
 1 

Research Article 

Tobacco RDR1 affects the expression of defence related 

genes in Nicotiana benthamiana during geminivirus 

infection 

Abstract: Plants protect themselves from the invading viruses through RNA silencing. RNA dependent RNA 

polymerase-1 (RDR1) is one of the crucial protein of the RNA silencing pathway, which is induced after 

infection with viruses. Here, we used the transgenic N. benthamiana plant with overexpressed tobacco NtRDR1 

gene and found that these plants show reduced susceptibility towards Tomato leaf curl virus (ToLCV) infection 

compared with the wild-type N. benthamiana. To understand the reason for such reduced susceptibility, we 

generated high-definition sRNA cDNA libraries form ToLCV infected wild-type N. benthamiana and NtRDR1 

overexpressing lines of N. benthamiana and carried out next-generation sequencing. We found that during 

ToLCV infection majority of siRNAs generated from the host genome are of 24 nucleotide (nt) class while viral 

siRNAs are of 21-22 nt class, indicating that transcriptional gene silencing (TGS) is the major pathway for 

silencing of host genes while viral genes are silenced, predominantly, by post transcriptional gene silencing 

(PTGS) pathways. We further explored the changes in the expression of various defense-related genes which 

might be linked with the reduced susceptibility of NtRDR1 N. benthamiana plants. In addition, we showed that 

RDR1 negatively regulates RDR6 expression in uninfected plants and ToLCV induces RDR6 expression during 

infection. 
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small RNA; Nicotiana tabacum; High-definition adapters; Tomato leaf curl virus  

 

1. Introduction 

In plants, the phenomena of RNA silencing, also known as gene silencing or RNA interference (RNAi) in 

animals, protects plants from invading viruses and viroids (Fire et al., 1998, Goldbach et al., 2003, Carbonell & 

Daros, 2017, Prakash et al., 2017). The trigger for RNA silencing is the presence of double-stranded RNA 

(dsRNA), which are recognized by specific Dicer-like (DCL) proteins, and are cleaved into small RNAs (sRNAs) 

of 21-24 nucleotide (nt) (Mette et al., 2000, Carmell & Hannon, 2004, Xie et al., 2004). These sRNAs can be 

either micro-RNA (miRNA) or small-interfering RNA (siRNA) (Lai, 2003, Xie et al., 2004). sRNAs generated 

by DCLs are further recruited by Argonaute (AGO) proteins and mediate the silencing of RNA transcripts or the 

genomic DNA by post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS), respectively 

(Henderson et al., 2006, Ghildiyal & Zamore, 2009).  

RNA dependent RNA polymerases (RDRs) are crucial enzymes which increase the number of substrate for 

DCLs by converting small- and single-stranded RNAs into long-dsRNA in primer-dependent or independent 

manner, leading to the amplification of the silencing signal (Vaucheret, 2006, Szittya et al., 2010, Devert et al., 

2015). Arabidopsis thaliana (A. thaliana) genome encodes for six RDR proteins (AtRDR1-6) with varied 

functions (Wassenegger & Krczal, 2006). Based on the phylogenetic analysis, RDRs have been divided into three 

clades, viz., RDRα, RDRβ and RDRγ, however, plants possess only two of them, RDRα and RDRγ (Zong et al., 

2009).  AtRDR1, 2 and 6 belongs to RDRα while RDR3, 4 and 5 belongs to RDRγ clade. Functional 

characterization of RDR3, 4 and 5 and yet elusive. However, the role of RDR1, 2 and 6 have been implicated in 

providing resistance against viruses through PTGS and TGS (Chapman & Carrington, 2007, Searle et al., 2010, 

Wang et al., 2010, Melnyk et al., 2011, Qin et al., 2012, Lewsey et al., 2016). Out of the six RDRs, the expression 

of RDR1 induces upon infection with viruses, viroids, exogenous application of salicylic acid (SA) and jasmonic 

acid (JA) (Zabel et al., 1974, Dorssers et al., 1984, Khan et al., 1986, Xie et al., 2001, Pandey & Baldwin, 2007, 

Hunter et al., 2013, Hunter et al., 2016). The extent of RNA silencing is affected when the accumulation of RDR6 

is inhibited in Nicotiana benthamiana (N. benthamiana) which lacks a functional RDR1 (Yang et al., 2004, Qu 

et al., 2005, Schwach et al., 2005). Antiviral role of RDR1 and RDR6 has been implicated in several studies in A. 

thaliana, N. benthamiana and N. tabacum (Dalmay et al., 2000, Mourrain et al., 2000, Xie et al., 2001, Yu et al., 
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2003, Qu et al., 2005, Schwach et al., 2005, Wang et al., 2010, Rakhshandehroo et al., 2017). Expression of RDR6 

is affected when the RDR1 expression is inhibited (Rakhshandehroo et al., 2009). During infection with virus, 

RDR1 is involved in the production of virus-associated siRNA (vasiRNA) from the endogenous loci of the host, 

targeting host’s transcripts (Cao et al., 2014). Report suggests that, RDR1 down-regulated lines of tobacco shows 

susceptibility towards Potato virus Y (PVY) infection and reduced expression of a few defence related genes, 

including Myb transcription factor (TF) (Rakhshandehroo et al., 2009, Rakhshandehroo et al., 2012). 

Interestingly, report suggests the presence of binding sites for Myb family of TFs on the promoter of RDR1 of 

various plant species (Prakash & Chakraborty, 2019).  

Tomato leaf curl viruses (ToLCVs), belonging to geminiviridae family and begomovirus genus, are a major 

constraint for the production of tomato, and estimated to cause yield loss of $140 million in Florida, USA, annually 

(Moffat, 1999). NGS of sRNAs is becoming very popular to understand plant physiology under biotic and abiotic 

stresses. RNA sequencing is being widely used as a tool for the discovery of new viruses as well as to find the 

differentially expressed genes in the host plants during virus infection (Kamitani et al., 2016). With the biotic 

stress point of view, for the first time, high-resolution sRNA map of geminivirus was constructed in 2011 by deep 

sequencing (Yang et al., 2011). Generation of sRNA libraries using high definition (HD) adapters has been shown 

to be efficient in reducing the ligation bias of sRNAs with the adapter sequences (Xu et al., 2015).  

Recently, Basu et al reported that NtRDR1 overexpressing lines of N benthamiana shows reduced 

susceptibility against ToLCV infection compared with the wild-type plants (Basu et al., 2018). Therefore, to 

understand the cause of reduced susceptibility of NtRDR1 transgenic plants against ToLCV infection, we have 

performed NGS of small RNA cDNA-libraries, generated using HD adapters, from ToLCV infected wild-type N. 

benthamiana and NtRDR1 overexpressing lines of N. benthamiana. We have shown here that expression of many 

defence related genes are affected which might be linked with the reduced susceptibility of NtRDR1 

overexpressing lines of N. benthamiana.    

2. Materials and Methods  

Source of Seeds, Plant growth conditions, Agro-infection and Sample collection  

Seeds of wild-type N. benthamiana was procured from Central Tobacco Research Institute (CTRI), Andhra 

Pradesh, India. Transgenic seeds of NtRDR1 N. benthamiana were received from Professor Hui Shan Guo, 

Chinese Academy of Sciences, Beijing, China. Seedlings were grown for 16 hours of daylight in a growth room 

at a constant 22°C temperature.  

Infectious Agrobacterium tumefaciens (A. tumefaciens) strain EHA105 harbouring ToLCV was inoculated in 

wild-type N. benthamiana and NtRDR1 N. benthamiana as described previously (Kumari et al., 2010). Systemic 

leaves were collected from three biological replicates at 21 days post-inoculation (dpi), immediately kept in liquid 

N2 and kept at -80°C until isolation of total RNA.  

 

Total RNA isolation for sRNA library preparation  

Total RNA from the leaf samples was isolated by TRIzol reagent (Invitrogen) as per the manufacturer’s 

instruction. mirVana miRNA isolation kitTM (Ambion) was used for the purification of the total RNA as per the 

manufacturer’s instruction. After elution of the RNA, ethanol precipitation was performed for the concentrating 

total RNA. For ethanol precipitation, 3 volume of absolute ethanol, 0.1 volume of 3M sodium acetate and 25 

ug/mL glycogen (Ambion) were added in the MCT containing total RNA and incubated at -20°C overnight. MCT 

containing the mixture was centrifuged at 15000 ́g for 15 min at 4°C. The pellet was washed with 80% ethanol 

followed by air-drying of the samples at room temperature for 5 minutes. RNase/DNase free water was added to 

the dried precipitate. Thermo Scientific Nanodrop 2000 was used to determine the concentration of RNA and 

stored at -80°C.  

 

Generation of sRNA cDNA library using HD adapters and Next Generation Sequencing  

sRNA cDNA-libraries were prepared as described previously by using HD adapters (Billmeier & Xu, 2017). 

sRNA libraries were generated from the total RNA isolated from wild type wild-type N. benthamiana and NtRDR1 

N. benthamiana. All of the libraries were generated in triplicates. Illumina HiSeq 2500 platform (50 bp, single-

end) at BaseClear, Netherland (www.baseclear.nl) was used for sequencing of all the libraries.  

 

Bioinformatic analysis of small RNA sequences 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Raw FASTQ files were converted to FASTA format. Reads containing unassigned nucleotides were excluded. 

The 3’ adapter was trimmed by using first 8 nt of the 3’ HiSeq 2500 adapter (TGGAATTC). The high definition 

reads were mapped (no mismatch allowed) to the N. benthamiana genome using PatMaN (Prufer et al., 2008). 

The high definition signatures (four assigned degenerate nucleotides at the ligating ends) of the reads were also 

trimmed. The latest set of plant miRNAs were downloaded from miRBase (v21) (Kozomara & Griffiths-Jones, 

2014). Read per million approach was used for the normalization of the sRNA libraries (Mortazavi et al., 2008) . 

To identify differentially expressed sRNA, we added offset of 10 to normalised counts before calculating log-fold 

change between different conditions. This was done to correct for low expression level counts, to avoid false 

positive results.  sRNA greater than two-fold change in expression were considered differentially expressed. 

Principal component analysis (PCA) was done using DESeq2 package of R (Love et al., 2014). Target prediction 

was done by psRNATarget server (Dai et al., 2018).   

 

Construction of Heat map  

To generate heat map of differentially expressed sRNAs, Multi Experimental Viewer (MeV 4.9.0) software was 

used. For clustering, Euclidean distance was used as distance matrix, and complete linkage clustering was used 

as linkage method.  

 

Target Prediction 

Targets of the differentially expressed sRNAs of 21-24 nt were predicted by psRNATarget server (Dai 

et al., 2018). Targets of sRNAs were predicted against “N. benthamiana, transcript, Niben, 101” cDNA 

library. Following parameters were used for the target prediction: Expectation-0, penalty for G:U pair-

0.5, penalty for other mismatches-1, extra weight in seed region-1.5, seed region-2 to13 nt, number of 

mismatches allowed in seed region-2, HSP size-19, buldge (gap) was allowed, penalty for extending 

gap-0.5 and translation inhibition range-10 to 11 nt. 

 

Total RNA isolation for Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)  

Total RNA from the leaf samples (collected at 21 dpi) was isolated by TRIzol reagent (Invitrogen) as per the 

manufacturer’s instruction. Concentration and quality of RNA were checked by Thermo Scientific Nanodrop 

2000. Before cDNA preparation, DNase treatment was given to total RNA. For cDNA synthesis, 1.0 μg of DNase 

treated RNA, 1.0 μl of 1.0 μg/μl oligo dT were mixed with the required amount of nuclease-free water (considering 

the total volume of final mixture 20.0μl) and incubated at 72 ̊C for 10 minutes followed by snap chilling (10 

minutes) to remove secondary structures. After that 5X reaction buffer, 2.0 μl of 10 mM dNTPs, 2.0 μl of 25 mM 

MgCl2, 1.0 μl of 200U/μl reverse transcriptase (Thermo Scientific RevertAid H minus) and 0.5 μl of 40U/μl 

RiboLock RNase inhibitor was added to the mixture. Reverse transcription of total RNA was performed in the 

thermal cycler (Applied Biosystem 2720) at 42 ̊C for 60 min, followed by heat inactivation of reverse transcriptase 

at 72 C̊ for 10 minutes. Relative expression of various transcripts was checked by qRT-PCR (Illumina EcoTM 

Real-Time PCR System). PowerUpTM SYBRTM Green Master Mix was used for relative quantification of the 

transcripts. Tubulin was used as an internal control (reference gene). Prism 8 (GraphPad) was used for plotting 

individual graphs.   

3. Results 

Transgenic NtRDR1 N. benthamiana shows reduced susceptibility against ToLCV infection 

Both wild-type as well as NtRDR1 transgenic plants, infected with ToLCV showed mild leaf curling, venal 

chlorosis and stunted growth at 7-9 dpi. However, ToLCV infected NtRDR1 transgenic N. benthamiana showed 

reduced symptoms starting at 18-20 dpi compared to that of wild-type plants. The transgenic NtRDR1 N. 

benthamiana mock plants did not show any phenotypic difference when compared with wild-type mock plants 

(Fig. 1).  

 

24 nucleotide siRNAs are predominantly produced from the host genome while 21-22 nucleotide siRNAs 

are the major class of sRNAs generated from the ToLCV genome 

sRNA deep sequencing was performed by generating sRNA cDNA libraries using HD adapters to reduce the 

ligation bias. Deep sequencing data suggests that most of the redundant as well as non-redundant host reads of 

mock-inoculated and ToLCV infected, wild-type and NtRDR1 transgenic lines, belong to 24 nucleotide siRNAs 

class (Fig. 2 A, B, C & D). However, 21-22 nucleotide siRNAs were the most abundant class of sRNA arising 
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from the ToLCV genome (Fig. 2 E). There was no significant difference in the siRNA population in between 

wild-type and transgenic lines either in mock or in ToLCV infected plants, suggesting that, as such, there is no 

effect in the generation of different size-classes of sRNAs in presence and absence of RDR1.  

We analyzed the presence of specific nucleotide at 5’ terminus of viral siRNA (vsiRNA) to understand the 

involvement of AGO protein in vsiRNA sorting. In both wild-type as well as NtRDR1 transgenic lines, there was 

a slight bias for ‘G’ at the 5’ terminus of the 21 and 22 nt vsiRNAs (Fig. 3A, B and 4A, B). Bias was also found 

for ‘A’ at the 5’ terminus of the 24 nt vsiRNAs in both wild-type as well as NtRDR1 transgenic lines (Fig. 3 D 

and 4D). 

 

Differential expression analysis of siRNAs and prediction of siRNA target transcripts 

The sRNA reads, obtained after the deep sequencing, were subjected to the differential expression analysis.  

siRNA expression values were normalized against total reads and expression change were calculated using offset-

fold change method (Mohorianu et al., 2011). The combination of plants used for the differential expression 

analysis are shown in the table 1.  

 

Table 1: List of pair of plants for which the differential expression analysis was performed.  

S. No. Differential expression in between plants 

1. Wild-type N. benthamiana vs ToLCV_N. benthamiana 

2. NtRDR1 N. benthamiana vs ToLCV_NtRDR1 N. benthamiana 

3. ToLCV_NtRDR1 N. benthamiana vs ToLCV_wild-type N. benthamiana (Host aligned 

sRNAs) 

4. ToLCV_NtRDR1 N. benthamiana vs ToLCV_wild-type N. benthamiana (ToLCV aligned 

sRNAs) 

 

Principle component analysis (PCA) suggested that the sRNA reads from biological replicates of the specific 

plants (same treatment) clustered together, while the different plants (different treatment) clustered separately. 

(Fig. 5). Several siRNAs were found to be differentially expressed in all of the different combinations (Fig. 6 A-

D, Table S1.1-S1.4). Targets of the differentially expressed siRNAs of 21-24 nt were predicted by psRNATarget 

server (Dai et al., 2018) (Table S2).  

 

RDR1 overexpression leads to increased accumulation of many defense-related genes 

All of the differentially expressed sRNAs of 21-24 nucleotide range were checked for their target transcripts 

(Table S2). Many sRNAs were predicted to target mRNA transcript of various genes. A summary of total number 

of differentially expressed sRNAs and its targets are listed in the table S3. We checked the expressions of nine 

genes based on the target prediction data of differentially expressed sRNAs.  

Expression of transcripts of Constitutively Photomorphogenic-9 (COP-9) signalosome (CSN) complex subunit-7, 

Pentatricopeptide repeat containing protein (PPRP), Laccase-3, Glutathione peroxidase-1 (GPX-1), Universal 

stress protein (USP) A like protein and Heat shock transcription factor B4 (HSTF-B4) was enhanced in the 

NtRDR1 overexpressing lines of N. benthamiana compared with the wild-type N. benthamiana (Fig. 7 A-F). 

Surprisingly, the expression of all of these genes were significantly reduced during ToLCV infection in NtRDR1 

transgenic lines.  

In addition to these observations, during ToLCV infection, the expression of Laccases-3 is found to be 

significantly reduced in both, wild-type N. benthamiana as well as NtRDR1 transgenic lines compared with the 

mock plants (Fig. 7C). Moreover, the expression of USP A-like protein was reduced in mock-inoculated as well 

as ToLCV infected wild-type N. benthamiana compared with the mock-inoculated and infected NtRDR1 lines 

(Fig. 7E).  

We also observed a significant reduction in the transcript accumulation of Auxin response factor-18, WRKY-6 and 

Short chain dehydrogenase reductase-3a during ToLCV infection in NtRDR1 transgenic lines compared with the 

mock plants as well as ToLCV infected wild-type N. benthamiana plants (Fig. 7G-I).  

 

RDR1 negatively regulates RDR6 expression in uninfected plants, but positively regulate RDR6 expression 

during ToLCV infection 



 5 

Expression of RDR6 was significantly increased in the mock-inoculated wild-type N. benthamiana compared with 

the ToLCV infected wild-type N. benthamiana and mock-inoculated NtRDR1 transgenic lines (Fig. 8). However, 

expression of RDR6 was increased in NtRDR1 transgenic lines during ToLCV infection compared with the mock-

inoculated transgenic lines (Fig. 8). 

4. Discussion 

N. benthamiana is widely used as a model organism for studying plant-pathogen interaction This plant is closely 

related to N. benthamiana, S. lycopersicum and S. tuberosum. Thus, components and mechanisms of various 

biochemical pathways in such plants are believed be conserved. N. benthamiana genome possesses n=19 

chromosome (more than 3.5GB in size) and is sequenced (draft genome available at 

https://solgenomics.net/organism/Nicotiana_benthamiana/genome).  

Although, N. benthamiana has the gene coding for RDR1, one of the antiviral protein, but it is naturally mutant 

and not functional, perhaps, making the plant susceptible to virus infection (Yang et al., 2004). Expression of 

RDR1 is induced after virus infection and exogenous application of SA in N. tabacum (White, 1979, Xie et al., 

2001, Alamillo et al., 2006). Report suggests that RDR1, but not RDR6 of the plants, functions in the generation 

of siRNAs against the viral genome as a defence strategy (Xie et al., 2001, Rakhshandehroo et al., 2009). RDR1 

also acts as a defense protein against geminivirus infection and attenuates symptoms by enhancing the methylation 

of the viral genome (Basu et al., 2018).  

In the present study, it has been found that ToLCV infection induces symptoms in both wild-type as well as 

transgenic NtRDR1 N. benthamiana at 7-9 dpi. However, at around 20 dpi, NtRDR1 transgenic lines were found 

to show reduced symptoms, suggesting the antiviral function of NtRDR1 in N. benthamiana. At 20 dpi, ToLCV 

infected wild-type N. benthamiana plants shows more stunted grown as compared to ToLCV infected NtRDR1 

N. benthamiana (Fig 7.1). However, there was no difference in the phenotype of mock-inoculated wild-type and 

transgenic plants.  

NGS analysis revealed that the sRNAs generated from the host genome were most abundant in 24 nt species of 

sRNAs. However, the sRNAs generated from the ToLCV genome were predominantly of 21-22 nt in size. This 

suggests that DCL2 and DCL4 functions as antiviral DCLs, functioning in the antiviral silencing pathway in N. 

benthamiana. While DCL3 is involved in the production of sRNAs from the host genome. DCL2 and 4 are known 

to function mostly in the PTGS while DCL3 functions in the TGS (Prakash et al., 2017), implicating that probably, 

host sRNAs would silence the transposons, repetitive elements and other genes of the host genome while vsiRNAs 

would cleave viral transcripts post-transcriptionally. 

Recruitment of vsiRNA into specific AGO is determined by the 5’terminal nucleotide of vsiRNA (Takeda et al., 

2008). A bias for A at 5’ terminus of the vsiRNA leads to the sorting of such vsiRNAs with AGO2 and AGO4. 

While U and C at 5’ terminus of the vsiRNA are responsible for londing into AGO1 and AGO5, respectively. So 

far, presence of G as the 5’ terminal nucleotide of vsiRNAs has not been linked with the sorting with any AGO. 

Results from our study shows that 24 nt vsiRNAs from both wild-type as well as NtRDR1 transgenic lines are 

predominated with A at the 5’ terminus suggesting that, probably, AGO2/AGO4 might be involved in the sorting 

of such vsiRNAs. 

Viruses hijack components of Ub-26S pathways for supporting its own replication by diverting Ub-26S 

proteiosome pathways to new targets such as the modification of AGO protein to suppress the gene silencing 

(Alcaide-Loridan & Jupin, 2012, Byun et al., 2014, Verchot, 2016). Through NGS analysis and target prediction 

of differentially expressed sRNAs, 4.7-fold higher expression of siRNAs that target the subunit 7 of Cop9 

signalosome complex, was found in NtRDR1 N. benthamiana compared with the wild-type N. benthamiana. This 

was further validated with the qRT- PCR analysis. This study revealed that the expression of subunit 7 of Cop 9 

signalosome complex is decreased in the ToLCV infected transgenic N. benthamiana but not in the ToLCV 

infected wild-type N. benthamiana suggesting the role of NtRDR1 in regulating, directly or indirectly, the 

expression of subunit 7 of Cop 9 signalosome complex during ToLCV infection. It is hypothesized that, probably, 

host is producing increased level of siRNAs for silencing the components of Ub-26S proteasome pathway so that 

ToLCV will not usurp the Ub-26S proteasome pathway for its benefit (Randow & Lehner, 2009, Alcaide-Loridan 

& Jupin, 2012).  
To our knowledge, very few literatures are available regarding the role of lignin in plant-virus interaction, such 

as report suggests that the increased expression of genes involved in the lignin and SA biosynthesis pathway 

during a compatible host-virus interaction, further providing evidence that the increased lignin content is liked 

with the enhanced defence against plant viruses (Malinovsky et al., 2014, Anjanappa et al., 2017). Although, 

many literatures are available suggesting the crucial role of lignin in providing defense against fungi, bacteria and 

nematodes (Bellincampi et al., 2014). Plant laccases are known to function in the lignin degradation pathway and 

decreased lignin content is associated with the increased accumulation of SA, jasmonic acid (JA) and abscisic 

Commented [TD(-S1]: I suggest re-writing this sentence. 

The data is that the level of RDR6 is lower in the infected 

plant than in the mock. We never say that the mock 

inoculation changes any expression level, say that RDR6 

level was decreased by ToLCV infection compared to the 

mock. I would also add a sentence that the overexpression 

of RDR1 reduced the accumulation of RDR6 (in the 

absence of virus infection) 



 6 

acid (ABA) in plants (Higuchi, 2004, Gallego-Giraldo et al., 2011). Expression of the Laccase-3 was found to be 

reduced drastically during ToLCV infection in wild-type as well as in NtRDR1 N. benthamiana. ToLCV infected 

plants produced enhanced level of siRNAs targeting Laccase so that, probably, the rate of lignin degradation 

would be limited, which would provide strength to the plant during ToLCV infection. 

During virus infection, generation of reactive oxygen species (ROS) is increased in the host cells to restrict the 

virus movement up to ceratin cells (Hernandez et al., 2016). To reduce the self-damage caused by ROS, host 

produces glutathione peroxidases (GPXs) which function in removing ROS content from the cells. Our study also 

showed that increased production of siRNAs targeting GPX1 leading to reduced accumulation of GPX1 in ToLCV 

infected wild-type N. benthamiana and NtRDR1 N. benthamiana. This decrease in the GPX1 level would be 

associated with the increased accumulation of ROS so that the pathogen spread would be limited to certain 

cells/tissues. NtRDR1 mock-inoculated plants accumulated significantly higher accumulation of GPX1 compared 

to the wild-type mock-inoculated plants, suggesting that RDR1 regulates, directly or indirectly, the expression of 

GPX-1.  

NtRDR1 transgenic plants showed enhanced expression of USPA like protein compared with the wild-type plants. 

In addition, we also found a significantly increased accumulation of USPA like protein in the NtRDR1 

overexpressing lines compared with the wild-type plants during ToLCV infection, which might be the reason for 

reduced ToLCV symptoms in the NtRDR1 transgenic lines around 18-20 dpi.   

WRKY 6 functions as a positive regulator of the immune response. In N. attenuata, WRKY6 is required for 

resistance against necrotrophs (Skibbe et al., 2008). In pepper, WRKY6, which functions as an activator of 

WRKY40, provides resistance against fungal infection and tolerance against high temperature and high humidity 

(Cai et al., 2015). Induced expression of WRKY6 TF in transgenic NtRDR1 plants suggests that these lines might 

show resistance towards insect pathogens and tolerance towards high temperature and high humidity (Skibbe et 

al., 2008, Cai et al., 2015). However, there was reduced accumulation of WRKY6 transcripts in ToLCV infected 

NtRDR1 N. benthamiana. Since, WRKY6 functions in providing resistance to necrotrophic pathogens (probably 

by increased accumulation of JA), and JA signalling is antagonistic to SA signalling (Thaler et al., 2012), 

therefore, reduced expression of WRKY6 transcripts in ToLCV infected NtRDR1 N. benthamiana might be 

because of the activation of genes involved in SA and systemic acquired resistance (SAR) pathway. Role of SA 

and SAR has been implicated in providing defence to the host against viruses (Carr et al., 2010).  

In plants, transacting siRNAs (tasiRNAs) are produced from the RNA polymerase II dependent TAS1-4 

transcripts.  miRNA mediated cleavage of TAS1-4 transcripts acts as a source for the generation of tasiRNA. 

Following the cleavage of TAS transcripts, RDR6 convert the remaining transcript into dsRNA. Finally, DCL4 

cleaves such dsRNAs into 21 nt tasiRNAs in phased manner (Chen et al., 2010). PPRP might be targeted by the 

tasiRNAs generated from the miRNA173-targeted TAS1 and TAS 2 transcripts while ARF are targeted by the 

tasiRNAs generated from the miRNA390-targeted TAS3 transcripts (Chen et al., 2007, Howell et al., 2007, Marin 

et al., 2010). To our knowledge, there is no report suggesting the role of PPRP in plant virus infection. ToLCV 

infection in wild-type N. benthamiana triggers an increase in the transcript level of HSFB4 and PPRP, suggesting 

response of host towards ToLCV infection. In contrast, the opposite trend was observed in NtRDR1 lines, where, 

the expression of HSFB4 and PPRP was high in mock-inoculated plants and reduced during ToLCV infection. 

Explanation of such change in the HSFB4 and PPRP transcripts in transgenic lines needs further experiments. 

Probably, the induction of symptom appearance in the host plants infected with ToLCV might be because of the 

reduced expression of ARF18 transcripts, since ARF18 is needed for the controlled growth and development of 

the plant (Huang et al., 2016).  

Because of the lack of information about SDRs in the plant pathogenesis, it is difficult to explain the reduced 

expression of SDR3a in ToLCV infected NtRDR1 transgenic N. benthamiana.  
Basu et al revealed that the expression of RDR6 transcripts decreases after increase in RDR1 expression (Basu et 

al., 2018). The mock-inoculated wild-type N. benthamiana (which lack a functional RDR1, naturally) showed 

increased level of RDR6 transcripts. This could be because of the absence of functional RDR1 protein in the wild-

type plants. However, ToLCV infected wild-type N. benthamiana exhibited reduced accumulation of RDR6 

transcripts, suggesting that RDR6 level is increased in the absence of functional RDR1 and decreased during 

ToLCV infection in N. benthamiana. Similarly, RDR6 expression was drastically reduced in the NtRDR1 mock-

inoculated plants, however, there was a significant increase in the expression of RDR6 in infected transgenic 

plants, suggesting ToLCV induces expression of RDR6 in NtRDR1 N. benthamiana. 

5. Conclusions 

Our study revealed that during ToLCV infection, size of the majority of host siRNAs is 24 nt while vsiRNAs 

are of 21-22 nt, implicating that host genes are silenced by TGS while the viral genes are silenced by PTGS 

pathway. In addition, we have made an attempt to understand the reason for the reduced susceptibility of NtRDR1 
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overexpressed lines of N. benthamiana plants. Here, we showed that the reduced expression of subunit-7 of CSN 

complex and WRKY6, and increased expression of USPA like protein in NtRDR1 transgenic lines during ToLCV 

infection (compared with the ToLCV infected wild-type N. benthamiana) is linked with the reduced susceptibility 

of NtRDR1 N. benthamiana plants. We also showed that RDR1 negatively regulates RDR6 expression in 

uninfected plants and ToLCV induces RDR6 expression during infection. 
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Figures 

Fig. 1 Photograph showing wild-type and transgenic NtRDR1 N. benthamiana plants infected with 

ToLCV (30 dpi). Upper panel- A: wild type N. benthamiana (mock); B: wild type N. benthamiana 

infected with ToLCV; C: NtRDR1 N. benthamiana infected with ToLCV; D: NtRDR1 N. benthamiana 

(mock). Lower panel- enlarged view of B: wild type N. benthamiana infected with ToLCV and C: 

NtRDR1 N. benthamiana infected with ToLCV are shown. 

Fig. 2 Size-class distribution of the (A) redundant and (B) non-redundant sRNAs reads form the 

sequenced cDNA sRNA libraries from mock-inoculated wild type and NtRDR1 overexpressing lines 

of N. benthamiana. Size-class distribution of (C) N. benthamiana genome mapped redundant and (D) 

non-redundant reads, and (E) ToLCV genome mapped redundant reads, from ToLCV infected wild-

type and NtRDR1 N. benthamiana cDNA-sRNA libraries. Data is shown from the reads obtained after 

NGS of the three biological replicates. 

 

Fig. 3 Sequence logo analysis of ToLCV siRNAs from wild-type N. benthamiana showing profile of 

(A) 21 nt vsiRNAs, (B) 22 nt vsiRNAs, (C) 23 nt vsiRNAs and (D) 24 nt vsiRNAs. The overall height 

of the stack indicates the sequence conservation at the particular nucleotide position, while the height 

of characters within the graph indicates the relative frequency of nucleotides at that position.  

Fig. 4 Sequence logo analysis of ToLCV siRNAs from NtRDR1 transgenic N. benthamiana showing 

profile of (A) 21 nt vsiRNAs, (B) 22 nt vsiRNAs, (C) 23 nt vsiRNAs and (D) 24 nt vsiRNAs. The 

overall height of the stack indicates the sequence conservation at the particular nucleotide position, 

while the height of characters within the graph indicates the relative frequency of nucleotides at that 

position.  

Fig. 5 Principle component analysis of the differentially expressed sRNAs between (A) wild-type N. 

benthamiana & ToLCV infected wild-type N. benthamiana; (B) NtRDR1 N. benthamiana & ToLCV 

infected NtRDR1 N. benthamiana; (C) ToLCV infected NtRDR1 N. benthamiana & ToLCV infected 

wild-type N. benthamiana (sRNAs aligned to N. benthamiana genome) and (D) ToLCV infected 

NtRDR1 N. benthamiana & ToLCV infected wild-type N. benthamiana & (sRNAs aligned to ToLCV 

genome).  

 

Fig. 6 Heat map of differentially expressed sRNAs in between (A) wild-type N. benthamiana & 

ToLCV infected wild-type N. benthamiana; (B) NtRDR1 N. benthamiana & ToLCV infected NtRDR1 

N. benthamiana; (C) ToLCV infected NtRDR1 N. benthamiana & ToLCV infected wild-type N. 

benthamiana (sRNAs aligned to N. benthamiana genome) and (D) ToLCV infected NtRDR1 N. 

benthamiana & ToLCV infected wild-type N. benthamiana & (sRNAs aligned to ToLCV genome). 

 

Fig. 7 Effect of NtRDR1 overexpression and ToLCV infection on the transcript accumulation of various 

genes in N. benthamiana. Transcripts of the following genes were affected A- subunit-7 of Cop-9 

complex, B- Pentatricopeptide repeat-containing protein, C- Laccase-3, D- Glutathione peroxidase-1, 

E- Universal stress protein A-like protein, F- Heat shock transcription factor B4, G-Auxin Response 

Factor-18, H- WRKY-6 and I- Short chain dehydrogenase reductase-3a. For each samples, three 

biological replicates were used. Tubulin was used as an internal control. Error bars represent standard 
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deviation calculated from the three biological replicates. p-values denoted by ‘*’, ‘**’, ‘***’ and ‘****’ 

corresponds to 0.01-0.09, 0.001-0.009, 0.0001-0.0009 and <0.0001, respectively. 

Fig. 8 Relative expression of RDR6 in wild-type and NtRDR1 transgenic N. benthamiana mock-

infection and ToLCV infection by qRT-PCR. For each samples, three biological replicates were used. 

Tubulin was used as an internal control. Error bars represent standard deviation calculated from the 

three biological replicates. p-values denoted by ‘*’ and ‘****’ corresponds to 0.01-0.09 and <0.0001, 

respectively. 

Supplementary 

Tables S1.1. Lists of differentially expressed sRNAs in between wild-type N. benthamiana & ToLCV 

infected wild-type N. benthamiana. 

Tables S1.2. Lists of differentially expressed sRNAs in between NtRDR1 N. benthamiana & ToLCV 

infected NtRDR1 N. benthamiana. 

Table S1.3. Lists of differentially expressed sRNAs between ToLCV infected wild-type N. 

benthamiana & ToLCV infected NtRDR1 N. benthamiana (sRNAs aligned to N. benthamiana draft 

genome, Niben.genome.v1.0.1.scaffolds.nrcontigs). 

Table S1.4. Lists of differentially expressed sRNAs between ToLCV infected wild-type N. 

benthamiana & ToLCV infected NtRDR1 N. benthamiana (sRNAs aligned to ToLCV genome DNA-

A: AY190290; DNA-B: AY190291). 

 

Table S2.1 Lists of targets of differentially expressed sRNAs between wild-type N. benthamiana & 

ToLCV infected wild-type N. benthamiana. 

Table S2.2. Lists of targets of differentially expressed sRNAs between NtRDR1 N. benthamiana and 

ToLCV infected NtRDR1 N. benthamiana. 

Table S2.3. Lists of targets of differentially expressed sRNAs between ToLCV infected NtRDR1 N. 

benthamiana and ToLCV infected wild-type N. benthamiana (targets of host aligned sRNAs). 

Table S2.4. Lists of targets of differentially expressed sRNAs between ToLCV infected NtRDR1 N. 

benthamiana and ToLCV infected wild-type N. benthamiana (targets of ToLCV aligned sRNAs) 

Table S3. Summary of total number of differentially expressed siRNAs and their targets. 

 

 

 

 
 

 

 

 

 


