〉) = 〈β ′〉, and w1,β ′,β(〈β2〉) = 〈β ′2〉.
We will use these maps wε,β ′,β to compare self-dual embeddings of E and of
E′ in ε-hermitian F/Fo-spaces. It is useful to notice that the maps are related
via twisting:

β ′∗ ◦ w−1,β ′,β = w1,β ′,β ◦ β∗. (3.21)

We will sometimes skip the subscripts β, β ′ and just writewε if β, β ′ are fixed.

Remark 3.22 Since there are two bijectionsWε(E/Eo)→Wε(E′/E′o) which
preserve anisotropic dimension, the choice for wε,β ′,β made above may seem
arbitrary—for example, in the case ε = 1 one could instead have chosen the
bijection sending 〈1〉 to 〈1〉. However, we will see that this choice is better
suited to compatibility with the distinguished transfer maps λ∗β and λ∗

β ′ .

The relationship between wε,β ′,β and the bijection sending 〈1〉 to 〈1〉 will
prove to be an important consideration. As an immediate consequence of
Corollary 3.4, we have:

Lemma 3.23 In the situation above, the following are equivalent:

(i) w1,β ′,β(〈1〉) = 〈1〉;
(ii) either −1 belongs to both (E×)2 and (E′×)2 or it belongs to neither of

them;
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(iii) −1 ∈ (F×)2 or the residue class degrees f (E/F), f (E′/F) have the
same parity.

In the case β = β ′ = 0 which we have so far excluded, we define wε,0,0 to
be the identity on Wε(F/Fo). In both cases, we now have the following maps
of Witt groups:

Wε(E/Eo)
wε,β′,β ��

λ∗β
��

Wε(E′/E′o)
λ∗
β′

��
Wε(F/Fo) Wε(F/Fo)

Remark 3.24 Suppose f : E′ → E is an F-linear isomorphism of fields such
that f (β ′) = β. From the definitions, we see that λβ ′ = λβ ◦ f and that the
map wε,β ′,β is likewise induced by composition with f : that is, it is induced
by the map

Hε(E/Eo)→ Hε(E
′/E′o)

(VE, hE) �→ (VE, f −1 ◦ hE).

Moreover, if (V, h) is an ε-hermitian F/Fo-space and ϕ : E ↪→ EndF(V) is a
self-dual embedding, then checking the definitions from the previous subsec-
tion shows that

hϕ = f ◦ hϕ◦ f ,

so that wε,β ′,β([hϕ]) = [hϕ◦ f ].
Suppose now we are given ε-hermitian F/Fo-spaces (V, h) and (V′, h′)

which are isometric. Set A = EndF(V) and A′ = EndF(V′), suppose we have
self-dual embeddings ϕ : E ↪→ A and ϕ′ : E′ ↪→ A′. Then we get elements
[hϕ] and [hϕ′ ] of the respectiveWitt groups such that λ∗β([hϕ]) = [h] = [h′] =
λ∗
β ′([h′ϕ′ ]), as in the previous subsection.

Definition 3.25 The pairs (β, ϕ) and (β ′, ϕ′) are (h, h′)-concordant (or just
concordant if h = h′ and the form is clear from context), if β and β ′ are either
both zero or both non-zero, and wε,β ′,β([hϕ]) = [h′ϕ′ ].
Remarks 3.26 (i) It is immediate from the definition that concordance is an

equivalence relation.
(ii) In the special case that β = β ′, so thatwε,β,β is the identity map, and h =

h′, it follows from Corollary 3.18 that (β, ϕ) and (β, ϕ′) are concordant
if and only if ϕ(β) and ϕ′(β) are conjugate by an element of U(V, h).
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(iii) If we have an isomorphism f : E′ → E such that f (β ′) = β,
Remark 3.24 shows that (β, ϕ) and (β ′, ϕ◦ f ) are concordant. Putting this
together with (ii), we see that the pairs (β, ϕ) and (β ′, ϕ′) are (h, h′)-
concordant if and only if there is an isometry from (V, h) to (V′, h′)
which conjugates ϕ(β) to ϕ′(β ′).

Using the previous remarks, together with Lemma 3.20, we can use twisting
to relate concordance in a symplectic space to concordance in orthogonal
spaces obtained by twisting.

Lemma 3.27 Suppose that (V, h) is a skew-hermitian F/Fo-space, that β and
β ′ are both non-zero, and that the spaces (V, β∗h) and (V, β ′∗h) are isometric.
Then the following are equivalent:

(i) (β, ϕ) and (β ′, ϕ′) are concordant.
(ii) (β, ϕ) and (β ′, ϕ′) are (β∗h, β ′∗h)-concordant.

Wewill be able to use this wheneverwe have additional information onβ, β ′
which enables us to see that the spaces (V, β∗h) and (V, β ′∗h) are isometric.

Proof If (β, ϕ) and (β ′, ϕ′) are concordant then, from Lemma 3.20 and (3.21)
we get

w1,β ′,β
([(β∗h)ϕ]

) = w1,β ′,β
([β∗(hϕ)]

) = w1,β ′,β ◦ β∗
([hϕ]

)

= β ′∗ ◦ w−1,β ′,β
([hϕ]

) = β ′∗
([hϕ′ ]

) = [(β ′∗h)ϕ′ ].
Thus (β, ϕ) and (β ′, ϕ′) are (β∗h, β ′∗h)-concordant. Since the map β ′∗ is
injective, the converse follows immediately. ��

3.8 Concordance in the non-symplectic case

We now look more closely at the non-symplectic case: indeed, Lemma 3.27
allows us to relate the skew-hermitian case to the hermitian case. Suppose we
are given ε-hermitian F/Fo-spaces (V, h) and (V′, h′) which are isometric,
and set A = EndF(V) and A′ = EndF(V′). Let (E, β), (E′, β ′) be self-dual
extensions with β, β ′ non-zero, and suppose we have self-dual embeddings
ϕ : E ↪→ A and ϕ′ : E′ ↪→ A′. We prove the following first result on
concordance in the case ε = 1.

Proposition 3.28 In the situation above, with ε = 1, suppose that dimE Vϕ

and dimE′ V′ϕ′ have the same parity and moreover that either

(i) this common parity is even; or
(ii) this common parity is odd, w1(〈1〉) = 〈1〉 and one of the following con-

ditions is satisfied:
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(a) dimF V is odd;
(b) F = Fo and there exist an extension K/F contained in ϕ(E) which is

invariant under the adjoint anti-involution on A but not fixed point-
wise, and an isometry g : V→ V′ such that gKg−1 ⊆ ϕ′(E′).

Then the pairs (β, ϕ) and (β ′, ϕ′) are (h, h′)-concordant.

In order to prove this we notice that, whenever we are in the non-symplectic
case, concordance is related to the diagrams

Wodd
ε (E/Eo)

wε,β′,β ��

λ∗β
��

Wodd
ε (E′/E′o)

λ∗
β′

��
Wε(F/Fo)

id �� Wε(F/Fo)

(3.29)

and

Weven
ε (E/Eo)

wε,β′,β ��

λ∗β
��

Weven
ε (E′/E′o)

λ∗
β′

��
Wε(F/Fo)

id �� Wε(F/Fo)

(3.30)

If dimE Vϕ and dimE′ V′ϕ′ have the same parity then (β, ϕ) and (β ′, ϕ′) are
concordant if and only if the diagram of the corresponding parity commutes:
this follows because, in both diagrams, the maps λ∗β and λ∗

β ′ are injective
by Proposition 3.14. Therefore we analyze cases when these diagrams are
commutative.

Lemma 3.31 Suppose that ε = 1 and that β and β ′ are non-zero.

(i) The diagram (3.30) is always commutative.
(ii) Suppose that w1(〈1〉) = 〈1〉 , that [E : F] and [E′ : F] have the same

parity, and that one of the following conditions is satisfied:
(a) F 
= Fo and [E : F] is odd.
(b) F = Fo and there exist extensions K/F and K′/F contained in E and

E′ respectively, which are invariant under the Galois involution but
not fixed pointwise, such that [E : K] and [E′ : K′] have the same
parity and there is a Galois-equivariant F-linear field isomorphism
from K to K′.

Then the diagram (3.29) is commutative.

Proof Diagram (3.30) is commutative because the maximal anisotropic class
is mapped to the maximal anisotropic class, by Proposition 3.13(ii).
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We now suppose that w1(〈1〉) = 〈1〉 and that [E : F] and [E′ : F] have
the same parity, and consider diagram (3.29), recalling that all maps in it are
injective. Write

Wodd
ε (E/Eo) = {〈1〉, 〈a〉} and Wodd

ε (E′/E′o) = {〈1〉, 〈a′〉}.

Then, since 〈a〉 − 〈1〉 is the maximal element of Wε(E/Eo), it follows
from Proposition 3.13(ii) that λ∗β(〈a〉) − λ∗β(〈1〉) is the maximal element of
Wε(F/Fo). The same applies to λ∗

β ′(〈a′〉)− λ∗
β ′(〈1〉) so that

λ∗β(〈a〉)− λ∗β(〈1〉) = λ∗β ′(〈a′〉)− λ∗β ′(〈1〉).

Thus it is enough to check that λ∗β(〈1〉) = λ∗
β ′(〈1〉) to prove commutativity

of (3.29).
In the situation of (iia), we have λ∗β(〈1〉) = 〈1〉 = λ∗

β ′(〈1〉), by Proposi-
tion 3.15(ii). In case (iib), again by Proposition 3.15(ii), we have

λ∗β(〈1〉)=〈1〉 ⊕ 〈(−1)mNE/F(β)〉, and λ∗β ′(〈1〉)=〈1〉 ⊕ 〈(−1)m′NE′/F(β
′)〉

(3.32)

for some integersm,m′whose values are not needed for the proof. In particular,
these both have anisotropic dimension at most two so cannot be theWitt tower
of maximal anisotropic dimension.

If [E : K] and [E′ : K′] are even, then the images of λ∗β and λ∗
β ′ consist of

0 and the maximal element. Since (3.32) shows that neither is maximal, we
have λ∗β(〈1〉) = 0 = λ∗

β ′(〈1〉).
Suppose now [E : K] and [E′ : K′] are odd and denote byKo the fixedfield of

K under the Galois involution on E, so that K/Ko is quadratic. Given λ : E→
K a non-zero Galois-equivariant K-linear form, the induced transfer map λ∗ :
W1(E/Eo)→W1(K/Ko) is then bijective. It follows from Proposition 3.13(i)
that the image of λ∗β coincides with that of λ∗K, for any non-zero Galois-
equivariant F-linear form λK : K → F. Since there is a Galois-equivariant
F-linear field isomorphism from K to K′, this also coincides with the image
of λ∗K′ , for any non-zero Galois-equivariant F-linear form λK′ : K′ → F. In
particular, the images of λ∗β and λ∗

β ′ in W1(F/Fo) coincide.
If this image has order two then it consists of 0 and the maximal element,

and we again have λ∗β(〈1〉) = 0 = λ∗
β ′(〈1〉). Otherwise, it has order 4 and,

since W1(E/Eo) and W1(E′/E′o) also have order 4, the transfer maps λ∗β and
λ∗
β ′ are injective. We set a = λ∗β(〈1〉) and b = λ∗

β ′(〈1〉), which are neither 0
nor the maximal element, by injectivity. Assume for contradiction that a 
= b
so that (3.32) implies that a − b is also neither 0 nor maximal. Thus a − b is
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either a or b, therefore a = 2b, as b is non-zero. By symmetry, we also have
b = 2a and it follows that a = b = 0, which is absurd. ��
Proof of Proposition 3.28 The three parts follow immediately from the cor-
responding parts of Lemma 3.31, once we notice, in (iib), that [E : K] and
[E′ : K′] have the same parity as dimK V = dimK′ V′. ��

In order to go further than this, we need to add some conditions on β, β ′; in
particular, we will require them to be related in some way.

3.9 Similar extensions

We now introduce a notion of similarity on self-dual extensions. We fix a
uniformizer �F of F; if F 
= Fo then we assume further that �F = −�F. For
(E, β) a self-dual extension of F/Fo with β 
= 0, we write yβ for the image of

�
n/g
F βe/g in the residue field kE, where e = e(E/F) is the ramification index,

n = − valE(β), and g = gcd(n, e). We also set y0 = 0 in kF.

Definition 3.33 We say that self-dual extensions (E, β) and (E′, β ′) of F/Fo

are similar if:

(i) f (E/F) = f (E′/F), e(E/F) = e(E′/F) and e(E/Eo) = e(E′/E′o);
(ii) valE(β) = valE′(β ′); and
(iii) there is a kF-linear field isomorphism from kE to kE′ which sends yβ to

yβ ′ .

Note that the notion of similarity is independent of the choice of uniformizer
�F. In the end we will mostly be concerned about concordance in cases where
we already know that the extensions are similar.

Suppose, as before, we are given hermitian F/Fo-spaces (V, h) and (V′, h′)
which are isometric, and set A = EndF(V) and A′ = EndF(V′). We also have
(E, β) and (E′, β ′), self-dual extensions with β, β ′ non-zero, and we suppose
we have self-dual embeddings ϕ : E ↪→ A and ϕ′ : E′ ↪→ A′. We have the
following result.

Lemma 3.34 Suppose that F 
= Fo and that the self-dual extensions (E, β)
and (E′, β ′) are similar.

(i) �−1
F β ∈ NE/Eo(E

×) if and only �−1
F β ′ ∈ NE′/E′o(E

′×).
(ii) The diagrams (3.29) and (3.30) are commutative.

(iii) The pairs (β, ϕ) and (β ′, ϕ′) are (h, h′)-concordant.

We will see later (see Corollary 5.20) that (ii) is in fact also true without the
hypothesis F 
= Fo.
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Proof We set e = e(E/F) = e(E′/F), eo = e(E/Eo) = e(E′/E′o) and d =
[E : F] = [E′ : F]. We also set n = − valE(β) = − valE′ (β ′) and observe
that �−1

F β is fixed by the involution.
(i) If eo = 2 then both e and n are odd, by Lemma 3.6. Hence Hensel’s

Lemma implies that�−1
F β is a square in E if and only if yβ is a square in kE,

and similarly for�−1
F β ′. On the other hand yβ is a square in kE if and only if

yβ ′ is a square in kE′ , because we have a kF-linear field isomorphism from kE
to kE′ which sends yβ to yβ ′ . The result now follows from the description of
norms in Lemma 3.1.

If eo = 1 then�−1
F β ∈ NE/Eo(E

×) if and only if�−1
F β has even valuation,

by Lemma 3.1. Since it has the same valuation as �−1
F β ′, the result follows.

(iii) follows immediately from (ii), while the commutativity of (3.30) is
immediate since the maximal element is mapped to the maximal element. To
complete the proof of (ii), we need to prove that the diagram (3.29) is com-
mutative. Since f (E/F) = f (E′/F), Lemma 3.23 implies that w1(〈1〉) = 〈1〉
so that we only need to prove that λ∗β(〈1〉) = λ∗

β ′(〈1〉) (for the case ε = 1) and
λ∗β(〈β〉) = λ∗

β ′(〈β ′〉) (for the case ε = −1). Now Lemma 3.5 and (i) imply that

NE/F(�
−1
F β) = �−d

F NE/F(β) lies in NF/Fo(F
×) if and only if�−d

F NE′/F(β ′)
does also. The result now follows by applying Proposition 3.15(ii). ��

4 Classical groups

Let (V, h) be an ε-hermitian space over F/Fo, and put A = EndF(V) and
˜G = AutF(V). The ring A is equipped with the adjoint anti-involution a �→ a
induced by h. We let our abstract group � = {1, σ } act both on ˜G, with
σ(g) = (g)−1 for g ∈ ˜G, and on A, with σ(a) = −a for a ∈ A.

We set G := ˜G� = U(V, h). We write Go for the group of Fo-points of
the connected component of the underlying reductive group, so that Go = G
except in the orthogonal case when it is the special orthogonal group. We call
the group Go a classical group.

For J a σ -stable subgroup of ˜G, we will write J− = J� = J ∩G. Similarly,
if X is any σ -stable oF-submodule of A then we write

X− = X� = {x ∈ X | x = −x}, X+ = {x ∈ X | x = x},
for the set of skew-symmetric (respectively, symmetric) elements of X. Note
that A− is the Lie algebra of G (and Go).
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5 Simple strata and concordance

In this section, we investigate intertwining of self-dual pure strata and intro-
duce concordance of self-dual pure strata (Definition 5.7). The main result is
Proposition 5.19.

5.1 Lattice sequences and parahoric subgroups

We recall that an oF-lattice sequence in V is a map 
 from Z to the set of
oF-lattices in V which is decreasing and periodic; that is,

(i) 
(k + 1) ⊆ 
(k), for all k ∈ Z;
(ii) there is a positive integer e = e(
) = e(
|oF) such that pF
(k) =


(k + e), for all k ∈ Z.

The integer e is called the oF-period of
. If dimkF(
(k)/
(k+1)) is indepen-
dent of k ∈ Zwe say that
 is regular.We call
 strict if
(k+1) � 
(k), for
all k ∈ Z. For a, b ∈ Z, a > 0, we let a
+ b denote the oF-lattice sequence
in V defined by

(a
+ b)(r) = 
(�(r − b)/a�), for all r ∈ Z.

We call a
+b an affine translation of 
 and say that lattice sequences
,
′
are in the same affine class if they have a common affine translation.

The direct sum of oF-lattice sequences 
 and 
′ of the same oF-period is
defined by

(
⊕
′)(r) := 
(r)⊕
′(r), r ∈ Z.

An oF-lattice sequence
 inV defines an oF-lattice sequence inA, by setting

an(
) = {a ∈ A | a
(k) ⊆ 
(k + n), for all k ∈ Z},
for n ∈ Z. The oF-lattice a0(
) is a hereditary oF-order in A with Jacobson
radical a1(
). Note that a strict oF-lattice sequence
 is regular if and only if
a0(
) is a principal order. We also get a valuation map val
 on A by setting

val
(x) = sup{n ∈ Z | x ∈ an(
)}, for x ∈ A,

with the understanding that val
(0) = ∞.
The normalizer in AutF(V) of 
 is a compact mod-centre subgroup

K(
) = {g ∈ AutF(V) | there exists n ∈ Z

such that g(
(k)) = 
(k + n), for all k ∈ Z}.
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The restriction of the valuation map to K(
) defines a group homomorphism
val
 : K(
) → Z. The kernel of which is a compact open subgroup P(
)

of AutF(V) which coincides with the group of units of the order a0(
). This
subgroup has a decreasing filtration by compact open pro-p subgroups, given
by Pn(
) = 1+ an(
), for n � 1.

For L an oF-lattice in V, we define the dual lattice

L# = {v ∈ V | h(v,L) ⊆ pF}.

For 
 an oF-lattice sequence in V we define the dual lattice sequence 
# in
V by


#(r) = 
(1− r)#,

for all r ∈ Z, and we call 
 self-dual if 
# = 
+ d, for some d ∈ Z. If 
 is
self-dual then the lattices an(
) are fixed by the adjoint anti-involution on A,
and we put

an,−(
) = an(
) ∩ A−, P−(
) = P(
) ∩ G,

Pm−(
) = Pm(
) ∩ G, for m, n ∈ Z, m � 1.

Note that while P(
) is a parahoric subgroup of ˜G in the sense of Bruhat–
Tits, P−(
) is not always a parahoric subgroup: it is the full stabilizer of a
point in the Bruhat–Tits building of G. See Sect. 11 below for the definition
of parahoric subgroup for Go, when we will need it.

Finally in this subsection, suppose that E is a subfield of A containing
F. Then we can consider V as an E-vector space, so we have the notion of
oE-lattice sequence in V; these are in fact oF-lattice sequences which are nor-
malized by E×. We have the following elementary but useful lemma on the
existence of lattice sequences with prescribed properties.

Lemma 5.1 Let E,E′ be subfields of A containing F, such that e(E/F) =
e(E′/F) and f (E/F) = f (E′/F), and let 
 be an oE-lattice sequence in V.
Then there exist an oE′-lattice sequence
′ inV and g ∈ ˜G such that g
′ = 
.

Proof There is an F-linear isomorphism from E to E′ which maps pn
E to pn

E′ ,
for each n ∈ Z. Now we choose an E-basis of V which splits 
 and map it to
an E′-basis of V, using this F-linear isomorphism, and the image of
 has the
required property. ��
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5.2 A self-dual †-construction

We recall briefly the †-construction of [26, §4], which is a useful way of
generalizing results originally proved only for strict lattice sequences to the
general case, and introduce a self-dual version.

Let 
 be an oF-lattice sequence in V of oF -period e = e(
). Let V† =
V⊕ · · · ⊕ V (e times) and define the oF-lattice sequence 
† in V† by


† =
e−1
⊕

k=0
(
− k).

Then 
† is a strict regular oF -lattice sequence in V† of period e. We denote
by M† the Levi subalgebra of A† = EndF(V†) which is the stabilizer of
the decomposition V† = V ⊕ · · · ⊕ V. Any β ∈ A then induces an element
β† = β⊕· · ·⊕β inM†. We write ˜M† for the group of units ofM†, which is a
Levi subgroup of˜G† = AutF(V†). Then P(
†)∩M† � P(
)×· · ·×P(
), and
similarly for Pn(
†), while the ˜G†-conjugacy class of P(
†) is independent
of 
, depending only on the period e, see [7, 1.5.2(ii)].

Nowwe introduce a self-dual variant.Wewill again use the notation †;when
we use it, wewill make it clear whenwe are applying this self-dual version. Let

 be a self-dual lattice sequence in V with e = e(
). Let V† = V⊕ · · · ⊕ V
(2e times, indexed by j ∈ {±1, . . . ,±e}) and write vectors v ∈ V† as tuples:
v = (

v j
)e

j=−e, where we understand that 0 is omitted and v j is in the j-th

copy of V. We define the form h† on V† by

h†
(

(

v j
)e

j=−e ,
(

w j
)e

j=−e

)

=
e

∑

j=−e

h(v j , w− j ),

so that each copy of V is isotropic: indeed, the space (V†, h†) is hyperbolic.
Now we define the oF-lattice sequence 
† in V† by


† =
e

⊕

j=1
(
− j)⊕

e
⊕

j=1
(
− j)#,

where we understand that
− j is in the j-th copy of V, and (
− j)# in the
(− j)-th copy. Then
† is a regular strict lattice sequence in V† and is self-dual
with respect to h†; indeed (
†)# = 
†. We again set A† = EndF(V†) and
˜G† = AutF(V†), and denote by M† the Levi subalgebra of A† which is the
stabilizer of the decomposition V† = V ⊕ · · · ⊕ V. As above, any β ∈ A
induces an element β† inM†, which is skew whenever β is skew. We also set
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G† = U(V†, h†) and note that the map g �→ g† defines an embedding of G in
G†.

This construction becomes particularly useful when applied to two self-
dual lattice sequences
,
′ with e(
) = e(
′) (which we can always ensure
by an affine translation) but with 
,
′ possibly not G-conjugate. The lattice
sequences 
†,
′†, as they are self-dual, regular and strict of the same oF-
period, are conjugate in G† by [38, Proposition 5.2].

5.3 Strata

A stratum in A is a 4-tuple [
, n, r, β] where
(i) 
 is an oF-lattice sequence in V;
(ii) n � r � 0 are integers;
(iii) β ∈ a−n(
).

The fraction max{− val
(β), r}/e(
) is called the depth of the stratum. We
call the stratum [
, r, r, 0] a null stratum. Two strata [
, n, r, βi ], for i = 1, 2,
are called equivalent if

β1 − β2 ∈ a−r (
).

An element g ∈ ˜G intertwines strata [
, n, r, β] and [
′, n′, r ′, β ′] if

g(β + a−r (
))g−1 ∩ (β ′ + a−r ′(

′)) 
= ∅.

For a subgroup J of˜G, we say [
, n, r, β] and [
′, n′, r ′, β ′] intertwine in J if
there exists an element of Jwhich intertwines the strata.We say that [
, n, r, β]
and [
′, n′, r ′, β ′] are conjugate in J if n = n′, r = r ′ and there exists g ∈ J
such that

g
 = 
′ and gβg−1 = β ′.

An affine translation of a stratum [
, n, r, β] is a stratum [
′, n′, r ′, β] such
that there exist a, b ∈ Z, a > 0, with 
′ = a
+ b, n′ = an and �r ′/a� = r .
We say that two strata are in the same affine class if they have affine translations
which are equal. As we shall see, many objects we later associate to a stratum
are in fact shared by all strata in the same affine class.

We can also make a †-construction for strata. If [
, n, r, β] is a stratum
in A then we have the lattice sequence 
† in V† and the element β† of A†,
giving us a new stratum [
†, n, r, β†]. This process behaves well with respect
to intertwining: if g ∈ ˜G intertwines two strata [
, n, r, β] and [
′, n′, r ′, β ′]
then the element g† ∈ ˜G† intertwines [
†, n, r, β†] and [
′†, n′, r ′, β ′†].
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We fix a uniformizer �F of F. Given a stratum [
, n, r, β] with r < n,
we write yβ for the image of � n/g

F βe/g in a0(
)/a1(
), where e = e(
)

and g = gcd(n, e). The characteristic polynomial of yβ (in kF[X ]) is called
the characteristic polynomial of the stratum [
, n, r, β], while its minimal
polynomial is called the minimal polynomial of the stratum [
, n, r, β]. These
depend only on the equivalence class of the stratum [
, n, n − 1, β] (and the
choice of uniformizer). A stratum [
, n, n − 1, β] is called fundamental if its
characteristic polynomial is not a power of X ; this property is independent of
the choice of uniformizer.

A stratum [
, n, r, β] is called pure if either it is null or the following three
conditions are satisfied:

(i) E = F[β] is a field;
(ii) 
 is an oE-lattice sequence in V;
(iii) val
(β) = −n.

We call [E : F] the degree of such a stratum, and write B for the centralizer in
A of β and bn(
) = an(
) ∩ B, for n ∈ Z. We set

nk(β,
) = {x ∈ a0(
) | βx − xβ ∈ ak(
)}, k ∈ Z,

and define the critical exponent k0(β,
) by

k0(β,
) =
{

−∞, if β = 0,

max
{

val
(β), sup{k ∈ Z | nk(β,
) � b0(
)+ a1(
)}} , otherwise.

For E = F[β] a finite extension of F, we set

kF(β) = k0(β, pZ

E)

e(E/F)
,

where pZ

E denotes the oF -lattice sequence in E (considered as an F-vector
space) given by i �→ pi

E , i ∈ Z. Note that, our definition of kF(β) differs from
that in [8, (1.4)] by the normalization 1/e(E/F). By [40, Lemma 5.6], we have

k0(β,
) = e(
|oF)kF(β).

A pure stratum [
, n, r, β] is called simple if k0(β,
) < −r ; in particu-
lar, a pure stratum [
, n, n, β] is simple if and only if it is the null stratum
[
, n, n, 0]. A particularly nice case occurs when r = n−1 (see [12, 1.4.15]):
a pure stratum [
, n, n − 1, β] is simple if and only if β is minimal over F,
that is:

(i) valE(β) is prime to e(E/F);
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(ii) βe(E/F)�
− valE(β)
F + pE generates the residue field kE over kF.

We observe that the notions of pure and simple behave well under the †-
construction: if [
, n, r, β] is pure then [
†, n, r, β†] is also pure, since F[β] �
F[β†]; and if [
, n, r, β] is simple then the same applies to [
†, n, r, β†], since
kF(β) = kF(β†).

When pure strata intertwine, they share several invariants, and we also get
a certain isomorphism between subextensions of the residue fields which is
important for concordance in the unitary case (see Lemma 3.34).

Lemma 5.2 Let [
, n, r, β] and [
′, n′, r ′, β ′] be non-null pure strata, with
r < n and r ′ < n′, which intertwine in ˜G, and put E = F[β] and E′ = F[β ′].
Then

(i) the strata have the same depth, n/e(
) = n′/e(
′);
(ii) if both strata are simple and r/e(
) = r ′/e(
′) then e(E/F) =

e(E′/F) and f (E/F) = f (E′/F);
(iii) the strata have the same characteristic and minimal polynomials;
(iv) there is a kF-linear field isomorphism from kF[yβ] to kF[yβ ′ ] which

sends yβ to yβ ′ .

Proof (i) is given by [39, Proposition 6.9]. For (ii), by a †-construction, we
can assume that 
 and 
′ are regular strict and of the same period, hence
conjugate; then [12, Theorem 2.6.1] implies that the strata are conjugate up
to equivalence, and the result follows from [12, Theorem 2.4.1(ii)]. Finally,
for (iii) and (iv), conjugating by an element which intertwines, wemay assume
the strata are intertwined by the identity, in which case yi

β = yi
β ′ in (a0(
)+

a0(

′))/(a1(
)+ a1(


′)), for all i � 0, and the results follow. ��
We also note that, under modest conditions, null strata and non-null simple

strata do not intertwine.

Lemma 5.3 [39, Proposition 6.9] Let [
, n, r, β] and [
′, n′, n′, 0] be simple
strata, with β 
= 0, and suppose that n′/e(
′) < n/e(
). Then the strata do
not intertwine in ˜G.

A stratum [
, n, r, β] is called self-dual if 
 is a self-dual oF-lattice
sequence and β ∈ A−. Note that, this is a slight change of terminology: In [43,
Definition 2.1] these strata are called skew strata; we reserve skew for certain
self-dual strata which satisfy an additional condition, see Definition 8.3.

A self-dual stratum [
, n, r, β] is called standard if 
 has even oF-period
and 
 = 
#. Any self-dual stratum has an affine translation which is stan-
dard self-dual. Note also that self-dual strata [
, n, r, β] behave well with
respect to the self-dual †-construction: that is, if [
, n, r, β] is (standard) self-
dual then the stratum [
†, n, r, β†] obtained by the self-dual †-construction
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is (standard) self-dual with respect to h†. Again, the self-dual †-construction
behaves well with respect to intertwining: if g ∈ G intertwines two self-dual
strata [
, n, r, β] and [
′, n′, r ′, β ′] then the element g† ∈ G† intertwines
[
†, n, r, β†] and [
′†, n′, r ′, β ′†].

An important application of this shows that equivalent self-dual simple strata
have an additional invariant:

Lemma 5.4 Let [
, n, r, β] and [
′, n, r, β ′] be self-dual simple strata which
intertwine in G, and suppose e(
) = e(
′). Put E = F[β], E′ = F[β ′]. Then
we have an equality of ramification indices e(E/Eo) = e(E′/E′o).

Proof By a self-dual †-construction, without loss of generality we can assume
that 
,
′ are regular standard self-dual, so conjugate in G. Then [39, The-
orem 8.5] implies that the strata are conjugate up to equivalence in G so,
by conjugating, we may assume they are equivalent. Then, by [13, 5.2(i)] the
residue fields of E and E′ coincide in a0(
)/a1(
) and thus the induced action
of the adjoint anti-involution on the residue fields coincides, which finishes
the proof. ��

Many results concerning simple strata are proved “by induction along r”:
that is, they are proved for minimal strata first, when r = n − 1 and then in
general using the following fundamental approximation result.

Proposition 5.5 ([12, Theorem 2.4.1], [41, Proposition 1.10]) Let [
, n, r, β]
be a pure stratum. Then there is a simple stratum [
, n, r, γ ] equivalent to it
and, for any such stratum,

f (F[γ ]/F) divides f (F[β]/F) and e(F[γ ]/F) divides e(F[β]/F).
Moreover, if [
, n, r, β] is self-dual then [
, n, r, γ ] may be taken to be self-
dual also.

Finally in this subsection, we introduce concordance of pure strata. We
introduce the following notation:

Notation 5.6 For β ∈ Awith E = F[β] a field, we denote by ϕβ the canonical
embedding of E in A.

If [
, n, r, β] is a self-dual pure stratum with E = F[β], then (E, β) is a
self-dual extension of F/Fo and the canonical embedding ϕβ is a self-dual
embedding.

Definition 5.7 Let [
, n, r, β] and [
′, n′, r ′, β ′] be self-dual pure strata in
A. We say that they are concordant if the pairs (β, ϕβ) and (β ′, ϕβ ′) are con-
cordant.
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If two self-dual pure strata are conjugate in G then they are concordant (see
Remark 3.26(ii)). The purpose of this section is to investigate the relationship
between intertwining of self-dual strata and concordance.

One particular case where we get concordance for free is by using the self-
dual †-construction. If [
, n, r, β] is a self-dual pure stratum with E = F[β]
and we write ϕβ also for the canonical embedding of E in A† then [h†

ϕβ
] is

always the trivial class. Thus we get the following result:

Lemma 5.8 If [
, n, r, β] and [
′, n′, r ′, β ′] are non-null self-dual pure
strata with e(
) = e(
′), then [
†, n, r, β†] and [
′†, n′, r ′, β ′†] are concor-
dant.

5.4 Minimal elements and tamely ramified extensions

We will need the following lemmas on minimal elements and tamely ramified
extensions:

Lemma 5.9 Suppose E1 = F[β1] is a tamely ramified finite extension, with
β1 a minimal element, and E2/F is another finite extension, with β2 ∈ E×2 . For
i = 1, 2, write ei = e(Ei/F) for the ramification index and ni = valEi (βi ),
and suppose that

(i) n1/e1 = n2/e2, and
(ii) β

e1
1 �

−n1
F + pE1 and β

e1
2 �

−n1
F + pE2 have the same minimal polynomial

over kF.

Then, there is a unique F-embedding φ : E1 → E2 such that

φ(β1)β
−1
2 ∈ U1

E2 . (5.10)

Furthermore, if (E1, β1) and (E2, β2) are self-dual field extensions of F, then
φ is ( )-equivariant.

Proof Let p(X) ∈ kF[X ] denote the common minimal polynomial of
β

e1
1 �

−n1
F mod pE1 and β

e1
2 �

−n1
F mod pE2 over kF. We take a monic polyno-

mial P(X) ∈ oF[X ]whose reductionmodulo pF is p(X). By Hensel’s Lemma,
for i = 1, 2,we have roots γi ∈ Ei of P(X) satisfying γi ≡ β

e1
i �

−n1
F mod pEi .

There is an F-monomorphism from E1 into a separable closure of E2 which
maps γ1 to γ2. Thus we can assume that E1/F is totally ramified and γ1 = γ2.

We may suppose that the uniformizer �F is an e1-th power in E1, so that
β

e1
1 �

−n1
F is also an e1-th power. The latter is equal to β

e1
2 �

−n1
F mod pE2 and

Hensel’s Lemma provides e1-th roots ξi ∈ E×i of βe1
i �

−n1
F such that ξ1 mod

pE1 is equal to ξ2 mod pE2 as elements of kF. Then βiξ
−1
i , for i = 1, 2,

are roots of the polynomial Xe1 − �
n1
F , which is irreducible over F because
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β1ξ
−1
1 generates E1. The F-monomorphism φ which maps β1ξ

−1
1 to β2ξ

−1
2

then satisfies (5.10).
We now prove the uniqueness of φ. First observe that (5.10) implies that

the map on kE1 induced by φ sends βe1
1 �

−n1
F + pE1 to β

e1
2 �

−n1
F + pE2 . Since

β
e1
1 �

−n1
F + pE1 generates the residue field of E1, we see that φ is uniquely

determined on the maximal unramified subextension of E1 and, as above, we
can assume without loss of generality that E1/F is totally ramified. Again, we
may suppose that the uniformizer �F is an e1-th power in E1.

By Bézout’s Lemma, there are integers r, s such that �1 = βr
1�

s
F is a uni-

formizer of E1, and we set�2 = βr
2�

s
F (which is not necessarily a uniformizer

of E2). Then (5.10) implies that φ(�1)�
−1
2 is an element of U1

E2
. Therefore, if

φ′ also satisfies (5.10), then φ(x)φ′(x)−1 is an element of U1
E2
, for all x ∈ E×1 .

In particular, if x is an e1-th root of �F, then φ(x)φ′(x)−1 is an e1-th root of
unity in U1

E2
and thus equal to 1, since p does not divide e1. This completes

the proof of uniqueness.
The equivariance assertion follows from the uniqueness since φ and ( ) ◦

φ ◦ ( ) both satisfy (5.10). ��
Lemma 5.11 Suppose β is a minimal element of an algebraic closure of F
and set E = F[β]. Let Ftame/F be the maximal tamely ramified field extension
of E/F and set ep := [E : F]/[Ftame : F], the wild ramification index of E/F.

(i) There is a non-zero element βtame of Ftame such that βep(βtame)
−1 ∈ U1

E.
(ii) Any element βtame as in (i) is minimal over F and generates Ftame over

F.

Proof We set n = valE(β).

(i) Take a uniformizer �tame of Ftame. Then valE(�tame) = ep and there is
a unit x of Ftame such that βep(�tame)

−nx−1 belong to U1
E. The element

βtame := (�tame)
nx satisfies the assertion.

(ii) We take an element βtame as in (i). It generates a sub-extension L/F
of Ftame/F. Set e = e(E/F), etame = e(Ftame/F) and ntame =
valFtame(βtame). Then n = ntame and there is an element u ∈ U1

E such
that

βe�−n
F u = (βtame)

etame�
−ntame
F .

Thus, by the minimality of β, we obtain that the residue class of

(βtame)
etame�

−ntame
F (5.12)

generates the residue field extension kE/kF. Thus kL = kE, and E con-
tains the maximal unramified sub-extension of E/F. Further ntame is
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prime to the ramification index etame, since etame divides e and β is min-
imal. Thus

Z ∪ {∞} = valFtame(Ftame) = valFtame(L),

and therefore Ftame = L. So βtame generates Ftame and the minimality
follows.

��

5.5 Tame subextensions

Lemma 5.13 Let [
, n, n−1, β] be a self-dual pure stratum, and [
′, n, n−
1, γ ] be a self-dual simple stratum, in A, which intertwine in G. Let Ftame

denote the maximal tamely ramified subextension of F[γ ]/F and set E = F[β].
(i) There exists g ∈ G such that gFtameg−1 ⊆ E.

(ii) If 
′ = 
, then there exists g ∈ P−(
) such that gFtameg−1 ⊆ E.

Proof Set ep = [F[γ ] : Ftame]. By Lemma 5.11, there is an element γtame

in Ftame such that γtameγ
−ep ∈ U1

F[γ ]; since γ is skew and ep is odd, we can
choose γtame to be skew, and it is also minimal.

The strata [
′, nep, nep − 1, γ ep ] and [
′, nep, nep − 1, γtame] are then
equivalent. Thus the pure strata [
, nep, nep − 1, βep ] and [
′, nep, nep −
1, γtame] intertwine, so have a common characteristic polynomial and a com-
mon minimal polynomial, by Lemma 5.2. Thus we can apply Lemma 5.9
with β1 = γtame and β2 = βep to deduce that there is an equivariant
monomorphism φ : Ftame → E such that φ(γtame)β

−ep ∈ U1
E. Then the

strata [
, nep, nep − 1, φ(γtame)] and [
, nep, nep − 1, βep ] are equivalent.
It follows that the simple strata [
′, nep, nep−1, γtame] and [
, nep, nep−

1, φ(γtame)] intertwine. Then [39, Theorem 5.2] implies the existence of an
element of G which conjugates γtame to φ(γtame). Thus we have found g ∈ G
such that gFtameg−1 = φ(Ftame) ⊆ E.

Finally, if 
′ = 
 then [38, Theorem 1.2] implies that the element conju-
gating γtame to φ(γtame) can be chosen to be in P−(
). ��

Now let [
, n, n − 1, β] and [
′, n, n − 1, β ′] be self-dual pure strata in
A which intertwine in G, and put E = F[β],E′ = F[β ′]. Let [
, n, n − 1, γ ]
and [
′, n, n − 1, γ ′] be self-dual simple strata in A, respectively equivalent
to [
, n, n − 1, β] and [
′, n, n − 1, β ′].
Corollary 5.14 With the notation above, there exists g ∈ G such that E ∩
gE′g−1 contains a tamely ramified extension K/F which is stable under the
adjoint anti-involution but is not fixed pointwise. Moreover,K can be chosen to
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be P−(
)-conjugate to the maximal tamely ramified subextension of F[γ ]/F.
Furthermore, if 
 = 
′ then we can take g ∈ P−(
).

Proof Let Ftame and F′tame denote the maximal tamely ramified subextensions
of F[γ ]/F and F[γ ′]/F respectively. We apply Lemma 5.13 several times to
find elements x ∈ P−(
), x ′ ∈ P−(
′) and y ∈ G such that

xFtamex−1 ⊆ E, x ′−1F′tamex ′ ⊆ E′, y−1Ftamey ⊆ F′tame.

Then K = xFtamex−1 and g = xyx ′ are as required. Moreover, if 
 = 
′
then y can be chosen in P−(
), by Lemma 5.13(ii), and then g ∈ P−(
) as
required. ��

5.6 Concordance in the symplectic case

Using the technique of twisting, we now get an analogue of Proposition 3.28
for the symplectic case, whenwe have an additional hypothesis on intertwining
of strata.

Lemma 5.15 Suppose that ε = −1 and F = Fo. Let [
, n, n − 1, β] and
[
′, n, n − 1, β ′] be self-dual pure strata in A which intertwine in G, and put
E = F[β],E′ = F[β ′]. Suppose further that dimE V, dimE′ V have the same
parity, and either

(i) this common parity is even; or
(ii) this common parity is odd and w1(〈1〉) = 〈1〉.

Then the strata are concordant.

Proof Conjugating by an element of G (which does not affect concordance,
by Remark 3.26), we can assume that the strata are intertwined by the identity.
Then [39, Lemma 5.3] applied twice (as in the proof of [39, Theorem 5.2])
implies that the spaces (V, β∗h) and (V, β ′∗h) are isometric (by an element
of P1(
′)P1(
)).

Now Corollary 5.14 implies that the hypotheses of Proposition 3.28 are
satisfied so that the pairs (β, ϕβ) and (β ′, ϕβ ′) are (β∗h, β ′∗h)-concordant,
and it follows from Lemma 3.27 that our original strata are concordant. ��

The following Lemma will be useful when we need to understand whether
concordance is preserved when we pass from pure strata to equivalent simple
strata.

Lemma 5.16 Suppose that ε = −1andF = Fo. Let [
, n, n−1, β], [
, n, n−
1, β ′] be self-dual pure strata in A which intertwine in G and put E = F[β]
and E′ = F[β ′]. Suppose further that dimE V is odd, dimE′ V is even and
[
, n, n − 1, β ′] is simple. Then hϕβ′ is hyperbolic if and only if [β∗(hϕβ )] =〈1〉.
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Note that the condition [β∗(hϕβ )] = 〈1〉 can be translated into a condition
on hϕβ , using Corollary 3.4: either [hϕβ ] = 〈β〉 and −1 is a square in E, or
[hϕβ ] 
= 〈β〉 and −1 is a non-square in E.
Proof The stratum [
, n, n− 1, β] is equivalent to a self-dual simple stratum
[
, n, n − 1, γ ] in A, which also intertwines [
, n, n − 1, β ′]. By [39, 8.5],
this implies that [
, n, n−1, γ ] is, up to equivalence, conjugate to [
, n, n−
1, β ′] in G and, replacing [
, n, n − 1, β ′] by its conjugate, we may assume
that [
, n, n − 1, β] and [
, n, n − 1, β ′] are equivalent. Then (V, β∗(h)) is
isometric to (V, β ′∗(h)) by an element u ∈ P1(
) by [39, Lemma 5.3].

We show first that λ∗β(〈1〉) = 0. By Corollary 5.14 we can choose u such

that u−1E′u ∩ E contains a Galois-invariant subfield K with K 
= Ko. The
assumptions imply that [E : K] is even, since dimE V is odd while dimK V is
even because K is contained in u−1E′u.

Choose non-zero Galois-equivariant linear forms

λK/F : K→ F, λE/K : E→ K.

Then λ∗β and λ∗K/F ◦ λ∗E/K on W1(E/Eo) have the same image, by Proposi-
tion 3.13(i). Now the image of λ∗E/K is contained inWeven

1 (K/Ko), so consists
of 0 and the maximal element. Then, by Proposition 3.13, the image of λ∗β also
consists of 0 and themaximal element (which has anisotropic dimension four).
However, λ∗β(〈1〉) has anisotropic dimension atmost 2, by Proposition 3.15(ii),
so λ∗β(〈1〉) = 0.

Now, since dimE V is odd, the class [β∗(hϕβ )] is that of a 1-dimensional
anisotropic space. Since [β∗h] = λ∗β([β∗(hϕβ )]) and λ∗β is injective on the 1-
dimensional anisotropic spaces, it follows that β∗h is hyperbolic if and only
if [β∗(hϕβ )] = 〈1〉.

On the other hand, since dimE′ V is even, the class [β ′∗h] is either 0 or
maximal. By injectivity of λ∗

β ′ on Weven
1 (E′/E′o) and Proposition 3.13(ii), we

deduce that β ′∗h is hyperbolic if and only if β ′∗(hϕβ′ ) is hyperbolic, which
occurs if and only if hϕβ′ is hyperbolic since β

′∗ is an isomorphism.
Putting together the results of the last two paragraphs, since (V, β∗h) and

(V, β ′∗h) are isometricwe see that hϕβ′ is hyperbolic if and only if [β∗(hϕβ )] =〈1〉, as required. ��

5.7 Concordance of intertwining simple strata

Wearenow in aposition to prove that self-dual simple stratawhich intertwine in
G are concordant. In fact, we deduce it from the following numerical criterion
for concordance of pure strata.
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Lemma 5.17 Let [
, n, n−1, β] and [
′, n, n−1, β ′] be self-dual pure strata
which intertwine in G. Setting E = F[β] and E′ = F[β ′], suppose further that

e(E/F) = e(E′/F), f (E/F) = f (E′/F), and e(E/Eo) = e(E′/E′o),

Then the strata are concordant.

Proof It follows from the assumptions and Lemma 5.2 that e(
) = e(
′) and
valE(β) = valE′(β ′), while there is a kF-linear field isomorphism between kE
and kE′ which sends yβ to yβ ′ . Thus the self-dual extensions (E, β) and (E′, β ′)
are similar, in the sense of Definition 3.33.

The result now follows from Lemma 5.15 when G is symplectic, from
Proposition 3.28 together with Corollary 5.14 when G is orthogonal, and from
Lemma 3.34 when G is unitary. ��
Corollary 5.18 Let [
, n, r, β] and [
′, n, r, β ′] be self-dual simple strata
which intertwine in G. Then they are concordant.

Proof If r = n then both strata are null so there is nothing to prove. Otherwise,
the elements β and β ′ are necessarily both non-zero by the definition of simple
stratum, because the third parameter r is smaller than n. Put E = F[β] and
E′ = F[β ′]. Then Lemmas 5.2 and 5.4 imply that e(
) = e(
′) and that

e(E/F) = e(E′/F), f (E/F) = f (E′/F), and e(E/Eo) = e(E′/E′o),

and the result follows from Lemma 5.17. ��

5.8 Intertwining of concordant pure strata

Finally in this section, we consider the G-intertwining of self-dual pure strata
which intertwine in ˜G:

Proposition 5.19 Let [
, n, r, β] and [
′, n, r, β ′] be self-dual pure strata in
A which intertwine in ˜G.

(i) If ε = 1 or F 
= Fo then they intertwine in G.
(ii) If the strata are simple and concordant then they intertwine in G.

Note that, together with Corollary 5.18, this implies that, in the non-
symplectic case, self-dual simple stratawhich intertwine in˜Gare automatically
concordant; this is not true in the symplectic case.

Proof If r = n then all strata are null and there is nothing to prove, so we
assume r < n. As the strata intertwine in ˜G, the stratum [
 ⊕ 
′, n, r, β +
β ′] is equivalent to a simple stratum [
 ⊕ 
′, n, r, γ ] in EndF(V ⊕ V) by
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[39, Proposition 7.1]. By [39, Theorem 6.16], we can moreover take [
 ⊕

′, n, r, γ ] to be self-dual with respect to h ⊕ h and γ = (γ1, γ2) ∈ A ⊕ A.
Replacing β, β ′ with γ1, γ2, we can therefore assume that β, β ′ ∈ A− have
the same minimal polynomial over F. In the situation of (ii), Corollary 5.18
ensures that the strata are still concordant so this replacement is possible.

Now (i) follows from [39, Corollary 5.1], while (ii) follows from
Remark 3.26(ii). ��

For later use, we also get the following corollary on similar self-dual exten-
sions.

Corollary 5.20 Suppose (E, β) and (E′, β ′) are similar self-dual extensions
with non-zero β and β ′. Then the diagrams (3.29) and (3.30) are commutative.

Proof There is nothing to prove in the symplectic case, while the result is
given by Lemma 3.34(ii) if F 
= Fo. Thus we suppose we are in the orthogonal
case: F = Fo and ε = 1. Replacing β, β ′ by � 2k

F β,� 2k
F β ′ respectively, for

suitable k < 0, we may assume that valE(β) = valE′(β ′) < 0.
Let (V, hE) be a 2-dimensional hyperbolic space over E/Eo and 
 a strict

self-dual oE-lattice sequence in V of oE-period 2 such that 
(0)#hE = 
(0).
By [6, Lemma 5.5], we can choose a non-zero Galois-equivariant F-linear map
λ : E→ F such that, setting h := λ ◦ hE, we have

L#hE = L#h , for all oE-lattices L inV.

In particular, 
(0)#h = 
(0). Doing the same with E′/E′o, we obtain a space
(V′, h′) isometric to (V, h) and a regular self-dual oE′-lattice sequence
′ with
e(
|oF) = e(
′|oF) and 
′(0)#h′ = 
′(0). By [38, Proposition 5.2], there is
an isometry from (V, h) to (V′, h′) which sends 
 to 
′ so we may assume
(V, h) = (V′, h′) and 
 = 
′.

Now [
, n, n − 1, β] and [
, n, n − 1, β ′] are self-dual pure strata, where
n = − val
(β) = − val
(β ′). By [12, 2.5.8,2.5.11] both strata are equivalent
to simple strata in γ -standard form for the same γ , since yβ, yβ ′ have the same
minimal polynomial. Thus the strata intertwine in ˜G, and Proposition 5.19
implies that they intertwine in G. Now Corollary 5.14 implies that there is a
g ∈ G and an extension K/F contained in E ∩ gE′g−1 which is stable under
the adjoint anti-involution but is not fixed pointwise. Moreover, since E/F and
E′/F have the same residue degree, Lemma 3.23 implies that w1(〈1〉) = 〈1〉.
Thus the hypotheses of Lemma 3.31 are satisfied and we conclude that the
diagrams commute as required. ��
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6 Self-dual simple characters: intertwining and concordance

In this section, we investigate intertwining of self-dual simple characters and
concordance of their underlying simple strata. The main result is Proposi-
tion 6.10.

In previous works on self-dual simple characters it is often assumed that
the characters take values in the complex numbers C, for example in [42].
However, as they are characters of pro-p groups and C contains a complete
set of p-power roots of unity, all of the results apply equally well over C, and
often we just refer to the results over C.

For the rest of the paper, we fix a non-trivial character ψo : Fo → C× of
conductor pFo , and define ψ : F→ C× by ψ = ψo ◦ TF/Fo .

6.1 Simple characters

Let [
, n, r, β] be a non-zero simple stratum in A. Associated to [
, n, r, β]
is an oF-order H(β,
) in A defined inductively, see [12, §3.1] for the original
definition when 
 is strict and [14, §5] in general. For m � 1, we put

Hm(β,
) = H(β,
) ∩ Pm(
),

a compact open subgroup of ˜G.
Also associated to [
, n, r, β], and our fixed characterψ , is a setC (
, r, β)

of simple characters of Hr+1(β,
), defined in [12, §3.2] when
 is strict and
in [14, §5] in general. In the case of a zero simple stratum [
, n, n, 0] we put
Hn+1(0,
) = Pn+1(
) and define the associated set of simple characters to
be C (
, n, 0) = {1Pn+1(
)}.

Given two simple strata [
, n, r, β] and [
′, n′, r ′, β] in A, with E =
F[β], such that

⌊

r
e(
|oE)

⌋

=
⌊

r ′
e(
′|oE)

⌋

, there is a canonical bijection

τ
′,
,β : C (
, r, β) → C (
′, r ′, β) called transfer, see [12, 3.6.1], [42,
Section 2.1] and [32, Section 3.1]; if θ ∈ C (
, r, β) then τ
′,
,β(θ) is the
unique simple character θ ′ ∈ C (
′, r ′, β) such that 1 ∈ ˜G intertwines θ with
θ ′. Note that, although we omit it from our notation, the transfer map depends
on the integers (r, r ′).

In general intertwining between simple characters does not imply inter-
twining between underlying strata, but we still have the following important
implication: Suppose that [
, n, r, β] and [
′, n′, r ′, β ′] are simple strata
and g is an element of ˜G which intertwines a character in C (
, r, β) with
a character in C (
′, r ′, β ′). Then g intertwines [
, n,max(n− 1, r), β] with
[
′, n′,max(n′ − 1, r ′), β ′], noting that every element of C (
, r, β) and
C (
′, r ′, β ′) restricts to the character attached to [
, n,max(n − 1, r), β]
and [
′, n′,max(n′ − 1, r ′), β ′], respectively, see [43, 2.1] and [39, 9.5].
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By induction on kF(β), the groups and sets of simple characters only depend
on the affine class of the strata:

Proposition 6.1 Let [
, n, r, β]and [
′, n′, r ′, β]be simple strata in the same
affine class. Then

Hr+1(β,
) = Hr ′+1(β,
′), C (
, r, β) = C (
′, r ′, β),

and the transfer map τ
′,
,β : C (
, r, β)→ C (
′, r ′, β) is the identity.

The next proposition shows how intertwining of simple characters interacts
with certain arithmetic invariants of the underlying simple strata:

Proposition 6.2 (cf. [12, 3.5.1]) Let [
, n, r, β] and [
′, n′, r ′, β ′] be simple
strata in A satisfying e(
) = e(
′). Suppose that one of the following two
conditions is satisfied:

(i) r = r ′ and there are simple characters θ ∈ C (
, r, β) and θ ′ ∈
C (
′, r, β ′) which intertwine in ˜G;

(ii) C (
, r, β) and C (
′, r ′, β ′) intersect non-trivially.

Then, we have

k0(β,
) = k0(β
′,
′), e(F[β]/F) = e(F[β ′]/F), and

f (F[β]/F) = f (F[β ′]/F).
Note that in the second part we allow r 
= r ′. The condition e(
) = e(
′)

can always be obtained by changing the strata in their affine classes.

Proof Suppose that condition (i) holds. If θ is trivial then the first stratum is
null, but then the other stratum is also null (since otherwise [
, r, r, 0] would
intertwine with [
′, n′, n′ − 1, β ′], which is impossible by Lemma 5.3) and
the result follows. Otherwise, both characters are non-trivial and the strata
are non-null. Furthermore, by a †-construction we can assume that the lattice
sequences are strict and regular, of the same period. Then there is an element
of ˜G which maps 
 to 
′ so, by [12, Theorem 3.5.11], the simple characters
are conjugate, and the result then follows from [12, Proposition 3.5.1].

Suppose that condition (ii) holds, and let θ ∈ C (
, r, β) ∩ C (
′, r ′, β ′).
Without loss of generality we assume that r ≤ r ′. Let˜θ ∈ C (
′, r, β ′) be an
extension of θ (cf. [12, (3.2.5)]). Then θ̃ intertwines with θ and condition (i)
holds, and we conclude by the last case. ��

The degree of a simple character θ is the index [F[β] : F] for a stratum
[
, n, r, β] such that θ ∈ C (
, r, β); by Proposition 6.2 this is well-defined,
i.e. it is independent of the choice of the stratum.

In order to prove results by induction along r , we also need to know what
happens when we restrict a simple character.

123



R. Kurinczuk et al.

Proposition 6.3 ([12, Corollary 3.3.20, 3.2.5], [42, Remarks 3.14]) Let
[
, n, r, β] be a simple stratum and let [
, n, r + 1, γ ] be a simple stratum
equivalent to [
, n, r + 1, β]. Then Hr+1(β,
) = Hr+1(γ,
) and restric-
tion to Hr+2(β,
) induces a surjective map C (
, r, β) → C (
, r + 1, γ ).
Moreover, the assignment

θ �→ θψβ−γ

defines a bijection C (
, r, γ )→ C (
, r, β).

Let [
, n, r, β] be a simple stratum and let [
, n, r + 1, γ ] be a simple
stratum equivalent to [
, n, r + 1, β]. In this situation, we will write Bγ =
EndF[γ ](V) and ˜Gγ = B×γ . Associated to the field F[γ ], there is a map sγ :
A → Bγ , called a tame corestriction (see [12, Definition 1.3.3] and [39,
Definition 6.12]). If θ belongs to C (
, r, β) and θ0 ∈ C (
, r, γ ) is any
extension of θ |Hr+2(β,
), then we can write θ = θ0ψβ−γ+c, for some c ∈
a−(r+1)(
). The stratum

[
, r + 1, r, sγ (β − γ + c)]
is called a derived stratum in Bγ ; this derived stratum is equivalent to a simple
stratum [39, Theorem 6.14].

6.2 Self-dual simple characters

Let [
, n, r, β] be a self-dual simple stratum in A. Then the subgroup
Hr+1(β,
) together with the set of simple characters C (
, r, β) are stable
under the involution σ , and we define

Hr+1− (β,
) = Hr+1(β,
)� = Hr+1(β,
) ∩ G;
C�(
, r, β) = {θ ∈ C (
, r, β) : θσ = θ}.

Thus Hr+1− (β,
) is a compact open subgroup of G, and we have a set of self-
dual simple characters of Hr+1− (β,
) defined by restriction:

C−(
, r, β) =
{

θ |Hr+1− (β,
)
: θ ∈ C�(
, r, β)

}

.

This restriction of characters coincides with the Glauberman correspondence
(see [41, §2]), anddefines a bijectionC�(
, r, β)→ C−(
, r, β).Given θ− ∈
C−(
, r, β) we will call the unique θ ∈ C�(
, r, β) such that θ |Hr+1− (β,
)

=
θ− the lift of θ− with respect to (
, r, β). (Below, we will simply write lift of
θ−, because the stratumwill be given implicitly.)We also define the degree of a

123



Endo-parameters for p-adic classical groups

self-dual simple character to be the degree of any of its lift. This is well-defined
by Proposition 6.2(i) and the following proposition:

A consequence of the Glauberman correspondence, see [41, 2.5], is the
following proposition:

Proposition 6.4 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r ′, β ′) be self-dual
simple characters with lifts θ and θ ′ respectively. Then an element of G inter-
twines θ with θ ′ if and only if it intertwines θ− with θ ′−.

When we restrict self-dual simple characters, as in Proposition 6.3, we may
do so relative to a self-dual simple approximation [
, n, r + 1, γ ] of our
stratum. In particular, when only self-dual simple characters are considered,
the derived strata we obtain will also be self-dual. Writing ϕγ for the canonical
embedding of F[γ ] in A as usual, we also write Gγ for the unitary group of
the form hϕγ (defined relative to the standard linear form λγ ).

We also have a self-dual †-construction for self-dual simple characters.
Since self-dual simple characters are in bijection with σ -stable characters via
Glauberman, we describe it for these. Let [
, n, r, β] be a self-dual simple
stratum and θ ∈ C�(
, r, β), and denote by M† the Levi subgroup of G†

which stabilizes the decompositionV† = V⊕· · ·⊕V. There is a unique simple
character θ† ∈ C (
†, r, β†) whose restriction to Hr+1(β†,
†) has the form
θ⊗· · ·⊗θ (see [5, Lemma2.7]).Moreover, by uniqueness θ† ∈ C�(
†, r, β†).
If we have two self-dual simple characters θ, θ ′ and g ∈ G intertwines θ with
θ ′ then g† ∈ G† intertwines θ† with θ ′†, by [26, Lemma 4.4].

6.3 Lemmas

In this subsection, we prove some partial results towards the main result in
the next subsection. Let [
, n, r, β], [
′, n, r, β] be self-dual simple strata in
A, put E = F[β] and E′ = F[β ′]. The first lemma we prove gives a strong
“intertwining implies conjugacy” result in the non-symplectic case: one does
not even need to assume that the intertwining takes place in G.

Lemma 6.5 Suppose that we are in the non-symplectic case, and let θ− ∈
C−(
, r, β) and θ ′− ∈ C−(
, r, β ′) be self-dual simple characters with lifts
θ and θ ′, respectively. Suppose that θ and θ ′ intertwine in ˜G, then θ− and θ ′−
are conjugate in P−(
).

Proof There is nothing to show if both strata are null. The proof is by induction
along r . For the base case r = n−1, Proposition 5.19(i) implies that the strata
intertwine in G, and then [39, Theorem 8.5] implies that they are conjugate
in P−(
). Assume now that r < n − 1. Since θ |Hr+2(β,
) and θ ′|Hr+2(β ′,
)

are simple characters by Proposition 6.3 (for approximations [
, n, r + 1, γ ]
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and [
, n, r + 1, γ ′] of the strata with β and β ′ respectively), by the inductive
hypothesis they are conjugate by an element of P−(
); conjugating by this
element, we can assume that they are equal, so that

C (
, r + 1, γ ) = C (
, r + 1, γ ′)

by [39, Proposition 9.23]. Then, by [39, Theorem 9.26], there is a self-dual
simple stratum [
, n, r, β ′′] such that

C (
, r, β ′) = C (
, r, β ′′) and

[
, n, r + 1, β ′′] is equivalent to [
, n, r + 1, γ ].

Replacing β ′ by β ′′, we may therefore assume that γ ′ = γ ; that is,
[
, n, r + 1, γ ] is equivalent to both [
, n, r + 1, β] and [
, n, r + 1, β ′].
Thus there are a skew-symmetric element c of a−(r+1)(
) and a simple char-
acter θ0 ∈ C�(
, r, γ ) such that θ = θ0ψβ−γ+c and θ ′ = θ0ψβ ′−γ . Now [39,
Proposition 9.17(i)] implies that the derived strata [
, r +1, r, sγ (β−γ + c)]
and [
, r + 1, r, sγ (β ′ − γ )] intertwine in the centralizer ˜Gγ , whence also in
Gγ by the base case. But then [39, Proposition 9.27(ii)] implies that θ and θ ′
intertwine in G and the result then follows from [39, Theorem 10.3]. ��
Lemma 6.6 Let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
′, r, β ′) be simple charac-
ters which intertwine in ˜G, and suppose that e(
) = e(
′). If G is symplectic
suppose further that θ and θ ′ intertwine in G. Then

(i) e(E/Eo) = e(E′/E′o);
(ii) the pairs (β, ϕβ) and (β ′, ϕβ ′) are concordant.

Proof We first prove the equality in (i). By a self-dual †-construction we can
reduce to the case of standard strict regular lattice sequences of the same
period. By [38, Proposition 5.2] there is then an element of G which maps 

to 
′. Thus θ and θ ′ intertwine by an element of G, in the symplectic case
by assumption and in the non-symplectic case by Lemma 6.5. Then by [39,
Theorem 10.3] there is an element of G which conjugates θ to θ ′ and, by [12,
Theorem 3.5.8], we can conjugate to assume that both strata define the same
set of simple characters. We now conclude as in the proof of Lemma 5.4, by
looking at the image of the residue fields kE, kE′ in a0(
)/a1(
).

We now turn to (ii). If either character is trivial then, since they intertwine,
both are by Lemma 5.3; then β and β ′ vanish, and the result follows. Oth-
erwise, both characters are non-trivial and both strata are non-null. From the
intertwining of the two characters we find

• [
, n, n − 1, β] and [
′, n, n − 1, β ′] intertwine in G, by restriction;
• e(E/F) = e(E′/F) and f (E/F) = f (E′/F), by Proposition 6.2(i);
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• e(E/E0) = e(E′/E′0), by (i).

The result now follows from Lemma 5.17. ��
Lemma 6.7 Let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
′, r, β ′) be simple charac-
ters which intertwine in ˜G and suppose that e(
) = e(
′). If G is symplectic
suppose further that the pairs (β, ϕβ) and (β ′, ϕβ ′) are concordant. Let
[
, n, r + 1, γ ] and [
′, n, r + 1, γ ′] be self-dual simple strata equivalent to
[
, n, r + 1, β] and [
′, n, r + 1, β ′] respectively. Then the pairs (γ, ϕγ ) and
(γ ′, ϕγ ′) are concordant.

Proof Since the restrictions θ |Hr+2(β,
) and θ
′|Hr+2(β ′,
′) are simple characters

for γ, γ ′ respectively which intertwine in ˜G, in the non-symplectic case the
result follows from Lemma 6.6. Suppose now that we are in the symplectic
case. If r = n − 1 then γ, γ ′ are both zero and there is nothing to prove, so
we suppose r < n − 1.

If dimF[β](V) and dimF[γ ](V) have the same parity then (β, ϕβ) and
(γ, ϕγ ) are concordant, by Lemma 5.15. (Note that, since f (F[γ ]/F) divides
f (F[β]/F) and e(F[γ ]/F) divides e(F[β]/F), if the common parity is odd then
f (F[γ ]/F) and f (F[β]/F) have the same 2-power divisor so w1,γ,β(〈1〉) =
〈1〉, by Lemma 3.23.) Since the invariants for β ′, γ ′ are the same as for β, γ
respectively (by Proposition 6.2), we also have that (β ′, ϕβ ′) and (γ ′, ϕγ ′) are
concordant, and the result follows by transitivity of concordance.

Otherwise, dimF[β](V) is odd and dimF[γ ](V) is even. Let [
, n, n− 1, γ0]
be a simple stratum equivalent to [
, n, n − 1, γ ], so that dimF[γ0](V) is also
even. As in the previous case, the pairs (γ, ϕγ ) and (γ0, ϕγ0) are concordant.
Using analogous notation for β ′, γ ′, we also have concordant pairs (γ ′, ϕγ ′)
and (γ ′0, ϕγ ′0). Finally, since −1 is a square in F[β] if and only if it is a square
in F[β ′], it follows from Lemma 5.16 (see also the remark following that
lemma) and the fact that (β, ϕβ) and (β ′, ϕβ ′) are concordant that (γ0, ϕγ0)
and (γ ′0, ϕγ ′0) are also concordant. The result again follows by transitivity. ��

6.4 Intertwining self-dual simple characters

In themain result of the section, Proposition 6.10 below,we investigate the rela-
tion between G-intertwining of self-dual simple characters and˜G-intertwining
of their lifts. This improves Lemma 6.5 in the non-symplectic case to allow
for non-conjugate lattice sequences, and proves the analogue in the symplectic
case using concordance. We start with the case of the same lattice sequence:

Proposition 6.8 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
, r, β ′) be self-dual
simple characters with lifts θ and θ ′ respectively. Then the following assertions
are equivalent:
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(i) θ− and θ ′− are conjugate in P−(
).
(ii) θ− and θ ′− intertwine in G.

(iii) θ and θ ′ are conjugate in P(
) and the pairs (β, ϕβ) and (β ′, ϕβ ′) are
concordant.

(iv) θ and θ ′ intertwine in ˜G and the pairs (β, ϕβ) and (β ′, ϕβ ′) are con-
cordant.

Proof The first equivalence (i)⇔(ii) and the last equivalence (iii)⇔(iv) follow
from [39, Theorem 10.2 and 10.3]. So we only have to prove the second
equivalence (ii)⇔(iii).

If θ− and θ ′− intertwine in G, then their lifts intertwine in G and hence are
conjugate by an element of P(
), by [39, Theorem 10.2] (see also [12, 3.5.11]
when
 is strict). Moreover, by Lemma 6.6, the pairs (β, ϕβ) and (β ′, ϕβ ′) are
concordant.

We prove the converse by induction along r . If r = n − 1 then the sim-
ple characters θ, θ ′ (that is, the strata [
, n, n − 1, β] and [
, n, n − 1, β ′])
intertwine in G by Proposition 5.19. The proof of the inductive step is now
identical to that in Lemma 6.5, with two small additional arguments: first
we use Lemma 6.7 and the induction hypothesis to conjugate θ |Hr+2(β,
) to
θ ′|Hr+2(β ′,
); secondly, when we obtain derived strata [
, r+1, r, sγ (β−γ +
c)] and [
, r+1, r, sγ (β ′ −γ )]which intertwine in the centralizer˜Gγ , Propo-
sition 5.19(i) implies that, since Gγ is a unitary group, these strata intertwine
in Gγ . ��

From Proposition 6.8 we now get a strengthening (in the symplectic case)
of Lemma 6.6(i).

Corollary 6.9 Let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
′, r, β ′) be simple char-
acters which intertwine in ˜G, and suppose that e(
) = e(
′). Then (E, β)
and (E′, β ′) are similar self-dual extensions (see Definition 3.33).

Proof We already know, by Proposition 6.2, that E/F and E′/F′ have the
same ramification index and residue class degree, and, by Lemma 5.2 applied
to the pure strata [
, n, n − 1, β] and [
′, n, n − 1, β ′], that the elements
yβ and yβ ′ have the same (irreducible) minimal polynomial over kF. Since
valE(β) = −ne(E/F)/e(
) = valE′(β ′), it only remains to show that
e(E/Eo) = e(E′/E′o).

For this, by a self-dual †-construction, we may assume further that the pairs
(β, ϕβ) and (β ′, ϕβ ′) are concordant, by Lemma 5.8. The proof is now the
same as that of Lemma 6.6(i), except that we use Proposition 6.8 to obtain that
the characters θ† and θ ′† intertwine in G†. ��
Proposition 6.10 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r, β ′) be self-dual
simple characters of G, and suppose that e(
) = e(
′). Then θ− and θ ′−
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intertwine in G if and only if their lifts intertwine in ˜G and the pairs (β, ϕβ)
and (β ′, ϕβ ′) are concordant.

We remark that, in the non-symplectic case the hypothesis on concordance
is in fact not necessary: if the lifts of θ− and θ ′− intertwine in ˜G then, by
Lemma 6.6, the pairs (β, ϕβ) and (β ′, ϕβ ′) are automatically concordant.

To prove Proposition 6.10, we will need the following lemma:

Lemma 6.11 Let [
, n, r, β] and [
′, n, r, β ′] be self-dual simple strata and
let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
′, r, β ′). Suppose that θ, θ ′ intertwine
in ˜G and that the pairs (β, ϕβ) and (β ′, ϕβ ′) are concordant. Then, there
are self-dual simple strata [
, n, r, β1] and [
′, n, r, β ′1] such that β1 and
β ′1 have the same characteristic polynomial, θ ∈ C�(
, r, β1) and θ ′ ∈
C�(
′, r, β ′1). Moreover, for any such β1, β ′1, the pairs (β1, ϕβ1) and (β ′1, ϕβ ′1)
are concordant.

Granting this, we complete the proof of Proposition 6.10:

Proof Let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
′, r, β ′) denote the lifts of θ− and
θ ′−, respectively. Suppose first that θ and θ ′ intertwine by an element of G.
Then they intertwine by an element of ˜G and, by Lemma 6.6(ii), the pairs
(β, ϕβ) and (β ′, ϕβ ′) are concordant.

Suppose now that θ and θ ′ intertwine by an element of ˜G and the pairs
(β, ϕβ) and (β ′, ϕβ ′) are concordant. By Lemma 6.11 we can assume that
β and β ′ have the same characteristic polynomial and the pairs (β, ϕβ) and
(β ′, ϕβ ′) are still concordant; thus, by Remark 3.26(ii), they are conjugate by
an element g ∈ G. The characters θ and θ ′′ := τg
,
′,β ′(θ ′) intertwine by an
element of˜G by [5, Theorem 1.11]. Thus θ and θ ′′ are conjugate by an element
of G, by Proposition 6.8. We deduce that θ and θ ′ intertwine in G, since θ ′ and
θ ′′ are intertwined by 1. ��

It remains only to prove Lemma 6.11:

Proof The proof is by induction along r . There is nothing to show if both strata
are null so we assume that they are both non-null; in particular both characters
are non-trivial.

The base case is r = n − 1. Applying [39, Proposition 7.1], as in the
proof of Proposition 5.19, we can replace β and β ′ by elements β1 and β ′1
without changing the equivalence classes of the simple self-dual strata and such
that β1 and β ′1 have the same minimal polynomial. Proposition 5.19(ii) also
implies that the strata intertwine in G. Thus the pairs (β1, ϕβ1) and (β ′1, ϕβ ′1)
are concordant by Corollary 5.18.

Suppose now that r < n − 1 and let [
, n, r + 1, γ ] and [
′, n, r + 1, γ ′]
be self-dual simple strata equivalent to [
, n, r + 1, β] and [
′, n, r + 1, β ′]
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respectively. Note that the pairs (γ, ϕγ ) and (γ ′, ϕγ ′) are concordant, by
Lemma 6.7. By the induction hypothesis there are concordant self-dual simple
strata [
, n, r + 1, γ1] and [
′, n, r + 1, γ ′1], such that C (
, r + 1, γ ) =
C (
, r + 1, γ1) and C (
′, r + 1, γ ′) = C (
′, r + 1, γ ′1) and such that
the minimal polynomials of γ1 and γ ′1 coincide. By Remark 3.26(ii), concor-
dance provides an element g of G such that gγ1g−1 = γ ′1. Now, θ |Hr+2(γ1,
)

and τg
,
′,γ ′1(θ
′|Hr+2(γ ′1,
′)) intertwine by an element of ˜G by [5, Theo-

rem 1.11], so Proposition 6.8 implies they are conjugate by an element of
G which maps 
 to g
. Thus, conjugating by this element, we can assume
that θ |Hr+2(γ1,
) = τ
,
′,γ ′1(θ

′|Hr+2(γ ′1,
′)) and that γ1 = γ ′1.
By [39, Theorem 9.26], there is a self-dual simple stratum [
, n, r, β0] such

that

C (
, r, β) = C (
, r, β0) and

[
, n, r + 1, β0] is equivalent to [
, n, r + 1, γ1];

moreover, the pairs (β, ϕβ) and (β0, ϕβ0) are concordant, by Lemma 6.6. Thus
we may replace β by β0 and assume that γ = γ1. By the same argument for
β ′, we see that we may assume γ = γ ′. Then there are a character θ0 ∈
C�(
, r, γ )with transfer θ ′0 ∈ C�(
′, r, γ ) and an element c ∈ a−−(1+r)(


′)
such that

θ = θ0ψβ−γ , θ ′ = θ ′0ψβ ′−γ+c.

By a self-dual †-construction we obtain characters

θ† = θ
†
0ψβ†−γ †, θ ′† = θ

′†
0 ψβ ′†−γ †+c†

which intertwine in ˜G†. Moreover, there exists an element g ∈ ˜G†
γ † such

that g
† = 
′†; then gθ
†
0 = θ

′†
0 , because τ
′†,
†,γ †(θ

†
0 ) = θ

′†
0 (as, by its

definition, the †-construction commutes with transfer). Writing s for a tame
corestriction with respect to γ †, the strata [g
†, r + 1, r, s(gβ†g−1 − γ †)]
and [
′†, r + 1, r, s(β ′† − γ † + c†)] intertwine by an element of ˜G†

γ † ,
by [39, Proposition 9.17(i)]. Conjugating by this element, we may apply
[39, Proposition 7.6], which then implies that the strata [
†, n, r, β†] and
[
′†, n, r, β ′† + c†] intertwine.

Since ψc† is intertwined by ˜Gγ , it follows from [12, 2.4.11] that s(c†) is
congruent to an element of F[γ ]modulo a−r (


′†). Thus [
′†, n, r, (β ′ + c)†]
is equivalent to a simple stratum by [39, Proposition 6.14]. Since it intertwines
with [
†, n, r, β†], the stratum [
†⊕
′†, n, r, β†+ (β ′ + c)†] is also equiv-
alent to a simple stratum, by [39, Proposition 7.1]. Then [39, Theorem 6.16]
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implies that it is moreover equivalent to a simple stratum which is split by
the decomposition V† ⊕ V† = V ⊕ · · · ⊕ V. In particular, restricting to two
copies of V, we see that [
 ⊕ 
′, n, r, β + (β ′ + c)] is equivalent to a sim-
ple stratum, and again, by [39, Theorem 6.16], to a self-dual simple stratum
[
⊕
′, n, r, β1 + β ′1] split by V⊕ V.

Thus we have found self-dual simple strata [
, n, r, β1] and [
′, n, r, β ′1]
equivalent to [
, n, r, β] and [
′, n, r, β ′+c] respectively, such that β1 and β ′1
have the sameminimal polynomial. ThenC (
, r, β) andC (
, r, β1) coincide,
while

θ ′ ∈ C (
′, r, γ )ψβ ′−γ+c = C (
′, r, γ )ψβ ′1−γ = C (
′, r, β ′1),

so we are done.
Finally, we prove that the pairs (β1, ϕβ1) and (β

′
1, ϕβ ′1) are concordant. Since

θ lies inC (
, r, β) and inC (
, r, β1), Proposition 6.6(ii) implies that (β, ϕβ)
and (β1, ϕβ1) are concordant; similarly (β ′, ϕβ ′) and (β ′1, ϕβ ′1) are concordant.
Since (β, ϕβ) and (β ′, ϕβ ′) are concordant by assumption, the result follows
by transitivity of concordance. ��

7 Self-dual ps-characters and simple endo-classes

In this section we consider the collection of all self-dual simple characters
while varying our ε-hermitian space, for fixed ε and F/Fo. We first recall
results of Bushnell and Henniart [8], and their extensions to non-strict lattice
sequences which are special cases of results in [5], on the foundational theory
of ps-characters and simple endo-classes. Then we develop the theory in the
presence of an ε-hermitian form over F.

For the remainder, while our F-vector space V and ε-hermitian space (V, h)
over F may be varying, we still use the notation ˜G = AutF(V) and G =
U(V, h).

7.1 Ps-characters

A simple pair over F is a pair (k, β) consisting of an element β of some finite
field extension of F and an integer k satisfying 0 � k < −kF(β)e(F[β]/F).
For (k, β) a simple pair, we write E = F[β] and denote by Q(k, β) the class
of all quadruples (V, ϕ,
, r) consisting of

(i) a finite dimensional F-vector space V;
(ii) an embedding ϕ : E ↪→ A, where A = EndF(V);
(iii) an oϕ(E)-lattice sequence 
 in V;
(iv) and an integer r such that

⌊

r/e(
|oϕ(E))
⌋ = k.
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In this situation, we will abuse notation and write e(
|oE) for e(
|oϕ(E)),
the period of 
 as an oϕ(E)-lattice sequence. We will also abbreviate e(
) =
e(
|oF) for the period of 
 as an oF-lattice sequence.

Given (V, ϕ,
, r) ∈ Q(k, β), we set

n =
{

r if β = 0;
−νE(β)e(
|oE) otherwise;

we then obtain a simple stratum [
, n, r, ϕ(β)] inAwhichwe call a realization
of the simple pair (k, β). It is simple because k0(β,
) = e(
|oE)e(E/F)kF(β)
by [12, 1.4.13] (see also [14, 5.1]).

We let C(k, β) denote the collection of all simple characters defined by a
realization of a simple pair (k, β):

C(k, β) =
⋃

(V,ϕ,
,r)
∈Q(k,β)

C (
, r, ϕ(β)).

Given two realizations [
, n, r, ϕ(β)] and [
′, n′, r ′, ϕ′(β)] of a simple pair
(k, β) there is a canonical bijection

τ
′,ϕ′,
,ϕ,β : C (
, r, ϕ(β))→ C (
′, r ′, ϕ′(β)),

defined in [12, 3.6.14], [42, Section 2.1] and [32, Section 3.1(53)], called trans-
fer, and generalizing the transfer recalled in the previous section. Although the
transfer depends on r, r ′, we do not include them in our notation; indeed, we
will usually omit ϕ′, ϕ also and just write τ
′,
,β , as is usual in the literature.

We recall briefly some of the main properties of transfer. Given realizations
[
, n, r, ϕ(β)], [
′, n′, r ′, ϕ′(β)], and [
′′, n′′, r ′′, ϕ′′(β)] of a simple pair
(k, β), the associated transfer maps satisfy the following:

• (symmetry) τ
,
′,β = τ−1

′,
,β

;
• (transitivity) τ
′′,
,β = τ
′′,
′,β ◦ τ
′,
,β ;
• (intertwining) suppose the embeddings ϕ, ϕ′ have image in the endo-
morphisms of the same space ϕ, ϕ′ : E ↪→ EndF(V), and let θ ∈
C (
, r, ϕ(β)); then τ
′,
,β(θ) is the unique simple character θ ′ ∈
C (
′, r ′, ϕ′(β)) such that θ is intertwined with θ ′ by an element of ˜G
which conjugates ϕ to ϕ′.

In the final property, in fact every element of ˜G which conjugates ϕ to ϕ′ also
intertwines θ with its transfer τ
′,
,β(θ).

It is also possible to describe the transfer map explicitly in terms of restric-
tions. Suppose we are given realizations [
, n, r, ϕ(β)] and [
′, n′, r ′, ϕ′(β)]
of a simple pair (k, β) on spaces V,V′ respectively, and 
,
′ have the same
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period (so that also n′ = n). We set V′′ = V ⊕ V′ so that we have an
embedding ϕ′′ = ϕ + ϕ′ of E in EndF(V′′); we also set 
′′ = 
 ⊕ 
′
and r ′′ = min{r, r ′}. Then we get a further realization [
′′, n, r ′′, ϕ′′(β)] on
V′′. Now, given a simple character θ ∈ C (
, r, ϕ(β)) there is a unique sim-
ple character θ ′′ ∈ C (
′′, r ′′, ϕ′′(β)) such that θ is the restriction of θ ′′ to
Hr+1(ϕ′′(β),
′′)∩AutF(V). Then the transfer θ ′ = τ
′,
,β(θ) is the restric-
tion of θ ′′ to Hr ′+1(ϕ′′(β),
′′) ∩ AutF(V′).

A potential simple character, or ps-character, supported on the simple pair
(k, β) is a function � : Q(k, β)→ C(k, β) such that

(i) �(V, ϕ,
, r) ∈ C (
, r, ϕ(β)), for (V, ϕ,
, r) ∈ Q(k, β);
(ii) �(V′, ϕ′,
′, r ′) = τ
′,
,β(�(V, ϕ,
, r)), for (V, ϕ,
, r), (V′,

ϕ′,
′, r ′) ∈ Q(k, β).

For (V, ϕ,
, r) ∈ Q(k, β), we call �(V, ϕ,
, r) a realization of �. Thus,
by property (ii), a ps-character is determined by any one of its realizations. We
define the degree of � to be deg(�) = [F[β] : F].

Let �,�′ be ps-characters supported on the simple pairs (k, β), (k′, β ′)
respectively.

Definition 7.1 We say that � and �′ are endo-equivalent, denoted � ≈ �′,
if

(i) deg(�) = deg(�′);
(ii) k = k′;
(iii) there exist realizations on a common F-vector space which intertwine,

i.e. there exist a finite dimensional F-vector space V and quadruples
(V, ϕ,
, r) ∈ Q(k, β) and (V, ϕ′,
′, r ′) ∈ Q(k′, β ′), such that
�(V, ϕ,
, r) and �′(V, ϕ′,
′, r ′) intertwine in ˜G = AutF(V).

Note that the formulation of endo-equivalence in [8, 8.6] and [5, 1.10] differs
mildly from the above. In particular they do not consider ps-characters with a
trivial character in the image. Therefore we need the following remarks.

Remarks 7.2 (i) InDefinition 7.1(iii), we could impose that
 = 
′ and that

 is strict without changing the relation. Indeed, suppose that
 
= 
′ or

 is not strict. By changing the lattice sequences in their affine classes,
we can assume that e(
) = e(
′). Then, performing a †-construction,
there exists g ∈ ˜G† such that g
† = 
′†, and the characters gθ† =
τg
†,gϕ†,
,ϕ,β(θ) and θ

′† = τ
′†,ϕ′†,
′,ϕ′,β(θ
′) intertwine in˜G†, because

θ and θ ′ intertwine in ˜G.
(ii) For every non-negative integer k we have exactly one ps-character sup-

ported on (k, 0), which we call the zero ps-character 0k . It is not
endo-equivalent to any other ps-character, which can be seen as fol-
lows. Suppose � is a ps-character supported on (k, β), with β 
= 0,
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which is endo-equivalent to 0k . Then F[β] = F and there are realizations
θ ∈ C (
, r, β) of � and θ ′ ∈ C (
′, r ′, 0) of 0k on the same vector
space such that e(
) = e(
′) and θ, θ ′ intertwine. We then get

⌊

r ′/e(
)
⌋ = k <

−k0(β,
)

e(
)
= − val
(β)

e(
)
∈ Z,

but this contradicts Lemma 5.3.
(iii) It follows from the previous remarks and [8, Corollary 8.10] that endo-

equivalence is indeed an equivalence relation.

We can now state some initial results on endo-equivalence of ps-characters
from [8].

Proposition 7.3 (cf. [8, 8.4, 8.10]). Let �,�′ be ps-characters supported on
the simple pairs (k, β), (k, β ′) respectively, and put E = F[β] and E′ = F[β ′].
Suppose that � ≈ �′. Then:

(i) We have e(E/F) = e(E′/F), f (E/F) = f (E′/F) and kF(β) = kF(β ′).
(ii) If (V, ϕ,
, r) ∈ Q(k, β), (V, ϕ′,
′, r ′) ∈ Q(k, β ′) and e(
) = e(
′)

then we have (V, ϕ,
, r ′) ∈ Q(k, β), i.e.
⌊

r ′
e(
|oE)

⌋

= k.

Proof If � is zero then �′ = � by Remark 7.2(ii), and the result follows, so
we suppose both�,�′ are non-zero. Then (i) follows from Remark 7.2(i) and
[8, Proposition 8.4]. By (i) we have e(
|oE) = e(
)

e(E/F) = e(
′|oE′) and thus
⌊

r ′/e(
|oE)
⌋ = ⌊

r ′/e(
′|oE′)
⌋ = k,

which proves (ii). ��
Definition 7.4 We call the equivalence classes of ps-characters under endo-
equivalence simple endo-classes. We define the degree of a simple endo-class
to be the degree of any ps-character in the equivalence class.

A miracle of the theory is that, while endo-equivalence is defined via the
existence of realizations on a common vector space which intertwine (prop-
erty (iii) of the definition), all realizations of endo-equivalent ps-characters on
common vector spaces intertwine:

Theorem 7.5 (cf. [5, Theorem 1.11] and [8, Corollary 8.7]) Let �,�′ be
endo-equivalent ps-characters supported on the simple pairs (k, β), (k, β ′)
respectively. Let θ, θ ′ be realizations of �,�′ respectively, on the same vector
space V. Then, θ and θ ′ intertwine in ˜G.
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Proof Without loss of generality, we can assume θ ∈ C (
, r, ϕ(β)) and θ ′ ∈
C (
′, r ′, ϕ′(β ′)), for simple strata [
, n, r, ϕ(β)] and [
′, n′, r ′, ϕ′(β ′)]with
e(
) = e(
′) by adjusting the strata in their affine classes. If one of the ps-
characters is zero then θ and θ ′ are trivial and therefore intertwine. Thus we
assume that both ps-characters are non-zero.

We first consider the case r = r ′. By Proposition 7.3(i) we can apply
Lemma 5.1 to find an oϕ′(E′)-lattice sequence 
′′ in V and an element g ∈ ˜G
such that g
′′ = 
. Then θ and �′(V, gϕ′,
, r ′) are conjugate in ˜G by [5,
1.13]. Thus θ and �′(V, ϕ′,
′′, r ′) are conjugate and hence, as the latter is
intertwined with θ ′ by 1, we see that θ and θ ′ intertwine.

We now assume, without loss of generality, that r ≤ r ′. The quadruple
(V, ϕ′,
′, r) is an element ofQ(k, β) by Proposition 7.3(ii), and by the r = r ′
case the characters θ and�′(V, ϕ′,
′, r) intertwine. Thus θ and θ ′ intertwine
because θ ′ is the restriction of �′(V, ϕ′,
′, r). ��

That endo-equivalence is a transitive relation leads to the following transi-
tivity of intertwining statement for simple characters:

Theorem 7.6 Let θi ∈ C (
i , ri , βi ), for i = 1, 2, 3. Suppose that θ1 and θ2
intertwine in ˜G, θ2 and θ3 intertwine in ˜G, and that either

(i)
⌊

r1
e(
1|oE1 )

⌋

=
⌊

r2
e(
2|oE2 )

⌋

=
⌊

r3
e(
3|oE3 )

⌋

and θ1, θ2 and θ3 have the

same degree; or
(ii) e(
1) = e(
2) = e(
3) and r1 = r2 = r3.

Then θ1 and θ3 intertwine in ˜G.

Proof In case (i), let�i be the ps-character with realization θi inC (
i , ri , βi ),
for i = 1, 2, 3. We have �1 ≈ �2 and �2 ≈ �3 by assumption, and thus
�1 ≈ �3 by transitivity, and therefore θ1 and θ3 intertwine by Theorem 7.5.
Case (ii) follows from case (i) by Proposition 6.2(i). ��

7.2 Self-dual ps-characters

We fix the extension F/Fo, as usual let denote the generator of Gal(F/Fo),
and fix a sign ε = ±1. In this section we introduce the theory of endo-class
for self-dual simple characters under an ε-hermitian form over F.

A simple pair (k, β)overF is called self-dual if (E, β) is a self-dual extension
of F/Fo. For (k, β) a self-dual simple pair, we denote by Q−(k, β) the class
of all quadruples ((V, h), ϕ,
, r) consisting of

(i) a finite-dimensional ε-hermitian space (V, h) over F/Fo;
(ii) a self-dual embedding ϕ : E→ A, where A = EndF(V);
(iii) a self-dual oϕ(E)-lattice sequence 
 in V;
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(iv) and an integer r such that
⌊

r/e(
|oϕ(E))
⌋ = k.

In particular, we then have (V, ϕ,
, r) ∈ Q(k, β). Given ((V, h), ϕ,
, r) ∈
Q−(k, β) we obtain a self-dual simple stratum [
, n, r, ϕ(β)] which we call
a self-dual realization of the simple pair (k, β).

Let (k, β) be a self-dual simple pair. By [42, Proposition 2.12], if we have
self-dual realizations [
, n, r, ϕ(β)] and [
′, n′, r ′, ϕ′(β)] of (k, β), then the
transfer map τ
′,
,β commutes with the involutions defined on C (
, r, ϕ(β))
and C (
′, r ′, ϕ′(β)) and restricts to give a bijection

τ
′,
,β : C−(
, r, ϕ(β))→ C−(
′, r ′, ϕ′(β)).

We letC−(k, β) denote the collection of all self-dual simple characters defined
by a realization of the self-dual simple pair (k, β):

C−(k, β) =
⋃

((V,h),ϕ,
,r)∈Q−(k,β)
C−(
, r, ϕ(β)).

Definition 7.7 Let (k, β) be a self-dual simple pair.

(i) A ps-character � supported on (k, β) is called σ -invariant if, for all
quadruples ((V, h), ϕ,
, r) ∈ Q−(k, β), �(V, ϕ,
, r) is σ -invariant
with respect to (V, h).

(ii) A self-dual ps-character supported on (k, β) is a function, �− :
Q−(k, β) → C−(k, β) such that, for all ((V, h), ϕ,
, r), ((V′, h′),
ϕ′,
′, r ′) ∈ Q−(k, β),

�−((V, h), ϕ,
, r) ∈ C−(
, r, ϕ(β));
�−((V′, h′), ϕ′,
′, r ′) = τ
′,
,β(�−((V, h), ϕ,
, r)).

We call a value of a self-dual ps-character, a self-dual realization of the
self-dual ps-character. Thus, again, a self-dual ps-character is determined by
any one of its self-dual realizations. By theGlauberman correspondence, every
self-dual ps-character arises uniquely by restriction from of a σ -invariant ps-
character.

More precisely, for a self-dual ps-character �− supported on (k, β), there
is a unique σ -invariant ps-character �, supported on (k, β), such that the
following diagram commutes:

Q−(k, β)

Q(k, β) C(k, β)

Gl ◦ �−

�

123



Endo-parameters for p-adic classical groups

where the vertical arrow is the forgetful map ((V, h), ϕ,
, r) �→ (V, ϕ,
, r)
and Gl ◦ �−((V, h), ϕ,
, r) is the Glauberman lift in C (
, r, ϕ(β)) of
�−((V, h), ϕ,
, r) ∈ C−(
, r, ϕ(β)). We call � the lift of �−. We also
define the degree of �− to be the degree of its lift, so deg(�−) = [F[β] : F].

Let �−,�′− be self-dual ps-characters supported on the self-dual simple
pairs (k, β), (k′, β ′) respectively.
Definition 7.8 We say that �− and �′− are endo-equivalent, denoted �− ≈
�′−, if
(i) deg(�−) = deg(�′−);
(ii) k = k′;
(iii) there exist realizations on a common ε-hermitian space (V, h) over F

which intertwine in G = U(V, h), i.e. there exist a finite-dimensional
ε-hermitian space (V, h) over F/Fo and quadruples ((V, h), ϕ,
, r) ∈
Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈ Q−(k′, β ′), such that �−((V, h),
ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine in G.

We can now prove our main result on endo-equivalence of self-dual ps-
characters.

Theorem 7.9 Let �−,�′− be self-dual ps-characters supported on the self-
dual simple pairs (k, β), (k, β ′) respectively. Denote by �,�′ the lifts of
�−,�′− respectively. Suppose that deg(�−) = deg(�′−). Then the follow-
ing assertions are equivalent:

(i) � and �′ are endo-equivalent;
(ii) �− and �′− are endo-equivalent;

(iii) for all ((V, h), ϕ,
, r) ∈ Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈
Q−(k, β ′) with (β, ϕ) and (β ′, ϕ′) concordant the realizations
�−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine in G =
U(V, h);

(iv) there are ((V, h), ϕ,
, r) ∈ Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈
Q−(k, β ′) with (β, ϕ) and (β ′, ϕ′) concordant such that
�−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine in G =
U(V, h).

Suppose further that F 
= Fo or ε = 1. Then these four assertions are equiva-
lent to:

(v) for all ((V, h), ϕ,
, r) ∈ Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈ Q−(k, β ′)
the realizations �−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine
in G = U(V, h).

Indeed, we will see in the proof that, in the non-symplectic case (i.e. F 
=
Fo or ε = 1), if � and �′ are endo-equivalent then, for any two self-dual
embeddings ϕ, ϕ′ of β, β ′ respectively into any ε-hermitian space (V, h) over
F/Fo, the pairs (β, ϕ) and (β ′, ϕ′) are concordant.
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Proof Certainly (ii) follows from (iv), and (i) follows from (ii), by definition
and Proposition 6.4. Clearly (iii) follows from (v).

Supposenow that�,�′ are endo-equivalent andwehave ((V, h), ϕ,
, r) ∈
Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈ Q−(k, β ′). Replacing 
,
′ by an affine
translation,whichdoes not affect the realization,we can assume e(
) = e(
′);
moreover, by Proposition 7.3(ii) we may replace r, r ′ by min{r, r ′} and hence
assume they are equal. Note that these changes do not affect the concordance
of (β, ϕ) and (β ′, ϕ′). Then �(V, ϕ,
, r) and �′(V, ϕ′,
′, r) intertwine
by Theorem 7.5 and, further, when F 
= Fo or ε = 1, the pairs (β, ϕ)

and (β ′, ϕ′) are automatically concordant by Lemma 6.6(ii). Then, pro-
vided we have concordant pairs (β, ϕ) and (β ′, ϕ′) in the symplectic case,
Proposition 6.10 implies that �−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′)
intertwine in G = U(V, h). Thus (i) implies (iii), and (i) implies (7.9) when
F 
= Fo or ε = 1.

Now suppose the two ps-characters satisfy (iii). In order to show (iv),
we have to find elements of Q−(k, β) and Q−(k, β ′) defined on the same
ε-hermitian space with concordant pairs. Let hE and hE′ be hyperbolic ε-
hermitian spaces over E and E′, respectively, of the same dimension, and
recall that [E : F] = [E′ : F], since �−,�′− have the same degree. Then (in
the notation of Sect. 3.5) λ∗β(hE) and λ∗β ′(hE′) are hyperbolic spaces over F of
the same dimension; hence they are isometric and we can assume without loss
of generality that they are the same space (V, h). The pairs (β, ϕβ) and (β ′, ϕβ ′)
are then concordant, because hE and hE′ are hyperbolic. Now, for any self-
dual oE-lattice sequence
 in V and self-dual oE′-lattice sequence
′ in V, we
have ((V, h), ϕ,
, ke(
|oE)) ∈ Q−(k, β) and ((V, h), ϕ′,
′, ke(
′|oE′)) ∈
Q−(k, β ′). ��

In fact, concordance exactly determines whether realizations of endo-
equivalent self-dual ps-characters intertwine:

Proposition 7.10 Let �−,�′− be endo-equivalent self-dual ps-characters
supported on the self-dual simple pairs (k, β), (k, β ′) respectively. Let
((V, h), ϕ,
, r) ∈ Q−(k, β) and ((V, h), ϕ′,
′, r ′) ∈ Q−(k, β ′). Then
the realizations �−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine in
G = U(V, h) if and only if (β, ϕ) and (β ′, ϕ′) are concordant.

Proof Suppose θ− = �−((V, h), ϕ,
, r) and θ ′− = �′−((V, h), ϕ′,
′, r ′)
intertwine in G = U(V, h). Replacing 
,
′ by an affine translation, which
does not affect the realization, we can assume e(
) = e(
′); moreover, by
Proposition 7.3(ii) we may replace r, r ′ by max{r, r ′} (which is equivalent
to restricting θ−, θ ′− to subgroups) and hence assume they are equal. Then
Proposition 6.10 implies that (β, ϕ) and (β ′, ϕ′) are concordant. The converse
is given by Theorem 7.9. ��
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As endo-equivalence of ps-characters for general linear groups is an equiv-
alence relation, from Theorem 7.9 we deduce the corresponding result for
self-dual ps-characters:

Corollary 7.11 Endo-equivalence defines an equivalence relation on the class
of self-dual ps-characters.

We also deduce that endo-equivalent self-dual ps-characters must be sup-
ported on similar self-dual extensions (see Definition 3.33).

Corollary 7.12 Let �−,�′− be endo-equivalent self-dual ps-characters sup-
ported on the self-dual simple pairs (k, β), (k, β ′) respectively and put E =
F[β] and E′ = F[β ′]. Then the self-dual extensions (E, β) and (E′, β ′) are
similar.

Proof Denote by �,�′ the lifts of �−,�′− respectively; they are endo-
equivalent by Theorem 7.9. We choose self-dual realizations of �−,�′− on
a common space V for which the lattice sequences have the same period.
Then their lifts are realizations of the endo-equivalent �,�′ so intertwine in
˜G = AutF(V) by Theorem 7.5. Then Corollary 6.9 says that the extensions
(E, β) and (E′, β ′) are similar. ��

We call the equivalence classes of self-dual ps-characters under endo-
equivalence self-dual simple endo-classes.We also obtain the self-dual version
of Theorem 7.6, the transitivity of intertwining of self-dual simple characters:

Corollary 7.13 Let θi,− ∈ C−(
i , ri , βi ) be self-dual simple characters, for
i = 1, 2, 3. Suppose that θ1,− and θ2,− intertwine inG, θ2,− and θ3,− intertwine
in G, and that either

(i)
⌊

r1
e(
1|oE1 )

⌋

=
⌊

r2
e(
2|oE2 )

⌋

=
⌊

r3
e(
3|oE3 )

⌋

and θ1,−, θ2,− and θ3,− have

the same degree; or
(ii) e(
1) = e(
2) = e(
3) and r1 = r2 = r3.

Then θ1,− and θ3,− intertwine in G.

Proof In case (i), let �i− be the ps-character with realization θi,− in
C−(
i , ri , βi ), for i = 1, 2, 3. We have �1,− ≈ �2,− and �2,− ≈ �3,−
by assumption, and thus �1,− ≈ �3,− by Corollary 7.11. We abbreviate ϕi
for the canonical embedding of βi in A. Then (β1, ϕ1) and (β2, ϕ2) are concor-
dant, by Proposition 7.10, and likewise (β2, ϕ2) and (β3, ϕ3) are concordant.
Thus (β1, ϕ1) and (β3, ϕ3) are concordant, by transitivity of concordance, and
θ1,− and θ3,− intertwine in G by Proposition 7.10 again. Case (ii) follows from
case (i) by Proposition 6.2(i). ��
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8 Self-dual semisimple characters: intertwining and concordance

In this sectionwe recall, from [29,42], the basic properties of semisimple strata
and characters, and of their self-dual versions. We also recall from [39] how
the intertwining of semisimple characters induces a matching between their
splittings, and use this to deduce both results on concordance and Skolem–
Noether type results.

8.1 Semisimple strata

Suppose that V = ⊕

i∈I Vi is a decomposition into F-subspaces. For J any
subset of I, we write VJ =⊕

i∈J Vi and eJ : V→ VJ for the projection with
kernel

⊕

j∈I\J V j . We also set AJ = EndF(VJ) and ˜GJ = AutF(VJ). When

J = {i} is a singleton, then we will write Ai rather than A{i}, etc.
Now let [
, n, r, β] be a stratum inA. For J a subset of I, we set
J = 
∩VJ

and βJ = eJβeJ, and nJ = max{− val
J(βJ), r}, so that [
J, nJ, r, βJ] is a
stratum in VJ. The decomposition V = ⊕

i∈I Vi of V is called a splitting of
[
, n, r, β] if β =∑

i∈I βi and 
(k) =⊕

i∈I 
i (k), for all k ∈ Z.

Definition 8.1 A stratum [
, n, r, β] in A is called semisimple if it is a null
stratum or if val
(β) = −n and there exists a splitting

⊕

i∈I Vi for [
, n, r, β]
such that

(i) for i ∈ I, the stratum [
i , ni , r, βi ] in EndF(Vi ) is simple;
(ii) for i, j ∈ I with i 
= j , the stratum [
{i, j}, n{i, j}, r, β{i, j}] is not equiva-

lent to a simple stratum in EndF(V{i, j}).

Let [
, n, r, β] be a semisimple stratum in A. We write E = F[β] and
Ei = F[βi ], so that E =⊕

i∈I Ei is a sum of fields, and set Bβ = CA(β) and
˜Gβ = B×β . By abuse of notation, we call an oF-lattice sequence which is a sum
of oEi -lattice sequences in Vi an oE-lattice sequence; thus 
 is an oE-lattice
sequence.We also call [E : F] = dimF E the degree of the semisimple stratum.

For [
, n, 0, β] a non-null semisimple stratum in A, we let

k0(β,
) = −min{r ∈ Z : r ≥ 0, [
, n, r, β] is not semisimple}

denote the critical exponent of [
, n, 0, β] and set kF(β) = 1
e(
)

k0(β,
); by
[42, §3.1], this is independent of
. For null strata we put k0(0,
) = kF(0) =
−∞.

It is possible to generalize the critical exponent to all pairs (β,
) where β
generates a product of fields, and 
 is an oE-lattice sequence as follows. We
set n = − val
(β) and e = e(
).
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Lemma 8.2 With the notation above, if β is non-zero then, for any sufficiently
large integer l, the stratum [
, n + le, 0,�−l

F β] is semisimple.

We can then define

k0(β,
) = k0(�
−l
F β,
)+ le,

for any integer l such that [
, n + le, 0,�−l
F β] is semisimple; this is inde-

pendent of the choice of l. We also set kF(β) = 1
e k0(β,
), which is again

independent of 
.

Proof Replacing β by �−l
F β for sufficiently large l, we can assume that

kF(βi ) < 0 for all i ∈ I, in which case n is positive. We need only show that
there is an integer l such that [
, n+le, 0,�−l

F β] is semisimple sowe suppose
for contradiction that there is no such integer. From the definition of semisimple
stratum, it is sufficient to consider the case that I has cardinality two. For each
l � 0 there is then by [39, Theorem 6.16] a simple stratum [
, n+ le, 0, γ (l)]
equivalent to [
, n + le, 0,�−l

F β] with γ (l) ∈⊕

i∈I Ai . Restricting these to
the i th block (where both strata are simple), we see that kF(γ (l)) = kF(�

−l
F βi );

in particular, kF(� l
Fγ

(l)) = kF(βi ) < 0 so that [
, n, 0,� l
Fγ

(l)] is a simple
stratum. But then � l

Fγ
(l) converges to β as l → ∞ so [41, Proposition 1.9]

implies that [
, n, 0, β] is simple. In particular, F[β] is a field, which contra-
dicts the fact that I has cardinality two. ��

Nowwe turn to the self-dual case. If [
, n, r, β] is self-dual and semisimple
with associated splittingV =⊕

i∈I Vi then, for each i ∈ I, there exists a unique
σ(i) = j ∈ I such that βi = −β j . We set I0 = {i ∈ I : σ(i) = i} and choose
a set of representatives I+ for the orbits of σ in I \ I0. Then we let I− = σ(I+)
so that we have a disjoint union I = I+ ∪ I0 ∪ I−. If J is a σ -stable subset of I,
then we write hJ for the restriction of the form h to VJ, so that (VJ, hJ) is an
ε-hermitian space over F/Fo; this applies in particular when J is a singleton
subset of I0.

Definition 8.3 A semisimple stratum [
, n, r, β] in A is called skew if it is
self-dual and the associated splitting

⊕

i∈I Vi is orthogonal with respect to the
ε-hermitian form h, i.e. I = I0 in the notation above.

In particular, a self-dual simple stratum is automatically skew. At the start
of the appendix, there is a brief discussion on the roles of skew and non-skew
self-dual semisimple objects.

As in the simple case, many results concerning semisimple strata are proved
“by induction along r” using the following fundamental approximation result.
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Proposition 8.4 ([42, Proposition 3.4], [29, Lemma 3.1]) Let [
, n, 0, β] be
a non-null semisimple stratum with associated splitting

⊕

i∈I Vi and let 0 <

r � n. Then there is a semisimple stratum [
, n, r, γ ] equivalent to [
, n, r, β]
with γ ∈⊕

i∈I Ai . Moreover, if [
, n, 0, β] is self-dual then [
, n, r, γ ] may
be taken to be self-dual also.

8.2 Semisimple characters

Let [
, n, r, β] be a semisimple stratum in A. Associated to it are an oF-order
H(β,
) in A defined inductively (see [42, Section 3.2]) and, for m � 1, the
compact open subgroups Hm(β,
) = H(β,
) ∩ Pm(
) of ˜G. We also have
a set C (
, r, β) of characters of Hr+1(β,
) called semisimple characters
(which depend on our fixed choice of additive character ψ). For each subset
J of I, there is a natural embedding Hr+1(βJ,
J) ↪→ Hr+1(β,
) and hence
a map C (
, r, β)→ C (
J, r, βJ) which we write θ �→ θJ. In the case when
J = {i} is a singleton, we call θi a simple block restriction of θ .

As in the simple case we have a notion of transfer for semisimple char-
acters. We define e(
E) to be the greatest common divisor of the integers
e(
i |oEi ), for i ∈ I. Given two semisimple strata [
, n, r, β] and [
′, n′, r ′, β]
in A, which satisfy

⌊

r
e(
E)

⌋

=
⌊

r ′
e(
′

E′ )

⌋

, there is a canonical bijection

τ
′,
,β : C (
, r, β) → C (
′, r ′, β) called transfer (see [42, Proposition
3.26] and [43, Remark 3.3]): if θ ∈ C (
, r, β) then τ
′,
,β(θ) is the unique
semisimple character θ ′ ∈ C (
′, r ′, β) such that 1 ∈ ˜G intertwines θ with θ ′.
Again, despite the dependence of the bijection on (r, r ′) we omit it from our
notation.

Now suppose that [
, n, r, β] is also self-dual. Then the subgroup
Hr+1(β,
) and the set C (
, r, β) of semisimple characters are stable under
σ (see [42, §3.6] and [29, §3.6]), and we set

Hr+1− (β,
) = Hr+1(β,
)� = Hr+1(β,
) ∩ G;
C�(
, r, β) = {θ ∈ C (
, r, β) : θσ = θ}.

As in the simple setting, Hr+1− (β,
) is a compact open subgroup of G, and we
define the set of self-dual semisimple characters of Hr+1− (β,
) by restriction:

C−(
, r, β) = {θ |Hr+1− (β,
)
: θ ∈ C�(
, r, β)}.

This restriction coincides with the Glauberman correspondence. By the
Glauberman correspondence, if θ− ∈ C−(
, r, β) then there is a unique
θ ∈ C�(
, r, β) whose restriction to Hr+1− (β,
) is θ−; we call θ the lift
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of θ− with respect to (
, r, β). (As before, we will simply write lift of θ−,
since the stratum will be given implicitly.)

A self-dual semisimple character θ− is called skew semisimple if there is a
skew semisimple stratum [
, n, r, β] such that θ− ∈ C−(
, r, β).

If we have two self-dual semisimple strata [
, n, r, β] and [
′, n′, r ′, β] in
A, which satisfy

⌊

r
e(
E)

⌋

=
⌊

r ′
e(
′

E′ )

⌋

, then the transfer map τ
′,
,β commutes

with the involution σ (see [42, Proposition 3.32] and [29, §3.7]). In particular
it restricts to a bijection τ
′,
,β : C−(
, r, β)→ C−(
′, r ′, β).

8.3 Matching splittings, intertwining and conjugacy

Let [
, n, r, β] and [
′, n′, r ′, β ′] be semisimple strata in A with associated
splittings V = ⊕

i∈I Vi and V = ⊕

i∈I′ V′i , respectively. The starting point
for this section is the Matching Theorem of the second and third authors.

Definition 8.5 Let θ ∈ C (
, r, β) and θ ′ ∈ C (
′, r ′, β ′) be semisimple
characters and suppose there are a bijection ζ : I→ I′ and g ∈ AutF(V) such
that, for each i ∈ I, we have:

(i) gVi = V′ζ(i);
(ii) gθi and θ ′ζ(i) intertwine in AutF(V′ζ(i)).

Then we say that ζ is a matching from (θ, β) to (θ ′, β ′), and that θ intertwines
θ ′ in AutF(V) with matching ζ .

The use of the terminology “intertwines with matching ζ” is justified by the
following result.

Proposition 8.6 Let θ ∈ C (
, r, β) and θ ′ ∈ C (
′, r ′, β ′) be semisimple
characters in ˜G, and suppose ζ : I→ I′ is a bijection between their index sets.
For i ∈ I, write I(θi , θ

′
ζ(i)) for the set of isomorphisms g ∈ HomF(Vi ,V′ζ(i))

such that gθi is intertwined with θ ′ζ(i) by the identity. Then

(

I
˜G(θ, θ

′) ∩
∏

i∈I
HomF(V

i ,V′ζ(i))
)

=
∏

i∈I
I(θi , θ

′
ζ(i)). (8.7)

Proof It is clear that the left hand side of (8.7) is contained in the right hand
side. Conversely, if gi ∈ I(θi , θ

′
ζ(i)), for i ∈ I, then g =∑

i∈ I gi intertwines
θ with θ ′, by the Iwahori decomposition of semisimple characters. ��

For the matching theorem we restrict to the case r = r ′ and e(
) = e(
′),
though we will see later that these hypotheses could be relaxed somewhat.
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Theorem 8.8 [39, Theorem 10.1] Suppose that e(
) = e(
′) and r = r ′,
and let θ ∈ C (
, r, β) and θ ′ ∈ C (
′, r, β ′) be semisimple characters which
intertwine in ˜G. Then there is a unique matching ζ : I → I′ from (θ, β) to
(θ ′, β ′). Moreover, if g ∈ ˜G satisfies gVi = V′ζ(i) for i ∈ I, then gθi and θ ′ζ(i)
intertwine in AutF(V′ζ(i)).

In particular, under the notation of the theorem we have e(Ei/F) =
e(E′ζ(i)/F), f (Ei/F) = f (E′ζ(i)/F), and k0(βi ,


i ) = k0(β ′ζ(i), 
′ζ(i)) by
Proposition 6.2.

Remark 8.9 Suppose [
, n, r, β] and [
′, n, r, β ′] are self-dual semisimple
strata and θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r, β ′) are self-dual semisimple
characters, with lifts θ, θ ′ respectively. If θ−, θ ′− intertwine in G then the lifts
intertwine so we have a matching ζ : I→ I′ from (θ, β) to (θ ′, β ′). Moreover,
by uniqueness of matchings, ζ is σ -equivariant. We will also say that ζ is a
matching from (θ−, β) to (θ ′−, β).

Remark 8.10 It follows from the σ -equivariance of the matching that if θ−
is a skew semisimple character and [
, n, r, β] is any self-dual semisimple
stratum such that θ− ∈ C (
, r, β) then the stratum [
, n, r, β] is in fact skew
semisimple.

Corollary 8.11 Under the assumptions of Theorem 8.8, suppose that there
exists g ∈ ˜G such that gβg−1 = β ′ and θ ′ = τ
′,g
,β ′(gθ). Then βi and β ′ζ(i)
have the same characteristic polynomial, for all i ∈ I.

Proof By conjugating by g we reduce to the case that β = β ′. As θ ′ =
τ
′,
,β(θ) we have 1 ∈ I

˜G(θ, θ
′). The identity map I→ I is then a matching

from (θ, β) to (θ ′, β ′) so the uniqueness in Theorem 8.8 implies that ζ is the
trivial permutation of the index set, which finishes the proof. ��
Remark 8.12 If the semisimple characters are not related by transfer, then the
conclusion of Corollary 8.11 need not hold, as the following example shows.
Suppose the characteristic of F is p and set I = {0, . . . , p − 1}. Take an
element β0 ∈ F of negative even valuation, and a regular lattice sequence
0.
Set n = − val
(β0) and r = n

2 , both of which are non-zeromultiples of e(
0).
Take an element λ ∈ (F ∩ a−r (


0)) \ a−r+1(
0) and set βi = β0 + iλ, for
i ∈ I. Then, putting β =∑

i∈I βi and 
 =⊕

i∈I 
0, the stratum [
, n, 0, β]
is semisimple.

By the results of [12, §3.5], the sets C (
0, r − 1, βi ) coincide, so multi-
plication by ψλ induces a permutation of C (
0, r − 1, β0). Choosing any
θ0 ∈ C (
0, r − 1, β0), there are unique semisimple characters θ, θ ′ ∈
C (
, r − 1,

∑

i∈I βi ) whose i th simple block restrictions are θ0ψiλ and
θ0ψ(i+1)λ respectively. Then the matching from (θ, β) to (θ ′, β) is a cyclic
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permutation, not the identity, but βi , βi+1 do not have the same characteristic
polynomial.

We need a description of the intertwining of transfers, which generalizes
[42, Theorem 3.22] and which we prove in the appendix (as Proposition A.10).
The statement involves a particular subgroup Sr (β,
) of P1(
) associated
to the semisimple stratum [
, n, r, β], which normalizes every character in
C (
, r, β) and is defined in [42, Section 3.2], where it is denoted �r (β,
)

(see also [39, Proposition 9.8], and [12, (3.5.1)] for the simple case).

Proposition 8.13 Suppose e(
) = e(
′), r = r ′ and β ′ = β.

(i) Let θ ∈ C (
, r, β) and θ ′ = τ
′,
,β(θ). Then

I
˜G(θ, θ

′) = Sr (β,

′)˜GβSr (β,
).

(ii) Suppose [
, n, r, β] and [
′, n, r, β] are self-dual and let
θ− ∈ C−(
, r, β) and θ ′− = τ
′,
,β(θ−). Then

IG(θ−, θ ′−) = (Sr (β,

′) ∩ G)Gβ(Sr (β,
) ∩ G).

We also have the following intertwining implies conjugacy theorem. In the
case of semisimple characters and skew semisimple characters, this is [39,
Theorems 10.2,10.3] respectively; we prove the case of self-dual semisimple
characters in the appendix (as Theorem A.13). The condition on a matching ζ
which allows one to deduce conjugacy is


i ( j)/
i ( j + 1) ∼= 
′ζ(i)( j)/
′ζ(i)( j + 1),

for all i ∈ I and all integers j. (8.14)

Theorem 8.15 Suppose that 
 = 
′ and r = r ′.

(i) Let θ ∈ C (
, r, β) and θ ′ ∈ C (
, r, β ′) be semisimple characters which
intertwine, such that the matching ζ from (θ, β) to (θ ′, β ′) satisfies (8.14).
Then there is an element of P(
)∩∏

i∈I HomF(Vi ,V′ζ(i)) which conju-
gates θ to θ ′.

(ii) Suppose [
, n, r, β] and [
, n, r, β ′] are self-dual and let θ− ∈
C−(
, r, β) and θ ′− ∈ C−(
, r, β ′) be self-dual semisimple charac-
ters which intertwine in G, such that the matching ζ from (θ−, β)
to (θ ′−, β ′) satisfies (8.14). Then there is an element of P−(
) ∩
∏

i∈I HomF(Vi ,V′ζ(i)) which conjugates θ− to θ ′−.

From these results we get the following important corollaries.
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Corollary 8.16 Suppose that e(
) = e(
′) and r = r ′, and let θ ∈
C (
, r, β) and θ ′ ∈ C (
′, r, β ′) be semisimple characters which intertwine
in ˜G, and let ζ : I→ I′ be the matching from (θ, β) to (θ ′, β ′). Then

I
˜G(θ, θ

′) = Sr (β
′,
′)

(

I
˜G(θ, θ

′) ∩
∏

i∈I
HomF(V

i ,V′ζ(i))
)

Sr (β,
).

Suppose further that [
, n, r, β] and [
′, n, r, β ′] are self-dual and that we
have a partition P of I into σ -stable subsets such that for each J ∈ P the her-
mitian spaces (VJ, hJ) and (V′ζ(J), hζ(J)) are isometric. Let θ− ∈ C−(
, r, β)
and θ ′− ∈ C (
′, r, β ′) be self-dual semisimple characters which intertwine in
G . Then

IG(θ−, θ ′−) = (Sr (β
′,
′) ∩ G)

(

IG(θ−, θ ′−) ∩
∏

J∈P
HomF(V

J,V′ζ(J))
)

(Sr (β,
) ∩ G).

Proof Let g ∈ ˜G be an element inducing the matching, that is, satisfying
the conditions in Theorem 8.8. For each index i the field extensions Ei/F and
E′ζ(i)/F have equal ramification indices and inertia degrees, by Proposition 6.2;

thus, by Lemma 5.1, there is an oEi -lattice sequence 

′′i in Vi which is con-

jugate in ˜Gi to g−1
′ζ(i). In particular, 
′′ = ⊕

i∈I 
′′i is then an oE-lattice
sequence in V which is ˜G-conjugate to 
′ by an element which maps 
′′i to

′ζ(i).

Let θ ′′ = τ
′′,
,β(θ) be the transfer of θ to C (
′′, r, β). Applying The-
orem 7.6 to the simple block restrictions of θ ′′, θ, θ ′ and Proposition 8.13,
we see that θ ′′ intertwines with θ ′. Then Theorem 8.15(i) implies that θ ′′ is
conjugate to θ ′ by an element g ∈ ˜G which maps 
′′i to 
′ζ(i).

Conjugating by this element, we can assume we are in the case θ ′′ = θ ′,

′′ = 
′ and Vi = V′ζ(i) for all i ∈ I. We can then identify the index sets
so that ζ is the identity. We have θ ∈ C (
, r, β) and θ ′ ∈ C (
′, r, β) ∩
C (
′, r, β ′) so that

Sr (β,

′)(K(
′) ∩˜Gβ) = I

˜G(θ
′) ∩ K(
′) = Sr (β

′,
′)(K(
′) ∩˜Gβ ′).

Then Proposition 8.13 implies

I
˜G(θ, θ

′) = Sr (β,

′)˜GβSr (β,
) = Sr (β,


′)(K(
′) ∩˜Gβ)˜GβSr (β,
)

= Sr (β
′,
′)(K(
′) ∩˜Gβ ′)˜GβSr (β,
)

⊆ Sr (β
′,
′)(I

˜G(θ, θ
′) ∩

∏

i

˜Gi )Sr (β,
),
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since˜Gβ and˜Gβ ′ are both contained in
∏

i
˜Gi . The final assertion now follows

from a standard cohomology argument as in [42, 4.14] (cf. also [26, 2.4]). ��

8.4 Concordance and Skolem–Noether

We now prove a conjecture of the second and third authors, [39, Conjec-
ture 10.4]. We let [
, n, r, β] and [
′, n, r, β ′] be self-dual semisimple strata
in A, with e(
) = e(
′) and with associated splittings V = ⊕

i∈I Vi and
V =⊕

i∈I′ V′i , respectively. We will write ϕi for the canonical embedding of
Ei = F[βi ] in Ai , and similarly ϕ′i . For θ− ∈ C−(
, r, β), we write θ for its lift
and θi for the simple block restrictions of θ ; if i ∈ I0 then θi is σ -invariant and
we write θ−,i for its restriction in C−(
i , r, βi ). We use similar notation for
θ ′− ∈ C−(
′, r, β ′). When we write about a matching from (θ−, β) to (θ ′−, β ′),
we mean a matching from (θ, β) to (θ ′, β ′).

Theorem 8.17 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r, β ′) be self-dual
semisimple characters which intertwine inG and let ζ : I→ I′ be the matching
from (θ−, β) to (θ ′−, β ′). Then, for i ∈ I0, the spaces (Vi , hi ) and (V′ζ(i), h′ζ(i))
are isometric and the characters θ−,i and θ ′−,ζ(i) intertwine by an isometry

from (Vi , hi ) to (V′ζ(i), h′ζ(i)). Moreover, the pairs (βi , ϕi ) and (β ′ζ(i), ϕ
′
ζ(i))

are (hi , h′ζ(i))-concordant.

In the proof of the theorem (and the subsequent corollaries), we abbreviate
V0 for VI0 , so that V⊥0 = VI+∪I− , and similarly V′0,V′⊥0 . We also write θ, θ ′
for the lifts of θ−, θ ′− respectively.

Proof Since the spaces V⊥0 and V′⊥0 have the same F-dimension and are hyper-
bolic, they are isometric ε-hermitian spaces over F/Fo; thus V0 andV′0 are also
isometric and Corollary 8.16 then reduces us to the case I = I0. Moreover, the
final assertion follows from the first and Proposition 6.10 so, by Corollary 8.16
again, it is enough to show that Vi is isometric to V′ζ(i) for all i ∈ I.

We proceed by induction along r . When r = n, both characters are triv-
ial so there is nothing to show, while the case r = n − 1 is given by [39,
Proposition 7.10]. Suppose now that r < n − 1 and let [
, n, r + 1, γ ] and
[
′, n, r + 1, γ ′] be self-dual semisimple strata equivalent to [
, n, r + 1, β]
and [
′, n, r+1, β ′], respectively, such that γ ∈∏

i∈I Ai and γ ′ ∈∏

j∈I′ A′ j .
By the induction hypothesis and Corollary 8.16 it is sufficient to assume
that γ and γ ′ generate field extensions of F. Then Lemma 6.6(ii) and
Lemma 6.11 imply that there exist simple self-dual strata [
, n, r + 1, γ̃ ]
and [
′, n, r + 1, γ̃ ′] such that γ̃ and γ̃ ′ have the same minimal polynomial,
their canonical embeddings are concordant, and

C (
, r + 1, γ ) = C (
, r + 1, γ̃ ), C (
′, r + 1, γ ′) = C (
′, r + 1, γ̃ ′).
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In particular, there is an element g in G such that gγ̃ g−1 = γ̃ ′. The characters
θ |Hr+2(γ̃ ,
) and τg
,
′,γ̃ ′(θ ′|Hr+2(γ̃ ′,
′)) intertwine by an element of G, by
Corollary 7.13, and therefore are conjugate by an element g′ ∈ G which maps

 to g
, by Proposition 6.8. Thus

C (
, r + 1, γ ) = C (
, r + 1, γ̃ ′g′)

and we can replace γ̃ by γ̃ ′g′ ; that is, we can assume without loss of generality
that γ̃ = γ̃ ′g′ . We only need to prove the result for g′θ and θ ′ so we can
assume further that γ̃ = γ̃ ′ and g′ = 1, that is, θ |Hr+2(
,γ̃ ) is the transfer of
θ ′|Hr+2(
′,γ̃ ′) from 
′ to 
.

By the translation principle [39, Theorem 9.26] there are a skew semisimple
stratum [
, n, r, β̃], such that [
, n, r+1, β̃] is equivalent to [
, n, r+1, γ̃ ],
and u ∈ P1−(
), which normalizes [
, n, r + 1, γ̃ ] up to equivalence, such
that

C (
, r, β) = C (
, r, β̃), and uγ̃ u−1 ∈
∏

i∈Ĩ
Ai ,

where V = ⊕

i∈Ĩ Vi is the splitting of [
, n, r, β̃]. If we denote by τ the
matching between (θ, β) and (θ, β̃) then Proposition A.9(ii) implies that Vi is
isometric toVτ(i) for all i ∈ I and there is an element of the normalizer of θ inG
which realizes thismatching.Analogously,we have a skew semisimple stratum
[
′, n, r, β̃ ′], such that [
′, n, r + 1, β̃ ′] is equivalent to [
′, n, r + 1, γ̃ ], and
u′ ∈ P1−(
′), and a matching τ ′ between (θ ′, β ′) and (θ ′, β̃ ′). Thus we need
only show that Vτ(i) and Vτ ′ζ(i) are isometric. Since matchings are unique,
τ ′ζ τ−1 is the matching between (θ, β̃) and (θ ′, β̃ ′), and we are thus reduced
to the case β = β̃ and β ′ = β̃ ′.

Now [
, n, r + 1, u−1βu] has splitting ⊕

i∈I u−1Vi and is equivalent to
[
, n, r + 1, γ̃ ], with γ̃ ∈ ∏

i∈I u−1Ai u, and θu|Hr+2(γ̃ ,
) = θ |Hr+2(γ̃ ,
).
Since u−1Vi is isometric to Vi , if we replace (θ, β) by (θu, u−1βu)we reduce
further to the case γ̃ = γ . Similarly, replacing (θ ′, β ′) by (θ ′u′, u′−1β ′u′) we
see that we may assume γ = γ̃ = γ̃ ′ = γ ′.

Now we take θ ′0 ∈ C (
′, r, γ ) such that θ ′ = θ ′0ψβ ′−γ . If we set θ0 =
τ
,
′,γ (θ ′0) then the restrictions of θ and θ0 coincide on Hr+2(γ,
)) so there
exists c ∈ (

∏

i A
i )− ∩ a−r−1 such that θ = θ0ψβ−γ+c. Moreover, since then

θ0 and θ0ψc are both simple characters in C (
, r, γ ), the character ψc is
intertwined by all of ˜Gγ and, writing sγ for an equivariant tame corestriction
with respect to γ , it follows from [35, Lemma 3.10] that sγ (c) is congruent to
an element of F[γ ] modulo a−r .

Now Lemma A.12 implies that the self-dual strata [
, r + 1, r, sγ (β −
γ + c)] and [
′, r + 1, r, sγ (β ′ − γ )] intertwine in G; moreover, these strata
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are equivalent to self-dual semisimple strata with splittings V = ⊕iVi and
V = ⊕i∈I′V′i , respectively, by [39, Theorem 6.15]. The matching between
these latter strata is still ζ . Indeed, by [39, Proposition 7.1] there are a bijection
ξ : I→ I′ and an element g̃ ∈ ˜Gγ which intertwines [
, r+1, r, sγ (β−γ+c)]
with [
′, r+1, r, sγ (β ′−γ )] and satisfies g̃Vi = V′ξ(i). Then idVi intertwines
[
i , r + 1, r, sγ (β− γ + c)|Vi ]with [g̃−1
′ξ(i), r + 1, r, sγ (g̃−1β ′ξ(i)g̃− γ )],
for each i ∈ I. Thus θi and θ

′g̃
ξ(i) intertwine, by Lemma A.11(ii), and the

uniqueness of the matching implies that ξ = ζ . Finally, the base case implies
that there is an element g ∈ Gγ such that gVi = V′ζ(i), for all i ∈ I, which
gives the required isometry. ��

Finally,wededuce fromTheorem8.17 a semisimpleSkolem–Noether result:

Corollary 8.18 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r, β ′) be self-dual
semisimple characters which intertwine in G, let ζ : I → I′ be the match-
ing from (θ−, β) to (θ ′−, β ′), and suppose that βi and β ′ζ(i) have the same
characteristic polynomial for all indices i . Then β and β ′ are conjugate in G.

Proof By Theorem 8.17, we can assume that the matching ζ is the identity
of I. Now, the characters θi and θ ′i intertwine in Gi for all i ∈ I0. Hence, by
[39, Theorem 5.2], βi and β ′i are conjugate by an element of U(Vi , hi ), i ∈ I0.
Thus β and β ′ are conjugate in G. ��

For Theorem 11.9 below, the following generalization of Lemma 6.11 is
crucial: it allows us, when we have self-dual semisimple characters which
intertwine, to find strata giving rise to these characterswhose defining elements
are conjugate.

Corollary 8.19 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r, β ′) be self-dual
semisimple characters which intertwine by an element of G, and let ζ : I→ I′
be the matching from (θ−, β) to (θ ′−, β ′). Then there exist self-dual semisimple
strata [
, n, r, β̃] and [
′, n, r, β̃ ′] with splittings V = ⊕i∈IVi and V =
⊕i∈I′V′i respectively, such that C (
, r, β) = C (
′, r, β̃) and C (
, r, β ′) =
C (
′, r, β̃ ′), and such that, for all i ∈ I, the characteristic polynomials of β̃i
and β̃ ′ζ(i) coincide. Moreover, β̃ and β̃ ′ are conjugate by an element of G.

Note that the final claim of the theorem is immediate from Corollary 8.18.

Proof The proof is by induction along r . In the case of trivial characters we
can just take β̃ and β̃ ′ to be zero. The case r = n − 1 is the case of self-
dual semisimple strata. By [39, Proposition 7.1] we have, for all i ∈ I0 ∪ I+,
that [
i ⊕ 
′ζ(i), n, r, βi ⊕ β ′ζ(i)] is equivalent to a simple stratum [
i ⊕

′ζ(i), n, r, β̃i ⊕ β̃ ′ζ(i)] split by Vi ⊕ V′ζ(i); moreover, for i ∈ I0, this can be
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chosen self-dual by [39, Theorem 6.16]. We set β̃i := −β̃σ (i) for i ∈ I− and
β̃ :=∑

i β̃i and we define β̃ ′ analogously. They satisfy the requirements.
We now come to the induction step.We consider self-dual semisimple strata

[
, n, r +1, γ ] equivalent to [
, n, r +1, β], and [
, n, r +1, γ ′] equivalent
to [
, n, r + 1, β ′], such that γ ∈ ∏

i∈I Ai and γ ′ ∈ ∏

i∈I′ Ai . We first show
that we can assume that γ = γ ′.

We denote the splittings of γ and γ ′ by V = ⊕ j∈JV j and V = ⊕ j∈J′V′ j ,
respectively. Now the semisimple characters θ |Hr+2(γ,
) and θ ′|Hr+2(γ ′,
)

intertwine. Then, denoting by ξ : J→ J′ their matching, the induction hypoth-
esis implies that there are self-dual semisimple strata [
, n, r + 1, γ̃ ] and
[
′, n, r + 1, γ̃ ′], with splittings V = ⊕ j∈JV j and V = ⊕ j∈J′V′ j respec-
tively, such that C (
, r + 1, γ ) = C (
, r + 1, γ̃ ) and C (
′, r + 1, γ ′) =
C (
′, r +1, γ̃ ′), and such that γ̃ j and γ̃ ′ξ( j) have the same characteristic poly-
nomial. By Corollary 8.18 there is then an element g ∈ G such that gγ̃ = γ̃ ′.
We write θγ , θ ′γ ′ and θ ′′

γ̃ ′ for the characters θ |Hr+2(γ,
), θ
′|Hr+2(γ ′,
′) and the

transfer τg
,
′,γ̃ ′(θ ′|Hr+2(γ ′,
′)), respectively. By Theorem 8.8, for j ∈ J+
there exists an F-linear isomorphism V j → V′ξ( j) which intertwines θγ, j and
θ ′
γ ′,ξ( j); since θ

′
γ ′ and θ ′′

γ̃ ′ are intertwined by the identity (so also θ ′
γ ′,ξ( j) and

θ ′′
γ̃ ′,ξ( j) are intertwined by the identity), Theorem 7.6 implies that there is an

isomorphism g j : V j → V′ξ( j) which intertwines θγ, j and θ ′′
γ̃ ′,ξ( j). By the

same argument, using Theorem 8.17 and Corollary 7.13, for each j ∈ Jo there
is an isometry g j : V j → V′ξ( j) which intertwines θγ, j and θ ′′

γ̃ ′,ξ( j). Finally,

we put g j = g− j
−1, for j ∈ J−, and g = ∑

j∈J g j . Then Proposition 8.6
implies that g is an element of G which intertwines θγ and θ ′′

γ̃ ′ with matching
ξ .

Now Theorem 8.15 implies that there is an element of G which conjugates
θ |Hr+2(γ,
) to τg
,
′,γ̃ ′(θ ′|Hr+2(γ ′,
′)), and conjugates their splittings. Conju-
gating by this element, we are reduced to the situation that θ |Hr+2(γ,
) and
θ ′|Hr+2(γ ′,
′) intertwine by the identity, there exists an element γ̃ ′ such that
the strata [
, n, r + 1, γ̃ ′] and [
′, n, r + 1, γ̃ ′] are self-dual semisimple with
C (
, r, γ ) = C (
, r, γ̃ ′) and C (
′, r, γ ′) = C (
′, r, γ̃ ′), and the splittings
for γ , γ ′ and γ̃ ′ coincide. Finally, applying the translation principle Theo-
rem A.1 and Proposition A.9(ii), as in the proof of Theorem 8.17, we reduce
to the case that γ = γ ′ = γ̃ ′ and ξ is the identity map.

Now we take θ ′0 ∈ C (
′, r, γ ) such that θ ′ = θ ′0ψβ ′−γ . If we set θ0 =
τ
,
′,γ (θ ′0) then the restrictions of θ and θ0 coincide on Hr+2(γ,
)) so there
exists c ∈ (

∏

i A
i )− ∩ a−r−1 such that θ = θ0ψβ−γ+c. By Corollary 8.16 the

characters θ j and θ ′j intertwine (and by an isometry if j ∈ J0). Writing sγ j for
an equivariant tame corestriction with respect to γ j , Lemmas A.11 and A.12
imply that the strata [
 j , r+1, r, sγ j (β j−γ j+c j )] and [
′ j , r+1, r, sγ j (β

′
j−
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γ j )] intertwine (by an element of Gγ j if j ∈ J0). Thus [39, Proposition 7.6]
implies that [
 j , n, r, β j +c j ] and [
′ j , n, r, β ′j ] intertwine (by an element of

G ∩ AutF(V j ) if j ∈ J0) and moreover that [
, n, r, β + c] and [
′, n, r, β ′]
intertwine by an element of G. Furthermore [
, n, r, β + c] is equivalent to
a semisimple stratum whose splitting is a coarsening of the splitting of β by
[39, Theorem 6.15]. In fact the splitting cannot be a proper coarsening by [39,
Proposition 7.1], because [
, n, r, β + c] intertwines with [
, n, r, β ′] which
has the same number of blocks as β. Now we proceed as in the base case
to obtain skew elements β̃ and β̃ ′ such that [
, n, r, β + c] is equivalent to
[
, n, r, β̃] and [
′, n, r, β̃ ′] is equivalent to [
′, n, r, β ′]. We further have

θ ∈ C (
, r, β) and θ ∈ C (
, r, γ )ψβ−γ+c = C (
, r, β)ψc = C (
, r, β̃)

so that C (
, r, β̃) = C (
, r, β), and also C (
′, r, β̃ ′) = C (
′, r, β ′), as
required. ��

9 Self-dual semisimple endo-classes

In this section, we introduce one of the central concepts of the article, self-dual
semisimple endo-equivalence. We generalize the previous notions of (self-
dual) simple endo-equivalence to the semisimple setting and, via theMatching
Theorem, reduce the fundamental properties of (self-dual) semisimple endo-
equivalence to the (self-dual) simple setting we treated in Sect. 7.

9.1 Self-dual semisimple pairs

Definition 9.1 A semisimple pair is a pair (k, β) consisting of an element β
of a finite-dimensional semisimple commutative F-algebra and an integer k
such that, writing E = F[β] =⊕

i∈I Ei as a sum of fields, we have

0 � k/eE < −kF(β),

where eE = lcmi∈I ei is the lowest commonmultiple of the ramification indices
ei = e(Ei/F). (See after Lemma 8.2 for the definition of kF(β) in this gen-
erality.) We say that I is the index set of (k, β). Writing β = ∑

i∈I βi for the

decomposition of β in E = ⊕

i∈I Ei and setting ki =
⌊

kei
eE

⌋

, each (ki , βi )

is a simple pair, because kF(βi ) ≤ kF(β), and we call these the component
simple pairs of (k, β). More generally, if J is a non-empty subset of I and we

set βJ = ∑

j∈J β j and kJ =
⌊

keJ
eE

⌋

, where eJ = lcm j∈J e j , then (kJ, βJ) is a

semisimple pair.
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A semisimple pair (k, β) is called self-dual if there exists an extension of
the Galois involution x �→ x on F to an involution on E = F[β] such that
β = −β.

Let (k, β) be a self-dual semisimple pair, and write the minimal polyno-
mial of β as �(X) = ∏

i∈I �i (X) with �i (X) irreducible, so that Ei �
F[X ]/(�i (X)). The action of x �→ x on the primitive idempotents of E defines
an action of σ on I. We let I0 = {i ∈ I : σ(i) = i}, and choose a set of rep-
resentatives I+ for the orbits of σ in I\I0. Then we let I− = σ(I+) so that we
have a disjoint union I = I+ ∪ I0 ∪ I−.

Definition 9.2 A self-dual semisimple pair (k, β) is called skew if I = I0 in
the notation above.

Let (k, β) be a semisimple pair, and letQ(k, β) denote the class of quadru-
ples (V, ϕ,
, r) consisting of:

(i) a finite dimensional F-vector space V;
(ii) an embedding ϕ : E ↪→ A, where A = EndF(V);
(iii) an oϕ(E)-lattice sequence 
 in V;
(iv) and an integer r such that �r/e(
E)� = k, where we recall that e(
E) =

e(
|oF)/eE is the greatest common divisor of the e(
i |oϕ(Ei )).

Given (V, ϕ,
, r) ∈ Q(k, β), setting n = max{r,− val
(ϕ(β))}we obtain a
semisimple stratum [
, n, r, ϕ(β)] with splitting V = ⊕

i∈I Vi , where Vi =
ker(�i (ϕ(β))), which we call a realization of the semisimple pair (k, β). Note
also that, since ϕ is an embedding, the spaces Vi are all non-zero.

We let C(k, β) denote the class of all semisimple characters defined by a
realization of the semisimple pair (k, β):

C(k, β) =
⋃

(V,ϕ,
,r)∈Q(k,β)

C (
, r, ϕ(β)).

Now let (k, β) be a self-dual semisimple pair. Let (V, h) be a finite-
dimensional ε-hermitian space over F/Fo and A = EndF(V). We say that
an embedding ϕ : E ↪→ A is self-dual if ϕ(x) = ϕ(x), for all x ∈ E. Let
Q−(k, β) denote the class of quadruples ((V, h), ϕ,
, r) where

(i) (V, h) is a finite-dimensional ε-hermitian space over F/Fo;
(ii) (V, ϕ,
, r) ∈ Q(k, β);
(iii) and ϕ and 
 are self-dual.

Given such a quadruple ((V, h), ϕ,
, r) ∈ Q−(k, β), the realization
[
, n, r, ϕ(β)] is a self-dual semisimple stratum, which we call a self-dual
realization of (k, β).
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We let C−(k, β) denote the class of all self-dual semisimple characters
defined by a realization of the self-dual semisimple pair (k, β):

C−(k, β) =
⋃

((V,h),ϕ,
,r)∈Q−(k,β)
C−(
, r, ϕ(β)).

9.2 Transfer of semisimple characters

Let (k, β) be a semisimple pair with index set I, and let (V, ϕ,
, r), (V′,
ϕ′,
′, r ′) ∈ Q(k, β). Let θ ∈ C (
, r, ϕ(β)) and let ˜M denote the Levi
subgroup of ˜G = AutF(V) associated to the decomposition V = ⊕

i∈I Vi .
Then

θ |Hr+1(ϕ(β),
)∩˜M=
⊗

i∈I
θi ,

with θi ∈ C (
i , r, ϕ(βi )) simple characters. Put θ ′i = τ
′i ,
i ,β(θi ) and also
write ˜M′ for the Levi subgroup of ˜G′ = AutF(V′) which is the stabilizer of
V′ =⊕

i∈I V′i .
Lemma 9.3 There is a unique semisimple character θ ′ ∈ C (
′, r ′, ϕ′(β))
satisfying

θ ′ |Hr ′+1(ϕ′(β),
′)∩˜M′=
⊗

i∈I
θ ′i .

Writing τ
′,
,β(θ) for the character given by the lemma, this then defines
a bijection

τ
′,
,β : C (
, r, ϕ(β))→ C (
′, r ′, ϕ′(β))

which we call transfer.

Proof If˜P′ is any parabolic subgroup of ˜G′ with Levi factor ˜M′ and unipotent
radical ˜U′ then Hr ′+1(ϕ′(β),
′) has an Iwahori decomposition with respect
to (˜M′,˜P′) and the restriction to Hr ′+1(ϕ′(β),
′) ∩ ˜U′ of any semisimple
character in C (
′, r ′, ϕ′(β)) is trivial by [42, Lemma 3.15]. Uniqueness is
then immediate so it only remains to prove existence.

Passing to an affine translation of [
, n, r, ϕ(β)], we can assume that
e(
|oF) > dimF V′. Then, by the †-construction, we obtain θ† ∈ C (
†, r,
ϕ(β)†) (see [26, Lemma 3.3]), whereV† =⊕

i∈I(Vi )† and θ† |Hr+1(β†
i ,(


i )†)
=

θ
†
i . Moreover,

dimF(V
i )† ≥ e(
|oF) ≥ dimF V

′ ≥ dimF V
′i .
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Hence, as θ†i is the transfer of θi to (
i )† and the transfer for simple characters
is transitive, by replacing θ with θ† we can assume dimF Vi ≥ dimF V′i for
each i ∈ I. Then there are an Ei -linear monomorphism gi : V′i → Vi and an
Ei -subspace Wi of Vi such that Wi ⊕ giV′i = Vi splits 
i . Write g for the
direct sum of the gi so that we have

ϕ(x) |gV′= gϕ′(x)g−1, for x ∈ E.

Let θ̃ be the transfer of θ |Hr+1(ϕ(β)|gV′ ,
∩gV′) from 
 ∩ gV′ to g
′, see [42,
Proposition 3.26]. Then g−1 θ̃ satisfies the desired properties. ��

Now suppose (k, β) is a self-dual semisimple pair and [
, n, r, ϕ(β)] and
[
′, n′, r ′, ϕ′(β)] are self-dual realizations. Then, as in [42, Proposition 3.32],
the bijection τ
′,
,β commuteswith the restrictions of the actions of the adjoint
involutions of h and h′ on C (
, r, ϕ(β)) and C (
′, r ′, ϕ′(β)), respectively.
Thus it restricts to give a bijection

τ
′,
,β : C−(
, r, ϕ(β))→ C−(
′, r ′, ϕ′(β)).

Thanks to this result and with the definition of semisimple pairs, we can now
define (self-dual) potential semisimple characters.

9.3 Self-dual pss-characters

Let (k, β) be a semisimple pair.

Definition 9.4 A potential semisimple character, or pss-character, supported
on (k, β) is a function � : Q(k, β)→ C(k, β) such that

(i) for all (V, ϕ,
, r) ∈ Q(k, β), we have�(V, ϕ,
, r) ∈ C (
, r, ϕ(β));
(ii) and, for all pairs (V, ϕ,
, r), (V′, ϕ′,
′, r ′) ∈ Q(k, β), we have

�(V′, ϕ′,
′, r ′) = τ
′,
,β(�(V, ϕ,
, r)).

We call the values of a pss-character its realizations; by definition a pss-
character is determined by any one of its realizations.We also define the degree
of a pss-character � supported on (k, β) to be deg(�) = [F[β] : F].
Definition 9.5 Let (k, β) be a self-dual semisimple pair.

(i) A pss-character � supported on (k, β) is called σ -invariant if, for any
(or equivalently, some) ((V, h), ϕ,
, r) ∈ Q−(k, β) the realization
�(V, ϕ,
, r) is σ -invariant.
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(ii) A self-dual pss-character supported on (k, β) is a function �− :
Q−(k, β) → C−(k, β) such that, for all ((V, h), ϕ,
, r), ((V′, h′),
ϕ′,
′, r ′) ∈ Q−(k, β),

�−((V, h), ϕ,
, r) ∈ C−(
, r, ϕ(β));
�−((V′, h′), ϕ′,
′, r ′) = τ
′,
,β(�−((V, h), ϕ,
, r)).

We call the values of a self-dual pss-character its self-dual realizations;
by definition a self-dual pss-character is determined by any one of its real-
izations. As in the simple setting, by the Glauberman correspondence, every
self-dual pss-character comes uniquely from the restriction of a σ -invariant
pss-character. More precisely, for a self-dual pss-character �− supported on
(k, β), there is a unique σ -invariant pss-character�, supported on (k, β), such
that the following diagram commutes:

Q−(k, β)

Q(k, β) C(k, β)

Gl ◦ �−

�

where the vertical arrow is the forgetful map ((V, h), ϕ,
, r) �→ (V, ϕ,
, r)
and Gl ◦ �−((V, h), ϕ,
, r) is the Glauberman lift in C (
, r, ϕ(β)) of
�−((V, h), ϕ,
, r) ∈ C−(
, r, ϕ(β)).

We call � the lift of �−. We also define the degree of �− to be the degree
of its lift, so deg(�−) = [F[β] : F]. We now see how a pss-character deter-
mines a set of ps-characters. Suppose we are given a semisimple character
θ ∈ C−(
, r, β), whose index set splits as a disjoint union I = I+ ∪ I0 ∪ I−
as above; then we have

V =
⊕

i∈I+
(Vi ⊕ Vσ(i))⊕

⊕

i∈I0
Vi .

Moreover, writing M for the subgroup of G stabilizing this decomposition,
which is the intersection with G of the Levi subgroup ˜M of ˜G stabilizing the
decomposition, we have
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Hr+1− (β,
) ∩M �
∏

i∈I+
Hr+1(βi ,


i )×
∏

i∈I0
Hr+1− (βi ,


i ),

by applying [43, Proposition 5.4] to Hr+1(β,
) ∩ ˜M and intersecting with
G. Then, after identifying Hr+1− (β,
)∩M with the decomposition above we
have

θ |Hr+1− (β,
)∩M =
⊗

i∈I+
θ2i ⊗

⊗

i∈I0
θi,−

with θi ∈ C (
i , r, βi ), i ∈ I+ and θi,− ∈ C−(
i , r, βi ), i ∈ I0, by applying
[43, Proposition 5.5]. Moreover, as in [3, 4.3 Lemma 1], for i ∈ I+ we have

Hr+1(βi ,

i ) = Hr+1(2βi ,


i ) and θ2i ∈ C (
i , r, 2βi ).

The above decomposition generalizes to pss-characters as follows:

Lemma 9.6 Let (k, β) be a semisimple pair with index set I and component
simple pairs (ki , βi ).

(i) Let � be a pss-character supported on (k, β) and let (V, ϕ,
, r) ∈
Q(k, β).

For each J ⊆ I there is a unique pss-character �J supported on (kJ, βJ)
such that

�(V, ϕ,
, r) |Hr+1(ϕ(βJ),
J)= �J(V
J, ϕ|EJ,
J, r). (9.7)

Moreover, the pss-character �J does not depend on the choice of
(V, ϕ,
, r) ∈ Q(k, β).

(ii) If � is a pss-character supported on (k, β) and, for i ∈ I, we write
�i for the ps-character given by (i), then the �i are pairwise endo-
inequivalent.

(iii) Suppose that (k, β) is self-dual. Let �− be a self-dual pss-character
supported on (k, β)with lift�. For J ⊆ I, write�J for the pss-character
given by (i).

Let ((V, h), ϕ,
, r) ∈ Q−(k, β).
(a) For all σ -stable J ⊆ I, there is a unique self-dual pss-character �J,−

supported on (kJ, βJ) such that

�−((V, h), ϕ,
, r) |Hr+1− (ϕ(βJ),
J)
= �J,−((VJ, h|VJ), ϕ|EJ,
J, r).

Moreover, �J is the lift of �J,−.
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(b) For all i ∈ I+, the map �2
i is the unique ps-character supported on

(ki , 2βi ) such that

�−((V, h), ϕ,
, r) |Hr+1(ϕ(βi ),

i )= �2

i (V
i , ϕ|Ei ,


i , r).

Proof Note first that all uniqueness statements follow from the compatibility
with transfer. So we concentrate on the remaining parts of the assertions.
For (i) we define�J by (9.7) and transfer; it does not depend on the choice of
(V, ϕ,
, r) by Lemma 9.3. The same strategy works for the construction of
�J.− in (a); but then the values of�J.− are the restrictions of the corresponding
values of�J, which proves both that the definition is independent of the choice
of ((V, h), ϕ,
, r) and that �J is the lift of �J,−. Finally, for i ∈ I+, once
one has checked that �2

i is a ps-character supported on (ki , 2βi ), the same
argument proves (b).

It remains to prove (ii). Suppose for contradiction that there are distinct i, j ∈
I such that �i ≈ � j and let ζ : I → I be the transposition which exchanges
i and j . Let (V, ϕ,
, r) ∈ Q(k, β) be such that dimF Vi = dimF V j and
consider θ = �(V, ϕ,
, r), which has simple block restrictions θi , θ j . If
g : Vi → V j is any isomorphism then, since �i ,� j are endo-equivalent, the
simple characters gθi and θ j intertwine in AutF(V j ); replacing g if necessary,
we can assume that gθi and θ j are intertwined by the identity. In particular,
we see that I(θi , θζ(i)) 
= ∅, in the notation of Proposition 8.6. By symmetry
we also have I(θ j , θζ( j)) 
= ∅. Since the identity lies in I(θl, θζ(l)), for any
l 
= i, j , Proposition 8.6 implies that θ is intertwined with itself by an element
of AutF(V) with matching ζ . However, this contradicts the uniqueness of
matchings in Theorem 8.8, since the identity certainly intertwines θ with itself,
with matching the identity. ��

This lemma shows that we can identify the index set of a semisimple pair
(k, β) with the index set of any realization of any pss-character supported on
(k, β). Given a pss-character� supported on (k, β), we call the ps-characters
�i supported on (ki , βi ) given by the lemma the component ps-characters of
�.

9.4 Semisimple endo-classes

Let � be a pss-character supported on the semisimple pair (k, β), and let �′
be a pss-character supported on the semisimple pair (k′, β ′).

Definition 9.8 We say that � and �′ are endo-equivalent, denoted � ≈ �′,
if

(i) deg(�) = deg(�′);
(ii) k = k′;
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(iii) there exist realizations on a common F-vector space which intertwine,
i.e. there exist a finite-dimensional F-vector space V and quadruples
(V, ϕ,
, r) ∈ Q(k, β) and (V, ϕ′,
′, r ′) ∈ Q(k′, β ′) such that
�(V, ϕ,
, r) and �′(V, ϕ′,
′, r ′) intertwine in ˜G = AutF(V).

Theorem 9.9 Let � and �′ be pss-characters supported on semisimple pairs
(k, β) and (k, β ′) respectively.

(i) We have � ≈ �′ if and only if there is a bijection ζ : I → I′ such
that, for all i ∈ I, the component ps-characters �i and �ζ(i) are endo-
equivalent. Moreover, if� ≈ �′ then the map ζ is uniquely determined.

(ii) Suppose that � ≈ �′ and let ζ : I → I′ be the bijection of (i). Let
(V, ϕ,
, r) ∈ Q(k, β) and (V′, ϕ′,
′, r ′) ∈ Q(k, β ′).

(a) For all i ∈ I, we have

e(Ei |F) = e(E′ζ(i)|F), f (Ei |F) = f (E′ζ(i)|F),
kF(βi ) = kF(β

′
ζ(i)). (9.10)

(b) If e(
) = e(
′) then (V, ϕ,
, r ′) ∈ Q(k, β).
(c) If V = V′ and �(V, ϕ,
, r) and �′(V, ϕ′,
′, r ′) intertwine in ˜G

with matching ξ , then ξ = ζ .
(d) If V = V′ and dimF(Vi ) = dimF(V′ζ(i)), for all i ∈ I, then

�(V, ϕ,
, r) and �′(V, ϕ′,
′, r ′) intertwine in ˜G with matching
ζ .

(iii) Endo-equivalence of pss-characters is an equivalence relation.

Proof Note first that (iii) follows from (i) and Remark 7.2(iii). Moreover, the
uniqueness statement in (i) follows immediately from Lemma 9.6(ii) and the
transitivity of endo-equivalence for ps-characters.

Suppose that ξ : I → I′ is a bijection such that �i ≈ �′ξ(i), for all i ∈ I.
From Proposition 7.3(i) it follows that � and �′ have the same degree. Let
(V, ϕ,
, r) ∈ Q(k, β) and (V, ϕ′,
′, r ′) ∈ Q(k, β ′) be such that Vi and
V′ξ(i) have the same dimension for all i ∈ I, and set θ = �(V, ϕ,
, r)
and θ ′ = �′(V, ϕ′,
′, r ′). Then the simple block restrictions θi and θ ′ξ(i)
intertwine by an F-linear isomorphism from Vi to V′ξ(i), for all i ∈ I, by
Theorem 7.5. Then θ and θ ′ intertwine in AutF(V)with matching ξ , by Propo-
sition 8.6, so� ≈ �′. This proves one direction of (i), and also that (iid) follows
from (i).

Conversely, suppose that we have (V, ϕ,
, r) ∈ Q(k, β) and (V, ϕ′,

′, r ′) ∈ Q(k, β ′) such that θ = �(V, ϕ,
, r) and θ ′ = �′(V, ϕ′,
′, r ′)
intertwine in ˜G = AutF(V). Replacing 
,
′ in their affine classes, we can
assume that 
 and 
′ have the same oF-period and, exchanging them if nec-
essary, that r ≤ r ′. To ease notation, we will identify β, β ′ with their images
under the embeddings ϕ, ϕ′ respectively.
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Suppose for contradiction that [
, n, r ′, β] is not semisimple and let
[
, n, r ′, γ ] be a semisimple stratum equivalent to it such that γ ∈∏

i A
i . By

Theorem 8.8 and Proposition 6.2 the algebras F[γ ] and E′ = F[β ′] have the
same degree and eE′ = eF[γ ]. As the pss-characters are endo-equivalent F[γ ]
also has the same F-degree as E = F[β]. If J is the index set for γ , then #J ≤ #I
and, for i ∈ I, j ∈ J with Vi ⊆ V j , we have e(F[γ j ]/F) | e(F[βi ]/F) and
f (F[γ j ]/F) | f (F[βi ]/F). Thus the equality [F[γ ] : F] = [F[β] : F] implies
that #J = #I, so we can identify J with I, and that e(F[γi ]/F) = e(F[βi ]/F) and
f (F[γi ]/F) = f (F[βi ]/F). In particular, we deduce that eE = eF[γ ] = eE′ .
Since [
, n, r ′, β] is not semisimple, there must then be a (unique) index

i0 with γi0 = 0 and βi0 ∈ F×, by [39, 6.4, 6.1]. This implies that k0(β,
) =
k0(βi0,


i0) is a multiple of e(
i0 |oEi0
) = e(
|oF ), so that

r ′

e(
|oF) � −k0(β,
)

e(
|oF) >
r

e(
|oF) ,

with the middle term an integer. In particular, we deduce that

⌊

r ′

e(
|oF)
⌋

>

⌊

r

e(
|oF)
⌋

.

But
⌊

r

e(
|oF)
⌋

=
⌊

r

e(
E)eE

⌋

=
⌊

k

eE

⌋

=
⌊

k

eE′

⌋

=
⌊

r ′

e(
′E′ )eE′

⌋

=
⌊

r ′

e(
′|oF)
⌋

,

which contradicts the previous inequality since e(
|oF) = e(
′|oF).
Thus [
, n, r ′, β] is semisimple. Now θ |Hr ′+1(β,
)

and θ ′ intertwine in ˜G
as θ and θ ′ do, Theorem 8.8 provides a matching ζ : I → I′, and (9.10)
follows from Proposition 6.2. Note also that if we had started with a matching
ξ : I→ I′ from (β, θ) to (β ′, θ ′) then we would obtain ξ = ζ by restriction.
We see that:

• the field extensions Ei/F and Eζ(i)/F have the same degree;
• we have e(
i |oEi ) = e(
′ζ(i)|oE′

ζ(i)
) and e(
E) = e(
′E′) so, setting

q = e(
i |oEi )

e(
E)
, we obtain

⌊

r

e(
i |oEi )

⌋

=
⌊

k

q

⌋

=
⌊

r ′

e(
′ζ(i)|oE′
ζ(i)

)

⌋

,

which integer we denote by ki ;
• we have (Vi , ϕi ,


i , r ′) ∈ Q(ki , βi ), while θi |Hr ′+1(β,
)
and θ ′ζ(i) inter-

twine.
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Thus the ps-characters �i and �′ζ(i) are endo-equivalent. This completes the
proof of the converse direction of (i), and also that of (iia) and (iic).

Finally, assertion (iib) follows as in the proof of Proposition 7.3(ii). ��
We call the equivalence classes of pss-characters under endo-equivalence

semisimple endo-classes.

Definition 9.11 Given endo-equivalent pss-characters � and �′ we call the
bijection ζ of Theorem (i) the matching ζ�′,� from � to �′.

The uniqueness statement in Theorem 9.9(i) immediately gives us:

Corollary 9.12 Let � and �′ and �′′ be pss-characters such that � ≈ �′ ≈
�′′. Then ζ�′′,� = ζ�′′,�′ ◦ ζ�′,�.

We obtain, as another consequence, that intertwining is an equivalence rela-
tion for semisimple characters with the same degree and the same parameter
k (cf. Theorem 7.6).

Corollary 9.13 Suppose θ(l) ∈ C (
(l), r (l), β(l)), for l = 1, 2, 3, are
semisimple characters of the same degree such that θ(1) intertwines with θ(2),

and θ(2) intertwines with θ(3). Suppose that

⌊

r (l)

e(
(l)

E(l)
)

⌋

is independent of l.

Then θ(1) and θ(3) intertwine.

9.5 Self-dual semisimple endo-classes

Let �− be a self-dual pss-character supported on the self-dual semisimple
pair (k, β), and let�′− be a self-dual pss-character supported on the self-dual
semisimple pair (k′, β ′).

Definition 9.14 We say that�− and�′− are endo-equivalent, denoted�− ≈
�′−, if
(i) deg(�−) = deg(�′−);
(ii) k = k′;
(iii) there exist self-dual realizations on a common ε-hermitian space

which intertwine, i.e. there exist ((V, h), ϕ,
, r) ∈ Q−(k, β) and
((V, h), ϕ′,
′, r ′) ∈ Q(k′, β ′) such that �−((V, h), ϕ,
, r) and
�′−((V, h), ϕ′,
′, r ′) intertwine in G = U(V, h).

Given two endo-equivalent self-dual pss-characters�− and�′− with lifts�
and�′ respectively, then� ≈ �′ by the Glauberman correspondence, and the
matching from � to �′ will also be written as the matching ζ�′−,�− from �−
to�′−. This matching is σ -equivariant because it is also the matching between
any intertwining realizations of �− and �′−, by Theorem 9.9(c).
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We need to generalize the notion of concordance to embeddings of semisim-
ple algebras over F.

Definition 9.15 Let (k, β) and (k, β ′) be self-dual semisimple pairswith index
sets I and I′ respectively. Suppose that (V, h) and (V′, h′) are isometric ε-
hermitian spaces andϕ : E ↪→ EndF(V) andϕ′ : E′ ↪→ EndF(V′) are self-dual
F-algebra embeddings. Let ζ : I → I′ be a bijection. We say that (ϕ, β) and
(ϕ′, β ′) are ζ -concordant if, for all i ∈ I0, the spaces (Vi , hi ) = (V′ζ(i), h′ζ(i))
are isometric and (ϕ|Ei , βi ) and (ϕ′|E′

ζ(i)
, β ′ζ(i)) are (hi , h′ζ(i))-concordant.

Now we can gather all the results of the previous sections to get the follow-
ing:

Theorem 9.16 Let �− and �′− be self-dual pss-characters supported on
(k, β) and (k, β ′), respectively, and � and �′ their respective lifts. Then,
the following assertions are equivalent:

(i) The self-dual pss-characters �− and �′− are endo-equivalent;
(ii) The lifts � and �′ are endo-equivalent.

(iii) deg(�−) = deg(�′−) and there is a bijection ζ : I→ I′ which commutes
with σ with the following property: if ((V, h), ϕ,
, r) ∈ Q−(k, β) and
((V, h), ϕ′,
′, r ′) ∈ Q−(k, β ′) are such that (ϕ, β) and (ϕ′, β ′) are
ζ -concordant and dimF Vi = dimF V′ζ(i), for i ∈ I, then the real-
izations �−((V, h), ϕ,
, r) and �′−((V, h), ϕ′,
′, r ′) intertwine in
G = U(V, h) with matching ζ .

Proof If�− and�′− are endo-equivalent then so are� and�′ by the Glauber-
man correspondence, i.e. (i)⇒(ii).

We have (iii) ⇒(i) because we can find realizations of the semisimple
pairs such that, for all indices i ∈ I0, the forms hi,ϕ(βi ) and hζ(i),ϕ′(β ′

ζ(i))
are

hyperbolic so that, in particular, (ϕ|Ei , βi ) and (ϕ′|E′
ζ(i)

, β ′ζ(i)) are (hi , h′ζ(i))-
concordant.

It remains to show that (ii)⇒(iii), so suppose that � and �′ are endo-
equivalent. Let ζ be the matching from � to �′. Take realizations θ− =
�−((V, h), ϕ,
, r) and θ ′− = �′−((V, h), ϕ′,
′, r ′), such that for all i ∈ I
the F-vector spaces Vi and V′ζ(i) have the same dimension. Let θ and θ ′ be
the lifts of θ− and θ ′−. Then θ and θ ′ intertwine with matching ζ by The-
orem 9.9(d). Now suppose that ϕ and ϕ′ are ζ -concordant. Since �i and
�′ζ(i) are endo-equivalent, θi and θ ′ζ(i) intertwine by an F-linear isomorphism

gi ∈ HomF(Vi ,V′ζ(i)) byTheorem7.5. For i ∈ I−wecan replace gi by g−i
−1;

moreover, for i ∈ I0 we may assume that gi is an isometry from (V i , hi ) to
(V ′ζ(i), hζ(i)) which intertwines θi,− with θ ′ζ(i),−, by Proposition 6.10 (since
the embeddings are ζ -concordant). In particular, the element g = ∑

i∈I gi is
then in G and intertwines θ with θ ′ with matching ζ , by Proposition 8.6. ��
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One consequence of Theorems 9.16, 9.9(iii) and Corollary 9.12 is:

Corollary 9.17 Endo-equivalence of self-dual pss-characters is an equiva-
lence relation and, for self-dual pss-characters �− ≈ �′− ≈ �′′−, we have
ζ�′′−,�′− ◦ ζ�′−,�− = ζ�′′−,�− .

Definition 9.18 We call the equivalence classes of self-dual pss-characters
under endo-equivalence self-dual semisimple endo-classes.

As another corollary of Theorems 9.16 and 8.17, we see the remarkable
result that, for self-dual semisimple characters of same degree and with the
same k, intertwining is an equivalence relation.

Corollary 9.19 Suppose θ
(l)
− ∈ C−(
(l), r (l), β(l)), for l = 1, 2, 3, are self-

dual semisimple characters of the same degree such that θ(1)− intertwines with

θ
(2)
− in G, and θ

(2)
− intertwines with θ

(3)
− in G. Suppose that

⌊

r (l)

e(
(l)

E(l)
)

⌋

is inde-

pendent of l. Then θ
(1)
− and θ

(3)
− intertwine in G.

Proof Let�(l)
− be the self-dual pss-character supported on (k, β(l)) with real-

ization θ
(l)
− . Now �

(1)
− ≈ �

(2)
− and �

(2)
− ≈ �

(3)
− and thus �(1)

− ≈ �
(3)
− , by

Corollary 9.17. Let ϕ(l) be the canonical embedding of E(l) into A. We need to
show that (ϕ(1), β(1)) and (ϕ(3), β(3)) are ζ

�
(3)
− ,�

(1)
−
-concordant. Without loss

of generality we can assume that e(
(l)) is independent of l, and by Theo-
rem 9.9(iib) we can assume without loss of generality that r (l) is independent
of l. By the Glauberman correspondence and Corollary 9.13, the lifts of θ(1)−
and θ

(3)
− intertwine in ˜G and, by Theorem 9.9(iic), they do so with matching

ζ := ζ
�

(1)
− ,�

(3)
−
; in particular, dimF Vi = dimF Vζ(i), for i ∈ I. By Theo-

rem 8.17 we have that (ϕ(1), β(1)) and (ϕ(2), β(2)) are ζ
�

(2)
− ,�

(1)
−
-concordant,

and that (ϕ(2), β(2)) and (ϕ(3), β(3)) are ζ
�

(3)
− ,�

(2)
−
-concordant. Now the tran-

sitivity of concordance and Corollary 9.17 finish the proof. ��

10 Intertwining and conjugacy for special orthogonal groups

We now investigate intertwining and conjugacy of semisimple characters of
special orthogonal groups, so for this section we suppose that (V, h) is a 1-
hermitian space with F = Fo, so that G = U(V, h) is an orthogonal group and
Go is its special orthogonal subgroup.
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10.1 Intertwining self-dual semisimple characters

Let [
, n, r, β] and [
′, n, r, β ′], be self-dual semisimple strata in A, with
associated splittings V =⊕

i∈I Vi and V =⊕

i∈I′ V′i .

Lemma 10.1 Suppose that β and β ′ are non-zero. Let θ− ∈ C−(
, r, β)
and θ ′− ∈ C−(
′, r, β ′) be self-dual semisimple characters which intertwine
in G. Suppose also that β normalizes 
. Then θ− and θ ′− intertwine in Go

(respectively in G \ Go) if and only if the symplectic spaces (V, β∗(h)) and
(V, β ′∗(h)) are isometric by an automorphism of V of determinant congruent
to 1 modulo pF (respectively, to −1 modulo pF).

Proof By hypothesis, there is an element g ∈ G which intertwines θ− with
θ ′−. Then the fundamental strata [
, n, n − 1, β] and [
′, n, n − 1, β ′] are
intertwined by g so, by [39, Proposition 6.9], have the same level. In particular,
we deduce that e(
) = e(
′). Moreover, writing ζ : I→ I′ for the matching
from (θ−, β) to (θ ′−, β ′), Theorem 8.8 and [39, Proposition 6.9] together imply
that ν
′(β ′ζ(i)) = −n for all i ∈ I also. In particular, this implies that β ′
normalizes 
′ also.

By the intertwining of the fundamental strata, there are skew elements c ∈
β + a−1−n and c′ ∈ β ′ + a′−1−n such that gcg−1 = c′, and g then gives an
isometry from c∗(h) to c′∗(h). Then [39, Lemma 5.3] implies that there is an
F-linear isometry u ∈ P1(
) fromβ∗(h) to c∗(h); similarly, there is an F-linear
isometry u′ ∈ P1(
′) from c′∗(h) to β ′∗(h). Thus u′gu is an isometry from
β∗(h) to β ′∗(h), and det(u′gu) ≡ det(g) (mod pF). Since any isometry of a
symplectic space has determinant 1, there cannot be isometries from β∗(h)
to β ′∗(h) with determinant congruent to both ±1 modulo pF and the result
follows. ��
Theorem 10.2 Let θ− ∈ C−(
, r, β) and θ ′− ∈ C−(
′, r, β ′) be self-dual
semisimple characters which intertwine in G.

(i) Suppose that there is i0 ∈ I such that βi0 = 0. Then, θ− and θ ′− intertwine
by an element of Go and by an element of G \ Go.

(ii) If β has no zero component, then θ− and θ ′− intertwine under an element
of Go if and only if (V, β∗(h)) and (V, β ′∗(h)) are isometric by an auto-
morphism of V of determinant congruent to 1 modulo pF. In this case
every element of G intertwining θ− and θ ′− is in Go.

Note that the statement in (ii) is equivalent to saying that θ− and θ ′− inter-
twine under an element of G \Go if and only if (V, β∗(h)) and (V, β ′∗(h)) are
isometric by an automorphism of V of determinant congruent to −1 modulo
pF, in which case every element of G intertwining θ− and θ ′− is in G \ Go.
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Proof Write ζ : I → I′ for the matching from (θ−, β) to (θ ′−, β ′). By The-
orem 8.17, for i ∈ I+ we can choose an isomorphism gi : Vi → V′ζ(i),
and by Theorem 8.17, for i ∈ I0 we can find an isometry gi from (Vi , hi )

to (V′ζ(i), h′ζ(i)). For i ∈ I− we set gi = g−i
−1, so that g = ∑

i∈I gi is an
element of G which conjugates the splittings. Conjugating by this element g
(which may have determinant −1), we reduce to the case that the characters
have the same splitting and the matching is the identity map.

(i) The characters θi0 and θ ′i0 are trivial, and therefore intertwine under

any element of the group U(Vi0, hi0), in particular by an element of
determinant 1 and by an element of determinant −1. The result follows
immediately by applying Proposition 8.6 to the lifts of θ−, θ ′−.

(ii) We write I = ⋃

J∈P J in the coarsest way such that, for each J, all ele-
ments β j with j ∈ J have the same valuation with respect to 
. By
Corollary 8.16, there are gJ ∈ U(VJ, hJ) such that g = ∑

J∈P gJ is an
element of G which intertwines θ with θ ′; then gJ intertwines θJ with
θ ′J. Applying Lemma 10.1 to θJ,− and θ ′J,−, we see that β∗J (h) is isomet-
ric to β ′∗J (h) by an element of determinant congruent to det(gJ) modulo
pF. Summing the blocks, β∗(h) is isometric to β ′∗(h) by an element of
determinant congruent to det(g)modulo pF. The result now follows since
β∗(h) and β ′∗(h) are symplectic forms and any isometry of a symplectic
space has determinant 1.

��
We deduce an analogue of Corollary 9.19 (transitivity of intertwining) for

special orthogonal groups.

Corollary 10.3 Suppose θ
(l)
− ∈ C−(
(l), r (l), β(l)), for l = 1, 2, 3, are self-

dual semisimple characters of the same degree such that θ(1)− intertwines with

θ
(2)
− in Go, and θ

(2)
− intertwines with θ

(3)
− in Go. Suppose that

⌊

r (l)

e(
(l)

E(l)
)

⌋

is

independent of l. Then θ
(1)
− and θ

(3)
− intertwine in Go.

Proof Changing the lattice sequences in their affine class, we can assume that
they all have the same oF-period; then Theorem 9.9(iia) implies that e(
(l)

E(l) )

is also independent of l. Set rmin = min{ri | i = 1, 2, 3} and rmax = max{ri |
i = 1, 2, 3}, so that we can restrict the characters to C−(
(l), rmax, β

(l))

and extend them uniquely to C−(
(l), rmin, β
(l))without changing endo-class

(i.e. we pass to their transfers). Moreover, by Corollary 9.19, any two of these
intertwine by an element of G. Then, if any β(l) has a zero component, then
θ
(1)
− and θ

(3)
− intertwine by an element of Go by Theorem 10.2(i).
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Suppose now that none of the β(l) has a zero component. Applying Theo-
rem 10.2(ii) to the restrictions to C−(
(l), rmax, β

(l)), we have that

β(1)∗(h) ∼= β(2)∗(h) ∼= β(3)∗(h)

by isometries of determinant congruent to 1 modulo pF . Then, by Theo-
rem 10.2(ii) again, the extensions to C−(
(l), rmin, β

(l)) all intertwine by an
element of Go. In particular, their restrictions θ(1)− and θ

(3)
− intertwine by an

element of Go. ��

10.2 Conjugacy of self-dual semisimple characters

There exist self-dual semisimple characters for Go which intertwine in Go, are
conjugate in G, but are not conjugate in Go. For example, let [
, n, r, β] be a
self-dual semisimple stratum in A with associated splitting V =⊕

i∈I Vi and
let θ ∈ C�(
, r, β) be a semisimple character. Suppose there exists i0 ∈ I
with βi0 = 0, such that P−(
i0) has no element of determinant −1 in its
normalizer. Take an element gi0 of determinant−1 in U(Vi0, hi0) and gi = id
for i 
= i0, and put g =∑

i∈I gi . Then θ and θ ′ = gθ intertwine by an element
of Go by Theorem 10.2, but they are not conjugate by an element of Go by an
exercise using Theorem 10.2 and Proposition A.9(ii).

Nonetheless, we do have the following intertwining implies conjugacy the-
orem.

Theorem 10.4 Suppose that e(
) = e(
′), let [
, n, r, β] and [
′, n, r, β ′]
be self-dual semisimple strata in A with splittings V = ⊕

i∈I Vi and V =
⊕

i∈I′ V′i , and let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
′, r, β ′) be semisimple
characters which intertwine in Go with matching ζ : I → I′. Suppose there
exists g ∈ G such that g
i = 
′ζ(i), for all i ∈ I, and

one of the following two assertions:

(i) there is an i0 such that βi0 = 0, and P−(
i0) contains an element of
determinant −1; or

(ii) βi 
= 0, for all i ∈ I.

Then θ is conjugate to θ ′ by an element of Go ∩ gP−(
).

Remark 10.5 If
 is a self-dual lattice sequence which corresponds to a vertex
in the Bruhat–Tits building of G, then there is an element of G \ Go in the
normalizer of 
. In particular, in the situation of Theorem 10.4, if Po−(
i0) is
a maximal parahoric subgroup of U(Vi0, hi0), then condition (i) is satisfied so
θ is conjugate to θ ′ by an element g ∈ Go such that g
 = 
′.

Proof of Theorem 10.4 By Theorem 8.15(ii), there is a y ∈ G which conju-
gates θ to θ ′.
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(i) If gi0 ∈ P−(
i0) has determinant −1, put gi = id, for i 
= i0, and
g =∑

i∈I gi . Then g is an element of determinant−1 which normalizes
θ . Then y and yg both conjugate θ to θ ′ and one of them lies in Go.

(ii) Since y intertwines θ with θ ′, it lies in Go by Theorem 10.2(ii).

��

11 Intertwining implies conjugacy for cuspidal types

We recall the construction of cuspidal types forGo of [43], ormore precisely its
extension to representations over C in [26], and then prove that two cuspidal
types for Go intertwine in Go if and only if they are conjugate in Go. This
completes the classification by types of the irreducible cuspidal representations
of Go. In the whole section we assume that Go has compact centre, i.e. that G
is not F-isomorphic to O(1, 1)(F).

Let [
, n, 0, β] be a skew semisimple stratum with index set I = I0, and
E = F[β] = ⊕

i∈I Ei . We write bn = bn(
) for the intersection of the oF-
lattice an = an(
) with the centralizer B = Bβ of β, so that bn = ⊕

i∈I bi
n .

The quotient P−(
E)/P1−(
E) is the set of rational points of the reductive
group (defined over ko)

∏

i∈I
ReskEi,o |ko(U( i )), (11.1)

where U( i ) is the reductive group defined by the anti-involution which is the
restriction of to bi

0/b
i
1 and ReskEi,o |ko is the Weil restriction. Recall that the

parahoric group Po−(
E) is the pre-image of the set of ko-rational points of
the neutral component of (11.1).

We note also that (Go)β = (Gβ)
o, since there is at most a single i ∈ I such

that βi = 0; we may therefore unambiguously denote this group by Go
β .

Definition 11.2 A skew semisimple stratum [
, n, 0, β] is called cuspidal
if Go

β has compact centre and Po−(
E) is a maximal parahoric subgroup in Go
β .

The property of being cuspidal depends only on the equivalence class of the
stratum and we have the following stronger result.

Proposition 11.3 Suppose [
, n, 0, β] and [
, n, 0, β ′] are skew semisimple
strata such that C (
, 0, β) = C (
, 0, β ′). Then [
, n, 0, β] is cuspidal if
and only if [
, n, 0, β ′] is cuspidal.

We need the following straightforward result on algebraic groups.

Lemma 11.4 Let k be a finite field of odd characteristic p, with involution
on k with fixed point set ko. Let H be an algebraic group defined over ko
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and ko-isomorphic to a symplectic, a unitary or an orthogonal group over ko.
Suppose H(ko) is isomorphic to O(1, 1)(k) as an abstract group. Then k = ko
and H is k-isomorphic to O(1, 1).

Proof Put q = |k| and qo = |ko| . If H is isotropic and not ko-isomorphic
to O(1, 1) then the cardinality of H(ko) is divisible by p, because the latter
contains a unipotent group of cardinality p, so we are left with the cases U(1),
O(2), O(1) and O(1, 1). But U(1)(k/ko) is cyclic while O(1, 1)(k) is not; and
the groupsO(2)(ko) andO(1)(ko) have cardinalities 2(qo+1) and 2which both
differ from the cardinality 2(q − 1) of O(1, 1)(k). Thus H is ko-isomorphic to
O(1, 1) and, comparing cardinalities, k = ko. ��

For the proof of Proposition 11.3 we need to recall some more of the
data attached to a semisimple stratum [
, n, 0, β], in particular the oF-order
J(β,
) (see [39, Section 9.1] and [12, 3.1.8]). It is the additive group generated
by the intersection of a0 with the ˜G-intertwining of any semisimple character
θ ∈ C (
, 0, β); it contains b1 and, writing J1(β,
) for its intersection with
a1, we have a canonical isomorphism J(β,
)/J1(β,
) � b0(
)/b1(
). We
have a chain of compact open subgroups of G

J+−(β,
) ⊇ J−(β,
) ⊇ Jo−(β,
) ⊇ J1−(β,
) ⊇ H1−(β,
),

with the first two defined as the intersection of J(β,
) with G and
Go respectively, J1−(β,
) its intersection with P1−(
), and Jo−(β,
) =
Po−(
E)J1−(β,
); this is the inverse image in J+−(β,
) of the connected com-
ponent of

J+−(β,
)/J1−(β,
) � P−(
E)/P
1−(
E).

Proposition 11.3 is an immediate consequence of the following lemma, in
which we consider the reduced Bruhat–Tits building Bred(Gβ) (the product
of the buildings Bred(Gi

βi
)) with its weak simplicial structure, i.e. the facets

of Bred(Gi
βi
) are the intersection of the facets of Bred(˜Gi

βi
) withBred(Gi

βi
).

Lemma 11.5 Let [
, n, 0, β] and [
, n, 0, β ′] be skew semisimple strata such
that C (
, 0, β) = C (
, 0, β ′).

(i) J(β,
) = J(β ′,
) and we have a canonical isomorphism
P−(
E)/P1−(
E) � P−(
E′)/P1−(
E′).

(ii) Go
β has compact centre if and only if Go

β ′ has compact centre.
(iii) Suppose Go

β has compact centre; then 
E corresponds to a vertex of
Bred(Gβ) if and only if 
E′ corresponds to a vertex of Bred(Gβ ′).

(iv) Suppose Go
β has compact centre and 
E corresponds to a vertex of

Bred(Gβ); then Po−(
E) is a maximal parahoric subgroup of Gβ if and
only if Po−(
E′) is a maximal parahoric subgroup of Gβ ′ .
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(v) Let ζ : I→ I′ be the matching from (θ, β) to (θ, β ′) for some semisim-
ple character θ ∈ C�(
, 0, β). Then kEi and kE′

ζ(i)
coincide in a0/a1

and the canonical map from (i) is a product of algebraic isomorphisms

P−(
i
Ei
)/P1−(
i

Ei
)→ P−(
ζ(i)

E′
ζ(i)

)/P1−(

ζ(i)
E′
ζ(i)

)

defined over kEi,o .

Proof Assertion (i) follows immediately from the description of J(β,
) as
the additive group generated by the intersection of a0 with the ˜G-intertwining
of any semisimple character in C (
, 0, β). The centre of Go

β is non-compact

if and only if there is an index i ∈ I such that βi = 0, dimF Vi = 2 and the
restriction h|Vi is isotropic and orthogonal. ByTheorem 8.17, this is equivalent
to Go

β ′ having non-compact centre, proving (ii).
We now assume that the centre of Go

β is compact. By Proposition A.9 we
can conjugate by some g ∈ Gwhich normalizes every character inC (
, 0, β)
to reduce to the case where the splittings of β and β ′ coincide; thus we are in
fact reduced to the case that β and β ′ are simple. We have the canonical maps

b0(
)/b1(
) ↪→ a0(
)/a1(
)←↩ b′0(
)/b′1(
)

induced by the inclusions, which have the same image so we get an isomor-
phism

� : b0(
)/b1(
)→ b′0(
)/b′1(
).

The anti-involution of h restricts to the anti-involution of the form hβ defining
Gβ . The lattice sequence
E corresponds to a vertex if and only ifb0(
)/b1(
)

has at most two central idempotents and they are fixed (not permuted) by the
adjoint anti-involution on a0/a1. Then (iii) follows because� is an equivariant
ring isomorphism.Now toprove assertion (iv), suppose
E and
E′ correspond
to vertices. Then Po−(
E) is not a maximal parahoric subgroup of Gβ if and
only if, for one of the central idempotents e of b0(
)/b1(
) the corresponding
factor of P−(
E)/P1−(
E) is given by the algebraic groupO(1, 1) defined over
kE; in that case the algebraic group defining the factor of P−(
E′)/P1−(
E′)
corresponding to �(e) must be O(1, 1) by Lemma 11.4, since kE = kE′ by
Proposition 6.2.

For the final assertion (v), first the canonical embeddings of kE and kE′ into
a0/a1 have the same image by [13, 5.2]. Further P−(
E)/P1−(
E) is the set
of rational points of the reductive group defined over kEo defined by the anti-
involution on b0(
)/b1(
). The map from (i) is kE-linear and preserves ,
so it is an algebraic isomorphism defined over kEo . ��
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Now let [
, n, 0, β] be a cuspidal skew semisimple stratum and let θ− ∈
C−(
, 0, β) be a skew semisimple character. By [42, Corollary 3.29], there
exists a unique irreducible representation η of J1−(β,
) containing θ−. The
representation η extends to J−(β,
) and we call such an extension κ a β-
extension if it extends further to J+−(β,
) and its restriction to a pro-p-Sylow
subgroup of J−(β,
) is intertwined by all of IG(θ−) (see [43, after Theorem
4.1] and [26, §6], where it is the extensions to J+−(β,
) which are called
β-extensions).

Definition 11.6 A cuspidal type for Go is a pair (J, λ) such that there exist a
cuspidal skew semisimple stratum [
, n, 0, β] and θ− ∈ C−(
, 0, β), such
that J = J−(β,
) andλ = κ⊗τ , with κ aβ-extension of the unique irreducible
representation of J1−(β,
) containing θ−, and τ an irreducible representation
of J−(β,
)/J1−(β,
) with cuspidal restriction to Jo−(β,
)/J1−(β,
).

Proposition 11.7 Let (J, λ) be a cuspidal type for Go defined via a cuspidal
stratum [
, n, 0, β], withλ = κ⊗τ . Suppose [
, n, 0, β ′] is a skew semisimple
stratum such that C (
, 0, β) = C (
, 0, β ′). Then [
, n, 0, β ′] is cuspidal,
J−(β ′,
) = J, κ is a β ′-extension and the restriction of τ to Po−(
E′) is
cuspidal.

Proof The stratum [
, n, 0, β ′] is cuspidal by Proposition 11.3, while
J−(β ′,
) = J by Lemma 11.5(i). Let θ− ∈ C−(
, 0, β) = C−(
, 0, β ′)
be a skew semisimple character contained in λ; then the characterization
of β-extensions in terms of the intertwining of θ− implies that κ is also
a β ′-extension. Moreover, the restriction of τ to Po−(
E′) is cuspidal by
Lemma 11.5(v). ��

The main result of [26], generalizing the main result of [43] in the case
C = C (see also [29, Appendix A] for a correction to the definition of cuspidal
type given in [43]), can be stated as follows.

Theorem 11.8 [26, Theorems 12.1, 12.2] Let (J, λ) be a cuspidal type for Go.
Then the representation indG

o

J (λ) is irreducible and cuspidal. Moreover, every
irreducible cuspidal representation of Go appears this way.

Thus, it remains to determine when cuspidal types (J, λ) and (J′, λ′) induce
isomorphic cuspidal representations. Notice that conjugate cuspidal types
induce equivalent representations and if indG

o

J (λ) � indG
o

J′ (λ
′) then (J, λ)

and (J′, λ′) intertwine in Go. Hence the following result completes the classi-
fication in terms of conjugacy classes of cuspidal types.

Theorem 11.9 Let (J, λ) and (J, λ′) be cuspidal types for Go which intertwine
in Go. Then they are conjugate in Go.

123



R. Kurinczuk et al.

Proof As λ and λ′ intertwine by an element of Go, the underlying skew
semisimple characters θ− ∈ C−(
, 0, β) and θ ′− ∈ C−(
′, 0, β ′) intertwine
by the same element, andwe denote by ζ : I→ I′ thematching from (θ−, β) to
(θ ′−, β ′). By Corollary 8.19 we can replace the underlying strata so that there is
an element g ∈ G such that βg−1

i = β ′ζ(i), for all i ∈ I, and by Proposition 11.7
these new strata are also cuspidal. Now θ− intertwines with τg
,
′,β ′(θ ′−) by
an element of Go by Corollaries 9.19 and 10.3. Thus, by [39, Theorem 10.3],
Theorem 10.4 and Remark 10.5, there is an element g1 ∈ Go such that

τg
,
′,β ′(θ
′−) = θ

g−11− .

Then, using Proposition 11.7 again, we can assume that θ ′− is the transfer of θ−
to 
′ with respect to β ′, and the result now follows from [26, Theorem 12.3].

��
Remark 11.10 The proof of Proposition 11.7 could have been given without
using Proposition 11.3, using [29, Proposition 4.4] instead (and its analogue
when C has positive characteristic � 
= p); however, this uses the full strength
of the exhaustion proof in [43, Section 7], [29, Appendix A] and [26, The-
orem 12.2], while our approach here is more direct, and independent of the
proof of exhaustion.

12 Endo-parameters

In this section we are only interested in semisimple characters which are
defined onH1(β,
)—wecall such semisimple characters full.Weparametrize
the set of intertwining-classes of (self-dual) semisimple characters for ˜G
(and for G) by arithmetic parameters which we call endo-parameters. The
restriction to full semisimple characters is natural because every smooth repre-
sentation of Go contains a full self-dual semisimple character [16, Proposition
8.5], though more refined arithmetic information could be sought by looking
more generally (cf. [11]).

12.1 Endo-parameters for ˜G

Here we parametrize˜G-intertwining classes for full semisimple characters for
˜G. First we state the definition of full precisely.

Definition 12.1 (i) A semisimple character θ is called full if there exists a
semisimple stratum [
, n, 0, β] such that θ ∈ C (
, 0, β).

(ii) A pss-character is called full if it is supported on a semisimple pair of
the form (0, β).

123



Endo-parameters for p-adic classical groups

(iii) An endo-class of pss-characters is called full if it consists of full pss-
characters; note that this includes the full zero endo-class 0.

Note that any non-trivial full semisimple character θ is a realization of
different pss-characters: for example, if θ is a realization of a pss-character
supported on a semisimple pair (0, β), then it is also a realization (on the
same lattice sequence) of a pss-character supported on the semisimple pair
(0, β +�F). Moreover, θ can be a realization of different pss-characters sup-
ported on the same semisimple pair: for example, if θ, θ ′ ∈ C (
, 0, β) are
as in Remark 8.12, then θ is conjugate to θ ′ by an element of P(
), by The-
orem 8.15(i); then the pss-characters � and �′, supported on (0, β), with
realizations θ and θ ′ at (V, idF[β],
, 0), respectively, both attain θ .

Nonetheless, any full semisimple character determines a full endo-class.
We will therefore say that two full semisimple characters are endo-equivalent
if they determine the same full endo-class.

Since every ps-character is a pss-character, we can also make the following
definition.

Definition 12.2 We let E denote the set of all full endo-classes of ps-
characters, and let E fin denote the set of finite subsets of E .

We know that we can decompose pss-characters into ps-characters via
Lemma 9.6. This extends to give us a bijection between full semisimple endo-
classes and E fin.

Proposition 12.3 The map F from the set of all full semisimple endo-classes
to E fin, defined by

F([�]) = {[�i ] | i ∈ I}
is well-defined and bijective where the �i are defined in Lemma 9.6.

For the proof (of surjectivity) we need the following lemmas.

Lemma 12.4 Let [
, n, r, β] and [
, n, r + 1, γ̃ ] be semisimple strata split
by V = V′ ⊕ V′′ such that [
, n, r + 1, β] is equivalent to [
, n, r + 1, γ̃ ].
Put 
′ = 
 ∩ V′ and β ′ = β|V′ , and similarly for 
′′, β ′′. Given θ̃ ∈
C (
, r + 1, γ̃ ) and an extension θ ′ ∈ C (
′, r, β ′) of θ̃ |Hr+2(β ′,
′) there is a
semisimple character θ ∈ C (
, r, β) such that the restriction to Hr+1(β ′,
′)
is θ ′ and the restriction to Hr+2(β,
) is θ̃ .

Proof By induction on the number of simple blocks of [
′′, n′′, r, β ′′], we are
reduced to the case where [
′′, n′′, r, β ′′] is simple. The proof proceeds by
induction along the critical exponent k0 = k0(β,
). If β = 0 then we take
θ the trivial character of Pr+1(
). Thus we can assume β 
= 0; in particular
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−k0 ≤ n. Write V′ = ⊕

i∈I′ V′i for the splitting of [
′, n′, r, β ′]; then the
splitting of [
, n, r, β] is either V = V′′ ⊕⊕

i∈I′ V′i (if β ′′ is a simple block
of β) or V =⊕

i∈I′ Vi , where

Vi =
{

V′i ⊕ V′′ if i = i0,

V′i otherwise,
(12.5)

for some (unique) value i0 ∈ I′.
First we consider the case where r < �−k0

2 �. If β ′′ is a simple block of β
then [42, Lemma 3.15] says that there exists θ ∈ C (
, r, β) whose simple
block restrictions are an extension of θ̃ |Hr+2(β ′′,
′′) to Hr+1(β ′′,
′′), and the
simple block restrictions of θ ′; since a semisimple character is determined by
its simple block restrictions, we are done.

Otherwise we are in the second case (12.5) above, and β ′i0 and β ′′ have
the same minimal polynomial over F. If we denote by θ ′′ ∈ C (
′′, r, β ′′)
the transfer of the simple block restriction θ ′i0 , then the transfer of θ ′i0 to

C (
′i0⊕
′′, r, β ′i+β ′′) restricts to θ ′i0⊗θ ′′ onHr+1(β ′i0,

′i0)×Hr+1(β ′′,
′′).

Applying [42, Lemma 3.15] as above, we find a semisimple character as
required.

Now suppose r ≥ �−k0
2 �. Thenwe take a semisimple stratum [
, n,−k0, γ ]

equivalent to [
, n,−k0, β] which is split under the decomposition V′′ ⊕
⊕

i∈I′ V′i . We write γ ′ for γ |V′ . Since k0(γ,
) < k0(β,
), we can apply the
inductive hypothesis to find a common extension θγ ∈ C (
, r, γ ) of θ ′ψγ ′−β ′
and θ̃ψγ−β to Hr+1(β,
) = Hr+1(γ,
). Then the character θ = θγψβ−γ is
as required. ��
Lemma 12.6 Let [
′, n′, r, β ′] be a semisimple stratum in V′ and let
[
′′, n′′, r, β ′′] be a simple stratum in V′′ such that e(
′) = e(
′′). Set
V = V′ ⊕ V′′, 
 = 
′ ⊕ 
′′ and n = max{n′, n′′}. Then there exists β̃ ′′ ∈
EndF(V′′) such that [
′′, n′′, r, β̃ ′′] is simple and equivalent to [
′′, n′′, r, β ′′],
and [
, n, r, β ′ ⊕ β̃ ′′] is semisimple.

Proof Suppose [
, n, r, β] is not semisimple. Then, using notation as in
the previous proof, there is an index i0 ∈ I′ such that the stratum [
′i0 ⊕

′′,max{ni0, n′′}, r, β ′i0 ⊕ β ′′] is equivalent to a simple stratum. We only

need to find β̃ ′′ such that [
′i0 ⊕ 
′′,max{ni0, n′′}, r, β ′i0 ⊕ β̃ ′′] is simple
and we may therefore assume |I′| = 1, that is β ′ = βi . Then F[β ′]/F has
the same ramification index and inertia degree as F[β ′′]/F. (This follows
from [39, Theorem 6.16] and [12, Theorem 2.4.1] when the lattice sequences
are strict, and in general via a †-construction.) Thus there is an embedding
ϕ : F[β ′] → EndF V′′ such that F[ϕ(β ′)]× normalizes 
′′.
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We set m′ = dimF V′ and m′′ = dimF V′′ and identify V′⊕m′′ with V′′⊕m′ .
Then the strata

[
′′ ⊕
′′⊕m′, n, r, β ′′ ⊕ ϕ(β ′)⊕m′ ] and [
′′ ⊕
′⊕m′′, n, r, β ′′ ⊕ β ′⊕m′′ ]

intertwine, while the latter is equivalent to a simple stratum by [39, Theo-
rem 6.16]. Since the first is certainly equivalent to a semisimple stratum, the
matching of [39, Proposition 7.1] implies that it must be equivalent to a simple
stratum. Therefore

[
′′ ⊕
′′, n, r, β ′′ ⊕ ϕ(β ′)]

is equivalent to a simple stratum ([39, Theorem 6.16] again) so that
[
′′, n, r, β ′′] and [
′′, n, r, ϕ(β ′)] intertwine. Then [39, Theorem8.1] implies
that there exists g ∈ P(
′′) such that [
′′, n, r, gϕ(β ′)g−1] is equivalent to
[
′′, n, r, β ′′] and the element β̃ ′′ := gϕ(β ′)g−1 satisfies the assertion. ��
Lemma 12.7 Let θ ′ ∈ C (
′, r, β ′) and θ ′′ ∈ C (
′′, r, β ′′) be semisimple
characters in AutF(V′) and AutF(V′′) respectively, and suppose that e(
′) =
e(
′′). Set V = V′ ⊕V′′, 
 = 
′ ⊕
′′ and n = max{n′, n′′}. Then there exist
a semisimple stratum [
′′, n′′, r, β̃ ′′], such that C (
′′, r, β̃ ′′) = C (
′′, r, β ′′)
and [
, n, r, β ′ ⊕ β̃ ′′] is semisimple, and θ ∈ C (
, r, β ′ ⊕ β̃ ′′) such that
θ |Hr+1(β ′,
′) = θ ′ and θ |Hr+1(β ′′,
′′) = θ ′′.

Proof We begin by reducing to the case that θ ′′ is a simple character. Indeed,
the general case proceeds from this case by induction on the number of sim-
ple blocks of [
′′, n′′, r, β ′′] as follows: Suppose this stratum has splitting
V′′ = ⊕

i∈I V′′i and I = J ∪ {i0} (disjoint union). Applying the induc-
tive hypothesis to θ ′ and θ ′′J , we have a semisimple stratum [
′′J, n′′J , r, β̃ ′′J ],
such that C (
′′J, r, β̃ ′′J ) = C (
′′J, r, β ′′J ) and [
′ ⊕ 
′′J, nJ, r, β ′ ⊕ β̃ ′′J ] is
semisimple, and θJ ∈ C (
′ ⊕ 
′′J, r, β ′ ⊕ β̃ ′′J ) with θJ|Hr+1(β ′,
′) = θ ′ and
θJ|Hr+1(β ′′J ,
′′J) = θ ′′J . Then the simple case applied to θJ and the simple block

restriction θ ′′i0 give a (semi)simple stratum [
′′i0, n′′i0, r, β̃ ′′i0] and semisimple

character θ ∈ C (
, r, β ′ ⊕ β̃ ′′J ⊕ β̃ ′′i0) such that θ |Hr+1(β ′⊕β̃ ′′J ,
′⊕
′′J) = θJ and

θ |Hr+1(β ′′i0 ,

′′i0 ) = θ ′′i0 . Putting β̃ ′′ = β̃ ′′J ⊕ β̃ ′′i0 , we see that θ |Hr+1(β ′′,
′′) is a

semisimple character in C (
′′, r, β̃ ′′)whose restriction to any Hr+1(β ′′i ,
′′i )
is θ ′′i , for i ∈ I. It follows from Corollary A.8 that θ |Hr+1(β ′′,
′′) = θ ′′ and
C (
′′, r, β̃ ′′) = C (
′′, r, β ′′), as required.

So now we assume that θ ′′ is simple, and prove the statement by induc-
tion on r . If r = n then we take θ to be the trivial character. If r < n
then let [
′, n′, r + 1, γ ′] be a semisimple stratum which is equivalent
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to [
′, n′, r + 1, β ′] and split with respect to the splitting of β ′, and let
[
′′, n′′, r + 1, γ ′′] be a simple stratum equivalent to [
′′, n′′, r + 1, β ′′].
By the inductive hypothesis, there are a simple stratum [
′′, n′′, r + 1, γ̃ ′′]
and a character θγ ∈ C (
, r + 1, γ ′ ⊕ γ̃ ′′) with restrictions θ ′|Hr+2(β ′,
′)
and θ ′′|Hr+2(β ′′,
′′). By the translation principle [39, Theorem 9.16], there is

a simple stratum [
′′, n′′, r, β̂ ′′] such that C (
′′, r, β ′′) = C (
′′, r, β̂ ′′) and
[
′′, n′′, r+1, β̂ ′′] is equivalent to [
′′, n′′, r+1, γ̃ ′′]. Moreover, Lemma 12.6
implies that we can replace [
′′, n′′, r, β̂ ′′] by an equivalent simple stratum so
that [
, n, r, β ′ ⊕ β̂ ′′] is itself semisimple.

Now Lemma 12.4 provides a semisimple character θ̃ ∈ C (
, r, β ′ ⊕ β̂ ′′)
with restrictions θ ′ on Hr+1(β ′,
′) and θγ on Hr+2(β ′ ⊕ β̂ ′′,
). Thus
there is an element a ∈ a′′−1−r such that θ ′′ = θ̃ψa|Hr+1(β ′′,
′′); moreover,

[
′′, n′′, r, β̂ ′′ +a] is equivalent to a simple stratum by Lemma A.7(i). Apply-
ing Lemma 12.6 again, there is a simple stratum [
′′, n′′, r, β̃ ′′] equivalent to
[
′′, n′′, r, β̂ ′′ + a] such that [
, n, r, β ′ ⊕ β̃ ′′] is semisimple. Finally, setting
θ = θ̃ψa ∈ C (
, r, β ′ ⊕ β̃ ′′), we are done. ��
Proof of Proposition 12.3 Let � be a full pss-character supported on (0, β),
with index set I, and write [�] for the endo-class of �. Then Theorem 9.9(i)
shows that F([�]) is well-defined and |I| = |F([�])|, and also that the map
F is injective. For surjectivity, suppose we are given a finite set {[�i ] : i ∈ I}
of full simple ps-characters and, for each i ∈ I, choose a realization θi of �i .
Then Lemma 12.7 and induction on |I| give a full semisimple character θ
which has simple character restrictions θi . The corresponding pss-character�
has simple block restrictions which must be�i , by Lemma 9.6, andF([�]) =
{[�i ] : i ∈ I}, as required. ��

Recall that the degree of a full simple character θ ∈ C (
, 0, β) is defined to
be [F[β] : F], and is independent of intertwining between full simple characters
and transfer, and that the degree of a simple endo-class c ∈ E is defined to be
the common degree of the values of the ps-characters in c, which we denote
by deg(c).

Definition 12.8 An endo-parameter is a function f from the set E to the set
N0 of non-negative integers, with finite support. We define the degree of an
endo-parameter f by

deg(f) :=
∑

c∈E
deg(c)f(c).

Given a full semisimple character θ ∈ C (
, 0, β), let� be the pss-character
supported on (0, β) with �(V, ϕβ,
, 0) = θ , where ϕβ denotes the canon-
ical embedding of F[β] as usual, and ci be the endo-classes of its simple
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block restrictions; we define the endo-parameter fθ to be the map with support

F([�]), and such that fθ (ci ) := dimF Vi

deg(ci )
, for i ∈ I.

Theorem 12.9 There is a canonical bijection from the set of intertwining
classes of full semisimple characters for ˜G = GLF(V) to the set of endo-
parameters f of degree dimF(V), defined by mapping the intertwining class of
a full semisimple character θ to the endo-parameter fθ .

Proof Suppose θ ∈ C (
, 0, β) and θ ′ ∈ C (
′, 0, β ′) are semisimple char-
acters with index sets I, I′ respectively. By changing lattice sequences in their
affine class, we may and do assume e(
) = e(
′). Let� be the pss-character
supported on (0, β) with value θ at (V, ϕβ,
, 0), and similarly �′ the pss-
character supported on (0, β ′) with value θ ′ at (V, ϕβ ′,
′, 0).

First we prove that the map described is well-defined (on intertwining
classes). Suppose θ and θ ′ intertwine in ˜G. Then Theorem 8.8 gives a match-
ing ζ : I→ I′ between index sets, and ζ�′,� = ζ by Theorem 9.9(iic). Since
dimF Vi = dimF V′ζ(i) (from Theorem 8.8 again), it follows that fθ = fθ ′ .

Conversely, suppose that fθ = fθ ′ . Then, by comparing the support, we
have F([�]) = F([�′]), so � ≈ �′ by Proposition 12.3 and we have a
matching ζ�′,� : I → I′, by Theorem 9.9(i). In particular, the simple com-
ponents [�i ] = [�′ζ(i)] have the same degree so it follows from fθ = fθ ′ that

dimF Vi = dimF Vζ(i), for all i ∈ I. Finally Theorem 9.9(iid) implies that θ
and θ ′ intertwine. Thus the map is injective.

Finally we prove surjectivity, so let f be an endo-parameter of degree
dimF(V). By Proposition 12.3, there is a full pss-character �, supported
on some (0, β), such that supp(f) = F([�]) = {[�i ] | i ∈ I}; fur-
ther, each �i is supported on the simple pair (0, βi ). For i ∈ I, we choose
(Vi , ϕi ,


i , 0) ∈ Q(0, βi ) with dimF Vi = deg([�i ])f([�i ]). Replacing the

i in their affine classes, we may and do assume that e(
i ) is independent
of i . Since f has degree dimF(V), there is an isomorphism between

⊕

i∈I Vi

and V; replacing the Vi by their images, we may assume this isomorphism
is an equality. Then (V,

⊕

i∈I ϕi ,
⊕

i∈I 
i , 0) ∈ Q(0, β) and f = fθ for
θ = �(V,

⊕

i∈I ϕi ,
⊕

i∈I 
i , 0). ��

12.2 The classical involution on E

We return to the classical setting so that we have an extension F/Fo of degree
at most two, whose Galois group is generated by x �→ x . We fix an alge-
braic closure Falg of F and denote by Ps(Falg) be the set of full ps-characters
supported on simple pairs (0, β) such that F[β] is contained in Falg.

We choose an automorphism f of Falg extending the map x �→ x on F and
a sign ε. We are going to define a map � �→ � f on Ps(Falg) which, a priori,
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depends on many choices we will make. In the end we will find that it is in
fact independent of these choices and, moreover, it induces an involution on
the set E of endo-classes over F which is independent of the choices of f , ε
and Falg.

Definition 12.10 Given � ∈ Ps(Falg) supported on a simple pair (0, β), we
set E = F[β] and choose the following:

• a finite-dimensional F-vector space V such that [E : F] divides dimF V;
• an F-linear field embedding ϕ : E→ A = EndF(V);
• a hyperbolic ε-hermitian space (Vh, h) over F/Fo with a complete polar-
ization Vh = V⊕ V#;

• an oE-lattice sequence 
 in V.

In particular, the adjoint anti-involution of h defines a map from EndF(V) to
EndF(V#). Then (0,− f (β)) is a simple pair and we set E# = f (E), define
the lattice sequence 
# in V# by


#(r) = {v ∈ V# | h(v,
(1− r)) ⊆ pF},

and denote by ϕ# : E# ↪→ EndF(V#) the embedding ϕ#(x) = ϕ( f −1(x)),
for x ∈ E#, where here denotes the adjoint anti-involution on Vh . Then
(V#, ϕ#,
#, 0) ∈ Q(0,− f (β)) and we define � f to be the unique full ps-
character supported on (0,− f (β)) such that

� f (V#, ϕ#,
#, 0)(y) = (�(V, ϕ,
, 0)(y))−1 ,
for y ∈ H1(ϕ#(− f (β)),
#). (12.11)

Note that we are defining � f by its single value at (V#, ϕ#,
#, 0) ∈
Q(0,− f (β)), and its value at other elements of Q(0,− f (β)) is then given
by transfer; it is for this reason that the definition appears to depend on the
choices of V, ϕ, (Vh, h),V#,
. Note also that the value� f (V#, ϕ#,
#, 0) is
in fact independent of the automorphism f : the group H1(ϕ#(− f (β)),
#) =
H1(−ϕ(β),
#) does not depend on f and the formula (12.11) is clearly inde-
pendent of f . However, the ps-character� f does depend on f since the simple
pair (0,− f (β)) on which it is supported does.

Proposition 12.12 Let �,�′ be elements of Ps(Falg).

(i) � f is well-defined, i.e. is independent of the choices made.
(ii) (� f ) f is endo-equivalent to �.

(iii) If � is endo-equivalent to �′ then � f is endo-equivalent to �′ f .
(iv) The endo-class of � f does not depend on f or ε.

Proof We start with assertion (i). Suppose we have chosen (Vi , ϕi ,

(Vhi , hi ),V#
i ,
i ), for i = 1, 2, as in Definition 12.10. In order to show that
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these give rise to the same ps-character � f , we need to show that the charac-
ters θ#i given by y �→ (�(Vi , ϕi ,
i , 0)(y))−1 are related by transfer (from
(
#

1, ϕ
#
1 ) to (


#
2, ϕ

#
2 )). Since the self-dual †-construction commuteswith trans-

fer, we can perform such a construction to reduce to the case where (Vh1, h1)

and (Vh2, h2) are isometric; conjugating then by a suitable isometry, we can
assume

h1 = h2 =: h, Vh1 = Vh2 =: Vh, V#
1 = V#

2 =: V#.

Now,�(V, ϕ1,
1, 0) and�(V, ϕ2,
2, 0) are intertwined by an element g ∈
AutF(V) which conjugates ϕ1 to ϕ2, because these characters are related by
transfer (from (
1, ϕ1) to (
2, ϕ2)). Thus ḡ−1 intertwines θ#1 with θ#2 and
conjugates ϕ#

1 to ϕ#
2 , i.e. they are transfers as required.

Now assertion (ii) follows immediately because, if the tuple (V, ϕ,
(Vh, h),V#,
) is used to define � f then (V#, ϕ#, (Vh, h),V,
#) can be
used to define (� f ) f so we see that �(V, ϕ,
, 0) = (� f ) f (V, ϕ##,
, 0);
thus the intersection of the images of � and (� f ) f is non-empty and they
are endo-equivalent. Similarly, if � and �′ are endo-equivalent then they
have a common value �(V, ϕ,
, 0) = �′(V, ϕ′,
, 0) by Lemma 5.1, The-
orems 7.5 and 8.15(i); using this (together with a choice of Vh,V#), it follows
immediately from (12.11) that � f ,�′ f have a common realization so are
endo-equivalent, and (iii) follows.

We are left with assertion (iv). That [� f ] is independent of f is clear
from the formula (12.11) (which is independent of f ). To see that [� f ] is
independent of ε, we can replace h by the twist (ϕ(β)− ϕ(β))

∗
(h) (which

is a −ε-hermitian form over F/Fo) in the construction; this replaces 
# by a
translate, which affects nothing, so that the formula (12.11) remains the same.
Thus the image of the resulting ps-character has a non-trivial intersection with
the image of � f , and they are endo-equivalent. ��

The last proposition allows us to define an involution on E .

Definition 12.13 We define an action of � on E by σ([�]) := [� f ], for
� ∈ Ps(Falg).

Note that it also follows from Proposition 12.12 that this involution (defined
on the set E , which does not depend on the choice of Falg) does not in fact
depend on the choice of algebraic closure.

12.3 Orbits and self-dual endo-classes

Wefix ε, F/Fo andFalg as in the previous subsection.Wewant to compare orbits
of E with self-dual endo-classes.We therefore introduce the notion of full self-
dual endo-classes. We call a self-dual pss-character or endo-class full if the
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corresponding lift is full andwe call a self-dual semisimple character full if it is
contained in C−(
, 0, β) for some self-dual semisimple stratum [
, n, 0, β].
Let (0, β) be a self-dual semisimple pair. Recall that, attached to β is an index
set I together with an action of σ , and we choose a set I0∪I+ of representatives
for the orbits of σ , where I0 is the set of σ -fixed points, I+ is a section through
the orbits of length two, and we put I− := σ(I+). Analogously to the previous
subsection, we denote by Ps−(Falg) the set of full self-dual pss-characters�−
such that the attached semisimple pair (0, β) satisfies

|(I0 ∪ I+)| = 1,

and such that E is a subset of⊕i∈IFalg; in the case I+ 
= ∅, wewill usuallywrite
I+ = {+1} and I− = {−1}, and write �±1 for the simple block restrictions
of the lift � of �−. We denote by E− the set of endo-classes of elements of
Ps−(Falg).

Lemma 12.14 Suppose � is a lift of a full self-dual pss-character �− ∈
Ps−(Falg) supported on (0, β).

(i) If � is not simple then [�1] 
= [�−1] = σ([�1]).
(ii) If � is simple then [�] = σ([�]).

Proof We first prove (i). Take ((V, h), ϕ,
, 0) ∈ Q−(0, β) so that V, β and
ϕ decompose as

V1 ⊕ V−1, β = β1 + β−1, ϕ = ϕ1 ⊕ ϕ−1.

Following Definition 12.10 using the data (V1, ϕ1, (V, h),V−1,
1) and tak-
ing f : Falg → Falg to be an extension of the map x �→ x on F such
that f (β1) = −β−1, we compute

�
f
1 (V

−1, ϕ−1,
−1, 0)(y) = �
f
1 ((V

1)#, ϕ#
1 , (


1)#, 0)(y)

= (�1(V
1, ϕ1,


1, 0)(ȳ))−1

= �−1(V−1, ϕ−1,
−1, 0)(y).

Thus � f
1 and �−1 have a common value. They are already full and have the

same degree so [�−1] = σ([�1]). The inequality of (i) is a consequence
of 9.6(ii).

The proof of (ii) is similar. We choose ((V, h), ϕ,
, 0) ∈ Q−(0, β) and f
an extension of the generator of Gal(E/Eo). We define an ε-hermitian form h̃
on Ṽ = V⊕ V by
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h̃ =
(

0 h
h 0

)

, i.e. h̃(v1 + v2, w1 + w2)

:= h(v1, w2)+ h(v2, w1), for (v1, v2), (w1, w2) ∈ V⊕ V.

Then
⊕
 is self-dual with respect to h̃. Applying the definition with (V⊕
0, ϕ ⊕ 0, (Ṽ, h̃), 0⊕ V,
⊕ 0), we obtain:

� f (0⊕ V, 0⊕ ϕ, 0⊕
, 0)(0⊕ y) = � f ((V⊕ 0)#, (ϕ ⊕ 0)#, (
⊕ 0)#, 0)(0⊕ y)

= (�(V⊕ 0, ϕ ⊕ 0,
⊕ 0, 0)(ȳ ⊕ 0))−1

= (�(V, ϕ,
, 0)(ȳ))−1

= �(V, ϕ,
, 0)(y)

= �(0⊕ V, 0⊕ ϕ, 0⊕
, 0)(0⊕ y).

The third and the final equality follow from the fact that � respects transfers,
while the fourth follows from self-duality. ��

Using the notation of Lemma 12.14 we define a map ! from E− to E /�,
the set of orbits of simple endo-classes, by

!([�−]) :=
{ {[�]}, if � is simple
{[�1], [�−1]}, if � is not simple

. (12.15)

This map is well-defined and injective by Theorems 9.9 and 9.16. We now
state the converse of Lemma 12.14.

Theorem 12.16 The map ! is surjective.

The key idea for the proof of the theorem is enclosed in the following lemma:

Lemma 12.17 Let (V, h) be an ε-hermitian space over F/Fo with a complete
polarization

V = V1 ⊕ V−1 (12.18)

Suppose [
, n, r, β] is a semisimple stratum split by (12.18) such that 
 is
self-dual and

C (
, r, β) = C (
, r,−β̄),

and such that [
1, n, r, β1] is simple. Then there exists a self-dual semisimple
stratum [
, n, r, β ′] split by (12.18) such that

C (
, r, β) = C (
, r, β ′).
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Proof We prove the statement by induction along r . If n = r then we choose
β ′ = 0 so suppose now r < n. We choose a semisimple approximation
[
, n, r + 1, γ ] of [
, n, r + 1, β] split by (12.18). Then by the induc-
tion hypothesis there is a self-dual semisimple stratum [
, n, r + 1, γ ′] split
by (12.18) with the same set of semisimple characters as [
, n, r + 1, γ ].
By [39, Theorem 9.16] there is a simple stratum [
1, n, r, β ′1] such that
[
1, n, r + 1, β ′1] is equivalent to [
1, n, r + 1, γ ′1] and

C (
1, r, β1) = C (
1, r, β ′1).

We choose θ ∈ C�(
, r, β) and θ0 ∈ C�(
, r, γ ′) which coincide on
Hr+2(β,
) = Hr+2(γ ′,
). Then there exists an element a1 ∈ a1−r−1 such
that

θ1 = ψa1+β ′1−γ ′1θ0,1.

LemmaA.7(i) applied toψβ ′1−γ ′1θ0,1 (with |K | = 1) implies that [
1, n, r, β ′1+
a1] is equivalent to a semisimple stratum [
1, n, r, β ′′1 ], and Lemma A.7(ii)
then implies

C (
1, r, β1) = C (
1, r, β ′′1 ).

In particular [
1, n, r, β ′′1 ] is simple by Theorem 8.8 and therefore

[
−1, n, r,−β ′′1 ] is simple by duality. We put β ′′ := β ′′1 − β ′′1 . Then:

• if [
, n, r, β ′′] is not equivalent to a simple stratum, then it is semisimple
(and already self-dual);

• if [
, n, r, β ′′] is equivalent to a simple stratum, then it is equivalent to a
self-dual simple stratum split by (12.18), by [41, 1.10].

In any case [
, n, r, β ′′] is equivalent to a self-dual semisimple stratum
[
, n, r, β ′′′] split by (12.18). Further we have:

θ1 = ψβ ′′′1 −γ ′1θ0,1, θ−1 = ψ−β ′′′1 −γ ′−1θ0,−1.

Applying Corollary A.8 to the pair θ ∈ C (
, r, β) and ψβ ′′′−γ ′θ0 ∈
C (
, r, β ′′′), we obtain the desired equality

C (
, r, β) = C (
, r, β ′′′).

��
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Proof of Theorem 12.16 Let [�] be a non-zero full simple endo-class and
choose (V, ϕ, (Vh, h),V#,
) as in Definition 12.10. Let θ = �(V, ϕ,
, 0),
a simple character in C (
, 0, ϕ(β)), and define θ# ∈ C (
#, 0,−ϕ(β)) by

θ#(y) := (θ(ȳ))−1.

Setting n = −v
(ϕ(β)), the strata [
, n, 0, ϕ(β)] and [
#, n, 0,−ϕ(β)]
are simple, and therefore [
 ⊕ 
#, n, 0, ϕ(β) ⊕ (−ϕ(β))] is equivalent to a
semisimple stratum split by V⊕V#. Lemma 12.7 provides us with a semisim-
ple stratum [
 ⊕ 
#, n, 0, β̃] split by V ⊕ V# and a semisimple character
θ̃ ∈ C (
 ⊕ 
#, n, 0, β̃) with restrictions θ and θ#. Note that [
, n, 0, β̃|V]
and [
#, n, 0, β̃|V# ] are simple strata: they are certainly semisimple and, since
C (
, 0, β̃|V) = C (
, 0, ϕ(β)), the matching of Theorem 8.8 implies that
[
, n, 0, β̃|V] is simple. We have θ̃ = θ̃ σ by Corollary A.8, and therefore by
Lemma 12.17 we can choose [
 ⊕ 
#, n, 0, β̃] to be self-dual. Let �̃− be
the self-dual pss-character supported on (0, β̃) whose lift �̃ takes value θ̃ at
(Vh, ϕβ̃,
⊕
#, 0). Then

[�] = [�̃] = σ([�̃]) = σ([�])
��

Let us illustrate the two cases which occur at the end of (the proof of)
Theorem 12.16. If the lift �̃ is simple then �̃ and � are endo-equivalent and
we have

[�] = [�̃] = σ([�̃]) = σ([�])
so that!([�̃−]) = {[�]}. Otherwise, the lift �̃ is not simple, the endo-classes
[�] and σ([�]) are the non-endo-equivalent simple block restrictions of [�̃],
and !([�̃−]) consists of two elements.

12.4 Endo-parameters for (h,G)

We now fix F/Fo and ε, and our ε-hermitian space (V, h) over F. In this
section, we parametrize the G = U(V, h)- and Go-intertwining classes of full
self-dual semisimple characters (i.e. supported on a self-dual semisimple pair
of the form (0, β)).

One invariant of an intertwining class of skew semisimple characters comes
from the theory of concordant pairs: if two skew semisimple characters θ− ∈
C−(
, 0, β) and θ ′− ∈ C−(
, 0, β ′) intertwine by an element of G then the
underlying simple block strata are concordant (see Theorem 8.17). We now
encode this into invariants in the following way.
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Definition 12.19 Consider the class of pairs (β, t) where (0, β) is a self-dual
simple pair and t is an element of Wε(E/Eo), where E = F[β] as usual. Two
pairs (β, t) and (β ′, t′) are equivalent if

(i) (F[β], β) and (F[β ′], β ′) are similar self-dual extensions (see Defini-
tion 3.33); and

(ii) wε,β ′,β(t) = t′.
This is clearly an equivalence relation. We call the equivalence classes Witt
types and we denote the Witt type associated to a pair (β, t) by [β, t].
Remarks 12.20 (i) Note that the diagrams (3.29) and (3.30) commute by

similarity of (F[β], β) and (F[β ′], β ′) and Corollary 5.20. Therefore, in
the non-symplectic case, the condition (ii) is equivalent to the anisotropic
dimensions of t and t′ having the same parity, together with λ∗β(t) =
λ∗
β ′(t

′).
(ii) Given a self-dual field extension (E, β), the set of all possible Witt types

[β, t] is in bijection with Wε(E/Eo).

We are going to attachWitt types to elements of E−. Throughout this section
we identify E− with E /�, a consequence of Theorem 12.16 and (12.15); we
will usually use O ∈ E /� and write [�−] = !−1(O) for the corresponding
element of E−. We will write deg(O) = deg(�−) so that, if �O is any pss-
character whose endo-class is in the orbit O, we have deg(O) = |O| deg(�O).

Not all Witt types are suitable for a given O ∈ E /�. We therefore define

WT(O) :=
{

{[β, t] | ∃�− supported on (0, β)with !([�−]) = O, t ∈Wε(F[β]/F[β]o)}, if |O| = 1,

{[0, 0]}, if |O| = 2.

In the non-simple case |O| = 2 there is only one Witt type because all realiza-
tions of a corresponding �− use a hyperbolic space over F.

Remark 12.21 If O ∈ E /� is an orbit of cardinality one and we choose a self-
dual ps-character�− supported on the self-dual pair (0, β)with!([�−]) = O,
then the map

Wε(F[β]/F[β]o)→WT(O), t �→ [β, t]

is a bijection. Indeed, if �′− is another self-dual ps-character, supported on
the self-dual pair (0, β ′) and with !([�′−]) = O then, since �− and �′− are
endo-equivalent, Corollary 7.12 implies that the self-dual extensions (F[β], β)
and (F[β ′], β ′) are similar.

If we have self-dual semisimple characters θ− ∈ C−(
, 0, β) and θ ′− ∈
C−(
′, 0, β ′) which intertwine in G with matching ζ : I→ I′ then, for i ∈ I,
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the dimensions dimEi V
i and dimE′

ζ(i)
Vζ(i) must coincide and, for i ∈ I0, the

forms hβi and hβζ(i) must have the sameWitt index. We need invariants taking
this into account.

We define the set of possible endo-parameters for O ∈ E /� to be

EP(O) :=WT(O)× N0.

Definition 12.22 Let O ∈ E /� and let z = ([α, t], n) be an endo-parameter
for O. We define

• diman(z) := diman(t), the anisotropic dimension of z,
• deg(z) := (2n + diman(z))

deg(O)
|O| , the degree of z,

• hermF/Fo(z) := λ∗α(t), an element of the Witt groupWε(F/Fo).

Weare nowable to define the parameters for the classificationof intertwining
classes of self-dual semisimple characters.

Definition 12.23 A self-dual endo-parameter (with respect to (F/Fo, ε)) is a
section f− of

⊔

O∈E /�
EP(O)→ E /�

with finite support supp(f−) = {O ∈ E /� | deg(f−(O)) 
= 0}. For f− a
self-dual endo-parameter, we define its degree by

deg(f−) =
∑

O∈E /�
deg(f−(O)) ∈ N0

and also set

hermF/Fo(f−) =
∑

O∈E /�
hermF/Fo(f−(O)) ∈Wε(F/Fo).

Notice then that the endo-parameters for O are just the endo-parameters
with support contained in the singleton {O}.
Remark 12.24 A self-dual endo-parameter f− defines a GL-endo-parameter
f : E → N0 by setting

f([�]) = deg(f−(O))
deg(O)

, [�] ∈ O ∈ E /�.

We have deg(f) = deg(f−).
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Recall that Proposition 12.3 gives us a canonical bijection F from the set
of all full semisimple endo-classes to E fin. We write (E /�)fin for the set of
all finite subsets of E /�, and we have:

Proposition 12.25 There is a canonical bijection F− from the set of all full
self-dual endo-classes to (E /�)fin, defined by mapping a full self-dual endo-
class [�−] with lift [�] to F([�])/�, the set of orbits of elements of F([�]).

The proof mimics that of Proposition 12.3. First we have an analogue of
Lemma 12.4:

Lemma 12.26 Let [
, n, r, β] and [
, n, r + 1, γ ] be self-dual semisimple
strata which are split by V = V′ k V′′ and such that [
, n, r + 1, β] is
equivalent to [
, n, r + 1, γ ]. Put 
′ = 
∩V′ and β ′ = β|V′ , and similarly
for 
′′, β ′′. Given θ̃ ∈ C�(
, r + 1, γ ) and an extension θ ′ ∈ C�(
′, r, β ′)
of θ̃ |Hr+2(β ′,
′), there is a semisimple character θ ∈ C�(
, r, β) such that the

restriction to Hr+1(β ′,
′) is θ ′ and the restriction to Hr+2(β,
) is θ̃ .

We could prove this in a similar way to Lemma 12.4, but the group action
of � provides a significant simplification.

Proof By the definition of semisimple character, in particular see [39, Defi-
nition 9.5], we have that for any three characters θ0, θ1, θ2 ∈ C (
, r, β) the
character θ0θ1θ

−1
2 is also an element ofC (
, r, β). Thus for θ ′1 ∈ C (
′, r, β ′)

and θ̃1 ∈ C (
, r + 1, γ ) coinciding on Hr+2(β ′,
′), since there always is
an extension to C (
, r, β) by Lemma 12.4, the number of such extensions
does not depend on the choice of (θ ′1, θ̃1) and therefore it is a divisor of the
cardinality of C (
, r, β). The cardinality of C (
, r, β) is odd, and therefore
the number of extensions of (θ ′, θ̃ ) is odd; thus � has a fixed point which
extends θ ′ and θ̃ . ��

The analogue of Lemma 12.7 needs more subtle modifications.

Lemma 12.27 Let (V′, h′) and (V′′, h′′) be ε-hermitian spaces and let θ ′ ∈
C�′(
′, r, β ′) and θ ′′ ∈ C�′′(
′′, r, β ′′) be characters for self-dual semisim-
ple strata inV′ andV′′ respectively, such that e(
′) = e(
′′). SetV = V′kV′′,

 = 
′ ⊕ 
′′ and n = max{n′, n′′}. Then there exist self-dual semisim-
ple strata [
′, n′, r, β̃ ′] and [
′′, n′′, r, β̃ ′′] in V′ and V′′ respectively, such
that [
, n, r, β̃ ′ ⊕ β̃ ′′] is self-dual semisimple and such that there is a
character θ ∈ C�(
, r, β̃ ′ ⊕ β̃ ′′) with restrictions θ |Hr+1(β̃ ′,
′) = θ ′ and

θ |Hr+1(β̃ ′′,
′′) = θ ′′. Moreover, we can choose β̃ ′ and β̃ ′′ with the same asso-
ciated splittings as β ′ and β ′′, respectively.

Note that, contrary to the case in Lemma 12.7, we do not claim that we
can take β̃ ′ = β ′. We cannot give a proof mutatis mutandis to that of loc.cit.,
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because we would need to join non-skew self-dual characters. Instead, the
proof uses the full strength of the translation principle A.1.

Proof We proceed by induction along r . If r = n then β ′ and β ′′ vanish,
and we put β̃ ′ and β̃ ′′ as zero, so suppose r < n. We choose approximations
[
′, n′, r+1, γ ′] and [
′′, n′′, r+1, γ ′′] for the strata with β ′ and β ′′, respec-
tively. By the induction hypothesis we can find self-dual semisimple strata
[
′, n′, r + 1, γ̃ ′] and [
′′, n′′, r + 1, γ̃ ′′], with the same associated splittings
as γ ′ and γ ′′ respectively, such that their direct sum is semisimple and such
that there is a character θγ ∈ C�(
, r + 1, γ̃ ) with restrictions θ ′|Hr+2(β ′,
′)
and θ ′′|Hr+2(β ′′,
′′).

Using Theorem A.1 we find a self-dual semisimple stratum [
′, n′, r, δ′]
and u′ ∈ P1−(
′) which normalizes every element of C (
′, r + 1, γ̃ ′),
such that C (
′, r, δ′) = C (
′, r, β ′) and [
′, n′, r + 1, δ′] is equivalent to
[
′, n′, r + 1, γ̃ ′], and γ̃ ′ respects the splitting of uδ′u−1. Moreover, replac-
ing γ̃ ′ by u−1γ̃ ′u, we can assume that γ̃ ′ respects the splitting of δ′; that
is, [
′, n′, r, δ′] has an approximation given by γ̃ ′. Similarly, we have a
self-dual semisimple stratum [
′′, n′′, r, δ′′] with approximation γ̃ ′′ such that
C (
′′, r, δ′′) = C (
′′, r, β ′′).

The stratum [
, n, r, δ′ ⊕ δ′′] is equivalent to a semisimple stratum and
therefore, by [39, Theorem 6.16], to a self-dual semisimple stratum respecting
the splittings of δ′, δ′′ andV′kV′′; thus wemay assume [
, n, r, δ] is self-dual
semisimple, where δ := δ′ ⊕ δ′′. We apply Lemma 12.26 to find a character
θδ ∈ C�(
, r, δ) with restrictions θ ′, θγ . Then there is a skew a′′ ∈ a′′−(r+1)
split by the splitting of δ′′ such that

θ ′′ = θδψa′′ on H
r+1(β ′′,
′′).

The stratum [
, n, r, δ + a′′] is equivalent to a semisimple stratum by
Lemma A.7 and therefore to a self-dual semisimple stratum [
, n, r, β̃] split
by the splittings of δ′, δ′′ and V′ k V′′. Thus β̃ = β̃ ′ ⊕ β̃ ′′ and θ = θδψa′′
satisfy the first part of the lemma. Finally Proposition A.9(ii) states that we
can conjugate β̃ ′ and β̃ ′′ to the splittings of β ′ and β ′′, which completes the
proof. ��
Proof of Proposition 12.25 Let�−,�′− be self-dual pss-characters, with lifts
�,�′ and index sets I = I0 ∪ I− ∪ I+ and I′ respectively. If [�−] and [�′−]
are mapped to the same set, then F([�])/� = F−([�−]) = F−([�′−]) =
F([�′])/�. It follows that F([�]) and F([�′]) coincide because both sets
are union of orbits; indeed, σ([�i ]) = [�i ] for i ∈ I0 and σ([�i ]) = [�−i ]
for i ∈ I+, by Lemma 9.6(iiia) and then Lemma 12.14 applied to�{±i}. Thus
� and �′ are endo-equivalent by Proposition 12.3 and therefore �−,�′− are
endo-equivalent by Theorem 9.16. The surjectivity follows inductively as in
the case of Proposition 12.3, using Lemma 12.27. ��
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We are finally ready to define endo-parameters for (h,G); note that these
depend not only on the group G but also on the isometry class of the form h.

Definition 12.28 We denote by EP(h,G) the set of those self-dual endo-
parameters with hermF/F0(f−) = [h] and deg(f−) = dimF V, and we call
it the set of endo-parameters for (h,G).

Let θ− ∈ C−(
, 0, β) be a self-dual semisimple character, let �− be the
self-dual pss-character supported on (0, β)with value θ− at ((V, h), ϕβ,
, 0),
and let � be its lift, with index set I = I0 ∪ I+ ∪ I−. We have

F−([�−]) = {Oi | i ∈ I0 ∪ I+} ⊆ E /�,

where Oi is the orbit associated to the block restriction [�i ]. For each i ∈ I0,
we have the ε-hermitian form hidEi

given by Lemma 3.17. We attach to θ− the
endo-parameter with support F−([�−]) given by

fθ−(Oi ) :=
{

([βi , [hidEi
]],mi ), i ∈ I0,

([0, 0],mi ), i ∈ I+,

where mi denotes the Witt index of hidEi
when i ∈ I0, and mi = dimEi (V

i )

for i ∈ I+. Note that the map θ− �→ fθ− depends on h (not just the isometry
class of h), which is why we have included h in the notation EP(h,G).

Theorem 12.29 There is a canonical bijection from the set of intertwin-
ing classes of full self-dual semisimple characters for G = U(V, h) to the
set of self-dual endo-parameters EP(h,G), defined by mapping the inter-
twining class of a full self-dual semisimple character θ− to the self-dual
endo-parameter fθ− .

Before starting the proof, we give an example illustrating the dependence
on h. Suppose that −1 is not a square in F, that (V, h) is a symplectic space,
and that ϕ : E ↪→ EndF(V) is a self-dual embedding of a self-dual extension
(E, β) such that dimE V is odd. Consider a self-dual simple character θ− ∈
C−(
, 0, ϕ(β)). Note that we have G = U(V, h) = U(V,−h) so that we also
have EP(h,G) = EP(−h,G). However, [hϕ] 
= [−hϕ] = [(−h)ϕ], if −1 /∈
NE/Eo(E). Therefore, in that case, the G-intertwining class of θ− is attached
to a different self-dual endo-parameter in EP(h,G) than in EP(−h,G).

The reason for this phenomenon is that the notion of self-dual endo-
parameter is equivariant with respect to isometries: in the above example,
an isometry g from (V, h) to (V,−h)maps the intertwining class of θ− to the
intertwining class of gθ−; and θ− is not intertwined with gθ− by any element
of G, only by an isometry from h to −h.
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Proof We need to show that the map described is well-defined, injective
and surjective. Let θ− ∈ C−(
, 0, β) and θ ′− ∈ C−(
′, 0, β ′) be self-dual
semisimple characters in G with corresponding pss-characters �−, �′− and
lifts θ, θ ′,�,�′. Denote by I, I′ the corresponding index sets and decompose
them I = I0 ∪ I+ ∪ I− as usual, similarly for I′. For i ∈ I, we put Ei = F[βi ]
as usual, [�i ] for the simple endo-classes corresponding to�i , and Oi for the
orbit of [�i ] in E /�, with similar notation E′i ′ , �

′
i ′ and O′i ′ , for i ′ ∈ I′.

Suppose first that θ− and θ ′− intertwine by an element of G = U(V, h), with
matching ζ : I → I′. In particular, the self-dual pss-characters �−,�′− are
endo-equivalent so F−([�−]) = F−([�′−]) and the endo-parameters fθ−, fθ ′−
have the same support. Then, for all i ∈ I, we have:

• ζ commutes with σ , by Remark 8.9, and�i is endo-equivalent to�′ζ(i) so
Oi = O′ζ(i);

• dimF Vi = dimF V′ζ(i);
• if i ∈ I0 then the self-dual field extensions (Ei , βi ) and (E′ζ(i), β

′
ζ(i)) are

similar, by Corollary 7.12;
• the pairs (βi , idEi ) and (β ′ζ(i), idE′ζ(i) ) are (hi , hζ(i))-concordant, by Theo-
rem 8.17.

The final two points imply that the pairs (βi , [hidEi
]) and (β ′ζ(i), [hidE′

ζ(i)
]) are

equivalent, for i ∈ I0; then (Vi , hidEi
) and (V′ζ(i), hidE′

ζ(i)
) have the same

anisotropic dimension and the same dimension so also the same Witt index.
This implies fθ−(Oi ) = fθ ′−(Oi ), for i ∈ I0, while the same is true for i ∈ I+
simply by the comparison of dimensions. Thus fθ− = fθ ′− , as required.

Conversely, suppose fθ− = fθ ′− and let f : E → N0 be the corresponding
GL-endo-parameter (see Remark 12.24). Then fθ = f = fθ ′ by Theorem 12.9
and, applying the same theorem again, the characters θ, θ ′ intertwine by an
element of AutF(V)with a matching ζ ; thus�i and�′ζ(i) are endo-equivalent
and Oi = Oζ(i) for all indices i ∈ I. The fact that fθ−(Oi ) = fθ ′−(Oi ) says that

dimF Vi = dimF V′ζ(i), for i ∈ I, and that the pairs (βi , idEi ) and (β
′
ζ(i), idE′ζ(i) )

are (hi , h′ζ(i))-concordant, for i ∈ I0. Therefore θ− and θ ′− intertwine in G, by
Theorem 9.16.

It remains to prove surjectivity. Let f− be a self-dual endo-parameter for
(h,G) so that we need to construct a semisimple character θ− for G satisfy-
ing fθ− = f−. In fact it is enough to study endo-parameters supported on a
single orbit in E /�, since Lemma 12.27 then allows us to construct self-dual
semisimple characters in general. So we suppose supp(f−) = {O} and consider
the two cases for the cardinality of the orbit separately.

Suppose first that |O| = 1 and f−(O) = ([β, t],m). Let �− be a self-dual
ps-character supported on (0, β) such that !([�−]) = O, and set E = F[β].
We choose (Ṽ, h̃), an ε-hermitian space over E/Eo, such that [h̃] = t and
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with Witt index m, and a self-dual oE-lattice sequence 
 in Ṽ. Then λ∗β(h̃) is
isometric to h, as λ∗β(t) = [h] and dimF Ṽ = deg(f−) = dimF V. We identify

λ∗β(h̃) with h via an isometry and then the character

θ− = �−((V, h), idE,
, 0)

satisfies fθ− = f−.
Finally, suppose |O| = 2 and f−(O) = ([0, 0],m). Let �− be a self-dual

pss-character supported at some pair (0, β1 ⊕ β−1) such that !([�−]) = O,
andwrite E1 = F[β1] andE−1 = F[β−1].We take anm-dimensional E1-vector
spaceW, which we consider as an F-vector space and identify with a maximal
totally isotropic space of V as part of a complete polarization (W,W#). We
choose an oE1-lattice sequence 
 in W so that the stratum [
, n, 0, β1] is
simple, for an appropriate integer n. Sinceβ−1 and−β1 have the sameminimal
polynomial over F, there is an embedding ϕ−1 : E−1 → EndF(W#) which
maps β−1 to −β1. Then the character

θ− = �−((V, h), idE1 ⊕ϕ−1,
⊕
#, 0)

satisfies fθ− = f−. ��
Let θ ∈ C (
, 0, β) be the lift of a self-dual semisimple character θ− ∈

C (
, 0, β). Then Theorem 12.29, combined with Theorem 12.9, provides a
way to count the number of G-intertwining classes of full self-dual semisim-
ple characters whose lift is in the ˜G-intertwining class of θ , by counting the
number of endo-parameters f− which give the same GL-endo-parameter (see
Remark 12.24). We denote this number by N (θ−,˜G,G). Write

n0 :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if G is symplectic and β has no zero component;
2, if G is orthogonal, β has zero component βi0

with dimF Vi0 � 2 and dimanVi0 � 1;
1, otherwise.

Then we obtain

N (θ−,˜G,G) = 2|I0|−n0 .

Note that the reason for the difference in the symplectic case lies in Proposi-
tion 6.10 and the remark following it: concordance is implied by intertwining
in˜G in the non-symplectic case, but not in the symplectic case. The difference
in the orthogonal case comes from the fact that, when Vi0 is small, there is no
orthogonal space (V′, h′) such that dimF Vi0 = dimF V′ and [hi0]− [h′] is the
maximal element of the Witt group W1(F/F0).
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12.5 Special orthogonal groups

We conclude with the parametrization of the Go-intertwining classes of full
self-dual semisimple characters in the orthogonal case (σ = 1, ε = 1). The
partition of the set of full self-dual semisimple characters for G into Go-
intertwining classes is in general finer than the partition into G-intertwining
classes so it is necessary to augment the self-dual endo-parameters. This will
of course only happen when V is even-dimensional (since there is an element
of determinant−1 in the centre in the odd-dimensional case), and will indeed
only occurwhen the zero endo-class is not in the support of the endo-parameter,
by Theorem 10.2(i).

Definition 12.30 Two symplectic forms over F on an even-dimensional F-
vector spaceVare (1+pF)-equivalent if they are isometric by an automorphism
of determinant in 1+ pF. We write [h′]1+pF for the (1+ pF)-equivalence class
of a symplectic form h′ on V.

Now let f− be an endo-parameter for (h,G), and let�− be a self-dual pss-
character supported on some pair (0, β) such that F−([�−]) is the support of
f−. As usual, let I = I+∪ I0∪ I− be the corresponding index set, put E = F[β],
and write F−([�−]) = {Oi | i ∈ I0 ∪ I+}.
Definition 12.31 For ϕ : E → EndF V a self-dual embedding with corre-
sponding decomposition V = ⊕

i∈I Vi , denote by fϕ,− the endo-parameter
for (h,G) with support F−([�−]) such that

fϕ,−(Oi ) :=
{

(
[

βi , [hi,ϕi ]
]

,mi ), i ∈ I0,

([0, 0],mi ), i ∈ I+,

where mi denotes the Witt index of hi,ϕi when i ∈ I0, and mi = dimEi (V
i )

for i ∈ I+. We say that ϕ is adapted to f− if f− = fϕ,−.

We are interested in the following classes of symplectic forms if the support
of f− does not contain the zero endo-class:

H(f−) :=
{[ϕ(β)∗h]1+pF | ϕ an embedding adapted to f−

}

.

If the support of f− contains the zero endo-class, then we formally just put
H(f−) := {0}. We need to prove thatH(f−) is well-defined—that is, indepen-
dent of the choice of self-dual pss-character �−.

Lemma 12.32 The definition of H(f−) does not depend on the choice of �−.
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Proof If the support of f− contains the zero endo-class then there is nothing
to prove, so we suppose otherwise. Let�′− be a self-dual pss-character endo-
equivalent to�− and supported on (0, β ′) and take embeddings ϕ, ϕ′, of E,E′
respectively, which are adapted to f−. Take any self-dual oϕ(E) (respectively
oϕ′(E′))-lattice sequence 
 (respectively 
′) in V. The characters

θ− := �−((V, h), ϕ,
, 0) and θ ′− := �′−((V, h), ϕ′,
′, 0)

intertwine in G by Theorem 12.29, because fθ− = fθ ′− = f−. Thus ϕ(β)∗h is
isometric to ϕ′(β ′)∗h by an element of determinant congruent to±1 (mod pF)
(and both are possible), by Lemma 10.1. ��

It followsmoreover from the proof thatH(f−) has cardinality twowhenever
it is non-trivial. We are now able to define the endo-parameters for (h,Go).

Definition 12.33 The set

EP(h,Go) := {(f−, h) | f− ∈ EP(h,G), h ∈ H(f−)}
is called the set of endo-parameters for (h,Go).

Let θ− ∈ C−(
, 0, β) be a self-dual semisimple character. We attach to θ−
the pair (fθ−, hθ−) ∈ EP(h,Go), where

hθ− :=
{

[β∗h]1+pF , if β has no zero component,

0, otherwise.

Corollary 12.34 There is a canonical bijection from the set ofGo-intertwining
classes of full self-dual semisimple characters to EP(h,Go), defined by map-
ping the Go-intertwining class of a full self-dual semisimple character θ− to
the endo-parameter (fθ−, hθ−).

Proof It follows immediately from Theorems 12.29 and 10.2 that the map is
well-defined and injective. For surjectivity, we only need to consider a pair
(f−, h) ∈ EP(h,Go) such that the zero endo-class is not contained in the
support of f−. By Theorem 12.29 there is some θ− ∈ C−(g
, 0, β) such that
fθ− = f−. We are done, if hθ− = h; if not, then we conjugate θ− by any
g ∈ G \ Go to find gθ− ∈ C−(
, 0, gβ) while [(gβ)∗h]1+pF = h, because
H(f−) consists of only two elements. ��
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Appendix A: From skew to self-dual semisimple characters

In this appendix, we generalize several previous results which are needed in
the main body of the paper, in particular to extend them from the case of
skew semisimple characters [39] (where the index set is pointwise fixed by the
involution) to the case of self-dual semisimple characters.

Every cuspidal representation of Go contains a skew semisimple charac-
ter by [42, Theorem 5.1] so, for cuspidal representations, it suffices to only
consider skew semisimple characters; thus many results were originally only
proved in the skew case. However, to consider the category of all smooth
representations of Go, it is necessary also to consider the broader class of self-
dual semisimple characters: indeed, every smooth representation contains a
full self-dual semisimple character by [16, Proposition 8.5], and every self-
dual semisimple character is contained in some irreducible representation;
moreover, if an irreducible representation contains two full self-dual semisim-
ple characters then these characters are endo-equivalent. In particular, skew
semisimple characters do not suffice to study the category of all smooth rep-
resentations. For this reason, in the main text, we need to consider non-skew
self-dual semisimple characters and pss-characters.

In this highly technical appendix, we extend the results of [39] we need to
the self-dual case, relying heavily on (and assuming knowledge from) [39].
We will use the notation introduced in the main body of the paper freely, in
particular that in Sect. 8, though not, of course, any results from the main
paper.

A. 1. The translation principle for self-dual semisimple characters

We first generalize the translation principle of the second and third authors
[39, Theorem 9.26]. Let [
, n, r, β] be a non-null semisimple stratum and put
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k0 = k0(β,
). We write mr (β,
) for the oF-lattice

mr (β,
) = n−r (β,
) ∩ a−(r+k0)(
),

where n−r (β,
) = {a ∈ a | βa − aβ ∈ a−r }. The pro-p subgroup
1+mr (β,
) of P−k0−r (
) normalizes the equivalence class of the stratum,
and every character in C (
, r, β); indeed, the group

Sr (β,
) = 1+mr (β,
)+ J�(−k0+1)/2�(β,
),

also normalizes every character in C (
, r, β), by [42, Lemma 3.16].

Theorem A.1 Let [
, n, r+1, γ ] and [
, n, r+1, γ ′] be self-dual semisimple
strata with the same associated splitting V =⊕

j∈J V j such that

C (
, r + 1, γ ) = C (
, r + 1, γ ′).

Let [
, n, r, β] be a self-dual semisimple stratum, with associated splitting
V = ⊕

i∈I Vi , such that [
, n, r + 1, β] is equivalent to [
, n, r + 1, γ ]
and γ is an element of

∏

i∈I Ai . Then, there exist a self-dual semisimple
stratum [
, n, r, β ′], with splitting V = ⊕

i ′∈I′ Vi ′ and an element u of
(1+mr+1(γ,
))∩∏

j∈J A j ∩G, such that [
, n, r + 1, β ′] is equivalent to

[
, n, r + 1, γ ′], with uγ ′u−1 ∈∏

i ′∈I′ Ai ′ and

C (
, r, β) = C (
, r, β ′).

The proof will take the next few subsections

A. 2. Idempotents and self-dual minimal strata

Let (kr )r�0 be a decreasing sequence of σ -invariant oF-lattices in A such that
kr ks ⊆ kr+s , for all r, s � 0, and

⋂

r�1 kr = {0}.
Lemma A.2 [39, Lemma 7.13] Suppose that there is an element α of k0 which
satisfies α2 − α ∈ k1. Then there is an idempotent α̃ ∈ α + k1. Moreover, if
α = α then we can choose α̃ such that α̃ = α̃.

For the self-dual setting we also consider idempotents e ∈ A which satisfy
ee = 0.

Lemma A.3 Suppose that there is an element α of k0 which satisfies α2 −
α ∈ k1 and αα, αα ∈ k1. Then there is a idempotent α̃ ∈ α + k1 such that
α̃α̃ = α̃α̃ = 0.
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Proof Lemma A.2 provides a symmetric idempotent e congruent to α + α

modulo k1. Then the element α′ = e
(1+α−α

2

)

e satisfies α′ + α′ = e. We
follow now the idea of the proof of Lemma [39, Lemma 7.13]. It is easy to
check that α′′ := 3α′2− 2α′3 also satisfies α′′ +α′′ = e and the result follows
in the same way as in loc. cit.. ��
Corollary A.4 Suppose that α1, . . . , αl are elements of k0 such that α2

i −
αi , αiα j ∈ k1, for all i, j with i 
= j . Suppose further that

∑

i αi − 1 ∈ k1 and
that there is an action of σ on I = {1, . . . , l} such that αi − ασ(i) ∈ k1, for
all indices i ∈ I. Then there are idempotents α̃i ∈ αi + k1 which are pairwise
orthogonal and such that

∑

i α̃i = 1 and α̃i = α̃σ (i) for all i ∈ I.

Proof This follows from Lemmas A.2 and A.3, cf. [39, Corollary 7.14]. ��
Recall that, whenever we have a splitting V =⊕

i∈I Vi , we have the asso-
ciated idempotents ei with image Vi and kernel

⊕

j 
=i V
j .

Corollary A.5 Let [
, n, r, β]and [
, n, r, β ′]be equivalent self-dual semisim-
ple strata. Suppose that [
, n, r, β] is split by V = ⊕k∈KVk and suppose that
the set of idempotents of this splitting is invariant under . Then there is an
element u ∈ (1+mr (β,
)) ∩ G such that uβ ′u−1 ∈∏

k∈K Ak .

Proof The action of on the idempotents gives a sum 1 = ∑

k∈K0
ek +

∑

k∈K+(e
k + ek) and by [39, Lemma 9.25] there is an element g of (1 +

mr (β,
))∩G such that gβ ′g−1 is split by
⊕

[i]∈K/� V [i], where K/� denotes
the set of�-orbits in K. Thus we only need to consider the case where K is one
orbit with two elements. In this case K = {+,−}, and we take idempotents
e′+ ∈ e+ + mr (β,
) and e′− commuting with β ′ such that e′+ = e′− and
e′++e′− = 1, which exist by Corollary A.4 and comparison of the descriptions
of the intertwining of [
, n, r, β] in terms of β and β ′. This case follows
now from [39, Lemma 9.15] which provides an element g = (g+, g−) of
(EndF(V′+,V+) × EndF(V′−,V−)) ∩ (1 + mr (β,
)) such that gβ ′g−1 ∈
∏

k∈K Ak , and we take the element u = (g+, g−1+ ) ∈ (1+mr (β,
)) ∩ G. ��
Proposition A.6 (cf. [39, Lemma 7.19]). Let [
, n, n − 1, α] be a self-dual
stratum which is equivalent to a semisimple stratum. Then it is equivalent to
a self-dual semisimple stratum.

Proof The stratum [
, n, n − 1, α] is equivalent to a semisimple stratum
[
, n, n − 1, β] with associated splitting V = ⊕

i∈I Vi and idempotents ei ,
for i ∈ I. The skew-symmetry of α implies that the strata [
, n, n− 1, β] and
[
, n, n−1,−β] are equivalent and thus by [39, Lemma 7.17] the idempotents
are permuted by modulo a1; this defines an action of σ on I. Corollary A.4
provides pairwise orthogonal idempotents e′i congruent to ei modulo a1 which
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sum to 1 and satisfy e′i = e′σ(i). The map g = ∑

i e
′
iei ∈ P1(
) conjugates

[
, n, n − 1, β] to a semisimple stratum which is split by V = ⊕

i∈I V′i ,
where V′i = im(e′i ). For the indices i fixed by σ we put β ′i = gβi g−1 and
then the stratum [
, n, n − 1, β ′i ] is equivalent to a self-dual stratum and to
a simple stratum, so to a self-dual simple stratum by [41, Proposition 1.10];
thus we may assume it is itself self-dual simple. For the remaining indices we
take a section I+ through the non-singleton orbits and define β ′i = gβi g−1

and β ′σ(i) = −β ′i for all i ∈ I+. Then setting β ′ = ∑

i∈I β ′i , we have found a
self-dual semisimple stratum [
, n, n − 1, β ′] equivalent to [
, n, n − 1, α].
��

A. 3. Equal sets of semisimple characters

Lemma A.7 (cf. [39, Lemma9.13]). Suppose thatV =⊕

k∈K Vk is a splitting
which refines the associated splitting of a semisimple stratum [
, n, r, β];
denote by ek the idempotents of the decomposition and βk = ekβkek . Let
θ ∈ C (
, r, β) with restrictions θk ∈ C (
k, r, βk) and, for k ∈ K, let ak ∈
a−r−1 ∩ Ak be such that θkψak ∈ C (
k, r, βk). Put a =∑

k∈K ak.

(i) [
, n, r, β + a] is equivalent to a semisimple stratum [
, n, r, β ′] which
is split by V = ⊕

k∈K Vk , and the sets C (
, r, β ′) and ψaC (
, r, β)
coincide.

(ii) Suppose [
, n, r, β ′′] is a semisimple stratum whose associated splitting
is refined by V =⊕

k∈K Vk , such that Hr+2(β,
) = Hr+2(β ′′,
) and
such that there is a semisimple character θ ′′ ∈ C (
, r, β ′′) with θ ′′k =
θkψak for all k ∈ K. Then θψa = θ ′′ and C (
, r, β ′′) = C (
, r, β ′).

Proof Although the statement is slightly different, the proof is the same as that
of [39, Lemma 9.13]. ��
Corollary A.8 [39, Corollary 9.14] Suppose that V = ⊕

k V
k is a splitting

which refines the associated splittings of two semisimple strata [
, n, r, β]
and [
, n, r, β ′], and suppose that there are characters θ ∈ C (
, r, β) and
θ ′ ∈ C (
, r, β ′) such that θk and θ ′k coincide, for all k. Then θ = θ ′ and
C (
, r, β) = C (
, r, β ′).

The following result shows that, if C (
, r, β) ∩ C (
, r, β ′) is non-empty
(or, equivalently, these sets are equal) then there is an element of Sr (β,
)

which maps the splitting of β to the splitting of β ′.

Proposition A.9 ([39, Proposition 9.9(iv)], cf. [39, 9.23(iii)]) Let [
, n, r, β]
and [
, n, r, β ′] be semisimple strata with associated splittings V =⊕

i∈I Vi

and V = ⊕

i ′∈I′ V′i
′

respectively, with corresponding idempotents ei and e′i ′ .
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Suppose that C (
, r, β) = C (
, r, β ′), and let τ : I→ I′ be the bijection of
[39, Proposition 9.9], such that ei ≡ e′τ(i) (mod a1(
)), for all i ∈ I.

(i) There is an element g ∈ Sr (β,
) such that gei g−1 = e′τ(i).
(ii) If [
, n, r, β] and [
, n, r, β ′] are also self-dual then there exists g ∈

Sr (β,
) ∩ G such that gei g−1 = e′τ(i).

Notice that the element g in Proposition A.9 normalizes every element of
C (
, r, β). We denote the normalizer of a character θ ∈ C (
, r, β) by n(θ).
Note that all elements of C (
, r, β) have the same normalizer, because they
have the same set of intertwining elements.

Proof Part (i) is given by [39, Proposition 9.9(iv)] so we prove (ii). Take a
decomposition I = I0 ∪ I+ ∪ I− as usual, which gives a decomposition into
idempotents 1 = e0 + e+ + e−, and the same for I′ = I′0 ∪ I′+ ∪ I′− with I′+
chosen to coincide with τ(I+). Then e0 ≡ e′0, e+ ≡ e′+ and e− ≡ e′− modulo
Sr (β,
)− 1 by [39, Proposition 9.9(iv)]. By [39, Proposition 9.23(iii)] there
is an element g ∈ P1−(
)∩n(θ)which sends V0 to V′0. Thus by Corollary A.8
we only have to prove the proposition for the cases where I0 or I+ is empty.
The case where I+ is empty is [39, Proposition 9.23(iii)] so let us assume that
I0 is empty. By [39, Proposition 9.9(iv)] there is an element g = (g+, g−) ∈
Sr (β,
) which maps Vi to V′τ(i) for all i ∈ I; then u = (g+, g−1+ ) ∈ P1−(
)

also maps Vi to V′τ(i).
Take a character θ ∈ C�(
, r, β) = C�(
, r, β ′), so that θu−1

i = θτ(i) for
all i ∈ I+; since u ∈ G and θ is self-dual, this equality holds for all i ∈ I. Then
Corollary A.8 implies that the sets C (
, r, uβu−1) and C (
, r, β ′) are the
same and indeed that uθ = θ . Since P1−(
) ∩ n(θ) = (Sr (β,
) ∩G)P1−(
E)

and P1−(
E) commutes with β, this finishes the proof. ��

A. 4. Proof of the translation principle

Here we prove Theorem A.1, granted that we have already the Theorem for
the skew case [39, Theorem 9.26] and the ˜G-case [39, Theorem 9.16]. Let
J = J0 ∪ J+ ∪ J− be a partition with respect to the action of σ as usual, and
write J+− = J+ ∪ J−.

(i) First we assume that J0 is empty. By [39, Theorem 9.16] (the ˜G-case)
there is a semisimple stratum [
J+, n, r, β ′J+] such thatC (
J+, r, βJ+) =
C (
J+, r, β ′J+) and such that γ ′J+ satisfies the desired conjugation prop-

erty. Setting β ′ = β ′J+ − β ′J+ , we deduce that [
, n, r, β ′] is a self-dual
stratum whose set of semisimple characters coincides on the blocks
of VJ+ and VJ− with the corresponding restrictions of characters in
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C (
, r, β), and such that γ ′ = γ ′J+∪J− satisfies the desired conjuga-

tion property. Take θ ∈ C�(
, r, β) and an extension θ ′ ∈ C�(
, r, β ′)
of θ |Hr+2(β,
). By Proposition A.9(i), conjugating β with an element of
Sr (β,
)∩G,we can assume thatβ andβ ′ have the same associated split-
ting. Take a skew-symmetric a ∈ a−r−1 ∩∏

i∈I Ai such that θ = θ ′ψa .
Then by Lemma A.7 the stratum [
, n, r, β ′ + a] is equivalent to a self-
dual semisimple stratum [
, n, r, β ′′] with the same associated splitting
as β ′ and such that C (
, r, β ′′) = C (
, r, β).

(ii) Now we reduce to the case where J is a singleton, so suppose we have
proven the theorem in that case. By (i) and the singleton case we find
[
, n, r, β ′] such that C (
, r, β ′) coincides with C (
, r, β) on every
simple block for j ∈ J0 and on the block corresponding to J+− (and the
conjugation property is satisfied). Using Proposition A.9 we can assume
that β and β ′ have the same associated splitting and we finish the proof
using Lemma A.7 in the same manner as at the end of (i).

(iii) Finally we prove the case where J is a singleton. We follow the step (iv)
of the proof of [39, Theorem 9.16]. Note that, by Corollary A.5, we are
free to replace [
, n, r + 1, γ ′] by any equivalent stratum. Thus, by [39,
Proposition 9.24], we can assume that C (
, r, γ ) = C (
, r, γ ′). Take
tame corestrictions s and s′, for γ and γ ′ respectively, which commute
with the adjoint anti-involution and which satisfy the assertions of [13,
Lemma 5.2]; in particular s(x) ≡ s′(x) (mod al), for all x ∈ al−1 and all
integers l. The stratum [
, r, r+1, s(β−γ )] is equivalent to a semisim-
ple stratum, by [39, Corollary 6.15], and as in step (iv) of the proof of [39,
Theorem 9.16] it follows that [
, r, r + 1, s′(β − γ )] is equivalent to a
semisimple stratum; further, s′(β−γ ) is skew-symmetric and, by Propo-
sition A.6, this stratum is equivalent to a self-dual semisimple stratum,
say with associated splitting V = ⊕

i ′′∈I′′ Vi ′′ and corresponding idem-
potents ei ′′ . Thus [
, n, r, γ ′ +∑

i ′′∈I′′ ei ′′(β − γ )ei ′′ ] is equivalent to a
self-dual semisimple stratum [
, n, r, β ′′] with associated splitting V =
⊕

i ′′∈I′′ Vi ′′ by [39, Corollary 6.15] and [41, Proposition 1.10]. Finally,
by [39, Proposition 7.6] there is an element u ∈ (1+mr+1(γ ′,
)) ∩G
such that β ′ := uβ ′′u−1 is congruent to γ ′ + β − γ modulo a−r . This
element β ′ is as required.

A. 5. Asymmetric statements

We now prove some asymmetric versions of results already in the literature.

Proposition A.10 Let [
, n, r, β] and [
′, n, r, β] be semisimple strata with
e(
) = e(
′).

123



Endo-parameters for p-adic classical groups

(i) Let θ ∈ C (
, r, β) and θ ′ = τ
′,
,β(θ). Then

I
˜G(θ, θ

′) = Sr (β,

′)˜GβSr (β,
).

(ii) Suppose [
, n, r, β] and [
′, n, r, β] are self-dual and let θ− ∈
C−(
, r, β) and θ ′− = τ
′,
,β(θ−). Then

IG(θ−, θ ′−) = (Sr (β,

′) ∩ G)Gβ(Sr (β,
) ∩ G).

Proof The proof is analogous to that of [26, Theorems 4.9, 4.10].

(i) Let us at first assume that both lattice sequences are block-wise regular
strict. There is an element g ∈ ˜Gβ such that g
 is equal to 
′ and the
conjugation with g realizes the transfer from C (
, r, β) to C (
′, r, β).
Thus we can reduce to the case where θ is equal to θ ′ which follows from
[42, Theorem 3.22] (see also [39, Proposition 9.8] and the paragraph
following it).

We now consider the general case. Applying the †-construction,
we obtain semisimple characters θ† ∈ C (
†, r, β†) and θ ′† ∈
C (
′†, r, β†), where
† and
′† are strict and regular of the same block
size. From the first case, we have the formula (i) for I

˜G†(θ†, θ ′†). More-
over, exactly as in the proof of [26, Lemma 4.6], we have the simple
intersection property

Sr (β
†,
′†)xSr (β

†,
†) ∩˜Gβ† = (Sr (β
†,
′†) ∩˜Gβ† )x(Sr (β

†,
†) ∩˜Gβ† ),

for all x ∈ ˜Gβ† . As in [40, Corollary 4.14], it follows from [26, Theo-
rem 4.10] that the intertwining formula behaves well under intersection
with the Levi group M† attached to the †-construction, i.e.

I
˜G†(θ

†, θ ′†) ∩M† = (Sr (β
†,
′†) ∩M†)(˜Gβ† ∩M†)(Sr (β

†,
†) ∩M†).

Finally,we restrict to thefirst block ofM† to obtain the desired description
of I

˜G(θ, θ
′).

(ii) This follows from (i) and a standard cohomology argument [26, Theo-
rem 2.12], as in the proof of [26, Theorem 4.10].

��
The proofs of the following two lemmas are mutatis mutandis to the proofs

of [39, Proposition 9.17] and [39, Proposition 9.27] respectively, except that
one uses Proposition A.10 instead of [39, Propositions 9.8,9.22].
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Lemma A.11 (cf. [39, Proposition 9.17]). Suppose m < q − 1 and let
[
, q,m, β] and [
′, q,m, β ′] be semisimple strata with e(
) = e(
′), and
with splitting V =⊕

i∈I Vi and V =⊕

i∈I′ V′i . Suppose that [
, q,m+1, γ ]
and [
′, q,m+1, γ ] are non-null simple strata equivalent to [
, q,m+1, β]
and [
′, q,m + 1, β ′] respectively, and that γ lies in both

⊕

i∈I Ai and
⊕

i ′∈I′ Ai ′ . Let θ0 ∈ C (
,m, γ ) and set θ ′0 = τ
′,
,γ (θ0) ∈ C (
′,m, γ ).
Let θ ∈ C (
,m, β) and θ ′ ∈ C (
′,m, β ′) be semisimple characters which
satisfy

θ = θ0ψβ−γ+c and θ ′ = θ ′0ψβ ′−γ ,

for some c ∈ a−(m+1). Let sγ be a tame corestriction with respect to γ . Then
we have:

(i) For any g ∈ I
˜G(θ, θ

′) there are elements x ∈ Sm+1(γ,
′) and y ∈
Sm+1(γ,
) and g′ ∈ ˜Gγ such that g = xg′y; moreover, g′ intertwines
[
,m + 1,m, sγ (β − γ + c)] with [
′,m + 1,m, sγ (β ′ − γ )].

(ii) For any g′ ∈ ˜Gγ which intertwines [
,m + 1,m, sγ (β − γ + c)] with
[
′,m+1,m, sγ (β ′ −γ )], there are elements x ∈ 1+mm+1(γ,
′) and
y ∈ 1+mm+1(γ,
) such that xg′y intertwines θ with θ ′.

Lemma A.12 (cf. [39, Proposition 9.27]). In the situation of Lemma A.11,
suppose additionally that all strata are self-dual, all semisimple characters are
σ -invariant, c ∈ a−−(m+1), and sγ commutes with the adjoint anti-involution.

(i) For any g ∈ IG(θ, θ ′) there are elements x ∈ Sm+1(γ,
′) ∩ G and
y ∈ Sm+1(γ,
) ∩ G and g′ ∈ Gγ such that g = xg′y; moreover, g′
intertwines [
,m+1,m, sγ (β−γ +c)]with [
′,m+1,m, sγ (β ′−γ )].

(ii) For any g′ ∈ Gγ which intertwines [
,m + 1,m, sγ (β − γ + c)] with
[
′,m+1,m, sγ (β ′−γ )], there are elements x ∈ (1+mm+1(γ,
′))∩G
and y ∈ (1+mm+1(γ,
)) ∩ G such that xg′y intertwines θ with θ ′.

A. 6. Intertwining and conjugacy for self-dual semisimple characters

In this final subsection, we prove an intertwining implies conjugacy theorem
for self-dual semisimple characters, which generalizes a result of the sec-
ond and third authors [39, 10.2,10.3] for skew semisimple characters. Let
[
, n, r, β] and [
, n, r, β ′] be self-dual semisimple strata in A.

Theorem A.13 Let θ ∈ C�(
, r, β) and θ ′ ∈ C�(
, r, β ′) be self-dual
semisimple characters which intertwine in G and such that the matching ζ :
I→ I′ of [39, Theorem 10.1] satisfies


i
j/


i
j+1 ∼= 


ζ(i)
j /


ζ(i)
j+1,
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for all indices i ∈ I and all integers j . Then there is an element of P−(
) ∩
∏

i∈I HomF(Vi ,V′ζ(i)) which conjugates θ to θ ′.

Proof The involution σ acts on the index sets I and I′ and this action commutes
with the map ζ by the matching theorem [39, Theorem 10.1]. We write I =
I0 ∪ I+ ∪ I− as usual, and similarly for I′. We deduce that ζ sends I0 to I′0
and I+ ∪ I− to I′+ ∪ I′−. We abbreviate V0 = VI0 so that V⊥0 = VI+∪I− , and
similarly V′0.

The hyperbolic spaces V⊥0 and V′⊥0 are isometric since they have the same
dimension, so V0 and V′0 are isometric. Take an isometry g of (V, h) which
sends V0 to V′0 and V⊥0 to V′⊥0 . By [38, Proposition 5.2] we can modify g such
that g is an element of P−(
). Conjugating θ by g, we may assume without
loss of generality that V0 and V′0 coincide.

We show next that there is an element of G ∩ (AutF(V0) × AutF(V⊥0 ))
which intertwines θ with θ ′. By Theorem [39, Theorem 10.2] there is an
element g̃ ∈ P(
)∩∏

i∈I HomF(Vi ,V′ζ(i)) which conjugates θ to θ ′. Taking
the intertwining formula of Proposition A.10 and conjugating back with g̃ we
obtain

I
˜G(θ, θ

′) = Sr (β
′,
)˜Gβ ′ g̃Sr (β,
) ⊆ Sr (β

′,
)(AutF(V0)× AutF(V
⊥
0 ))Sr (β,
).

By a standard cohomology argument, as in [40, Corollary 4.14], we see that

IG(θ, θ
′) ⊆ (Sr (β

′,
) ∩ G)((AutF(V0)× AutF(V
⊥
0 )) ∩ G)(Sr (β,
) ∩ G)

and thus we obtain that the restrictions of θ and θ ′ on V0 and on V⊥0 intertwine
by an element of U(V0) and U(V⊥0 ) respectively. Thus, by Corollary A.8 we
can restrict to the cases where I = I0 or I = I+−. The first case is precisely
[39, Theorem 10.3] and the second case is an easy exercise using Theorem
[39, Theorem 10.2] (for V+ = VI+ and V′+ = VI′+) and Corollary A.8. ��
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