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Abstract 

Migration of tumour cells is a fundamental process for the formation and progression of 

metastasis in malignant diseases. Chemokines binding to their cognate receptors induce the 

migration of cancer cells, however, the molecular signalling pathways involved in this 

process are not fully understood. Protein kinase C (PKC) has been shown to regulate cell 

migration, adhesion and proliferation. In order to identify a connection between PKC and 

tumour progression in breast, prostate and leukaemia cells, the effect of PKC on CXCL8 or 

CXCL10-mediated cell migration and morphology was analysed. We tested the speed of the 

migrating cells, morphology, and chemotaxis incubated with different PKC isoforms 

inhibitors- GF109203X, staurosporine and PKC  pseudosubstrate inhibitor (PKC . We 

found that the migration of CXCL8-driven PC3 and MDA-MB231 cells in the presence of 

conventional, novel or atypical PKCs was not affected, but atypical -1 

chemotaxis. The speed of CXCL10-activated PC3 and MDA-MB231 cells was significantly 

reduced in the presence of conventional, novel and atypical PKC . THP-1 chemotaxis was 

again affected by atypical i. On the other hand, cell area, circularity or aspect ratio 

were affected by staurosporine in CXCL8 or CXCL10-activated cells, demonstrating a role of 

Consequently, this allows the speculation that different PKC isoforms induce different 

outcomes in migration and actin cytoskeleton based on the chemokine receptor and/or the 

cell type.  
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1. Introduction 

The process of secondary tumour formation is called metastasis and it is the leading cause 

for patient death (Seyfried and Huysentruyt., 2013). This process does not happen 

randomly, instead it is structured and biased to specific tissues (Chaffer and Weinberg, 

2011; Pauli et al., 1990). It is well established that chemokines have a role in directing 

organ-specific metastasis .  

CXCL8 was first reported for its attraction of leukocytes to the site of inflammation (Paccaud 

et al., 1990; Yoshimura et al., 1987). CXCL8 binds to two receptors: CXCR1 and CXCR2. 

Other chemokines can bind to CXCR1 and CXCR2 but CXCL8 is the most intensively 

studied chemokine for its association with inflammation and cancer (Ha et al., 2017). CXCR1 

and CXCR2 receptors are expressed on the surface of leukocytes (Campbell et al., 2013). 

CXCL8 released by cancer cells is known to promote tumour proliferation and metastasis 

(Campbell et al., 2013; Gales et al., 2013; Ha et al., 2017; Liu et al., 2016). Otherwise, 

CXCL8 is barely detected in normal tissues (Hoffmann et al., 2002). Upon receptor 

i, is activated and regulates several signalling pathways which are important 

for neutrophil stimulation and chemotaxis (Wu et al., 2016). i mainly inhibit adenylate 

cyclase (AC) and transduces signals through tyrosine kinase such as Src (Thelen, 2001). 

activation of protein kinase C (PKC). This is thought to be crucial for neutrophil chemotaxis 

(Wu et al., 2016).  

Likewise, elevated levels of CXCL10 have been reported in a diverse range of human 

diseases such as infectious, inflammatory, autoimmune disorders, and cancer (Liu et al., 

2011a, 2011b; Tokunaga et al., 2018). CXCL10 has a vital role in the recruitment and 

homing of leukocytes to the inflamed area (Antonelli et al., 2014). CXCL10, together with 

CXCL9 and CXCL11, bind to CXCR3 which is expressed on T cells, and is involved in 

leukocyte migration (Liu et al., 2005). CXCR3 is present in normal plasma cells and multiple 

myeloma cells causing their chemotaxis to the bone marrow (Giuliani et al., 2006; Moser et 

al., 2006). Moreover, studies reported the expression of CXCR3 in significant amounts in 

cancer cells like melanoma (Kawada et al., 2004; Robledo et al., 2001) and malignant B 

lymphocytes (Trentin et al., 1999). Further studies showed that CXCR3 expression is 

associated with breast (Ma et al., 2009), osteosarcoma (Pradelli et al., 2009), and colon 

metastasis (Cambien et al., 2009; Kawada et al., 2007)  

PKCs are a multifunctional proteins serine/threonine kinases, consisting of 15 isoforms 

classified into three categories based on their second messenger requirements: 

conventional PKCs (cPKCs- (diacylglycerol) and calcium; novel 

PKCs (nPKCs- ) requires DAG only and atypical PKCs (aPKCs-   are not 



(phospholipase c) signalling pathway. PKCs can affect the 

morphology of the cells thereby regulating processes such as cell migration (Larsson, 2006).  

During cell migration, actin filaments arrange in three-dimensional assemblies 

preparing for the next move. The leading edge of the cell will contain protrusive structures 

called lamellipodia and filopodia. When activated, an elongation of the protrusion of the 

leading edge will lead the cell movement (Labrousse et al., 2003). On the other hand, the 

contraction of the cells is generated by stress fibres acting as contractile structures. They are 

formed of actin and myosin bundles, also known as actomyosin structures, generating 

contractile forces for cell migration and morphogenesis [(Lauffenburger and Horwitz, 1996). 

Here we analyse the effect of PKC on CXCL8 or CXCL10-mediated cell migration and 

morphology.  

 

2. Materials and methods 

 

2.1 Cells and materials 

The breast cancer cell line MDA-MB231 cells and the metastatic prostate cancer PC3 cells 

were obtained from ATCC (Teddington, UK). These cells were maintained in growth media, 

DMEM and RPMI (respectively), containing 1% non-essential amino acids, 10% FCS (fetal 

calf serum) and 2 mM L-glutamine. Cells were grown in an incubator under standard 

conditions of 37 °C, 5% CO2 and air 95%. CXCL8 was a gift from K. Schmitz (TU Darmstadt) 

(Helmer et al., 2015). i 

myristoylated was obtained from Calbiochem (Hertfordshire, UK) and from Tocris (Abingdon, 

UK). Staurosporine and GF109203X were purchased from Tocris (Abingdon, UK). The 

concentration of the inhibitors used are 1 i, 10 nM staurosporine and 5 µM 

GF109203X.  

 

2.2 Time-lapse cell migration assay 

The effect of CXCL8 and CXCL10 on the migration speed of the cells was observed using 

time-lapse videos microscopy. MDA-MB231 and PC3 cells were seeded out in a 24-well 

plate in complete RPMI and DMEM, respectively, for 24 h at 37 °C. Equivalent 

concentrations i, 10 nM staurosporine or 5 µM GF109203X were added to the 

cells in addition to CXCL8 or CXCL10. Using Carl Zeiss AxioVision Rel. 4.8 software, time-

lapse images were taken every 4 min for 10 h at 10X objective in a controlled chamber of 

37° C, 5% CO2 and air 95%. Time-lapse videos created were analysed using Fiji/Image J 

software where 10 cells in each video were tracked manually throughout the video frames. 

The speed sum of each individual cell was averaged over the course of experiments. All the 

experiments were repeated at least four times. 



 

2.3 Chemotaxis assay 

THP-1 cells were collected and centrifuged at a concentration of 25 x 104 /ml in serum free 

RMPI 1640 containing 0.1% BSA (bovine serum albumin). The lower chambers of the 

microchemotaxis well plate (Receptor Technologies, Adderbury, UK) were blocked with 1% 

BSA for 30 min, followed by the addition of the vehicle or chemokines at 31 . CXCL8 was 

used at a concentration of 5 nM and CXCL10 at 1 nM, and were diluted with 0.1% serum 

free RPMI. The cells, on the other hand, were incubated with the inhibitor treatment or 

vehicle for 30 min and loaded at 20  volume to the top chamber of the polyvinylprollidone-

. The chemotaxis plate was accommodated in the 

incubator at 37 °C, 100% humidity, and 5% CO2 for 4 h to allow cells to migrate. The filter 

was then removed and the migrating cells at the lower chamber were counted using a 

haemocytometer. All the experiments were repeated at least three times. 

 

2.4 Cell morphology analysis  

Besides measuring the cell migratory speed using time-lapse videos, cellular morphology 

was measured as well using Fiji/Image J. The last frame of the videos indicating 10 h of cells 

migration was screenshotted. Using the free hand drawing option, cells were drawn around 

and measurements of area, aspect ratio and circularity were made using the Analyse and 

Set measurement options. Subsequently, these parameters were averaged for 70 cells per 

image per experiment and the experiments were repeated at least three times.  

 

2.5 Actin staining 

PC3 and MDA-MB231 cells were harvested, seeded onto 12 well coverslips, and left to 

adhere overnight. Inhibitors were added with or without CXCL8 or CXCL10 (10 nM) to the 

wells and left to incubate for 10 h at 37°C and 5% CO2. Cells were washed twice with PBS 

(phosphate buffered salt solution) and fixed with 4% paraformaldehyde for 15 min. Cells 

were washed again with PBS and 0.1% Triton X-100 (FisherBioTech) solution was added for 

5 min. Cells were washed again twice with PBS and incubated with 1:100 Phalloidin-iFlour 

488 Conjugate (Abcam) in PBS for 30 min. Coverslips were mounted onto glass slides with 

DPX mounting media (Fisher Scientific). Stained cells were then imaged at 63X objective 

using Leica DMIL inverted microscope.  

 

2.6 Immunofluorescence staining 

MDA-MB231 and PC3 cells were seeded out on a glass cover-slides in complete media in a 

12-well plate for 24 h at 37°C, 5% CO2 and air 95%. Cells were then washed twice in cold 

PBS and fixed with 4% paraformaldehyde for 15 min while being incubated at 4 °C. After 



washing twice with PBS, cells were blocked with IL-8RA (CXCR1) antibody (SC-7303, Santa 

Cruz Biotechnology, USA); IL-8RB (CXCR2) antibody (SC-7304, Santa Cruz Biotechnology, 

USA) and CXCR-3 (H-1) antibody (SC-133087 Santa Cruz Biotechnology, USA) were used 

at 1:500 dilution and incubated for 1 h at 4°C. After washing with cold PBS, cells were 

incubated with the corresponding secondary antibodies Alexa Fluor 488-conjugated goat 

anti-mouse IgG (Abcam, Cambridge, MA). Cells were further washed with PBS and 

incubated wit -2-phenylindole) (MERCK). THP-1 cells were harvested 

and centrifuged and the same process was applied to them except they were stained in their 

tubes instead of in a well plate. Finally, slides were mounted with DPX (Fisher). The stained 

cells were analyzed for CXCR1, 2 and 3 surface expression using a Leica DMII inverted 

microscope. 

 

2.7 Cell viability studies 

MTS assay was performed using a CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay (Promega). 100 µl cells were seeded at 1 x 105 ml-1 in complete RPMI for 

PC3 cells and DMEM for MDA-MB231 cells overnight. PKC inhibitors were added to the 

cells and incubated for 24 h at 37°C, 5% CO2 and air 95%. To validate the toxicity of the 

inhibitors on the cells, MTS compound was added for 2 h and conducted as described 

previously (Mills et al., 2016). 

 

2.8 Statistical data analysis 

Data analysis was performed using GraphPad Prism V6 software (La Jolla, CA). Unpaired t-

test was used to analyse two-variables while One-way ANOVA with post-hoc 

multiple comparison was performed on three or more variables. Shapiro Wilk test was used 

to confirm normal distribution of data. Friedman non-

multiple comparison tests were applied for normalized values. Data represents the mean ± 

S.D. at least three independent experiment repeats. 

 

3 Results 

3.1 CXCL8 and CXCL10-induced chemotaxis in THP-1 cells is inhibited by PKC i  

The effect of PKC inhibitors was studied on chemokine-induced cell chemotaxis for different 

receptors using THP-1 cells. These cells express CXCR2 and CXCR3 but not CXCR1 as 

confirmed using immunofluorescence assay (Fig 1A). The expression of CXCR2 but not 

CXCR1 was already confirmed in a study by (Phillips et al., 2005). Here, 5 µM GF109203X 

. Initially, there was a 

significant difference in the migration of the untreated basal sample and the CXCL8-



activated sample (p ), and with CXCL10 activation (P ). Although GF109203X 

and staurosporine did not cause an inhibitory effect on the cells, resulted in a 

significant reduction of chemotaxis towards CXCL8 and CXCL10 (Fig 1B, C). An MTS assay 

determined there was no cellular toxicity regarding these inhibitors over the timeframe and 

concentrations used (Fig 1D).  

 

3.1 PKC isoform activation is not important for CXCL8-induced migration in PC3 and 

MDA-MB231 cells 

To study the importance of PKC signalling pathway on the migration speed of PC3 and 

MDA-MB231 cells activated by CXCL8, a time-lapse migration assay was conducted. Both 

cell lines express CXCR1 and CXCR2 receptors (Fig 2A). Cells were incubated with different 

PKC inhibitors; 5 µM GF109203X, 10 nM staurosporine, or 10 µM PKC i, and activated with 

10 nM CXCL8.   

The basal speed of MDA-MB231 cells was 21.07 ± 7.1 µm/h, whereas the addition of 

CXCL8 increased the speed by almost two-fold to 42.6 ± 7.7 µm/hr (P=0.006) (Table 1). 

There were no crucial changes to cell speeds with the treatment of staurosporine (44.0 ± 5.3 

 (Fig 2B). 

Furthermore, the basal speed of PC3 cells was 23.7 ± 5.4 µm/h, while CXCL8 addition 

increased the speed to 58.2 ± 16.8 µm/h (P=0.001) (Table 1). The treatment with 

staurosporine or GF109203X caused the average migratory speed to slightly drop, although 

not significantly, to 42.4 ± 12.1 µm/h, and 43.4 ± 14.4 µm/h, respectively. Finally, the 

 caused a moderate drop where an average speed of 35.4 ± 10.4 µm/h 

was calculated (P=0.077) (Fig 2C). 

 

3.2 CXCL10 relies on PKC signalling for migration of PC3 and MDA-MB231 cells 

PC3 and MDA-MB231 cells both express CXCR3 receptor (Fig 2A), which is confirmed by 

other reports (Goldberg-Bittman et al., 2004; Wu et al., 2012), respectively. Two of the PKC 

inhibitors, PKC i and GF109203X caused a significant reduction to the speed of migrating 

MDA-MB231 cells when activated with CXCL10 (10 nM). Indeed, the basal speed of cells 

was 18.9 ± 6.3 µm/h, and CXCL10 addition gave a speed of 31.2 ± 5.2 µm/h (P=0.015), 

whereas the treatment with PKC i caused a significant decrease to the speed of migration to 

20.1 ± 3.2 µm/h (P=0.019) and a further reduction to 17.6 ± 2.6 µm/h (P=0.002) with 

GF109203X. Staurosporine, however, did not cause a crucial difference to the migratory 

speed; 29.8 ± 5.6 µm/h (P=0.944) (Fig 3A). Moreover, PC3 cells migrate at an average 

speed of 18.9 ± 2.7 µm/h, whilst the activation with CXCL10 boosted the speed by almost 

three-fold to 50.4 ± 3.4 µm/h (P=0.017) (Fig 3B). A speed of 16.6 ± 3.4 µm/h was calculated 



with the treatment of PKC i (P=0.006), GF109203X had a speed of 26.9 ± 9 µm/h (P=0.002), 

and with staurosporine the speed was 32.3 ± 5.8 µm/h (P=0.001) (Table 2). MTS assay 

showed no cytotoxicity of PKC inhibitors towards both cell lines (Fig 3C, D). 

 

3.3 PKC inhibitor staurosporine influences the cellular morphology of PC3 and MDA-

MB231 cells  

Staurosporine drastically changed the shape of MDA-MB231 cells to a more stretched and 

elongated shape in the presence of CXCL8 (10 nM) or CXCL10 (10 nM). This was reflected 

on the area, cell circularity and aspect ratio which were significantly different (Fig 4A, B). 

Moreover, PC3 cellular morphology analyses have also been changed in the presence of 

staurosporine and CXCL8 or CXCL10, in particular, the area, aspect ratio and circularity 

were affected (Fig 5A, B). These results were confirmed using an actin stain for MDA-MB231 

and PC3 cells. Actin-enriched lamellipodia and membrane ruffles demonstrated by the red 

arrows (Fig 6) pointed at the tips of CXCL8 or CXCL10-activated PC3 cells treated with 

staurosporine. The same treatment with MDA-MB231 cells yielded to a similar outcome with 

the formation of sticky protrusions on cells  making them form a web of actin-

distributed stretched cells (Fig S1). GF109203X had only a mild effect on the aspect ratio of 

CXCL10-activated PC3 cells. PKC i did not cause a major change to the cell morphology in 

both PC3 and MDA-MB231 cells with or without CXCL8 or CXCL10.   

 

4. Discussion 

Overexpression of chemokine receptors is thought to be a contributing factor in providing 

navigational cues for cancer cells to metastasize (Singh et al., 2011). Therefore, 

investigating the mechanisms of migration can give a better understanding on how to block 

the motility of cancer cells. CXCL8 acting on its cognate receptors, CXCR1 and CXCR2, 

within the tumour microenvironment was found to be associated with cancer migration and 

proliferation (Ha et al., 2017). Also, CXCR3 is found to be expressed in lymphatic leukaemia, 

splenic marginal zone lymphoma and breast cancer cells (Goldberg-Bittman et al., 2004), 

suggesting its correlation to tumour progression and metastasis (Suyama et al., 2005). 

Although many studies have been trying to address the main signalling pathways involved in 

cell migration, there is still a knowledge gap with regards to whether PKC signalling is a 

positive or negative factor in cancer metastasis. Our approach was to investigate the role 

PKC plays in the migration and morphology change of different cancer cells which have 

been activated by either CXCL8 or CXCL10. 

We studied the role of PKC family members in chemokine mediated migration using small 

molecule inhibitors acting on different subtypes (Fig 7). We have already reported that PKC 

inhibition does not inhibit CCL3 migration in THP-1 cells (Cardaba et al., 2012). However, we 



also found that PKC and PKD were important for the migration of CXCL12-activated PC3 

cells (Hamshaw et al., 2019). In addition, the migration of CXCL12-stimulated MCF-7 cells 

was reported to be blocked by PKC inhibitors but not Jurkat cells (Mills et al., 2016). In this 

report we observe that both CXCL8 or CXCL10 promote cells to migrate faster comparing 

with the untreated control, yet when we added PKC inhibitors, cells reacted differently based 

on the chemokine and PKC inhibitor used.  

Conventional , novel , or atypical PKC isozymes are not important 

for CXCL8-induced MDA-MB231 and PC3 cells migration, but atypical PKC

THP-1 cells migration. The PKC inhibitor GF109203X- 

and staurosporine- i did not affect the speed 

of migration of PC3 and MDA-MB231 cells when activated with CXCL8. However, using 

these same set of inhibitors on THP-1 cells chemotaxis, we found that only PKC i 

significantly reduced the number of cells migrating toward CXCL8. Simultaneously, it was  

reported that PKC i block CSF-1-induced THP-1 chemotaxis and confirmed this with 

knocking down PKC  (Guo et al., 2009). Likewise, PKC

reduced the chemotactic abilities of EGF-induced non-small cell lung cancer cells (Liu et al., 

2009). On the other hand, GF109203X had lowered renal cancer cell migration using 

chemotaxis assay (Brenner et al., 2008) and blocked CCL5-mediated migration (Chuang et 

al., 2009) -7 

and Jurkat cells has abrogated cells migration towards CXCL12, while PKC

effect (Mills et al., 2016). Taking it all together, we conclude that atypical PKC i block the 

migration of CXCL8-activated THP-1 cells, while PKC , GF109203X and staurosporine did 

not have an effect on the CXCL8-induced migration of PC3 and MDA-MB231 cells.  

In contrast, using the same set of inhibitors, we found that staurosporine, GF109203X and 

PKC i reduced the migration of CXCL10-activated PC3 cells, but staurosporine did not have 

an effect on the migration speed of MDA-MB231 cells, and PKC i was crucial for THP-1 cells 

chemotaxis. Subsequently, we speculate that different PKC isoforms generate different 

effects on migration based on the chemokine receptor and/or the cell type.  

Cell migration is characterized by a series of morphological changes endorsed by dynamic 

modification of actin polymerization causing rearrangement of the cytoskeleton (Lamalice et 

al., 2007). Accumulating evidence have confirmed that PKC substrates phosphorylate many 

cytoskeletal proteins triggering dynamic alternations that lead cell adhesion and migration  

(Keenan and Kelleher, 1998; Larsson, 2006; Quann et al., 2011). Treating cells with PKC 

inhibitors have presented some contradicting results in relation to the migration and 

cytoskeleton rearrangement based on the chemokine used. Although GF109203X, PKC i 

and staurosporine did not cause a substantial difference to the migration speed of CXCL8-

activated PC3 and MDA-MB231 cells, staurosporine induced a significant change to the 



area, circularity or aspect ratio of both cell lines by the morphology analysis of images taken 

using brightfield microscopy (data not shown). This was confirmed with observations of 

phalloidin-stained actin microfilaments with fluorescence microscopy generating major actin 

disruption to the cells with staurosporine treatment with both chemokines and both cell lines. 

Actin-enriched lamellipodia and membrane ruffles appeared at the tips of CXCL8-activated 

PC3 cells treated with staurosporine (Fig 6). The same treatment with MDA-MB231 cells 

showed a tangled network of cells overlapping over each other as well as stretching their 

cytoskeleton (Fig S1). Staurosporine-treated cells displayed long spindled shapes with 

thinning to their cell bodies exhibiting sticky endings with slender protrusions. Cell migration 

involving polymerization and depolymerisation of actin filaments in lamellipodia or membrane 

ruffles (Lauffenburger and Horwitz, 1996) were not affected by the changes staurosporine 

cause on both cell lines suggesting a different independent mechanism of action taking 

place. 

CXCL10- i, but staurosporine and GF109203X 

caused some morphological changes to the PC3 and MDA-MB231 cells. GF109203X 

significantly changed the aspect ratio of CXCL10-activated PC3 cells. Our group previously 

reported that GF109203X reduce the size of CXCL12-activated PC3 cells with an increase to 

the number of cellular protrusions (Hamshaw et al., 2019). Another study found that 

the PKC isoforms inhibited by GF109203X) displayed a 

polarized shape change to fibroblasts resulting in the formation of long cellular membrane 

protrusions [35]. associated with Rac1 activation (Wang, 2006), which is 

known for its role in migration and formation of lamellipodia (Mills et al., 2017), (Ridley, 

2001). ate cancer cells (Wang, 

2006). Another possibility for the morphology change assumed by GF109203X treatment is 

that RhoA could act downstream of PKC which leads to actin reorganisation. This was 

evident by a study that found that GF109203X block RhoA signalling in the vascular smooth 

muscle A7r5 cells (Brandt et al., 2002). In addition, it was proposed that 

EMT via downstream signals RhoC and STAT3, which mediate EMT regulation (Aziz et al., 

2010; Jain and Basu, 2014; Pan et al., 2005). Moreover, the circularity of CXCL10-activated 

MDA-MB231 cells and aspect ratio of PC3 cells were challenged by staurosporine 

resembled by a rapid and dramatic disruption of actin stress fibres with peripheral 

microspikes or filopodia formation in MDA-MB231 cells. Ruffles accumulating at the 

membrane of staurosporine CXCL10-treated PC3 cells were also observed. Collectively, 

although the morphological changes GF109203X and staurosporine induce on CXCL10-

activated PC3 cells were associated with a reduction of the migration speed of the cells, this 

was not the case with CXCL8-activated PC3 or MDA-MB231 cells.  



Staurosporine is a competitive PKC inhibitor with a high binding affinity and low specificity. It 

merged as a general stimulator of cell spreading and migration by 

regulating actin-associated protein (Holinstat et al., 2003). The level of 

PC3 (Rumsby et al., 2011) and breast cancer cells , therefore, blocking 

it with staurosporine might be the reason for the morphological changes observed earlier, 

although its effects cannot be explained merely  Several studies have 

used staurosporine to induce cell apoptosis demonstrated by the change of cell morphology 

it causes and induction of JNK pathway. For example, it was found that treating astrocyte 

cells with staurosporine causes morphological changes to the actin and tubulin and related 

astrocytes death dependent on NOX family members (Olguín-Albuerne et al., 2014). Indeed, 

staurosporine is thought to promote apoptosis because of its inhibitory effect on the cell 

cycle (Abe et al., 1991) and it is related to the shape change of the cells. Staurosporine was 

also found to supress the proliferation of vascular endothelial cells but did not affect the 

migration of the cells (Oikawa et al., 1992). However, in our study, we used staurosporine at 

a nanomolar concentration (10 nM) which did not cause cell toxicity using MTS assay (Fig 1, 

3). A study reported that using staurosporine at a nanomolar concentration induces rapid 

change of actin cytoskeleton in different cell types in PKC-deficient cells and argued that 

staurosporine might not be PKC dependent (Hedberg et al., 1990). Yet, our data show that 

staurosporine did not promote a change in the cells morphology unless they were stimulated 

with the chemokine, suggesting the role of PKC as a downstream signalling pathway 

involved in the specified cellular response. Taken together, the chemokine, cell type and 

dose of staurosporine defines its effect on cell mortality, mobility and/or morphology, this is 

mostly due to its non-selectivity.  

In summary, the PKC family is a large one that could exhibit extensive range of effects on 

the cells (Larsson, 2006) with each PKC isoenzyme phosphorylating a spectrum of 

intracellular signalling proteins in distinct subcellular locations (Cornford et al., 1999). We 

the migration of CXCL8 or CXCL10-activated THP-1 

cells and CXCL10-activated PC3 cells, whereas it is not important for CXCL8-stimulated 

PC3 or MDA-MB231 cells. CXCL10-stimulated PC3 cells were more sensitive to PKC 

inhibitors than MDA-MB231 cells, while stimulation with CXCL8 did not cause a difference to 

the migration speed for both cell lines. Moreover, the intriguing effect of staurosporine was 

demonstrated by its ability to drastically change the morphology of the cells, regardless of its 

impact on the cell migration, suggesting different mechanisms or signalling molecules 

involved in the process. Although these results reveal some of the roles of PKCs, but they 

also add to the complexity of this system, therefore, requires further investigation on a larger 

number of cell types and more specific inhibitors. 
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7. Figure legends 

Figure 1. a) Immunofluorescence staining of the THP-1 cell line. Cells were treated with 

anti-CXCR1, anti-CXCR2 and anti-CXCR3 antibodies (green colour) and their corresponding 

secondary Alexa-488 conjugated antibodies. The nucleus is stained with DAPI (blue colour). 

i (10 -induced chemotaxis, while GF109203X and 

staurosporine do not. b) THP-1 chemotax towards 5 nM CXCL8 in untreated basal cells or 

PKC inhibitors with CXCL8. c) THP-1 chemotax towards 1 nM CXCL10 in untreated basal 

cells or PKC inhibitors with CXCL10. Data shown are the mean ± S.D. of at least 3 

independent experiments. (* = P P  n.s.= no significance P > 0.05, One-

way ANOVA with a Dunnett multiple comparisons test as post-test). d) MTS Assay shows no 

cytotoxicity of PKC inhibitors when incubated with THP-1 cells for 24 h. Data representative 

of the mean ± S.D. of three independent experiments. (n.s.= no significance P > 0.05, 

Kruskal-Wallis non-parametric test, Dunnett multiple comparison tests).  

 

Figure 2. a) Immunofluorescence staining of the MDA-MB231 and PC3 cell lines. Cells were 

treated with anti-CXCR1, anti-CXCR2 and anti-CXCR3 antibodies (green colour) and their 



corresponding secondary Alexa-488 conjugated antibodies. The nucleus is stained with 

DAPI (blue colour). PKC inhibitors: GF109203X, staurosporine i are not important 

for CXCL8-induced MDA-MB231 and PC3 cells migration using time-lapse cell motility 

assays. b) MDA-MB231 cells pre-treated with PKC inhibitors for 10 h in the presence of 

CXCL8 (10 nM), c) PC3 cells pre-treated with PKC inhibitors for 10 h in the presence of 

CXCL8 (10 nM). Data representative of the mean ± S.D. of at least five independent 

experiments. (n.s.= no significance P > 0.05, One-way ANOVA with a Dunn  multiple 

comparisons test as post-test). 

 

Figure 3. PKC inhibitors are important for CXCL10-activated PC3 and MDA-MB231 cells. a) 

i slowed down the speed of MDA-MB231 cells significantly but 

staurosporine did not, b) i are also important for the 

migration of PC3 cells activated by CXCL10 as their speed were significantly reduced. Data 

representative of the mean ± S.D. of five independent experiments. (* = P  P 

0.01, n.s.= no significance P > 0.05, One-way ANOVA with a Dunnett multiple comparisons 

test as post-test). MTS Assay shows no cytotoxicity of the PKC inhibitors when incubated 

with c) MDA-MB231 and d) PC3 cells for 24 h. Data representative of the mean ± S.D. of 

four independent experiments. (n.s.= no significance P > 0.05, Kruskal-Wallis non-

parametric test, Dunn  multiple comparison tests).  

 

Figure 4. a) Staurosporine effects MDA-MB231 cellular morphology in the presence of 

CXCL10 (10 nM). i) basal MDA-MB231 cells, ii) MDA-MB231 with CXCL10, iii) pre-treated 

cells with staurosporine (10 nM) and CXCL10, iv) pre-treated cells with GF109203X (5 µM) 

and CXCL10, and v) pre- i (10 µM) and CXCL10. b) Cells were drawn 

around and measurements of area, aspect ratio and circularity were made of and averaged 

for 70 cells per image per experiment and the experiments were repeated at least three 

times. (*** = P P n.s.= no significance P > 0.05, One-way ANOVA 

with a Dunnett multiple comparisons test as post-test). 

 

Figure 5. a) Staurosporine effects PC3 cellular morphology in the presence of CXCL10. i) 

basal PC3 cells, ii) PC3 cells with CXCL10, iii) pre-treated cells with staurosporine (10 nM) 

and CXCL10, iv) pre-treated cells with GF109203X (5 µM) and CXCL10, v) pre-treated cells 

with i (10 µM) and CXCL10. b) Cells were drawn around and measurements of area, 

aspect ratio and circularity were made of and averaged for 70 cells per image per 

experiment and the experiments were repeated at least three times. Data representative of 

the mean ± S.D. of five independent experiments. (* = P P -way 

ANOVA with a Dunnett multiple comparisons test as post-test).  



 

Figure 6. Staurosporine affects the cytoskeleton of CXCL8 and CXCL10 treated PC3 cells. 

Cells stained with phalloidin-iFluor 488 (green colour) and the nucleus stained with DAPI 

(blue colour). PC3 cells were activated with 10 nM chemokine and treated with the different 

PKC inhibitors. Treatment with 10 nM staurosporine resulted in the cells assuming a long-

spindled shape with thinning to their bodies exhibiting sticky endings with the red arrows 

demonstrating membrane ruffling and accumulation of lamellipodia. 

 

Figure 7. Illustration of the effect of PKC inhibitors on CXCL8 or CXCL10-activated MDA-

effect on the cell 

migration speed or cellular morphology. 
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Table 1. The migration speed of PC3 and MDA-MB231 cells when activated with 

CXCL8 with or without PKC inhibitors. Data representative of the mean ± S.D. of four 

independent experiments. 

 
Basal 

(µm/h) 

10 nM 

CXCL8 

(µm/h) 

10 nM 

Staurosporine

+ 10 nM 

CXCL8 (µm/h) 

5 µM 

GF109203X + 

10 nM CXCL8 

(µm/h) 

+ 10 nM 

CXCL8 

(µm/h) 

MDA-MB231 27.5 ± 7.1 42.6 ± 7.7 44.0 ± 5.3 36.9 ± 4.8 34.5 ± 7.6 

PC3 23.7 ± 5.4 
58.2 ± 

16.8 
42.4 ± 12.1 43.4 ± 14.4 35.4 ± 10.4 

Table 1



Table 1. The migration speed of PC3 and MDA-MB231 when activated with CXCL10 
with and without PKC inhibitors. Data representative of the mean ± S.D. of four 
independent experiments. 

 

Basal 
(µm/h) 

10 nM 
CXCL10 
(µm/h) 

10 nM 
Staurosporine 
+ 10 nM 
CXCL10 (µm/h) 

5 µM 
GF109203X + 
10 nM CXCL10 
(µm/h) 

10 µM 

nM CXCL10 
(µm/h) 

MDA-
MB231 

18.9 ± 6.3 
31.2 ± 
5.2 

29.8 ± 5.6 17.6 ± 2.6 20.1 ± 3.2 

PC3 18.9 ± 2.7 
50.4 ± 
8.7 

32.3 ± 5.8 26.9 ± 8.0 16.6 ± 3.4 

Table 2
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