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Abstract 
 

Under gravitational loading, a volcanic edifice deforms, and the underlying lithosphere 

downflexes. This has been observed on Earth, but is equally true on other planets. We use finite 

element models to simulate this gravity-driven deformation at Olympus Mons on Mars. Eleven 

model parameters, including the geometry and material properties of the edifice, lithosphere and 

underlying asthenosphere, are varied to establish which parameters have the greatest effect on 

deformation. Values for parameters that affect deformation at Olympus Mons, Mars, are 

constrained by minimizing misfit between modeled and observed measurements of edifice height, 

edifice radius, and flexural moat width. Our inferred value for the Young’s modulus of the Martian 

lithosphere, 17.8  GPa, is significantly lower than values used previously, suggesting that the 

Martian lithosphere is more porous than generally assumed. The best-fitting values for other 

parameters: edifice density ( 2111 2389  kg.m 3 ) and lithosphere thickness (83.3  km) are within 

ranges proposed hitherto. The best-fitting values of model parameters are interdependent; a 

decrease in lithosphere Young’s modulus must be accompanied by a decrease in edifice density 

and/or an increase in lithosphere thickness. Our results identify the parameters that should be 

considered within all models of gravity-driven volcano deformation; highlight the importance of 

the often-overlooked Young’s modulus; and provide further constraints on the properties of the 

Martian lithosphere, namely its porosity, which have implications for the transport and storage of 

fluid throughout Mars’ history. 

 

Highlights 
 

  • We use FEA to constrain physical properties of Olympus Mons and Mars’ lithosphere  

  • We constrain the Young’s modulus of the Martian lithosphere for the first time  

  • Mars’ lithosphere is less stiff and may be more porous than was previously assumed  

 

Keywords: Lithospheric flexure, Finite element models, Olympus Mons, Mars 

 

1. Introduction 
  

Gravitational loading from a volcanic edifice causes the underlying lithosphere to 

downflex. This lithospheric flexure is affected by the properties and geometry of the volcanic 

edifice, lithosphere and underlying asthenosphere (e.g. Beuthe et al., 2012; Isherwood et al., 2013; 

Musiol et al., 2016). On Earth, lithospheric flexure can been modeled, but also observed within 

seismic reflection surveys (e.g. Watts et al., 1985), and inferred from elevated coral deposits (e.g. 
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Grigg and Jones, 1997). On other planets, ground-collected data are limited, so topographic and 

gravity data are principally used to interpret lithospheric flexure. 

Olympus Mons, Mars, provides an interesting paradigm for studying lithospheric flexure 

because of its immense size. Tectonic plate movement on Mars possibly never started (O’Rourke 

and Korenaga, 2012; Leone, 2017), or ceased early in the planet’s history (Frey et al., 2002). This 

enabled Olympus Mons to grow to dimensions that dwarf volcanoes on Earth, and has preserved 

an extensive history of volcanic activity. Previous studies have used a range of techniques, 

including analog, analytical and numerical modeling (e.g. Byrne et al., 2013; Musiol et al., 2016), 

geochemical analyses of meteorite samples (e.g. Baratoux et al., 2014), crater counting (e.g. 

Isherwood et al., 2013), and gravitational admittance surveys (e.g. Dorman and Lewis, 1970; 

Watts, 2001) to provide constraints on values for properties that affect lithospheric flexure at 

Olympus Mons. 

To construct a model of lithospheric flexure, values must be assigned to a range of model 

parameters. These include the model geometry (dimensions of the edifice and lithosphere), 

material properties of model components (density, Young’s modulus and Poisson’s ratio of the 

edifice and lithosphere), and the conditions at boundaries between model components (coefficient 

of friction between edifice and lithosphere). On Mars, there are significant uncertainties associated 

with values for some of these parameters because they cannot be measured directly. In addition, 

simulating lithospheric flexure is often a non-unique problem; the same flexure can be produced 

by different combinations of values of model parameters. For example, there is a trade-off between 

lithospheric thickness and edifice density (e.g. Beuthe et al., 2012); if lithospheric thickness is 

increased, edifice density must also increase to produce the same deformation (when other model 

parameters remain constant). We suggest that similar trade-offs exist between other model 

parameters, but the effects that some model parameters have on lithospheric flexure have not been 

quantified, so these trade-offs have not been studied. Thus, values that define the characteristics of 

volcanoes and the subsurface they overlie may differ when parameter values are better defined, 

and when the effects that all model parameters have on deformation are better quantified. 

Here, finite element modeling is used to evaluate which model parameters have the 

greatest effect on lithospheric flexure. We extend previous work by considering the effects of a 

greater number of model parameters. The parameters that have the greatest effect on deformation 

are then simultaneously varied. By comparing modelled lithospheric flexure to observed 

topography at Olympus Mons, we place bounds on values for parameters that define the edifice, 

lithosphere and asthenosphere at Olympus Mons. A better understanding of the parameters that 

affect lithospheric flexure is of benefit for a range of geodetic studies. Constraining values of 

parameters that define lithospheric flexure at Olympus Mons is useful for understanding this 

volcano and interpreting phenomena on Mars, as well as for understanding the behavior of large 

volcanoes elsewhere, including on Earth. 

 

2. Olympus Mons 
  

Olympus Mons lies in Mars’ northern hemisphere (226.0 E, 16.5 N), on the northwestern 

flank of the Tharsis rise, a vast (30 x 
610  km 2 ) volcanic province that covers approximately 

one-quarter of Mars’ surface (Figure 1, Kiefer, 2003; Hynek et al., 2011; Isherwood et al., 2013). 

The extensive igneous activity at Tharsis is attributed to migration of mantle plumes under the 

lithosphere (Leone, 2016), or to decompression melting of mantle plumes upwelling from the 

core-mantle boundary (Wenzel, 2004; Zhong, 2009; Hynek et al., 2011; Kiefer and Li, 2016). The 
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Tharsis region was predominantly emplaced between 4.0 and 3.7  Ga (Phillips, 2001; Williams et 

al., 2008). Crater-counting suggests that smaller-scale volcanism may have occurred within the 

last 2 Myr (Neukum et al., 2004; Schumacher and Breuer, 2007), but this conflicts with results 

from thermal models that suggest volcanism on Mars ceased in the Hesperian (at least 3.5  Ga, 

Hauck, 2002; Grott et al., 2005; Leone et al., 2014; Leone, 2017). 

Olympus Mons is the largest known volcano in the solar system. The volcano’s edifice has 

a total exposed volume of 2.4 x 1510  m 3 , a basal radius of around 300 km, and rises to an 

elevation 22 km above the surrounding plains (Plescia, 2004). Crater counting and flexural 

modeling suggest that the majority of the edifice was formed between 0.05

0.103.67


 and 0.55

0.692.54


 Ga 

(Isherwood et al., 2013). However, the nested calderas at the summit of Olympus Mons provide 

evidence for later volcanic activity (Neukum et al., 2004; Robbins et al., 2011), and these later 

magmatic events may have also contributed to edifice construction (Chadwick et al., 2015). 

The gravity-driven deformation processes of volcano sagging and spreading (Figure 2) 

have occurred contemporaneously to shape Olympus Mons. Volcanic sagging occurs when the 

weight of the edifice causes the underlying lithosphere to downflex. The edifice may be coupled to 

the lithosphere, having an end-member sagging architecture, or be decoupled from the lithosphere, 

with a hybrid sagging-spreading architecture. Olympus Mons is in the latter category (Byrne et al., 

2013). Features that indicate volcanic sagging has occurred at Olympus Mons include flank 

terraces, and a flexural bulge and flexural moat that encircle the volcano. The flexural moat is 

filled with landslide deposits and lava flows (Weller et al., 2014; McGovern et al., 2015; Chadwick 

et al., 2015). Gravity-driven volcano spreading acts when the edifice and lithosphere are 

decoupled. A volcano with an end-member spreading architecture will collapse outwards along its 

basal décollement without deforming the lithosphere (Borgia et al., 2000), whereas volcanoes 

elsewhere on the sagging-spreading continuum (e.g. Olympus Mons) collapse outwards along 

their basal décollements but also deform the lithosphere. Gravity-driven spreading at Olympus 

Mons has led to the formation of leaf grabens and the Olympus Mons basal scarp - a steep 

escarpment up to 10 km high that surrounds the majority of the edifice (McGovern and Morgan, 

2009; Weller et al., 2014). 

 

2.1. Topography 
  

Topographic analyses were used to quantify the current dimensions of Olympus Mons’ 

edifice and encircling flexural bulge (due to gravity-driven volcanic sagging). These values were 

subsequently used to evaluate model results (Section 5.2). The Mars Orbiter Laser Altimeter 

(MOLA) has collected observations of Martian topography at resolutions of around 500 by 1 m 

(horizontal by vertical, Smith, 1999; Smith et al., 2001). Using MOLA data within JMars, a 

planetary GIS (Christensen et al., 2009), we plot eight 1500 km-long radial topographic profiles 

from the centre of Olympus Mons (profile locations shown on Figure 1). Olympus Mons is located 

on the northwest flank of the Tharsis rise, and consequently the topographic surface under 

Olympus Mons is at higher elevation to the southeast than to the northwest (Phillips, 2001). To 

account for this topographic heterogeneity, each topographic profile was adjusted to a reference 0 

m elevation, defined as the elevation of infill at the base of the edifice. The change in gradient was 

used to define the boundary between edifice and infill (the first distance where the gradient, 

averaged over 36 km, was < 0.001). In making this adjustment, two simplifying assumptions 

were made: the fill level in the flexural moat is uniform around the edifice, and the elevation of 

infill is lower than the flexural bulge. The symmetry of Olympus Mons’ edifice (Figure 1) 
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provides justification for the first assumption. This symmetry suggests that volcanism, and thus the 

volume of volcanic deposits within the flexural moat, is relatively constant radially. However, to 

make a more realistic estimate of moat infill, additional modeling would be required to quantify 

the topographic gradient that underlies Olympus Mons. This modeling is beyond the scope of the 

paper. Our second assumption is justified using topographic maps. For most of the topographic 

profiles (Figures 1 and 3), the flexural bulge, associated with a positive change in topography, can 

be observed. In addition, topographic analyses of the latest lava flows at Olympus Mons suggest 

that lava has flowed away from the edifice, but has not crossed the flexural bulge (Chadwick et al., 

2015). Without additional geophysical data, for example from seismic reflection surveys, we 

cannot confirm how the depth of infill relates to the flexural bulge, as we can on Earth (e.g. Watts 

et al., 1985). 

For each topographic profile (Figure 3), in conjunction with elevation maps (Figure 1), 

edifice height, edifice radius, and the width of the flexural moat were measured. For the west and 

northwest profiles, the edge of the flexural moat was unclear, so this parameter was not measured. 

The means and standard deviations of edifice height ( ˆ
hx ), edifice radius ( ˆ

rx ), and the width of the 

flexural moat ( ˆ
mx ) were calculated; ˆ = 21.2 1.1hx   km, ˆ = 357 35rx   km and ˆ = 331 108mx   

km (mean   standard deviation). 

 

3. Model setup 
  

3.1. Geometric setup 
  

COMSOL Multiphysics (v5.4) was used for all finite element modeling. Our models had a 

simple two-dimensional axisymmetric model geometry. This simplification was justified by the 

symmetry of Olympus Mons’ edifice. Our models represented the dynamic structure of the outer 

planetary layers (e.g. Breuer and Spohn, 2006), comprising a volcanic edifice and lithosphere and 

incorporating the effects of buoyancy from the asthenosphere as a boundary force (Figure 4). We 

did not distinguish between crustal and mantle lithosphere; we modeled flexure of a single, 

homogeneous, elastic layer, which we termed the lithosphere. Although this approach limits our 

conclusions about properties of the lithosphere, values that define crustal thickness and density at 

regional scales have been poorly constrained on Mars (e.g. Beuthe et al., 2012). Introducing these 

additional complexities, and the corresponding additional degrees of freedom, into our models was 

therefore not justified. 

The model geometry extended to 3000 km in the radial direction to reduce boundary 

effects. The outside vertical boundary was free to move vertically, but fixed radially - a roller 

boundary. There was a frictional interface between the edifice and lithosphere. The mesh for the 

volcanic edifice and lithosphere comprised triangular elements. The elements in the edifice mesh 

had a minimum dimension of 225 m and a maximum dimension of 3000 m, and the mesh elements 

in the lithosphere had a minimum dimension of 225 m and a maximum dimension of 60,000  m 

(Table S1, Figure S1). Sensitivity tests were performed to ensure that the element size did not 

affect the model results. 

 

3.2. Rheology 
  

We represented the edifice and lithosphere as solid elastic bodies. The majority of 
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Olympus Mons’ edifice had been emplaced by 2.54  Ga, and subsequent rates of magma 

generation have been non-existent, or too low to sustain an active magma reservoir (Wilson et al., 

2001; Isherwood et al., 2013). We therefore assumed that much of the edifice and lithosphere are 

cooler than the brittle-ductile interface, and thus respond elastically to applied stress (Del Negro et 

al., 2009). 

In comparison to the overlying lithosphere, the asthenosphere is weak and behaves as a 

fluid over geological time. The effects of buoyancy from a viscous fluid asthenosphere were 

incorporated in our models as a boundary force. Incorporating a more realistic asthenosphere 

would require further assumptions to be made about the currently poorly-described Martian 

mantle (e.g. Breuer and Spohn, 2006). 

 

3.3. Volcanic loading 
  

Gravitational loading was applied as a body force to the edifice with gravitational field 

strength 3.71 m.s 2 . Previous work by Musiol et al. (2016) demonstrated that surface faults at 

Olympus Mons can be formed under both instantaneous loading and growing load scenarios. We 

modeled a growing load scenario, and found that deformation modeled from growing and 

instantaneous loading scenarios converged within 2.54 Gyr (the estimated age of the majority of 

the edifice, (Isherwood et al., 2013). Figure S2 displays these results. Thus, in all models we used 

an instantaneous loading scenario for the edifice, which decreases computation time. 

 

4. Model variables 
  

We tested the sensitivity of models of lithospheric flexure to eleven model parameters: 

asthenosphere density, lithosphere thickness, lithosphere density, lithosphere Poisson’s ratio, 

lithosphere Young’s modulus, initial edifice height, initial edifice radius, edifice density, edifice 

Poisson’s ratio, edifice Young’s modulus, and the frictional coefficient between the edifice and the 

lithosphere. Table 1 summarizes the tested values for all model parameters. 

 

4.1. Asthenosphere density 
  

Values that define the density of the Martian mantle have been obtained using geophysical 

and geochemical techniques. The moment-of-inertia factor has been used to estimate average 

densities of the Martian mantle, with results ranging from 3330 to 3740 kg.m 3  (e.g. Johnston et 

al., 1974; Johnston and Toksöz, 1977; Okal and Anderson, 1978). Goettel (1981) constrained 

mantle density to 3440 60  kg.m 3  by using analytical models with a range of density 

distributions. This result has subsequently been used within many models of lithospheric flexure 

(e.g. McGovern et al., 2002; Belleguic et al., 2005; Beuthe et al., 2012; Musiol et al., 2016). The 

differences in inferred mantle density are attributed to uncertainty in crustal density and thickness 

(e.g. Bertka and Fei, 1998) and uncertainty in Mars’ precession rate, which affects the 

moment-of-inertia factor (e.g. Folkner et al., 1997; Yoder and Standish, 1997). Geochemical 

analyses of meteorites (e.g. Dreibus and Wanke, 1985), and experiments undertaken at high 

temperatures and pressures (Bertka and Fei, 1997; Bertka and Fei, 1998) have also been used to 

infer the density of the Martian mantle. These results align with those derived from 

moment-of-inertia models, and are also affected by the thickness and density of the crust. Here we 
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varied asthenosphere density between 3300 and 3600 kg.m 3 . We did not consider the highest 

values of asthenosphere density inferred from previous studies because our models only represent 

the outer region of the mantle, which has a lower density than the mantle at greater depths (e.g. 

Bertka and Fei, 1998). 

 

4.2. Lithosphere variables 
  

4.2.1. Lithosphere thickness 

  

Lithosphere thickness has been estimated using analytical models and gravitational 

admittance. Analytical thin-plate models (where a thin elastic plate overlies a viscous fluid, e.g. 

Brotchie and Silvester, 1969), placed a lower bound of 150 km for lithosphere thickness at 

Olympus Mons (Comer et al., 1985). An analytical thin-shell model (Isherwood et al., 2013) 

favored lithosphere thicknesses between 70 and 80 km, but a unique value of thickness could not 

be determined. Gravitational admittance surveys have used topography and gravity data from 

spacecraft Mars Global Surveyor (MGS) and Viking 2 to estimate that lithosphere thickness in the 

Tharsis province is approximately 70 km (McKenzie et al., 2002), and this value increases to > 70  

km (McGovern et al., 2002, 2004) or to 93 40  km (Belleguic et al., 2005) at Olympus Mons. 

The inherent trade-off between lithosphere thickness and relatively unconstrained parameters, 

including crustal and lithospheric densities and the amount of bottom loading, limits the 

constraints that can be placed on values of lithosphere thickness at Olympus Mons, despite the 

increasing resolution of geodetic data (Beuthe et al., 2012). Here we evaluated lithospheric flexure 

for lithosphere thicknesses between 40 and 170 km. 

 

4.2.2. Lithosphere density 

  

The density of crustal lithosphere is less than the density of mantle lithosphere. However, 

our models comprise a single lithosphere layer (Section 3.1), so our range of evaluated values for 

lithosphere density includes densities computed for crustal and mantle lithosphere. Estimates of 

crustal densities have been made using geochemical and geophysical techniques, and we discuss 

values for asthenosphere density previously (Section 4.1). 

An average crustal density of 3100 kg.m 3  is compatible with the major element 

chemistry of Martian meteorites and surface element concentrations (Baratoux et al., 2014). 

However, this density requires a thick crustal layer ( >100  km), which some studies have 

suggested is incompatible with results from gravitational admittance (Pauer and Breuer, 2008; 

Baratoux et al., 2014). Gravitational admittance analyses have suggested that average crustal 

density is 2582 95  kg.m 3 , which increases to 3231 95  kg.m 3  in the Tharsis province 

(Goossens et al., 2017). Variation in crustal density with depth is also hypothesised, but the 

parameters for this depth-dependence cannot yet be confidently determined (Goossens et al., 

2017). 2900 kg.m 3  is considered an average value for crustal density on Mars, and is often used 

for modeling (e.g.  Neumann, 2004; Musiol et al., 2016). We varied lithosphere density between 

2500 and 3500 kg.m 3 , a range that encompasses results of many previous studies for crustal 

lithosphere, and extends to typical densities assumed for the mantle lithosphere. 

 

4.2.3. Lithosphere Poisson’s ratio 
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 The Poisson effect, the tendency of an elastic material to expand or contract 

perpendicularly to the direction of loading, is quantified by the ratio of transverse strain to axial 

strain, Poisson’s ratio (e.g. Gercek, 2007). Martian meteorite samples, from which Poisson’s ratio 

can be determined experimentally, are limited, so numerical modeling has been used to estimate 

values for the Olympus Mons region. Dimitrova and Haines (2013) used numerical models to 

show that the state of stress, and hence faulting, observed on Mars could be best explained when 

the Poisson’s ratio of the lithosphere was 0.5 (an incompressible lithosphere). However, many 

models of lithospheric flexure at Martian volcanoes assign Poisson’s ratio values of 0.25 0.30  

to the lithosphere (e.g. McGovern and Solomon, 1993; McGovern et al., 2002; Belleguic et al., 

2005; Beuthe et al., 2012; Isherwood et al., 2013), and these values align with the 

experimentally-derived values of Poisson’s ratio for Earth’s oceanic crust ( = 0.25 , Collier and 

Singh, 1998). To incorporate values for lithosphere Poisson’s ratio found by, and used within, 

previous studies, we varied this parameter between 0.1 and 0.49 (convergence of finite element 

models is impossible when Poisson’s ratio is equal to 0.5, e.g. Kwon et al., 2014). 

 

4.2.4. Lithosphere Young’s modulus 

  

Young’s modulus reports the ratio of stress to strain in the linear elasticity regime of 

uniaxial deformation; it describes a material’s stiffness. Values that define the Young’s modulus 

for Martian rocks are rarely discussed, thus our range of tested values is informed by laboratory 

testing of terrestrial basalts. We assume that the Martian lithosphere is basaltic (e.g. McSween et 

al., 2009), and thus has elastic properties analogous to terrestrial basalt. Heap et al. (2020) 

reviewed the Young’s moduli of terrestrial volcanic rocks, and found that a value of 5.4  GPa is 

an average value. Although the methodology used in this study is for shallow lithologies, and 

Young’s modulus will increase with depth (due to decreasing porosity and compositional changes, 

(Tesauro et al., 2012), this value provides a lower bound on potential values for lithosphere 

Young’s modulus. In addition, Mars has a lower surface gravity than Earth, which means that the 

Martian lithosphere is more fractured, more porous and weaker, and consequently has a lower 

Young’s modulus (Heap et al. 2017, 2020). However, previous studies have typically assigned 

values between 100 and 120 GPa to the Young’s modulus of crustal and asthenospheric 

lithosphere on Mars (e.g. McGovern et al., 2002; Belleguic et al., 2005; Beuthe et al., 2012; 

Isherwood et al., 2013; Musiol et al., 2016). To incorporate the results of Heap et al. (2020), in 

addition to evaluating the values used in previous studies, we considered a wide range of values for 

lithosphere Young’s modulus: 5 to 120 GPa. 

 

4.3. Edifice variables 
  

4.3.1. Edifice geometry 

  

In our models, forcing comes from gravity that is applied as a body load to the edifice 

(Figure 4a). Under this applied force, the lithosphere downflexes and the edifice deforms (Figure 

4b). Consequently, the minimum value of initial edifice height tested in our models was equal to 

ˆ
hx , 21 km, the current height of Olympus Mons’ edifice (because the edifice can only decrease in 

height under gravitational loading). The maximum tested value of initial edifice height was 45 km. 

However, unlike edifice height, the radius of the edifice can increase or decrease during 

gravitational loading depending on amount of gravitational sagging and spreading (Figure 2), and 
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the values of other model variables. Thus, the mean value of initial edifice radius that we tested 

was equal to ˆ
rx  (360 km), the current radius of Olympus Mons’ edifice (Section 2.1). The range 

of tested values for initial edifice radius was 150 to 570 km. The values that we define for initial 

edifice height and radius are used to construct our initial model geometry, and do not incorporate 

the true incremental growth of the edifice (because we use an instantaneous loading scenario, 

Section 3.3). Thus, the best-fitting values for initial edifice height and radius determined within 

our modeling will provide a measure of the overall volume of the edifice (including that which is 

below 0 m elevation) at present. 

 

4.3.2. Edifice density 

  

Gravity and topography measurements from MGS were used by McGovern et al. (2002, 

2004) to estimate that the density of Olympus Mons’ edifice was 3150 kg.m 3 . This result was 

increased to 3252 150  kg.m 3  by Belleguic et al. (2005). Subsequent spacecraft Mars Express 

and Mars Reconnaissance collected higher-resolution gravity data at Olympus Mons, but these 

data could not place additional constraints on edifice density (Beuthe et al., 2012). Ganesh et al. 

(2020) used data collected by the SHAllow RADar (SHARAD) instrument onboard the Mars 

Reconnaissance Orbiter, to estimate the density of Arsia Mons’ edifice ( 8 S, 120 W, Figure 1). 

The resulting densities for deposits in the upper layers of Arsia Mons’ caldera were between 1800 

kg.m 3  and 3120 kg.m 3 . Martian density estimates cannot be verified against erupted samples, 

so we use results from laboratory testing of Hawaiian basalt to place additional bounds on the 

probable density range at Olympus Mons. The average density of highly-vesicular fall deposits at 

Kīlauea volcano was 203 1421  kg.m 3  (Houghton and Wilson, 1989), and samples from a 

3.097  km-deep borehole at Mauna Loa volcano had average density around 2550 kg.m 3  

(Moore, 2001). We varied edifice density between 1000 and 3500 kg.m 3 . This range excludes the 

highest-vesicularity fall deposits sampled at Hawai’i, because these samples have densities that are 

unrealistically low for an average value for Olympus Mons’ edifice. The maximum tested value of 

edifice density is the maximum tested value of lithosphere density. 

 

4.3.3. Edifice Poisson’s ratio 

  

As for the Martian lithosphere, there has been little analysis of Poisson’s ratio for volcanic 

edifices on Mars. We tested the same range of values for edifice Poisson’s ratio as we did for 

lithosphere Poisson’s ratio: 0.1 - 0.49. We assume that volcanism at Olympus Mons is basaltic 

(e.g. Chadwick et al., 2015; Crown and Ramsey, 2017), and a typical range of values for Poisson’s 

ratio for basalt is 0.1 to 0.35 (Gercek, 2007). Near-surface terrestrial volcanic rock masses with 

average porosity also have Poisson’s ratios in this range - typically between 0.25 and 0.35 (Heap et 

al., 2020). Our tested range includes values of Poisson’s ratio assigned to edifices within previous 

models of lithospheric flexure at Olympus Mons (e.g. McGovern et al., 2002; Belleguic et al., 

2005; Isherwood et al., 2013; Musiol et al., 2016), and extends to the value of lithosphere 

Poisson’s ratio that Dimitrova and Haines (2013) suggested could best explained observed faulting 

on Mars (Section 4.2.3). 

 

4.3.4. Edifice Young’s modulus 
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The Young’s modulus of the Olympus Mons edifice has been poorly constrained. 

However, again using the assumption that Martian volcanism is basaltic (e.g. Chadwick et al., 

2015; Crown and Ramsey, 2017), we consider experimentally-derived values for Young’s 

modulus from terrestrial basalt. The minimum tested value of edifice Young’s modulus, 5 GPa, is 

based on a result from Heap et al. (2020). This value is calculated for shallow terrestrial 

lithologies. However, the combination of lower surface gravity on Mars (which will cause a 

reduction in Young’s modulus, e.g. Heap et al., 2017), and the large size of Olympus Mons’ 

edifice (so the Young’s modulus of the edifice will be significantly greater at its base than at its 

surface), means that 5 GPa is an appropriate lower limit for edifice Young’s modulus. Previous 

models of flexure at Olympus Mons (e.g. Musiol et al., 2016), assigned values much greater than 5 

GPa to edifice Young’s modulus. We therefore evaluated a wide range of values for edifice 

Young’s modulus, 5 85  GPa, to incorporate values used in previous studies, but we anticipate 

that values at the upper end of this range may be unrealistically large, following the review by 

Heap et al. (2020). 

 

4.4. Friction 
 

The coefficient of friction between the edifice and lithosphere controls the morphology of 

the edifice (Section 2, Byrne et al., 2013). The morphology of Olympus Mons suggests that the 

edifice has spread along its basal décollement, justifying the addition of friction to our models. 

Musiol et al. (2016) suggested that the coefficient of friction between Olympus Mons’ edifice and 

lithosphere could be as low as 0.1. However, when lithospheric flexure was modeled at Hawai’i 

(Zhong and Watts, 2013), the best-fitting frictional coefficient was between 0.25 and 0.70. At 

Hawai’i, the basal décollement lies between the volcanic edifice and oceanic crust, with wet 

oceanic sediments lubricating the interface (Denlinger and Morgan, 2014), thus the frictional 

coefficient at Hawai’i is predicted to be less than at Olympus Mons. Given the ambiguity about the 

frictional coefficient, we tested values between 0.1 and 0.9. 

 

5. Results 
  

5.1. Independently varying parameters 
 

We first established which model parameters had the greatest effect on lithospheric 

flexure. The eleven model parameters (asthenosphere density, lithosphere thickness, lithosphere 

density, lithosphere Poisson’s ratio, lithosphere Young’s modulus, initial edifice height, initial 

edifice radius, edifice density, edifice Poisson’s ratio, edifice Young’s modulus , and the frictional 

coefficient between the edifice and the lithosphere) under investigation were varied independently. 

Ten evenly-spread values for each variable were tested (110 models altogether). For each model, 

lithospheric flexure was measured in three ways: post-loading edifice height, hx , post-loading 

edifice radius, rx , and the width of the flexural moat, mx . 

For each tested model parameter, we computed the percentage difference in hx  ( hdx ), rx  

( rdx ) and mx  ( mdx ) across the range of tested parameter values: 
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 (1) 

 

The eleven values of hdx , rdx  and mdx  (one for each tested model parameter) were 

ranked in descending order from 11 to 1 (Figure 5a - c). The parameter with the largest hdx , and 

thus greatest effect on hx , was ranked 11 (the same procedure was followed for rdx  and mdx ). 

An average rank was assigned if multiple parameters had equal hdx , rdx  or mdx . The ranks for 

hdx , rdx  and mdx  were then summed (Figure 5d) to establish which parameters had the greatest 

effect on overall lithospheric flexure. 

Both model geometry (initial edifice height, initial edifice radius, lithosphere thickness) 

and material properties (density, Young’s Modulus, Poisson’s ratio) affected lithospheric flexure 

(Figure 5). All interrogated model parameters had an effect on hx . However, only ten of the 

parameters affected rx  and only five affected mx . Overall, initial edifice radius had the most 

effect on lithospheric flexure, and lithosphere density had the least. The measure of lithospheric 

flexure dictated which model variable was most influential. As expected, the initial edifice 

geometry had the greatest effect on the final edifice geometry (initial edifice height had the 

greatest effect on hx , and initial edifice radius had the greatest effect on rx ). Lithosphere 

thickness had the greatest effect on mx . Model variables generally ranked in a similar order 

regardless of the measure of lithospheric flexure evaluated, but there were some exceptions. For 

example, initial edifice height had the greatest effect on hx , but had little effect on rx  and mx . 

Similarly, lithosphere Poisson’s ratio had the 5th highest rank for its effect on mx , but little effect 

on hx  and no effect on rx . 

 

5.2. Constraining model parameters 
  

We simultaneously varied the five model parameters that our previous analyses (Section 

5.1) suggested had the greatest effect on deformation: initial edifice radius, edifice density, 

lithosphere thickness, lithosphere Young’s modulus and asthenosphere density. Values for five of 

the six remaining parameters were fixed at the control values defined in Table 1. The coefficient of 

friction was reduced to zero, because it had little effect on lithospheric flexure (Figure 5) and by 

doing this the frictional interface could be replaced by a welded contact, which improved the 

convergence of our models. Ten values of each parameter were tested; number of models, 

= 100,000n . As before, modeled lithospheric flexure was quantified by the final edifice height 

and radius, hx  and rx  respectively, and the width of the flexural moat, mx . Modeled hx , rx  and 

mx  were compared to the mean values of Olympus Mons’ current edifice height ( ˆ
hx ), radius ( ˆ

rx ), 

and flexural moat width ( ˆ
mx , Figure 3). For each model ( =1i  to =i n ), we computed the residual 

for each measure of lithospheric flexure. he , re  and me  are defined as the residuals associated 

with edifice height, edifice radius, and flexural moat width respectively. 

 

 
( , , ) ( , , ) ( , , )

ˆ=| |h r m i h r m i h r m ie x x  (2) 
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Residuals were normalized between 0 (no residual) and 1 (largest residual): 

  

 
( , , )

( , , )

( , , )( =1) ( , , )( = )

=
max{ , , }

h r m i
h r m i

h r m i h r m i n

e
e

e e
 (3) 

 

We define the overall residual for each model, e : 

  

 =i hi ri mie e e e   (4) 

 

Figure 6 displays the overall residuals, e , for each tested value for each of the five 

interrogated model parameters and Figure 7 displays the three residuals, he , re  and me  

separately. Kruskal-Wallis and post-hoc Dunn’s tests were used to test for differences in e , he , 

re  and me . For all results, = 10,000n  and we set a 95% confidence limit. All quoted p-values 

have been adjusted for multiple comparisons using a Bonferroni correction. The results of all 

statistical tests are presented in Table S3. 

We used e  to estimate the best-fitting values of initial edifice radius, edifice density, 

lithosphere thickness and lithosphere Young’s modulus at Olympus Mons (Figure 6, Table S2). 

We cannot estimate a value for asthenosphere density because there were no significant 

differences in e  between all tested values. The best-fitting value of initial edifice radius was 383 

km, and e  for this value was smaller than e  for all other tested values ( < 0.0001p  for all tests). 

However, we cannot use e  to determine a unique value for edifice density, lithosphere thickness 

or lithosphere Young’s modulus because there was not a significant difference between the 

minimum e  and other e  for these parameters. For example, the best-fitting value of edifice 

density was 2389 kg.m 3 , but e  for this value was not significantly different from e  when 

edifice density was 1833, 2111 and 2667 kg.m 3  ( = 0.19 1.0p  ). 

The best-fitting values for four out of the five model parameters were affected by the 

measure of lithospheric flexure that was evaluated (Figure 7, Table S2). For initial edifice radius, 

all three measures of lithospheric flexure suggested that a best-fitting value was 383 km. When re  

were compared, 383 km was the uniquely best-fitting value, whereas when he  and me  were 

evaluated, 383 km lay within a range of best-fitting values. However, the best-fitting values for 

edifice density, lithosphere thickness and lithosphere Young’s modulus were significantly 

different depending on whether he , re  or me  were analyzed. 

In addition, the three measures of lithospheric flexure placed the tightest constraints on 

different model parameters (Figure 7, Table S2). Comparing hx  and ˆ
hx  (residual he ), provided 

the tightest constraints on the values of edifice density ( 2111 2389  km) and lithosphere Young’s 

modulus (17.8 30.6  GPa), but suggested a wider range of best-fitting values for initial edifice 

radius and lithosphere thickness. Comparing rx  and ˆ
rx  (residual re ), provided a unique 

best-fitting value for initial edifice radius (383 km), but for all other parameters there were at least 

five best-fitting values. Likewise, when mx  and ˆ
mx  were considered (residual me ), the 
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best-fitting value for lithosphere thickness was unique (83.3  km), but a range of values for initial 

edifice radius, edifice density and lithosphere Young’s modulus had non-different me . Table 2 

summarizes the best-fitting value(s) for each model parameter, using the measure of lithospheric 

flexure that provided the tightest constraints. 

To consider the effects of the variance within measurements of lithospheric flexure, we 

repeated the analyses described above but substituted 
, ,

ˆ
h r mx  for (

, , , ,
ˆ ˆ( )h r m h r mx x ) and then (

, , , ,
ˆ ˆ( )h r m h r mx x ), where   is the standard deviation of the observation (values of   defined in 

Section 2.1). The best-fitting parameter values are displayed in Figures S3 - S5 and results of 

statistical tests are within Table S3. There was good correspondence between the best-fitting 

parameter values inferred using edifice height (comparison to ˆ ˆ( )h hx x , ˆ
hx  and ˆ ˆ( )h hx x , 

residuals he ), and edifice radius (comparison to ˆ ˆ( )r rx x , ˆ
rx  and ˆ ˆ( )r rx x , residuals re ). 

For these cases, the ranges of best-fitting values of parameters generally intersected. However, 

when variance in flexural moat width was considered, there were significant differences in the 

best-fitting values of initial edifice radius, edifice density, lithosphere thickness and lithosphere 

Young’s modulus. Consequently, there were also significant differences in the best-fitting values 

of these parameters that could be inferred using e . 

 

5.3. Interdependence of model parameters 
  

The best-fitting values of each model parameter were affected by values of other 

parameters. Figure 8 shows the mean e  for each tested value of each parameter (10,000 values 

averaged for each point, 100 points contoured on each plot). The best-fitting value of initial edifice 

radius was well constrained at around 383 km, regardless of the values of edifice density, 

lithosphere thickness, lithosphere Young’s modulus and asthenosphere density. Likewise, mean 

e  for tested values of asthenosphere density were unaffected by the values of the other five 

parameters. However, there was interdependence in the best-fitting values of edifice density, 

lithosphere thickness and lithosphere Young’s modulus. Overall, the best-fitting value of edifice 

density was between 1833 and 2667 kg.m 3  (Figure 6), but as the Young’s modulus of the 

lithosphere increased from 30.6 to 56.1 GPa, the best-fitting value of edifice density increased 

from 2111 to 2667 kg.m 3 . Similarly, the overall best-fitting value of lithosphere thickness was 

between 83.3 and 97.8  km (Figure 6), yet as lithosphere Young’s modulus increased from 17.8 to 

107.2  GPa, the best-fitting value of lithosphere thickness decreased from 126.7 to 68.9  km. 

 

6. Discussion 
  

The lithosphere deforms under gravitational loading from a volcanic edifice, and this 

deformation is affected by physical properties of the volcanic edifice, lithosphere and underlying 

asthenosphere. Finite element models were used to predict the lithospheric flexure at Olympus 

Mons for a combination of values of model parameters. 

 

6.1. Parameters affecting deformation 
  

Eleven model parameters (asthenosphere density, lithosphere thickness, density, Young’s 
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modulus and Poisson’s ratio, edifice initial height, initial radius, density, Young’s modulus and 

Poisson’s ratio, and the coefficient of friction between the edifice and lithosphere) were 

interrogated, and all had an effect on lithospheric flexure (Figure 5). The parameters with the most 

influence on deformation should be most carefully defined within models of lithospheric flexure, 

and within deformation models more generally. Most of the model parameters that were 

interrogated have been considered previously. Values for the edifice volume (dictated by the 

modeled initial edifice geometry, Section 4.3.1) and lithosphere thickness have been evaluated 

using analytical modeling (e.g. Isherwood et al., 2013), finite element modeling (e.g. Musiol et al., 

2016) and gravitational admittance (e.g. Beuthe et al., 2012). The best-fitting values for densities 

(of the asthenosphere, lithosphere and edifice) have been constrained using analytical models (e.g. 

Goettel, 1981), geochemical analyses of Martian meteorites (e.g. Baratoux et al., 2014), 

gravitational admittance (e.g. Goossens et al., 2017) and shallow radar surveys (Ganesh et al., 

2020). Numerical modeling has been used to suggest values for Poisson’s ratios of the lithosphere 

and edifice (Dimitrova and Haines, 2013; Musiol et al., 2016). However, the sensitivity of 

lithospheric flexure to the Young’s modulus of the lithosphere and edifice has not been considered. 

These parameters ranked 2nd and 7th respectively (maximum 11) for their overall effect on 

lithospheric flexure; a higher ranking than the Poisson’s ratios of the lithosphere and edifice, and 

the coefficient of friction between the lithosphere and edifice, three parameters that have been 

previously investigated. Thus, the influence that the Young’s modulus has on lithospheric flexure 

may have previously been underestimated, and assigning accurate values of Young’s modulus to 

model components may warrant greater attention in future. 

 

6.2. Measuring lithospheric flexure 
  

The constraints that could be placed on values of parameters were affected by how 

lithospheric flexure was quantified - whether edifice height, edifice radius or flexural moat width 

were evaluated (residuals he , re  and me ). As expected, the best-fitting values of model 

parameters were typically most tightly constrained by analysing the residuals from the measure of 

lithospheric flexure ( hx , rx , mx ) that they had the greatest effect on. For example, lithosphere 

thickness had the greatest influence on flexural moat width (Figure 5), and using the residual from 

flexural moat width, me , a unique best-fitting value for lithosphere thickness (83.3  km) was 

obtained, whereas a range of values were obtained when he  and re  were analysed (Figure 7). 

Overall, values for parameters that define the edifice (initial radius and density) were most tightly 

constrained from observations of the edifice, whereas values that define lithosphere properties 

(thickness and Young’s modulus) were best constrained using flexural moat width (Young’s 

modulus was equally best constrained using he  and me ). Thus, we suggest that the model 

parameter under investigation should dictate which measure of lithospheric flexure is analysed. 

This methodology could improve the constraints that previous studies have placed on model 

properties. For example, Isherwood et al. (2013) used observations of the width of Olympus Mons’ 

flexural moat to infer the density of the edifice and the thickness of the underlying elastic 

lithosphere. The authors found that a range of values were permissible for both parameters. We 

suggest that the width of the flexural moat can be used to estimate lithosphere thickness, but 

cannot place tight constraints on edifice density; comparing the modeled and observed edifice 

morphology could reduce the range of permissible values for edifice density. 
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6.3. Constraining model parameters 
  

We found that values for some model parameters could be constrained, under certain 

conditions. However, not all parameters could be constrained, and the best-fitting values of 

parameters were dictated by how lithospheric flexure was measured (Section 6.2), whether 

variance in observations of lithospheric flexure were considered, and the values of other model 

parameters. 

The best-fitting values were defined using the residual that placed the tightest constraint on 

each model parameter (Table 2), and these results typically correspond with values proposed by 

previous studies. The combination of the best-fitting value of initial edifice radius (383 km) and 

the control value of initial edifice height (105 km), results in a peak lithosphere displacement of 

10.9 5.6  km (mean   standard deviation), which is in agreement with Musiol et al. (2016). Our 

best-fitting value for lithosphere Young’s modulus was 17.8  GPa, which is substantially lower 

than values used in previous studies (typically 100 120  GPa, e.g. McGovern et al., 2002; 

Belleguic et al., 2005; Beuthe et al., 2012; Isherwood et al., 2013; Musiol et al., 2016), but 

corresponds with results from Heap et al. (2017) and Heap et al. (2020). Heap et al. (2020) suggest 

that 5.4  GPa is an appropriate value of Young’s modulus for a volcanic rock with average 

porosity and fracture density. This is a result for a shallow, terrestrial lithology; Young’s modulus 

increases with depth as rock becomes stiffer, but the average Young’s modulus for an 

identically-sized section of lithosphere on Mars would be less than on Earth, because Mars has a 

lower surface gravity and consequently a more porous, fractured, weaker lithosphere (Heap et al., 

2017). Thus, our value of 17.8  GPa for the Young’s modulus of the Martian lithosphere is not 

unrealistic, and suggests that the widespread upscaling errors for Young’s modulus suggested by 

Heap et al. (2020) could be a phenomenon that extends beyond terrestrial studies. 

Our result for lithosphere Young’s modulus can also explain the differences between the 

results of our models and previous studies for values of edifice density and lithosphere thickness. 

Our best-fitting value for lithosphere thickness ( 83.3  km) lies within the range of some previous 

studies (e.g. Belleguic et al., 2005), but is greater than estimates made by McKenzie et al. (2002) 

and Isherwood et al. (2013). The average value of Young’s modulus used in our models ( 62.5  

GPa, Table 1) is lower than the values used in many studies, including McKenzie et al. (2002) (144 

GPa) and Isherwood et al. (2013) (100 GPa). We found a negative correlation between lithosphere 

thickness and lithosphere Young’s modulus (Figure 8). Consequently, our best-fitting value of 

lithosphere thickness is predictably greater than values proposed by previous studies. Similarly, 

our best fitting values for edifice density ( 2111 2389  kg.m 3 ) are within the lower half of the 

range proposed by Ganesh et al. (2020), but lower than estimates made by McGovern et al. (2002, 

2004) and Belleguic et al. (2005). The values of lithosphere Young’s modulus within these studies 

(100 GPa in both cases) are larger than the mean value used in our models, and there is a positive 

correlation between edifice density and lithosphere Young’s modulus (Figure 8), thus it is 

expected that our best-fitting value for edifice density is less than these studies suggest. 

The best-fitting values for initial edifice radius, edifice density, lithosphere thickness and 

lithosphere Young’s modulus were dependent on whether flexure was considered using he , re  or 

me , and were affected by the variance in observed measurements of Olympus Mons’ topography 

(quantified using edifice height, ˆ
hx , edifice radius, ˆ

rx , and flexural moat width, ˆ
mx ). Variation 

between parameter values inferred using he , re  and me  is attributed to measures of lithospheric 

flexure being differently affected by different model parameters (Section 6.2). Differences 
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between the values of parameters inferred using the three measures of lithospheric flexure are 

attributed to the simplicity of our models. Our model contained a simple, conical edifice. This 

allowed us to relatively quickly compute the gravity-driven deformation for 100,000 combinations 

of values of model parameters. However, our inferences about best-fitting values of model 

parameters assumed that the Olympus Mons edifice, and encircling flexural moat, were radially 

symmetric. This is an oversimplification. Olympus Mons lies on the flank of the Tharsis rise 

(McGovern and Morgan, 2009); the northwest of the edifice is at a lower elevation than the 

southeast and this has affected the morphology of the edifice and the infill of the flexural moat. In 

addition, the Tharsis rise, which has lateral and vertical dimensions ten times those of Olympus 

Mons (Figure 1, Borgia and Murray, 2010), has caused downflexure of the lithosphere and is 

surrounded by a flexural moat (Phillips, 2001). Lithospheric flexure from gravitational loading of 

Olympus Mons’ edifice is therefore superimposed upon much larger-scale lithospheric flexure. 

These large-scale heterogeneities that underlie the Olympus Mons region become increasingly 

significant as observations are made over a larger area. Thus, it is unexpected that the values for 

the measure of lithospheric flexure that cover the greatest spatial extent - flexural moat width - 

have the greatest variance ( ˆ ˆ( ) = 0.32m mx x  whereas 
, ,

ˆ ˆ( ) < 0.10h r h rx x ). Consequently, the 

difference between the best-fitting values of model parameters when me  was computed using 

ˆ ˆ( )m mx x , ˆ
mx  and ˆ ˆ( )m mx x  was greater than when variance within ˆ

hx  and ˆ
rx  was 

considered. The range of best-fitting parameter values may be reduced with further modeling that 

incorporates the heterogeneity of the topography underlying Olympus Mons. 

 

6.4. Implications for Mars’ subsurface and beyond 
  

The Young’s modulus reports the ratio of stress to strain in a material. The Young’s 

modulus of a rock depends on properties of its environment - temperature and pressure - and on its 

physical attributes - principally its porosity (Heap et al., 2020). We find that the Martian 

lithosphere, at least in the vicinity of Olympus Mons, has a lower Young’s modulus, and thus 

responds to an applied stress with a greater amount of deformation than has been assumed in 

previous studies. We consider three wider implications that this has for the Martian lithosphere. 

First, if the Martian lithosphere is less stiff because it is more porous than has been hitherto 

proposed, these porous regions could act as subsurface fluid reservoirs. In Mars’ early history, 

these fluid reservoirs may have contained the liquid water that has been preserved within hydrous 

minerals (e.g. Mustard et al., 2008). Mars is also hypothesized to have experienced large outburst 

floods, as evidenced from bedrock canyons (e.g. Larsen and Lamb, 2016; Lapotre et al., 2016). 

Subsurface fluid reservoirs may have provided storage for liquid water, which was rapidly 

released under pressure and caused these floods (Carr, 1979). Second, if the Martian lithosphere 

has greater permeability than can be inferred from previous values of Young’s modulus, this could 

increase the volume of fluid transport through the subsurface. Hydrothermal groundwater 

circulation systems have been proposed as a mechanism for clay formation, and some fossilized 

conduits have been identified within MOLA elevation data (Ehlmann et al., 2011; Saper and 

Mustard, 2013). Relatively high subsurface permeability would be required to sustain these 

systems. This greater permeability could also be exploited by magma, and contribute to the 

large-scale volcanism that has occurred on Mars (e.g. Heap et al., 2017). Third, there is a trade-off 

between lithosphere thickness and lithosphere Young’s modulus; the same deformation can be 

produced by a thick lithosphere with a low Young’s modulus and a thin lithosphere and a high 
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Young’s modulus. If the Young’s modulus is lower than has been thought previously, the 

thickness of the lithosphere must be greater. This could, in turn, alter the values that are inferred 

for other parameters that define the Martian subsurface. 

Our inferred result for the Young’s modulus of the lithosphere aligns with findings by 

Heap et al. (2020), and suggests that upscaling errors within deformation models are not only 

constrained to Earth. As for Mars, if the values of Young’s modulus assigned to the lithosphere 

within terrestrial models of lithospheric flexure have been overestimated, the best-fitting values 

for other parameters including lithosphere thickness and edifice density will be affected. However, 

terrestrial studies benefit from a range of additional data that cannot be obtained from Mars; 

Earth’s lithosphere surface can be identified within seismic reflection surveys (e.g. Watts et al., 

1985), and the material properties of rock samples can be defined quantitatively using laboratory 

testing (e.g. Manghnani and Woollard, 1965). Consequently, compared to Martian models, 

terrestrial models of lithospheric flexure, and deformation models more generally, have a reduced 

number of unconstrained parameters, as well as tighter constraints on values of model parameters. 

Nevertheless, our results provide additional justification for careful determination of model 

parameters within all deformation models, and demonstrate the effects that ill-defined model 

parameters can have on inferences made from deformation models. 

 

7. Conclusions 
  

Finite element models were used to simulate the response of the Martian lithosphere to 

gravitational loading from the volcanic edifice of Olympus Mons. Model results were first used to 

establish which of eleven interrogated model parameters (asthenosphere density, lithosphere 

thickness, density, Young’s modulus and Poisson’s ratio, edifice initial height, initial radius, 

density, Young’s modulus and Poisson’s ratio, and the coefficient of friction between the edifice 

and lithosphere) had the greatest effect on lithospheric flexure. The five parameters with the 

greatest effect on flexure (asthenosphere density, lithosphere thickness and Young’s modulus and 

edifice initial radius and density) were then simultaneously varied to constrain their best-fitting 

values at Olympus Mons. The morphological features used to quantify lithospheric flexure at 

Olympus Mons affected the best-fitting values of model parameters. Properties of the edifice were 

most tightly constrained by comparing modeled and observed edifice morphology; using edifice 

height and radius the best-fitting value for edifice volume (this includes edifice material that now 

fills the lithosphere depression) were 
161.6 10  m 3 , and for edifice density the best fitting values 

were 2111 2389  kg.m 3 . Properties of the lithosphere were most tightly constrained by 

comparing modeled and observed lithosphere morphology; using flexural moat width the 

best-fitting values for lithosphere thickness and Young’s modulus were 83.3  km and 17.8  GPa 

respectively. Our inferred value of lithosphere Young’s modulus is lower than has been hitherto 

supposed. We propose that the Martian lithosphere is relatively porous and permeable, and that 

this porosity and permeability could provide a mechanism for fluid storage and transport in Mars’ 

early history. In addition, there is interdependence between the best-fitting values of model 

parameters, such that reducing the value of Young’s modulus has an effect on edifice density and 

lithosphere thickness; our inferred values for these parameters were at the extremities of typical 

results of previous studies. 

The ability of our methodology to place tight constraints on values for model parameters 

was limited by the topographic heterogeneity that underlies the Olympus Mons region. Further 

modeling is required to distinguish this heterogeneity from topography that is directly associated 
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with flexure beneath Olympus Mons. Additional constraints might be placed on the values of 

lithosphere dimensions and material properties if the if the complexity of the model geometry was 

increased to better represent the Martian surface, and when additional data relating to Mars’ 

subsurface become available, for example from NASA’s InSight mission. 
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Figure 1: Colorized elevation map showing Olympus Mons lies on the northwest flank of the 

Tharsis rise. It is encircled by a flexural moat (dashed black line). Inset: locations of topographic 

profiles (elevations plotted in Figure 3), each profile is 1500 km long. Elevation data collected 

from MOLA, plotted on a Mercator projection, basemap from NASA (2000). 

  

 

Figure 2: Deformation of a volcanic edifice under gravity-driven deformation process in profile 

(left) and map (right) views. (a) Under gravitational sagging, the edifice (green) and lithosphere 

(grey) are coupled and deform as one unit; inward movement of the edifice causes faulting 

(including flank terraces) and a flexural moat and bulge surround the edifice. (b) Under 

gravity-driven volcano spreading, the edifice and lithosphere are decoupled; outward movement of 

the edifice causes faulting (leaf grabens and a basal scarp). Dashed lines show the shape of the 

edifice and lithosphere prior to deformation, arrows indicate the direction of movement of edifice 

and lithosphere and half-arrows relative movement on faults. Ticks are on the downthrown side of 

faults. Adapted from Byrne et al. (2013). 

  

 

Figure 3: Topographic profiles for Olympus Mons. Solid lines show elevations with data plotted 

every 3.69  km, and dashed lines the 39 km-moving average. Data have been adjusted to a 

reference 0 m elevation at the base of the edifice. Volcanic deposits obscure the flexural moat for 

west and northwest profiles. The average plot displays the mean values of edifice height, edifice 

radius and flexural moat width. Six-times vertical exaggeration. MOLA-derived data are plotted, 

retrieved from Christensen et al. (2009). 

  

 

Figure 4: Model setup and measured deformation parameters. (a) A solid, elastic edifice overlays 

the solid, elastic lithosphere and the asthenosphere provides an upwards buoyancy force. There is a 

frictional interface between the edifice and the lithosphere and a roller boundary is applied to the 

right boundary. A body load is applied to the edifice. Dashed black line shows axis of symmetry. 

(b) When gravitational loading is applied to the edifice (instantaneous loading), the edifice and 

lithosphere deform. We measure the final edifice height, hx , final edifice radius, rx , and the 

width of the flexural moat, mx , in the model, assuming that the infill of the flexural moat does not 

reach the elevation of the flexural bulge. Dotted lines show the pre-deformed model geometry. Not 

to scale. 
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 Parameter  Control value  Range of values  Tested interval  Units 

Asthenosphere 

 Density  3450  3300 3600   33.3  kg.m 3   

Lithosphere 

 Thickness  105  40 170   14.4  km  

 Density  3000  2500 3500   111.1  kg.m 3  

 Poisson’s ratio  0.195  0.10 0.49   0.043  - 

 Young’s modulus  62.5  5 120   12.8  GPa 

Edifice 

 Radius  360  150 570   46.7  km  

 Height  33  21 45   33  km  

 Density  2250  1000 3500   278  kg.m 3   

 Poisson’s ratio  0.195  0.10 0.49   0.043  - 

 Young’s modulus  45  5 85   8.9  GPa 

Friction 

 Frictional coefficient  0.50  0.10 0.90   0.09  - 

Table 1: Range of values for each varied model parameter. Values are based on previous studies at 

Olympus Mons, elsewhere on Mars and at terrestrial basaltic volcanoes (Section 4). Ten 

equally-spaced values of each model variable are evaluated. 

  

 

Figure 5: The model parameters that have the greatest influence on lithospheric flexure depend on 

how lithospheric flexure is quantified. E, L and A refer to the edifice, lithosphere and 

asthensophere respectively. Model parameters are ranked in descending order (11 to 1) of their 

effect on lithospheric flexure, as measured using (a) post-loading edifice height, (b) post-loading 

edifice radius and (c) the width of the flexural moat. (d) The three ranks are summed (solid line) to 

establish the parameters with the most effect on lithospheric flexure. 

  

 

Figure 6: Best-fitting values of parameters are constrained using overall residuals, e , between 

observed and modeled lithospheric flexure. Residuals are normalised between 0 (no residual) and 

3 (maximum residual). Each boxplots represents 10,000 models and shows the median (thick 

horizontal line), interquartile range (coloured box) and 1.5 times interquartile range (thin 

horizontal lines). Purple boxes denote parameter values with the smallest e . Green boxes denote 

parameter values where e  is not significantly different ( > 0.05p ) from the minimum e . All 

p-values displayed in Table S3. 

  

 

Figure 7: Best-fitting values of parameters depend on how lithospheric flexure is quantified. 

Symbology as Figure 6. Residuals in (a) post-loading edifice height, he , (b) post-loading edifice 

radius, re , and (c) flexural moat width me  have been normalised between 0 (no residual) and 1 

(maximum difference between model and observations). All p-values displayed in Table S3. 
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Parameter  Model result  Previous studies 

 Residual  Value(s)  Value(s)  Location Reference  

Initial edifice radius (km) 

 
re   383     

Edifice density (kg.m 3 ) 

 
he   2111 2389   3150  Olympus Mons  McGovern et al. 

(2002, 2004)  

   3250 150   Olympus Mons  Belleguic et al. 

(2005)  

   1800 3120   Arsia Mons  Ganesh et al. 

(2020)  

Lithosphere thickness (km) 

 
me   83.3  >150   Olympus Mons  Comer et al. (1985)  

   70   Tharsis  McKenzie et al. 

(2002)  

   > 70   Olympus Mons  McGovern et al. 

(2002, 2004)  

   93 40   Olympus Mons  Belleguic et al. 

(2005)  

   70 80   Olympus Mons  Isherwood et al. 

(2013)  

Lithosphere Young’s modulus (GPa) 

 
re  or me   17.8  > 5.4   Terrestrial  Heap et al. (2020)  

   144*  Olympus Mons  McKenzie et al. 

(2002)  

   100*  Olympus Mons  Isherwood et al. 

(2013)  

Table 2: Best-fitting values for four model parameters and comparisons to published data. 

Asterisks (*) indicate values that have been used within, but not derived by, previous studies. Due 

to our instantaneous model-loading scenario, the best-fitting initial edifice radius cannot be 

directly compared to previous studies. The best-fitting values for each parameter are determined 

using the residual ( he , re , me  are from comparisons of modeled and observed edifice height, 

edifice radius, flexural moat width respectively) that provided the tightest constraints. A range is 

provided where there were multiple non-different best-fitting values ( > 0.05p , all p-values 

displayed in Table S3). 

  

 

 

Figure 8: Interdependence between best-fitting values for some model parameters. Pale and dark 

colours indicate combinations of model parameters with smaller and larger residuals respectively; 

a unique colour scale is used for each plot (Figure S6 displays these results with one color scale). 

Ten values of each parameter are tested (100 points contoured within each plot) and the overall 

residual is the sum of residuals from edifice height and radius and the width of the flexural moat. 

The mean residual ( = 10,000n ) is plotted for each tested parameter value. 
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Highlights 

We use FEA to constrain physical properties of Olympus Mons and Mars’ lithosphere 

We constrain the Young’s modulus of the Martian lithosphere for the first time 

Mars’ lithosphere is less stiff and may be more porous than was previously assumed 

Journal Pre-proof



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8


