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Abstract
Solutions u(x) to the class of inhomogeneous nonlinear ordinary differential
equations taking the form u′′ + u2 = α f (x) for parameter α are studied. The
problem is defined on the x line with decay of both the solution u(x) and the
imposed forcing f(x) as |x| →∞. The rate of decay of f(x) is important and has
a strong influence on the structure of the solution space. Three particular forc-
ings are examined primarily: a rectilinear top-hat, a Gaussian, and a Lorentzian,
the latter two exhibiting exponential and algebraic decay, respectively, for large
x. The problem for the top hat can be solved exactly, but for the Gaussian and
the Lorentzian it must be computed numerically in general. Calculations sug-
gest that an infinite number of solution branches exist in each case. For the
top-hat and the Gaussian the solution branches terminate at a discrete set of
α values starting from zero. A general asymptotic description of the solutions
near to a termination point is constructed that also provides information on the
existence of local fold behaviour. The solution branches for the Lorentzian forc-
ing do not terminate in general. For large α the asymptotic analysis of Keeler,
Binder and Blyth (2018 J. Fluid Mech. 832 73–96) is extended to describe the
behaviour on any given solution branch using a method for glueing homoclinic
connections.
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1. Introduction

We investigate solutions to the nonlinear ordinary differential equation,

d2u
dx2

+ u2 = α f (x), (1.1)

for parameter α, on the half-line 0 � x < ∞ subject to the boundary conditions

du
dx

(0) = 0 and u(x) → 0 as x →∞. (1.2)

It is assumed that f(0) = 1 and that f → 0 as x →∞. The rate of decay for large x is a delicate
issue and has subtle and important implications for the solution. To highlight this feature of the
problem, three particular forcing functions will be examined primarily: a top hat with compact
support, a Gaussian and a Lorentzian, given by

f (x) = H(x + L) − H(x − L), f (x) = e−x2
and f (x) =

1
1 + x2

(1.3)

respectively, where H(x) is the Heaviside function and L is the half-width of the top hat. The
Lorentzian function is also known as the witch of Agnesi or as a Cauchy distribution. Assuming
that f(x) = f(−x), as is the case for all of the forcings in (1.3), the boundary condition (1.2)
may be viewed as providing an even solution over the entire x line, and occasionally it will be
helpful to discuss the problem in this context to illuminate some of the key features. Integrating
(1.1) directly it is easily seen that

α

∫ ∞

0
f (x) dx > 0 (1.4)

provides a necessary condition for a non-trivial solution to exist. For all three forcings in (1.3)
the integrand in (1.4) is non-negative and hence non-trivial solutions can only exist for α > 0.

The problem is motivated by the study of free-surface flow of an inviscid, irrotational fluid
over bottom topography. The forcing function f(x) represents the negative of the topography so
that the forcings in (1.3) all correspond to a localised depression on an otherwise flat bottom. In
the weakly-nonlinear limit of small forcing, the disturbance to the free-surface induced by the
localised topography is described by the forced Korteweg–de Vries equation. The displacement
of the free surface from its mean level is given by u(x) governed by (1.1) assuming that the
flow is steady and that the speed of the fluid far upstream of the depression is equal to the speed
of small amplitude linear waves over a flat bottom (so that the Froude number for the flow is
equal to unity).

Recently, Keeler et al [8] considered this problem for the Gaussian forcing. They made
a number of observations about the solution space for u(x) that require further mathematical
explanation. In particular they presented numerical evidence that there exists an infinite num-
ber of distinct solution branches. To place the current work in context, figure 1 shows part
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Figure 1. Part of the solution space for the Gaussian forcing. The branches are labelled
Bn according to the integer number n of local maxima in the solution u(x).

of the solution space uncovered by Keeler et al [8], 4using u(0) to characterise the solutions
over a range of values of α. In [8] a traditional boundary layer analysis was used to construct
asymptotic approximations both for small α and for large α that approximate the solutions on
branch B0 (in both limits) and on branch B1 for large α. The rest of the branches, labelled Bn

for integer n, are not captured by [8]’s asymptotics and this provides one motivation for the
present study. The present taxonomy for the solution branches differs from that used in [8] and
is motivated by the observation that the solution profiles on branch Bn have n local maxima.
Since the solution spaces for all three of the forcings in (1.3) share similar qualitative features
(but with some key differences), the same taxonomy for the solution branches will be used in
each case. Keeler et al [8] provided solid but not conclusive numerical evidence that branch B1

terminates at its leftmost end at a finite value of α. The present work provides a deeper analysis
of this issue.

The layout of the paper is as follows. In section 2 the top-hat forcing is considered; this
problem has many of the important features also found for the smooth forcings but with the
advantage that the solution can be found exactly. Next in section 3 the importance of the far-
field decay rate for a smooth forcing is discussed, and the method for obtaining numerical
solutions is described in section 4. In section 5 an asymptotic analysis is presented that supports
the termination of the branches B1, B2 etc at finite α and an analysis that indicates that the
branch B0 terminates atα = 0. In section 6 the case of a Lorentzian forcing is examined. Finally
in section 7 the method of homoclinic glueing is used to show how the large α solutions can

4 This is an adapted version of figures 3(h) and (i) from Keeler, Binder, Blyth, On the critical free-surface flow over
localised topography, J. Fluid Mech., 832, 73–96, used with permission.
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be constructed for a general forcing with a local maximum. The appendices contain further
details of the calculations for the homoclinic glueing, a Stokes line analysis for the Lorentzian
forcing, and a discussion of a marginal case f(x) = 1/(1 + x4).

2. Top hat forcing

The top hat forcing, which takes the form given in (1.3), provides an instructive model for
the more technically challenging cases (the Gaussian and the Lorentzian forcings), not least
because the solution can be obtained exactly in closed form.

A straightforward phase plane analysis nicely illustrates how the key features of the solu-
tion space emerge (see Binder [1] for a review of this technique applied to the KdV equation).
The unforced phase plane, labelled Σ1, corresponds to the homogeneous form of (1.1) and is
relevant outside of the top-hat’s support where |x| > L. It has a degenerate node at the ori-
gin, indicated in figures 2(a)–(c) by an empty circle, with a stable manifold and an unstable
manifold on which

1
2

u2
x +

1
3

u3 = 0 (2.1)

holds and that are shown each with a broken line. The forced phase plane, labelled Σ2, is rele-
vant inside the top-hat support where |x| < L. It has a saddle point at (u, du/dx) = (−α1/2, 0)
and a centre at (α1/2, 0), both of which are shown in figures 2(a)–(c) with filled circles. (Note
that the phase portraits Σ1 and Σ2 are presented on the same scale.) Trajectories in Σ2 satisfy

1
2

u2
x +

1
3

u3 = u + c (2.2)

for constant c. These are shown with thin solid lines for different c and comprise periodic orbits
around the centre enclosed by a homoclinic orbit that connects the saddle to itself. Solutions
that satisfy the boundary conditions (1.2) are indicated by thick solid lines in figures 2(a)–(c).
In each case, starting from x = −∞ the solution exits the origin and follows the unstable
manifold in Σ1 until x = −L where it jumps instantaneously onto a periodic orbit in Σ2. The
trajectory jumps instantaneously back onto Σ1 at x = L and subsequently follows the stable
manifold back into the origin as x →∞. Thus the solutions are smooth everywhere except at
x = ±L where the second derivative of u is discontinuous.

Various possibilities arise while the trajectory is in Σ2, depending on the value of α. A
solution that is negative-definite in u can be constructed for any α > 0 by making only a partial
excursion along the periodic orbit in the left-half plane of Σ2, as is illustrated in figure 2(a).
Alternatively a trajectory may execute one cycle of the periodic orbit followed in general by a
brief overshoot to make the connection back onto Σ1, as is shown in figure 2(b); however this
is only possible if the top-hat is sufficiently wide and hence such a solution exists only when
α > α∗

1, whereα∗
1 can be determined precisely and is given below. A countably infinite number

of further options arises when α exceeds an increasing sequence of critical values,α = α∗
n, that

can also be written down exactly. For each n the solution executes n cycles of a periodic orbit
in Σ2 followed by an overshoot to connect back to Σ1. At the critical values themselves the
solution executes exactly n cycles along a periodic orbit in Σ2, entering and leaving this plane
from Σ1 at the origin; in Σ1 itself the solution is given by u = 0 for all x > |L|. This critical
case is illustrated in figure 2(c).

The first three solution branches are shown in figure 2(d) together with some sample solution
profiles. In all cases the phase plane trajectories are bounded within the homoclinic orbit in Σ2;
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Figure 2. Top hat forcing: (a)–(c) phase portraits in the unforced (Σ1) and forced (Σ2)
phase planes, and (d) the solution space. Panels (a)–(c) demonstrate the solution con-
struction for branches B0, B1 and B2 in the (u, du/dx) phase plane. The empty circles are
located at the origin and correspond to a degenerate node in Σ1, while the filled circles
indicate the saddle point and centre in Σ2. The broken lines in panels (a)–(c) are the
stable and unstable manifolds for the degenerate node in Σ1 and the thin solid lines are
the orbits in Σ2. A solution is indicated by a thick solid line. The solution branches are
shown in panel (d) with insets showing sample solution profiles at the values α = 20, 618
on B0, α = 6, 205 on B1, and α = 13, 584 on B2.

536



Nonlinearity 34 (2021) 532 J S Keeler et al

it follows that −α1/2 � u(x) < 0 on branch B0 and −α1/2 � u(x) � 2α1/2 on branches Bn for
n = 1, 2, · · ·. On the periodic orbit in Σ2 for the critical case,

u(x) = (3α)1/2 cn2
(

(α/3)1/4x; 1/2
)

, (2.3)

where cn is a Jacobi Elliptic function. Comparing the period of this form to the width of the
top-hat we find that

α∗
n = 48n4K4(1/

√
2) ≈ 567n4, (2.4)

for n = 1, 2, · · ·, where K is the complete elliptic integral of the first kind.

3. Far-field decay for smooth forcings

The unforced, homogeneous form of (1.1) has the general solution that decays at infinity,

uH(x) = − 6
(x + x0)2

(3.1)

for arbitrary constant x0. Assuming that

f (x) = o(1/x4) as x →∞, (3.2)

the generic far-field behaviour of the solution is

u ∼ uH(x) as x →∞, (3.3)

having a single degree of freedom, namely x0 in (3.1), which is effectively determined via the
choice of α. The large x balance between the first term on the left-hand side of (1.1) and the
forcing on the right-hand side,

d2u
dx2

∼ α∗
n f (x) as x →∞ (3.4)

so that

u ∼ α∗
n

∫ ∞

x
(x′ − x) f (x′) dx′ as x →∞ (3.5)

is then also possible but will occur only for certain special values of the parameter, α∗
n, the

behaviour (3.5) involving zero degrees of freedom (in integrating (3.4) to obtain (3.5) both
constants of integration must be fixed to ensure the far-field behaviour (1.2) is satisfied). Such
a balance neglects the nonlinear term in (1.1) and this is justified provided that (3.2) holds. If
(3.2) fails the generic far-field balance is between the nonlinear term and the forcing, given by

u ∼ −α1/2 f 1/2(x), (3.6)
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where we have adopted the negative square root. The positive square root can be excluded on
noting that the linearisation at infinity u = ±α1/2 f1/2(x) + U(x) yields

d2U
dx2

± 2α1/2 f 1/2U = 0. (3.7)

If the positive square root is selected then a standard WKBJ analysis of (3.7) yields the two
linearly independent unbounded solutions

U ∼ f −1/4 exp

{
±i

√
2α1/4

∫ x

f 1/4(x′) dx′
}
. (3.8)

To exclude both of these requires two boundary conditions to be applied at infinity, but this
leaves no freedom to enforce the symmetry condition at x = 0 in (1.2). On the contrary, if
the negative square root is selected, a single degree of freedom is retained since it is only
necessary to exclude the exponentially growing solution to (3.7). The balance (3.6) occurs
for the Lorentzian forcing, the third option in the list (1.3), and this case will be examined in
section 6.

4. Numerical computation

Numerical computations for the Gaussian forcing were carried out in [8]. For any of the forc-
ings in (1.3) it is expedient to first rewrite (1.1) as a first order system and then to solve the
initial value problem

u′ = F(u), u(0) = (u0, 0)T, (4.1)

where u = (u, du/dx)T and F = (du/dx,α f − u2)T for some u0 to be found such that u → 0 as
x →∞ to fulfill (1.2). Thus a solution trajectory in the (u, du/dx) phase plane must ultimately
enter the origin and, disregarding the degenerate behaviour (3.4), it must do so in the second
quadrant. For a Gaussian forcing, according to (3.3) it will enter the origin along the stable
manifold of the degenerate node in the unforced phase plane Σ1 defined in section 2. The
computations for the Lorentzian forcing are particularly challenging as linearising about the
far-field decay (3.6) by writing

u(x) ∼ −α1/2

x
+ U(x) (4.2)

as x →∞ requires that

U′′ − 2
x

U = 0 (4.3)

one solution of which,

U ∝ x1/2I1

(
2
√

2x1/2
)

, (4.4)

where I1 is a modified Bessel function, grows exponentially for large x. Hence on shooting
from x = 0, any deviation from the required solution will rapidly grow.

In computational practice on a finite precision machine any choice for u0 will result in
‘finite-time’ blow up with u ∼ uH as x →−x0 (with x0 < 0), so that the phase plane trajectory
converges to the unstable manifold in Σ1. Nevertheless a solution can be detected to good accu-
racy by using a bisection approach. This is illustrated in figures 3 and 4 for the Gaussian and
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Figure 3. Computed phase plane trajectories for the Gaussian forcing f(x) = exp(−x2)
for α = 36 obtained by integrating (4.1) with u0 = 8.5457 for panel (a) and u0 = 8.5452
for panel (b). Only a close-up near to the origin is shown. The filled circle and the broken
lines correspond respectively to the degenerate node and the stable/unstable manifolds
in the unforced phase plane Σ1.

Figure 4. Computed phase plane trajectories for the Lorentzian forcing f(x) = 1/(1 +
x2) for α = 26.44 obtained by integrating (4.1) with u0 = 8.298 755 for panel (a) and
u0 = 8.298 750 for panel (b). Only a close-up near to the origin is shown. The filled
circle and the thick broken line correspond respectively to the degenerate node and the
unstable manifold in the unforced phase plane Σ1. The thin broken line indicates the
behaviour du/dx = u2/α1/2 according to the leading order term in (4.2).

Lorentzian forcings respectively. The trajectories were computed by integrating (4.1) using the
fourth-order Runge–Kutta method starting in each figure from two carefully selected positive
values of u0 (only a close-up near to the origin is shown). Since in both figures the two trajec-
tories veer either side of the origin, assuming that U(x) depends continuously on u0 there must
exist a u0 such that the corresponding trajectory reaches the origin and the far-field condition
is satisfied.

With confidence that a solution exists, in numerical practice it is more convenient to work
with the original boundary value problem statement (1.1) and (1.2). This approach expedites
the computation of bifurcation diagrams, for example. To overcome the difficulties presented
by the infinite domain and by the algebraic decay of the solution in the far-field we make a
change of independent variable. Writing x = cot ζ , with ζ ∈ (0, π), we seek a solution in the
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form of a Fourier series (e.g. [3, section 17.9]),

ũ(ζ) =
∞∑

n=1

bn sin([2n − 1]ζ), (4.5)

where ũ(ζ) = u(x). The coefficients bn are found numerically upon truncation of the infinite
sum using a collocation method and employing Newton iterations to solve the nonlinear alge-
braic equations that arise at the collocation points. The form (4.5) is such that the first boundary
condition in (1.2) is automatically satisfied and that u = O(1/x) as |x| →∞. Therefore with
this approach the difficulty associated with (4.4) for the Lorentzian does not arise and accurate
solutions that follow the stable manifold in to the origin of the (u, du/dx) phase plane can be
computed. This approach also works for Gaussian forcing for which the far-field decay of the
solution is like 1/x2.

Numerical calculations reveal that on a solution branch with a termination point the generic
behaviour (3.1) is found at all points along the branch except at the termination point where
the singular far-field decay (3.4) is found. This is what was found, for example, in [8] for a
Gaussian forcing where at the termination point the decay is superexponential, corresponding
to (3.4), and given by

u ∼ α∗
n

e−x2

4x2
as x →∞. (4.6)

Such solutions may be viewed as eigenmodes associated with eigenvaluesα∗
n, contrasting from

solutions satisfying (3.3) in existing only for discrete values of α and exhibiting the maximal
rate of decay as x →∞. We leave their relevance to applications as an open question.

5. Branch termination

The numerical calculations of [8] for a Gaussian forcing suggest that branch B0 terminates
at α = 0 and branches Bn, n = 0, 1, 2, . . .terminate at some value αn > 0. In this section we
present an asymptotic description of the branch termination in both cases.

5.1. Termination at α = 0

As was noted in the Introduction non-trivial solutions to the problem (1.1) and (1.2) for the
stated class of forcing functions f(x) exist only if α > 0. Therefore the solution branch B0

that enters the origin in figure 1 cannot pass into the left-half plane. Keeler et al [8] gave an
asymptotic description of solutions on this branch for small α. In fact branch B0 must terminate
at the origin. To demonstrate this, it is helpful to recapitulate some of the key details of the small
α analysis.

The expansion proceeds as u(x;α) = u(0;α) + αv(x) + · · ·, noting that u(0;α) = O(α2/3)
which follows from the matching carried out below. Substituting into (1.1), at leading order
we obtain the linearised form

d2v

dx2
= f (x), (5.1)

with the boundary conditions v(0) = dv/dx(0) = 0. The far-field behaviour v ∼ Mx/2 as
x →∞, where the mass

M = 2
∫ ∞

0
f (x) dx, (5.2)
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Figure 5. (a). The solution branch B0 for the Gaussian forcing near to α = 0. The solid
line is the numerically computed branch and the dotted markers represent the asymp-
totic approximation (5.8) with M =

√
π with the next order correction included (see

[8]), namely u(0) ∼ −(31/3π2/3/2)α2/3 + α/2. The inset diagram is a solution profile
on the outer scale when α = 1.928 × 10−4. (b) The same solution profile as for the
inset in (a) but shown on the outer (X, V) scale according to (5.3). The solid line is
the numerical solution and the dashed line is the asymptotic approximation (5.5) with
X0 = 2 · 31/3/π1/6 ≈ 2.38 given by (5.7).

suggests the outer scaling on which the nonlinear term is restored,

u = α2/3V(X), x = α−1/3X. (5.3)

Under this scaling (1.1) becomes

d2V
dX2

+ V2 = α−1/3 f (α−1/3X). (5.4)

Assuming f(x) = o(1/x) as x →∞ the right-hand side of (5.4) vanishes to leading order (note
that this condition on f is also required for the integral in (5.2) to be defined), and the solution
subject to V → 0 as X →∞ is

V = − 6
(X0 + |X|)2

, (5.5)

for constant X0, as shown in figure 5(b). (Modulus bars have been included in (5.5) to highlight
the singular behaviour at X = 0 discussed in detail below.) This behaves as

V ∼ − 6
X2

0

+
12|X|

X3
0

+ · · · (5.6)

as X → 0. Matching with the solution on the inner scale yields

X0 = 2(3/M)1/3, (5.7)

and

u(0;α) ∼ −
(

31/3M2/3

2

)
α2/3 (5.8)

as α→ 0+, which agrees with the leading order prediction in [8] for a Gaussian forcing. This
approximation is shown with the numerical solution in figure 5(a).

541



Nonlinearity 34 (2021) 532 J S Keeler et al

The boundary value problem written in the outer scalings (5.3) best illustrates the way in
which the branch terminates: the limit case α = 0 in (5.4) then corresponds to a naïve but
natural replacement of (5.4) by

d2V
dX2

+ V2 = Mδ(X) (5.9)

in the sense that (5.6) and (5.7) imply

[
dV
dX

]0+

0−
= M (5.10)

(given the nonlinearity of (5.9) this interpretation should of course be treated with considerable
caution as will be seen in the next subsection). Thus the limit profile contains a corner and the
branch cannot be continued.

5.2. Termination at finite α

As was discussed in section 3 the branches Bn for n = 1, 2, . . .terminate at the special values
α∗

n. In this subsection a local asymptotic analysis is presented that describes the termination of
an individual branch. To this end we write

α = α∗
n ± ε (5.11)

with 0 < ε � 1, where α∗
n is one of the special values discussed in section 3 at which the bal-

ance (3.4) holds and its value must be determined numerically. We therefore make the implicit
assumption that the forcing satisfies (3.2). The choice of sign in (5.11) will be discussed below.

Introducing the expansion

u = u0(x) + εu1(x) + · · · (5.12)

and substituting into (1.1) we obtain at leading order in ε,

d2u0

dx2
+ u2

0 = α∗
n f (x) (5.13)

with boundary conditions

du0

dx
(0) = 0, u0(x) → 0 as x →∞. (5.14)

By the definition of α∗
n, the far-field decay of u0 satisfies (3.4). At first order we find

d2u1

dx2
+ 2u0u1 = ± f (x) (5.15)

with

du1

dx
(0) = 0, u1(x) = o(x) as x →∞. (5.16)

The latter of these conditions is required for the matching to be described below and implies
that

u1(x) →±κ as x →∞, (5.17)
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where the constant κ is determined as part of the solution to the boundary value problem (5.15)
and (5.16).

An intermediate region holds where f(x) = O(ε) and u(x) = O(ε), and where the particular
scaling on x depends on the form of f(x). However, the balance (3.4) still holds in this region
and, fortunately, the linearity of the relation (3.4) implies that the solution can be expressed in
the form u = εv, where v is a linear combination of the constant κ and the far-field form of u0.
The latter becomes negligible outside of this region and on the outer scaling where x = ε−1/2X,
with X = O(1), writing u = εv0(X) + · · · requires at leading order that

d2v0

dX2
+ v2

0 = 0. (5.18)

The solution that decays in the far-field is

v0 = − 6(
|X|+ (6/|κ|)1/2

)2 , (5.19)

where we have included modulus bars to highlight the singular behaviour at X = 0 to be dis-
cussed below. Associated with the solution (5.19) is the requirement that κ < 0 if the plus sign
in (5.11) is used, meaning that near to the termination point the branch is such that α > α∗

n,
and the requirement that κ > 0 if the minus sign in (5.11) is used so that α < α∗

n local to the
termination point. These requirements ensure a match with the solution on the inner scale. It
follows that a sufficient condition for the existence of a fold in the solution branch is that κ > 0.
We may infer from the numerical results shown in figure 1 that κ > 0 for the Gaussian forcing.
It should be emphasised that while the present analysis gives a self-consistent description of
the behaviour close to a termination point, it does not prove their existence even for forcings
that satisfy the far-field decay condition (3.2). It may preclude the existence of a termination
point, however, if (3.2) is not satisfied. Key to the latter remark is the existence of two possible
large x balances for forcings that satisfy (3.2), namely (3.3) and (3.5), on which the analysis
presented in this subsection depends. Forcings that do not satisfy (3.2) have only one possible
large x balance as discussed in section 3.

Since u(0) ∼ u0(0) + εu1(0) + · · · the branches in figure 1 are locally linear and enter the
termination points with finite slope. In common with the small α case discussed in section 5.1
the limit profile at each termination point, on the outer scale (5.19), has a corner at X = 0 with
the jump in slope

[
dv0

dX

]0+

0−
= 2

√
2
3
|κ|3/2. (5.20)

Notably, and in contrast to (5.10), the jump is not given simply in terms of the mass of f(x)
but relies on the numerically determined constant κ. This underscores the danger, alluded to in
the previous section, of a naïve replacement of the right-hand side of the problem on the outer
scale, here (5.18), with Mδ(X), where M is the mass of the forcing given in (5.2), since the
jump in slope at X = 0 depends on the solution of the problem on the inner scale according to
(5.20).

The preceding remarks can be placed on a firmer footing by noting that on taking the limit
α→ 0 in (5.4) the right-hand side formally approaches a delta function (e.g. Stakgold and
Holst [9], theorem 2.2.4). On the contrary, writing (1.1) for the outer scaling results in (5.18)
with

αε−2 f (ε−1/2X)
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on the right-hand side, and this does not approach a delta function in the limit ε→ 0. Con-
sequently, branch B0 can be described by naïvely replacing the right-hand side of (1.1) with
Mδ(x) and then following the type of phase plane analysis reviewed by Binder [1], but the
remaining branches Bn for n � 1 cannot be described in this way.

6. Lorentzian forcing

The numerically computed solution space for the Lorentzian forcing in (1.3) is similar in struc-
ture to that found for the Gaussian (see figure 1) with the crucial difference that the higher
order branches B1, B2, etc do not terminate at finite α. As for the Gaussian forcing there is a
B0 branch of negative-definite solutions that exists for all positive α and which terminates at
α = 0 as described in section 5.1. We do not expect to find branches that terminate at non-zero
α for reasons discussed in section 3. In fact we find that the branches B1 and B2 are in this
case connected continuously as can be seen in figure 6. The insets in this figure show typical
solution profiles some way along the upper and lower parts of the branch. Note that although
the comment at the end of section 3 leaves open the possibility that eigenmode solutions exist
for special values of α (as in the Gaussian case) corresponding to the choice of the plus sign
in (3.7), our numerical computations suggest that such solutions do not, in fact, exist.

Following the success of the boundary-layer analysis of [8] on branch B0 for the Gaussian
forcing, we are motivated to attempt a similar large α analysis for the Lorentzian, and this is
considered in the following subsection. As for the Gaussian such an analysis cannot capture
the higher order branches. These will be discussed in section 7.

6.1. Asymptotic approximation when α � 1

For large α we rescale by writing u = α1/2W(x) so that (1.1) becomes

μ
d2W
dx2

+ W2 =
1

1 + x2
, (6.1)

where μ = α−1/2. We seek an asymptotic expansion in the form

W(x) = W0(x) + μW1(x) + μ2W2(x) + · · · (6.2)

Substituting into (6.1) and working at successive orders, we obtain

W0 = ± 1
(1 + x2)1/2

, W1 = −1
2

(2x2 − 1)
(1 + x2)2

, W2 = ∓5
8

(4x4 − 20x2 + 3)
(1 + x2)7/2

. (6.3)

In general for n � 1,

Wn = −(2W0)−1

(
n−1∑
k=1

WkWn−k +
d2Wn−1

dx2

)
, (6.4)

and it is straightforward to show that Wn(x) = p2n(x)/(1 + x2)(1+3n)/2, where p2n(x) is a poly-
nomial of degree 2n. For any n an important observation is that Wn satisfies the boundary
conditions (1.2) irrespective of the choice of sign in (6.3). This is reminiscent of the problems
discussed by Chapman et al [5] and references therein, whereby for some ordinary differential
equations with a small parameter, a simple asymptotic solution can be constructed that satis-
fies the required boundary conditions at any order and for all x when no such solution to the
problem in fact exists.
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Figure 6. Solution branches for the Lorentzian forcing, f(x) = 1/(1 + x2). All inset
profiles are plotted in the range x ∈ [−10, 10] and correspond to the appropriate marker
on the solution branches with the values α = 7.83 (B0),α = 26.44 (B1),α = 26.40 (B2),
α = 25.34 (B3), α = 48.35 (B4), α = 60.31 (B5), α = 94.52 (B6). The dotted line indi-
cates the asymptotic approximation u(0) ∼ −α1/2 + 1/2 obtained by taking the minus
sign for W0 in (6.2). The folds occur at α ≈ 5.63, 19.74, 37.03. Following the numerical
approach described around (4.5) an initial guess for the Fourier coefficients of the form
bn = an exp(−bn) cos(cn), for chosen constants a, b, c, is suitable to latch onto the var-
ious branches. For example, at α = 50 choosing (a, b, c) = (15, 1.25, 0.75) produces a
solution on B3.

The difficulty can be traced to the fact that the expansion disorders in the neighbourhood of
the singularities in the leading order term in the asymptotic expansion (W0 here) extended into
the complex plane. If a Stokes line emanating from one of these singularities crosses the real
axis, an exponentially small ‘beyond all orders’ term is in general switched on at the point of
crossing and this term eventually grows to corrupt the original expansion. In appendix B we
provide the relevant Stokes line analysis for the present problem. The conclusion is that if the
plus sign in (6.3) is chosen then the expansion (6.2) is corrupted in the manner described. For
the minus sign no such difficulty arises and the asymptotic expansion (6.2) is valid for all x.

Selecting the minus sign for W0 in (6.2) we find u(0) ∼ −α1/2 + 1/2. This approximation
is shown with a broken line in figure 6. As this figure suggests, further possibilities arise for
the large α asymptotics in which (6.2) is regarded as an outer expansion to be matched to an
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inner boundary-layer solution around x = 0 that describes a cluster of localised waves. These
localised waves may be viewed as the connection of individual solitary-wave structures that
are each described by a homoclinic orbit in an appropriately defined phase space, as will be
discussed in the following section.

7. Homoclinic glueing

In this section we aim to describe asymptotic forms that approximate the solutions in the limit
of large α for a fairly general class of forcing functions f . It will be convenient to think in
terms of symmetric solutions to (1.1) that are defined on the whole of the real line and that
decay as |x| → ±∞. To motivate the construction we rewrite (1.1) on a boundary-layer scale
by introducing the new variable x = α−1/4y and setting u(x) = α1/2U(y) to obtain

d2U
dy2

+ U2 = f (δy), (7.1)

where δ = α−1/4 � 1. Expanding the solution as U = U0(y) + δ2U1(y) + · · ·, and replacing
the right-hand side by its Taylor expansion f(δy) = f(0) + (1/2)δ2 f ′′(0)y2 + O(δ3), at leading
order we find (since f(0) = 1)

d2U0

dy2
+ U2

0 = 1. (7.2)

This has three bounded solutions of interest,

(i) U0 = 1, (ii) U0 = −1, (iii) U0 = UH
0 ≡ 3 sech2(y/

√
2) − 1, (7.3)

that correspond to equilibria in the (U0, dU0/dy) phase plane (i) and (ii) and a homoclinic
orbit connecting (−1, 0) to itself in the same plane (iii). It is symmetric about y = 0 and has
the property

UH
0 ∼ −1 + 12 e∓

√
2y as y →∞. (7.4)

Its graph in physical space has a classical solitary-wave shape (see, for example, Billingham
and King [2]), and this suggests representing the wave-like parts of the Bn branch solutions by
a collection of these homoclinics.

The strategy is as follows: for n odd, we seek to glue together n of the homoclinics (iii) in
(7.3) via asymptotic matching; for n even, n − 1 homoclinics are glued together either side of a
central region in which solution (ii) in (7.3) predominates. We consider odd and even numbers
of homoclinics separately in the following subsections. In both cases the analysis is predicated
on the assumption that f ′′(0) < 0, so that the forcing has a local maximum at the origin (or,
by a suitable shift, at any x location). This condition is fulfilled both by the Gaussian and the
Lorentzian forcings.

7.1. Odd number of homoclinics

Continuing with the analysis, at next order we have

d2U1

dy2
+ 2UH

0 U1 =
1
2

f ′′(0)y2. (7.5)
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Henceforth in this subsection it is assumed that U0 is given by the homoclinic (iii) in (7.3).
The general solution to (7.5) is given in appendix A in terms of a symmetric and an anti-
symmetric complementary function Φs and Φa, and particular integral form Φ(2)

p that satisfies
Φ(2)

p (0) = dΦ(2)
p /dy(0) = 0. The solution that satisfies the boundary conditions

U1(0) = U10,
dU1

dy
(0) = 0 (7.6)

is given by

U1(y) = U10 Φs(y/
√

2) +
1
2

f ′′(0)Φ(2)
p (y/

√
2), (7.7)

where U10 is a constant that will be determined later. We note from (A.8) that

Φs(y/
√

2) ∼ − 1
16

e
√

2y, Φ(2)
p (y/

√
2) ∼ 1

4
(log 2) e

√
2y (7.8)

as y →∞.
For a single homoclinic we require

U10 = 2(log 2) f ′′(0) (7.9)

to exclude the exponential growth as y →+∞. This is the case considered in [8] for the Gaus-
sian forcing. The solution for U(y) is then matched to the solution on the outer scale, where
x = O(1). 5More generally, using the asymptotic forms given in appendix A we have as the
required matching condition

U ∼ −1 + 12 e−
√

2y + δ2

(
−1

4
f ′′(0)(y2 + 1) + Λ1 e

√
2y + · · ·

)
+ · · · (7.10)

as y →+∞, where

Λ1 =
1
8

(log 2) f ′′(0) − 1
16

U10. (7.11)

According to (7.9) the single homoclinic has Λ1 = 0. If Λ1 > 0 then a second homoclinic is
initiated at

y = Y1(δ) + y1, Y1 =
1√
2

log

(
12
Λ1δ2

)
, (7.12)

whereupon (7.10) becomes

U ∼ −1 + 12 e
√

2y1 + δ2

(
−1

4
f ′′(0)

[
(Y1 + y1)2 + 1

]
+ Λ1 e−

√
2y1 + · · ·

)
+ · · · (7.13)

as y1 →−∞. A third homoclinic is initiated in y < 0 to maintain symmetry.

Remark 1. The shift Y1(δ) has been chosen to make the correction term δ2Λ1 e
√

2y in (7.10)
of O(1) and so that the two exponential terms in (7.10) are effectively interchanged in (7.13)
to effect the matching between the homoclinics.

5 The problem on the outer scale was discussed for the Lorentzian forcing in section 6. For the Gaussian see [8].
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For y1 = O(1) we have the expansion

U = UH
0 (y1) + δ2θ1(y1; log(1/δ)) + · · · , (7.14)

where UH
0 was given in (7.3) and

d2θ1

dy2
1

+ 2UH
0 θ1 =

1
2

f ′′(0)(Y1 + y1)2, (7.15)

provided that δ2Y1 � 1, a restriction that will be discussed in more detail below. Henceforth
the subscripts on θ will label the homoclinic sequence rather than the δ expansion. Also, as
is suggested by the notation, here and subsequently we shall lump all additional logarithmic
factors into θi in order to obtain algebraic rather than simply logarithmic accuracy.

Remark 2. The inner expansion at O(δ4) will lead to a δ2 e
√

2y1 term in (7.13). This will
simply trigger a dUH

0 /dy1 complementary function in the solution to (7.15), which corresponds
to an O(δ2) translation in y1. This can be safely ignored since we do not seek to determine O(δ2)
corrections to the locations of the maxima.

Inspecting (7.13) and (7.15) we decompose θ1 as

θ1 = Λ1φ(y1) +
1
2

f ′′(0)
(
Y2

1ψ0(y1) + 2Y1ψ1(y1) + ψ2(y1)
)

, (7.16)

where φ and the ψk, k = 0, 1, 2 satisfy the problems stated in appendix A. To perform the
matching we demand that

φ ∼ e−
√

2y1 (7.17)

as y1 →−∞, where the expansion does not include a term of the form a e
√

2y1 for any constant
a. We also require that

ψk ∼ −1
2

yk
1 (for k = 0, 1), ψ2 ∼ −1

2
(y2

1 + 1), (7.18)

as y1 →−∞, where in both cases (7.18) the expansions do not include either a e
√

2y1 or
a e−

√
2y1 for any constant a. The given stipulations for the · · · in both (7.17) and (7.18) are

made to remove the translational invariance alluded to above to ensure a unique solution.
The solutions for φ and the ψk are given in appendix A; here it is sufficient to note that

θ1 ∼ Λ2 e
√

2y1 (7.19)

as y1 →∞, where Λ2 = Λ1 + (
√

2/8) f ′′(0)Y1. Therefore a triple homoclinic solution requires
that Λ2 = 0, that is

Λ1 = −
√

2
8

f ′′(0)Y1(δ) = −1
8

f ′′(0) log

(
12
Λ1δ2

)
∼ −1

4
f ′′(0) log(1/δ) (7.20)

using (7.12). It follows from (7.11) that U10 ∼ 4 f ′′(0)log(1/δ).
If (7.19) is not satisfied then (7.10) is replaced as the matching condition to the next region

by

U∼−1+12 e−
√

2y1 + δ2

(
−1

4
f ′′(0)(y2

1 + 1 + 2Y1y1 + Y2
1 ) + Λ2 e

√
2y1 + · · ·

)
+ · · · (7.21)
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as y1 →+∞. Hence for Λ2 > 0 a fourth homoclinic arises for y1 = Y2 − Y1 + y2 where

Y2(δ) =
1√
2

log

(
12
Λ2δ2

)
+ Y1(δ), (7.22)

a fifth homoclinic being initiated in y < 0 by symmetry, and (7.21) implies the matching
condition

U ∼ −1 + 12 e
√

2y2 + δ2

[
−1

4
f ′′(0)

(
(Y2 + y2)2 + 1

)
+ Λ2 e−

√
2y2 + · · ·

]
+ · · ·

as y2 →−∞. In the new homoclinic region we therefore write

U = UH
0 (y2) + δ2θ2(y2; log(1/δ)) + · · · , (7.23)

where

θ2 = Λ2φ(y2) +
1
2

f ′′(0)
(
Y2

2ψ0(y2) + 2Y2ψ1(y2) + ψ2(y2)
)

, (7.24)

similar to (7.16). Thus the sequence is now established with

Λn+1 = Λn +

√
2

8
f ′′(0)Yn, Yn+1 =

1√
2

log

(
12

Λn+1δ2

)
+ Yn, (7.25)

and yn = Yn+1 − Yn + yn+1 for n = 1, 2, · · ·. The homoclinic sequence for each successive n
corresponds to the value U10, given in (7.11), such that Λn = 0. The sequence has a homoclinic
at y = 0 and, when n � 2, at y = ±Yk for k = 1, · · · , n − 1. At leading order in log(1/δ),

Yn ∼
√

2 n log(1/δ). (7.26)

7.2. Even number of homoclinics

The first pair of homoclinics is located at y = ±Y1(δ), where Y1 is to be found (note that Y1

now differs from that given in section 7.1). Sufficiently close to y = 0 the expansion

U = −1 + δ2U1(y) + · · · (7.27)

holds, where the leading order term corresponds to (ii) in (7.3). Note that the choice (i) in (7.3)
was ruled out in [8] and is ruled out here for the same reason. At first order

dU1

dy
− 2U1 =

1
2

f ′′(0)y2 (7.28)

with solution

U1 = −1
4

f ′′(0)(y2 + 1) +
12
δ2

(
e
√

2(y−Y1) + e−
√

2(y+Y1)
)

, (7.29)

where the constants of integration have been set to ensure a match with the homoclinics at
y = ±Y1.

Remark 3. (7.29) appears to be inconsistent with the expansion (7.27); in fact Y1 will be
such that the 1/δ2 terms in (7.29) are of O(1/δ) approximately, a statement that will be made
more precise below, so |δ2U1| = O(δ) � 1.
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Table 1. Comparison between numerical and asymptotic results for the homoclinic glue-
ing. In the table u0 is the numerical estimate and uA

0 is given by the pertinent asymptotic
formula (7.39). The location of the first homoclinic maximum is given numerically by
YH and the asymptotic estimate Y1 is taken to be the numerical solution of (7.12) (with
Λ1 given by the equation in (7.20)) for the triple homoclinic and as the numerical solu-
tion of (7.33) for the double homoclinic. The relative errors are δu = |(u0 − uA

0 )/u0| and
δY = |(YH − Y1)/YH |.

α u0 uA
0 δu YH Y1 δY

Gaussian triple homoclinic

105 599.92 609.43 1.59 × 10−2 5.50 5.37 2.36 × 10−2

106 1963.09 1972.37 4.73 × 10−3 6.15 6.10 8.13 × 10−3

107 6283.33 6292.32 1.43 × 10−3 6.86 6.83 4.37 × 10−3

108 19954.49 19963.16 4.34 × 10−4 7.58 7.57 1.32 × 10−3

Lorentzian triple homoclinic

105 602.66 609.43 1.12 × 10−2 5.57 5.37 3.59 × 10−2

106 1964.37 1972.37 4.07 × 10−3 6.18 6.10 1.29 × 10−2

107 6283.90 6292.32 1.34 × 10−3 6.87 6.83 5.82 × 10−3

108 19954.73 19963.16 4.22 × 10−4 7.60 7.57 3.95 × 10−3

Gaussian double homoclinic

106 −755.32 −764.44 1.21 × 10−2 3.29 3.27 6.08 × 10−3

108 −9163.49 −9174.92 1.25 × 10−3 4.01 4.01 0.00

Setting y = Y1 + y1, and inserting (7.29), (7.27) becomes

U = −1 + 12 e
√

2y1 + δ2

(
−1

4
f ′′(0)

(
(Y1 + y1)2 + 1

)
+

12
δ2

e−2
√

2Y1e−
√

2y1

)
+ · · · , (7.30)

which motivates writing u = UH
0 (y1) + δ2θ1(y1; log(1/δ)) for y1 = O(1), where

θ1 =
12
δ2

e−2
√

2Y1φ(y1) +
1
2

f ′′(0)
(
Y2

1ψ0(y1) + 2Y1ψ1(y1) + ψ2(y1)
)

(7.31)

(the functions φ and ψk, for k = 0, 1, 2, were defined in section 7.1). Once Y1 is determined
below, it can be confirmed a posteriori that each of the terms in (7.31) are at worst logarithmic
in δ. Using the details given in appendix A,

θ1 ∼ Λ1 e
√

2y1 , Λ1 =
12
δ2

e−2
√

2Y1 +

√
2

8
f ′′(0)Y1, (7.32)

as y1 →+∞.

The double homoclinic corresponds to Λ1 = 0 or

12
δ2

e−2
√

2Y1 = −
√

2
8

f ′′(0)Y1 (7.33)
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Figure 7. Double (upper panel) and triple (lower panel) homoclinic solutions for the
Gaussian at α = 108. Comparison between the asymptotic predictions, shown with sym-
bols, and the numerical solution of (1.1) and (1.2), shown with a solid line. The cir-
cles correspond to u = α1/2U0 + U1 with U0 given by UH

0 or −1, and U1 given by
(7.7) or (7.29) for the triple/double homoclinic respectively. The crosses correspond
to u = α1/2U0 + θ1 with U0 given by UH

0 and θ1 given by (7.16) or (7.31) for the
triple/double homoclinic respectively. For the triple and double homoclinics Y1 was
taken to be the numerical solution of (7.12) [with Λ1 given by the equation in (7.20)]
and (7.33), respectively.

in which case

Y1 ∼ 1√
2

log(1/δ) − 1

2
√

2
log

(
1√
2

log(1/δ)

)
+

1

2
√

2
log

(
−96√
2 f ′′(0)

)
+ o(1).

(7.34)

Otherwise the analysis continues in a manner similar to that presented in section 7.1. In this
case the sequence is established as

Λn+1 = Λn +

√
2

8
f ′′(0)Yn, Yn+1 =

1√
2

log

(
12
Λnδ2

)
+ Yn, (7.35)

and ŷn = Yn+1 − Yn + ŷn+1 for n = 1, 2, · · ·. The sequence for each successive n corresponds
to the value Y1 such that Λn = 0 and has homoclinics at y = ±Yk for k = 1, . . . , n. We find

Yn ∼ (2n − 1)√
2

log(1/δ) (7.36)

Taking into consideration remark 3 we may now check the validity of the expansion (7.27).
By taking the square root of (7.33) it is clear that the 1/δ2 terms in (7.29) are in fact of O(λ)
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where

λ =
1
δ

log1/2
(
1/δ

)
. (7.37)

The expansion (7.27) should therefore be adjusted accordingly; this adjustment is permitted
due to the linearity of the perturbation problems at each order of approximation.

The odd/even homoclinic analysis above is valid provided that the number of homoclinics
n is such that δ2Yn � 1. Given (7.26) and (7.36) this implies

n � 1
δ2 log(1/δ)

(7.38)

as the condition that all the homoclinics are located where |x| � 1. Since f ′′(0) = −2 for both
the Gaussian and the Lorentzian, the results in the previous subsections give the following
approximations which may be applied to either case,

u(0) ∼ 2α1/2 − 4(log 2) (single homoclinic)

u(0) ∼ −α1/2 + 25/431/2α1/4Y1/2
1 (double homoclinic) (7.39)

u(0) ∼ 2α1/2 − 4 log α1/2 (triple homoclinic)

In table 1 we compare these asymptotic predictions with numerical calculations for the triple
homoclinic for the Gaussian and the Lorentzian, and the double homoclinic for the Gaussian.
In figure 7 we show a comparison between the asymptotic homoclinic glueing predictions and
numerical solutions for the Gaussian forcing that demonstrate strong agreement between the
two.

8. Discussion

We have analysed solutions to the problem (1.1) and (1.2) for the case of a top hat forcing, a
Gaussian forcing and a Lorentzian forcing, with particular attention paid to the limits of small
and large α. We have presented an asymptotic construction to provide supporting evidence for
the existence of termination points on the solution branches for forcing functions which decay
in the far-field faster than 1/x4, which includes the Gaussian forcing. We have also presented an
asymptotic description of the largeα solution profiles using the method of homoclinic glueing,
which can be applied to any smooth forcing with a local maximum.

The structure of the solution space is similar for all three forcing functions, each with an
apparently infinite number of solution branches with qualitatively similar features in the solu-
tion profiles on each branch. Of particular note, however, is the presence of termination points
for the Gaussian forcing on all branches, and the linking together of branches Bn, Bn+1 for
the Lorentzian forcing (which decays more slowly that 1/x4 in the far-field). Some further
insight into these different characteristic features can be obtained by attempting to continu-
ously deform one forcing function into another. This can be achieved by considering the hybrid
forcing function

f (x) =
e−(1−a)x2

1 + ax2
(8.1)

for 0 � a � 1. As was noted above, the generic far-field behaviour for u(x) in (1.1) corresponds
to blow-up at the finite value x = −x0 via (3.1). Figure 8 shows contours of the blow-up point
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Figure 8. Contours of the blow-up point x0 in the (α, u0) plane for the hybrid forcing
(8.1) for (a) a = 0, (b) a = 0.7 and (c) a = 1.

x0 < 0 for the forcing (8.1) at three sample values of a. Solution branches can be discerned
on which formally x0 = −∞ to satisfy the far-field condition (1.2). Of particular note when
a < 1 are the two saddle points in the contour map that are located for a = 0.7 roughly at
(α, u0) = (11, 3.6) and (48, 7.5). These saddle points persist on decreasing a to zero, and indeed
the contour plot for the Gaussian forcing is qualitatively similar to figure 8. As a is increased
towards unity the tips of the two solution branches move toward each other. They pinch together
at the rightmost of the two saddle points when a = 1 to form the continuous solution branch
labelled B1, B2 for the Lorentzian forcing in figure 6.

As has been discussed, the existence of termination points at non-zero α appears to hinge
on the decay rate of the forcing in the far-field relative to the inverse fourth power (see
equation (3.2)). A forcing function for which f(x) = O(1/x4) as x →∞, for example,

f (x) =
1

1 + x4
, (8.2)

presents a marginal case. For this forcing, the large x behaviour of the solution is

u ∼ m±/x2, m± = −3 ± (9 + α)1/2 (m+ > 0, m− < 0), (8.3)

constituting a balance between all three terms in (1.1). The branch B1 for the forcing (8.2) is
shown in figure 9. The inset suggests that the branch terminates at α ≈ 19.9; in fact the branch
spirals inwards toward the termination point beyond the last point reached by our numerics (see
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Figure 9. Solution branch B1 for the marginal case forcing (8.2).

appendix C for details). This underscores the subtle behaviour that can be found in problems
of this type.

While we have used the particular class of equation (1.1) as an example to illustrate the idea
of a termination point and to demonstrate the use of the method of homoclinic glueing, we
believe that this class is simple enough to act as a paradigm for a much broader set of problems.
Finally we note that the homoclinic glueing analysis presented here is valid provided that the
number of homoclinics satisfies condition (7.38). If this condition is violated then a different
approach is needed. This is the subject of ongoing work.

Acknowledgments

MGB and JRK gratefully acknowledge support from the ICMS as follow-on funding from
the workshop ‘Applied and Computational Complex Analysis’ held in Edinburgh from 8–12
May 2017, the LMS under the Scheme 4 Grant 41853, and from the Isaac Newton Insti-
tute, Cambridge, as part of the programme ‘Complex analysis: techniques, applications
and computations’ held from 2nd September 2019 to 19th December 2019. JSK gratefully
acknowledges support from the IMA under the Small Grant Scheme.

Appendix A. Further details for the homoclinic glueing

In this appendix we provide some additional details of the calculations performed in the homo-
clinic glueing of section 7. The details below were checked using Maple and were also checked
against numerical solutions that were obtained using Matlab.

A.1. The homoclinic glueing problem for U1

The solution of first order homoclinic glueing problem (7.5), namely

d2U1

dy2
+ 2(3 sech2(y/

√
2) − 1)U1 =

1
2

f ′′(0)y2, (A.1)
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can be readily obtained readily by making the substitution t = tanh(y/
√

2). The solution is
found to be

U1 = U10 Φs(y/
√

2) + Ũ10 Φa(y/
√

2) +
1
2

f ′′(0)Φ(2)
p (y/

√
2), (A.2)

for arbitrary constants U10 and Ũ10. (Note to fulfil (7.6) we set Ũ10 = 0.) The antisymmetric
and symmetric complementary functions are

Φa(y) = tanh y sech2 y, Φs(y) =
1
8

(
15 sech2 y − 2 cosh2 y − 5 − 15yΦa(y)

)
. (A.3)

and they satisfy

Φa(0) = 0,
dΦa

dy
(0) = 1, Φs(0) = 1,

dΦs

dy
(0) = 0. (A.4)

The particular integral form is given by

Φ(2)
p (y) = 2

[
y
(
y sech2 y − 2 tanh y

)
− log sech2 y

]
Φs(y) +Φa(y)I(y), (A.5)

where

I(y) = 4
∫ y

0
s2 Φs(s) ds,

and it satisfies

Φ(2)
p (0) =

dΦ(2)
p

dy
(0) = 0. (A.6)

It will be helpful to note that

4
∫ ∞

0
s2

(
Φs(s) +

1
16

e2s +
3
4

)
ds = − 1

16

(
5π2 + 1

)
. (A.7)

For reference we note the asymptotic properties of these functions. As y →+∞

Φa(y/
√

2) ∼ 4 e−
√

2y + o
(

e−
√

2y
)

, Φs(y/
√

2) ∼ − 1
16

e
√

2y + o
(

e
√

2y
)

, (A.8)

and

Φ(2)
p (y/

√
2) ∼ 1

4
(log 2) e

√
2y − 1

2
(y2 + 1) + O(1); (A.9)

and as y →−∞ we have

Φa(y/
√

2) ∼ −4 e
√

2y + 16 e2
√

2y + o
(

e2
√

2y
)

,

Φs(y/
√

2) ∼ − 1
16

e−
√

2y − 3
4
+

(
119
16

+
15

2
√

2
y

)
e
√

2y + o
(

e
√

2y
)

, (A.10)

Φ(2)
p (y/

√
2) ∼ 1

4
(log 2)e−

√
2y − 1

2
(y2 + 1) + 3 log 2 + q(y/

√
2)e

√
2y,
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where

q(y) = 4y3 − 5y2 +

(
11
2

− 30 log 2

)
y +

5π2

4
− 19

8
− 119

4
log 2. (A.11)

A.2. The homoclinic glueing problems for φ and ψk

Herein we provide details of the first order problems satisfied by the functionsφ(y1) and ψk(y1)
for k = 0, 1, 2 which appear in the general solution for θ1 in (7.16). The problem for φ is

d2 φ

dy2
1

+ 2(3 sech2(y1/
√

2) − 1)φ = 0. (A.12)

Using the results from above, the general solution may be written as

φ = CaΦa(y1/
√

2) + CsΦs(y1/
√

2) (A.13)

for constants Ca, Cs. Inspecting the asymptotic forms (A.8) and (A.9) we see that to fulfill the
glueing condition (7.17) we must set Ca = 0 and Cs = −16 and so the solution for φ is even
in y1.

The functions ψk satisfy the problems

d2ψk

dy2
1

+ 2(3 sech2(y1/
√

2) − 1)ψk = yk
1 (A.14)

for k = 0, 1, 2. The solutions are:

ψk(y1) = D(k)
a Φa(y1/

√
2) + D(k)

s Φs(y1/
√

2) +Φ(k)
p (y1/

√
2), (A.15)

where the D(k)
a and D(k)

s are arbitrary constants and

Φ(1)
p (y1) =

√
2

8

(
sinh(2y1) − 4y1 + 6 tanh y1 − (6y2

1 + 15)Φa(y1) + 12y1 sech2 y1
)

(A.16)

and

Φ(0)
p (y1) =

1
8

(15 tanh y1 + 3y1)Φa(y1) − 1
4

tanh2 y1

− 1
8

sinh2 y1(15 tanh4 y1 − 25 tanh2 y1 + 8). (A.17)

We note the following asymptotic properties. As y1 →+∞

Φ(1)
p (y1/

√
2) ∼

√
2

16
e
√

2y1 − 1
2

y1 + O(1), Φ(0)
p (y1/

√
2) ∼ 1

16
e
√

2y1 + O(1); (A.18)

and as y1 →−∞

Φ(1)
p (y1/

√
2) ∼ −

√
2

16
e−

√
2y1 − 1

2
y1 −

3
√

2
4

+
√

2

(
−95

16
+ 9y

)
e
√

2y + o
(

e
√

2y
)

,

Φ(0)
p (y1/

√
2) ∼ 1

16
e−

√
2y1 +

1
4
−
(

3
2

y +
23
16

)
e
√

2y + o
(

e
√

2y
)

,

(A.19)

Taking account of these asymptotic forms and those given above, the solutions that adhere to
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the glueing conditions (7.18) are given by (A.15) with

D(0)
a = −3

2
, D(1)

a =
107

√
2

8
, D(2)

a =
5π2

16
− 19

32
, (A.20)

D(0)
s = 1, D(1)

s = −
√

2, D(2)
s = 4 log 2. (A.21)

Appendix B. Stokes line analysis for the Lorentzian forcing

The difficulty noted by Chapman et al [5], for example, requires an analysis of the Stokes lines
that emanate from the singularities of the leading order term in the expansion (6.2) extended
into the complex plane. With this in mind, when referring to the analysis in section 6.1 we shall
replace x with z ∈ C.

The expansion (6.2) is a divergent asymptotic series whose terms are generated by the recur-
rence relation (6.4). Following Chapman et al [5] we optimally truncate the asymptotic series
at its smallest term, writing

W(z) =
N∑

n=0

μnWn(z) + RN(z), Wn(z) = m2n+1 p2n(z)(1 + z2)−(1+3n)/2, (B.1)

where RN(z) is a remainder term and m = ±1 corresponding to the choice of sign made in (6.3).
The optimal truncation level N follows from knowledge of the large n behaviour of Wn(z). We
make the usual ansatz, writing (see Dingle [6]),

Wn(z) ∼ A(z)
Γ(2n + γ + 1)

σ2n+γ+1
(B.2)

as n →∞, where Γ(z) is the Gamma function and the functions A(z), γ(z) and the singulant
σ(z) are all to be found. Substituting (B.2) into (6.4) the balances at leading order, first order
and second order determine that (see Keeler [7])

σ′2 = −2W0(z) (B.3)

where ′ means d/dz, and that γ(z) = −1/6 and A(z) = Λ/(σ′)1/2, where Λ is the Stokes multi-
plier that will be determined below. Since W0 has singularities at z = ±i, then Wn(z) will also
have singularities at these locations, for all n. We shall focus on the singularity at z = i, the
analysis for z = −i being similar. Integrating (B.3), the singulant takes the form

σ(z) =

⎧⎪⎪⎨
⎪⎪⎩
−
√

2
∫ z

i
(1 + p2)−1/4 dp if m = −1,

i
√

2
∫ z

i
(1 + p2)−1/4 dp if m = 1,

(B.4)

where the lower integration limit has been chosen so that σ(i) = 0. Finally, consistency of
Wn(z) for large n between the forms given in (B.2) and in (B.1) demands that (Keeler [7])

Λ =
27/6π1/2

32/3Γ
(

1
3

) ≈ −0.714 0572. (B.5)
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Figure B1. (a) m = −1: numerically computed Stokes’ lines Im(σ) = 0, shown with
solid lines, and the asymptotic approximation (B.9), shown with broken lines. (b) m = 1:
a Stokes line passes down the imaginary axis between z = ±i crossing the real axis at
z = 0. In both (a) and (b) the branch cuts along the imaginary axis up from z = i and
down from z = −i are shown with thin curvy lines.

Stokes lines emerge from the points z = ±i where σ vanishes and hence, according to (B.2),
the late form of Wn is singular. According to Dingle [6] the Stokes lines are traced by delin-
eating the curves in the complex plane on which successive terms of the late order form (B.2),
namely Wn and Wn+1, have the same phase. Equivalently (see, e.g. [5]) on a Stokes line,

Im(σ) = 0. (B.6)

The angle at which the lines emerge from the singularities is determined as follows. We note
that

σ ∼ 29/4

3
i7/4(z − i)3/4 (for m = −1), σ ∼ 29/4

3
i11/4(z − i)3/4 (for m = 1), (B.7)

as z → i. Since the original problem posed on the real line is symmetric about x = 0, it is
natural to take the branch cuts that stem from the branch points at z = ±i to extend up the
imaginary axis from z = i and down the imaginary axis from z = −i respectively. If local to
z = i we write z − i = Reiψ and σ = reiθ, then we should insist that

−3π
2

� ψ <
π

2
. (B.8)

Considering first the case m = −1, (B.6) holds locally if ψ = 4kπ/3 − 7π/6 for integer k. So
there are two Stokes lines exiting z = i on which ψ = −7π/6 and ψ = π/6. (Similarly two
Stokes lines exit z = −i such that ψ = −5π/6 and ψ = −π/6). By appropriately deforming
the contour of integration it can be shown that for large |x| the Stokes lines are approximated
by

y ∼ ±ρ|x|1/2, ρ =

(
2
π

)1/2

Γ2

(
3
4

)
≈ 1.198. (B.9)

The numerically computed Stokes lines in the upper half plane are shown in figure B1(a)
together with the asymptotic approximation (B.9). We note that the thickness of the Stokes
layers about each Stokes line is of order μ1/4|σ|1/2. Since |σ| grows like |z|1/2 for large x, the
Stokes layer thickness grows as x1/4, and hence the Stokes layer cannot impinge on the real
line. It follows that for m = −1 the Stokes phenomenon can be ignored and the expansion (6.2)
holds for all real x.
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The situation is different for m = 1. In this case the local form (B.7) leads to the conclusion
that there is a Stokes’ line along the imaginary axis between z = i and z = −i. An analysis
similar to that in Chapman et al [5] (see Keeler [7] for details) shows that the exponentially
small remainder term

RN(x) ∼ 23/4 πΛμ−5/12 e−ρ(2/μ)1/2
(1 + x2)1/8 cosψ(x), (B.10)

where ψ(x) =
(
2/μ

)1/2∫ x
0 (1 + p2)−1/4 dp, is activated on the real axis where the Stokes line

crosses it at x = 0. This term grows algebraically in x so eventually the expansion (6.2) breaks
down and there is therefore no solution of the original boundary value problem which is
approximated by (6.2) for all x.

Appendix C. Termination point analysis for the marginal case

Our discussion for branch termination points hinged on the far-field decay behaviour (3.2). A
forcing for which f(x) = O(1/x4) as x →∞, for example,

f (x) =
1

1 + x4
, (C.1)

presents a marginal case. For large x,

u ∼ ϕ(ξ)
x2

, (C.2)

with ξ = log x, where ϕ satisfies the nonlinear equation

d2ϕ

dξ2
− 5

dϕ
dξ

+ 6ϕ+ ϕ2 = α. (C.3)

This has the two constant solutionsϕ = ϕ± ≡ −3 ± (9 + α)1/2. These may be viewed as equi-
libria in the (ϕ, dϕ/dξ) phase plane, wherein, assuming that 25 − 8

√
9 + α > 0, (ϕ+, 0) is an

unstable node and (ϕ−, 0) is a saddle node. So the far-field decay in (C.2) is such that, as
ξ →∞, ϕ ∝ exp(−p±ξ) near to ϕ+, and ϕ ∝ exp(−λ±ξ) near to ϕ−, where

p± =
1
2

(
−5 ± (25 − 8

√
9 + α)1/2

)
, λ± =

1
2

(
−5 ± (25 + 8

√
9 + α)1/2

)
. (C.4)

(If 25 − 8
√

9 + α < 0 then ϕ+ is an unstable spiral.) We conclude that two boundary con-
ditions are required at x = ∞ to remove both of the eigenvectors at the unstable node, ϕ+,
and this leaves no degrees of freedom to satisfy the boundary condition at x = 0. We therefore
expect to find a solution in this case only for special (possibly discrete) values of α, labelled
α∗. Only one boundary condition is needed at x = ∞ to remove the unstable eigenvector at
the saddle node, ϕ−, leaving one degree of freedom to satisfy the condition at x = 0.

Working as in section 5.2, we perturb about the special solution u∗(x) at α = α∗, writing

u ∼ u∗(x) + εu1(x), (C.5)

for small ε = α− α∗. Substituting into (1.1) we find that the perturbation u1(x) satisfies

d2u1

dx2
+ 2u∗u1 =

1
1 + x4

, (C.6)
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Figure C1. Illustrative sketch of the local behaviour of the solution curve in the (α, u(0))
plane near to α∗ for the marginal case f(x) = 1/(1 + x4). The marker points indicate the
change in the value u(0) under the rescaling (C.12).

with du1/dx(0) = 0 and u1(x) → 0 as x →∞. For large x, we have u∗ ∼ ϕ+(ξ)/x2 and the
complementary functions for (C.6) are 1/(x2xp±). Numerical computations suggest that α∗ is
such that p± are a complex conjugate pair, so that for large x,

u ∼ 1
x2

(
ϕ+ + εA+x5/2xiτ + εA−x5/2x−iτ

)
, (C.7)

for complex constants A± (with A+ = A−) and τ = (8
√

9 + α− 25)1/2. A single relation is
needed between the constants A± to have a boundary value problem for u1.

The non-uniformity of the expansion (C.7) implies the presence of an outer region in which
x = ε−2/5X and u = ε4/5U with X = O(1) and U = O(1). Writing U = Φ/X2 and Θ = log X,
we have

d2Φ

dΘ2 − 5
dΦ
dΘ

+ 6Φ+ Φ2 = α∗ (C.8)

with

Φ→ ϕ+ as Θ→−∞, Φ→ ϕ− as Θ→∞. (C.9)

This will have a unique solution up to translations in Θ (compare travelling wave solutions to
the Fisher–Kolmogorov equation, e.g. Britton [4]) with

Φ ∼ ϕ+ + B e5(Θ+Θ0)/2 cos (τ [Θ+Θ0]) (C.10)

as Θ→−∞ with B real and effectively known from the unique solution to (C.8) and (C.9),
and Θ0 arbitrary. Matching between the inner and the outer regions yields

A± =
B
2

e5Θ0/2 exp

(
∓iτ

[
Θ0 −

2
5

log(1/ε)

])
, (C.11)

that is two equations which provide the relation between A+ and A− alluded to above, and a
condition to determine Θ0, on solving the boundary value problem for u1.

According to (C.11) the rescaling

ε �→ e−5π/τ ε, arg A± �→ arg A± ± 2π (C.12)

560



Nonlinearity 34 (2021) 532 J S Keeler et al

leaves the solution for u1 unchanged. Therefore in this case the solution branch spirals into the
termination point at α = α∗ in the manner sketched in figure C1.
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