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Aphids are sap-feeding insects that colonize a broad range of plant
species and often cause feeding damage and transmit plant patho-
gens, including bacteria, viruses, and viroids. These insects feed
from the plant vascular tissue, predominantly the phloem. However,
it remains largely unknown how aphids, and other sap-feeding in-
sects, establish intimate long-term interactions with plants. To iden-
tify aphid virulence factors, we took advantage of the ability of the
green peach aphid Myzus persicae to colonize divergent plant spe-
cies. We found that a M. persicae clone of near-identical females
established stable colonies on nine plant species of five representa-
tive plant eudicot and monocot families that span the angiosperm
phylogeny. Members of the novel aphid gene family Ya are differ-
entially expressed in aphids on the nine plant species and are cor-
egulated and organized as tandem repeats in aphid genomes.
Aphids translocate Ya transcripts into plants, and some transcripts
migrate to distal leaves within several plant species. RNAi-mediated
knockdown of Ya genes reduces M. persicae fecundity, and M. per-
sicae produces more progeny on transgenic plants that heterolo-
gously produce one of the systemically migrating Ya transcripts as
a long noncoding (lnc) RNA. Taken together, our findings show that
beyond a range of pathogens, M. persicae aphids translocate their
own transcripts into plants, including a Ya lncRNA that migrates to
distal locations within plants, promotes aphid fecundity, and is a
member of a previously undescribed host-responsive aphid gene
family that operate as virulence factors.

plant–insect interactions | aphids | lncRNA | transkingdom RNA
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Sap-feeding insects of the order Hemiptera include aphids,
whiteflies, leafhoppers, and planthoppers that have piercing-

sucking mouthparts, termed stylets, for feeding. Many species
cause direct feeding damage, known, for example, as hopper
burn (1, 2), although global economic yield losses caused by
these insects are most often due to their abilities to transmit a
diverse range of plant pathogens that include viruses, bacteria,
and plasmodium-like organisms, as well as naked RNA mole-
cules known as viroids (3–8). The majority of insect herbivores
are specialized to feed on one or a few closely related plant
species (9); however, some hemipteran insects are polyphagous.
These include the green peach aphid Myzus persicae, which is
known to reproduce on >400 plant species and is also able to
transmit divergent plant pathogens, including >100 plant viruses
(10) and the potato spindle viroid (11). The factors involved in
the ability of sap-feeding insects to establish intimate interac-
tions with their plant hosts remain largely unknown.
Hemipterans use their stylets to feed on plant sap, often from

the phloem or xylem of the plant vascular tissue. How sap-feeding
insects move their stylets within plant tissues to reach the vascular
tissues is arguably best investigated in aphids. These insects es-
tablish a long-term feeding site in the phloem sieve cells. However,
before reaching the phloem, the stylets probe epidermis, meso-
phyll, and other cells, with each probe consisting of a short period
of cell content ingestion, often referred to as “tasting,” followed by

a short period of salivation (12). As soon as the stylets reach the
phloem, aphids deposit saliva into the sieve cells, followed by long
periods of ingestion of phloem sap (13). The saliva introduced into
cells is known as “watery” saliva and is rich in proteins (14), some
of which were shown to be effectors that modulate plant processes
(15–21). The cycles of tasting and salivation during the stylets path
to the phloem are likely to help aphids perceive and adjust to
their hosts.
We previously found that an asexually reproducing (partheno-

genic) M. persicae colony consisting of largely genetically identical
females can adjust to the divergent plant species Brassica rapa,
Arabidopsis thaliana, and Nicotiana benthamiana via differential
coregulation of tandemly repeated gene families, including that of
Cathepsin B (CathB), virulence factors that optimize the ability of
M. persicae to colonize specific plant species (22). CathB genes are
also differentially regulated in aphids on healthy plants versus
those on virus-infected plants (23), and viruses are known to
modulate plant defense responses (24, 25). These studies provide
evidence that M. persicae is a truly polyphagous/generalist insect
species, as this insect has the ability to colonize plant species from
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different plant families and apparently can perceive the host plant
status and adjust its gene expression accordingly.
Here we build on our previously reported data, taking advan-

tage of the ability ofM. persicae to colonize divergent plant species
to better understand how aphids colonize plants. We show that a
single parthenogenic M. persicae clone establishes stable colonies
on nine plant species from five plant families. Via weighted gene
coexpression network analysis (WGNCA) (26), we identified the
Ya gene family. Members of this family are organized as tandem
repeats in theM. persicae genome and adjust their gene expression
in a coordinated manner in response to the different plant species.
Ya transcripts translocate into plants during aphid feeding and
migrate systemically, and the M. persicae Ya1 transcript promotes
aphid fecundity as a long noncoding (lnc) RNA when produced in
plants. Our work shows evidence that the establishment of para-
sitic interactions between divergent organisms involves trans-
location of an lncRNA virulence factor.

Results
M. persicae Establishes Stable Colonies on Nine Plant Species That Span
the Angiosperm Phylogeny. To establish M. persicae colonies on
divergent plant hosts, we selected plant species of representative
plant families across the angiosperm (flowering plants) phylogeny
(27), including B. rapa (Br) and A. thaliana (At) of the Brassica-
ceae, N. benthamiana (Nb) and Solanum tuberosum (St) of the
Solanaceae, Pisum sativum (Ps) and Phaseolus vulgaris (Pv) of the
Fabaceae, Helianthus annuus (Ha) and Chrysanthemum indicum
(Ci) of the Asteraceae, and the monocot plant species, Zea mays
(Zm) of the Poaceae (Fig. 1A). Individuals of asexually repro-
ducing females of M. persicae clone O that had been maintained
on Br for at least 3 y were transferred to Br (control) and At, Nb,
St, Ps, Pv, Ha, Ci, and Zm (Fig. 1A). M. persicae clone O achieved
a 100% survival rate and established stable colonies on these plant
species (SI Appendix, Fig. S1 A–D). Aphids survived equally well
on Br and At from the start and achieved a 100% survival rate at
∼4 wk on Nb, St, Ps, Ci, and Zm and at ∼10 wk on Pv and Ha.

Genes Differentially Expressed in M. persicae on Nine Plant Species
Are Enriched for Salivary Gland and Candidate Long Noncoding RNAs.
To identify M. persicae genes that change expression levels on
different plant species (i.e., host-responsive genes), we generated
RNA-seq data from stable M. persicae colonies on nine hosts (five
biological replicates each). We also used these RNA-seq data and
previous RNA-seq data (LIB1777) (22) to improve the annota-
tion. A total of 1.38 billion RNA-seq reads were assembled into
transcripts using a genome-guided approach (SI Appendix, Table
S1; GSE accession no. 129667). We identified a total of 45,972
transcripts (corresponding to 19,556 genes), including 30,127
transcripts (65.5%; 18,529 genes) annotated previously (22) and
15,845 (34.5%) additional transcripts (SI Appendix, Fig. S2A). Of
the 45,972 transcripts, 6,581 (3,025 genes) had low protein-coding
potential and were assigned candidate lncRNAs (SI Appendix,
Fig. S2B).
To identify host-responsive genes, transcriptomes of M. persicae

colonies on At, Nb, St, Ps, Pv, Ha, Ci, and Zm were compared
with those of the colonies on Br (original host). This resulted in
the identification of 2,490 (1,984 genes) that were significantly
differentially expressed (DE) in the aphids on at least one of the
other eight host plant species (fold change ≥2, P ≤ 0.05, false
discovery rate [FDR] ≤5%) (Dataset S1), and the majority of
these show host-specific expression patterns (Fig. 1B). The DE
transcripts were enriched in functions of oxidation-reduction
processes, proteolysis (including CathB), and sensory perception
of taste (SI Appendix, Fig. S3).
Identification of genes with expression levels that are highly

correlated may help shed light on shared biological processes.
Therefore, we performed WGCNA using 11,824M. persicae genes
(out of 19,556 total) that have mean gene expression values of >5

transcripts per million (TPM) across five biological replicates per
hosts. This identified 77 coexpression modules comprising 7,864
genes (SI Appendix, Fig. S4 and Dataset S2). Of the 1,984 genes
that we identified as DE above, 1,364 (68%) were included among
the genes of the 77 coexpression modules, and 13 modules were
enriched for DE genes (313 DE genes of the total DE genes
[16%]; P < 0.05, Fisher’s exact test) (Fig. 1C and Dataset S2).
Heatmaps based on normalized TPM values of these 13 modules
showed different expression patterns in aphids depending on the
plant host (Fig. 1D and SI Appendix, Fig. S5), suggesting that M.
persicae coordinates the expression of groups of genes in response
to the plant species.
Four modules (darkslateblue, darkorange2, lightcoral, and

thistle2) among the 13 enriched for DE genes were also enriched
for candidate lncRNAs (Fig. 1C and Dataset S2). In addition, 8
out of 13 modules, including the darkslateblue, were enriched for
M. persicae genes expressed in the salivary glands (28) (Fig. 1C and
Dataset S2), and 3 of 13 modules were enriched for gut-expressed
genes (SI Appendix, Fig. S6 and Dataset S2). We also found that
12 out of 13 modules included genes lying adjacent to each other
as tandem repeats within the aphid genome (Dataset S2). The
number of gene repeats varied from two to eight, with the latter in
the darkslateblue module. Thus, different attributes were enriched
in the darkslateblue module, including expression in the salivary
glands, candidate lncRNAs, and tandemly repeated genes. The
darkslateblue module is the only one among the 77 modules that
contained two groups of genes with exact opposite host-responsive
expression patterns (Fig. 1E). Therefore, genes in this module may
be involved in shared biological processes and were further
investigated.

M. persicae Preferentially Translocates RNA Transcripts of DE and
Candidate lncRNA Genes into Plants. Because DE salivary gland
genes that encode candidate lncRNAs were enriched, we in-
vestigated whether these transcripts translocate into plants when
aphids feed. Leaves of 4-wk-old A. thaliana plants were caged with
20 adult aphids (feeding site) or no aphids (control) for 24 h
(Fig. 2A and SI Appendix, Table S2). Reads that uniquely aligned
to theM. persicae genome were identified, and at TPM ≥50, these
corresponded to between 1,837 and 3,154 aphid transcripts,
depending on the biological replicate, in leaf sections exposed to
aphids only (Dataset S3). Based on the presence in at least three
biological replicates, 3,186M. persicae transcripts corresponding to
5% of the M. persicae transcriptome were found in the feeding
site. These transcripts included messenger RNAs (2,985 tran-
scripts) and candidate lncRNAs (201 transcripts) (Fig. 2A). The
candidate lncRNAs were enriched among the transcripts found in
the feeding sites (SI Appendix, Fig. S7). The candidate lncRNAs in
the feeding sites belonged to 10 of the 13 coexpression modules
that were found to be enriched for the aforementioned DE genes,
one of which was the darkslateblue module (Fig. 2B). Moreover,
the M. persicae transcripts in the feeding sites were enriched for
DE genes and salivary gland transcripts (P = 3.7E-13 and P = 0.03,
respectively, Fisher’s exact test), and in both categories the tran-
scripts were also enriched for candidate lncRNAs (P = 0.002 and
P = 3.8E-35, respectively, Fisher’s exact test) (Fig. 2C). Therefore,
M. persicae preferentially translocates candidate lncRNAs of sal-
ivary gland-expressed genes that are DE in aphids on divergent
hosts into feeding sites.

The CoregulatedM. persicae Genes of the Darkslateblue Module Include
All 30 Members of the Ya Family Tandem Repeat. On further analyses
of genes in the darkslateblue module, 37 out of total of 56 genes
were found to encode candidate lncRNAs. Of these 37, 23 were
identified to have sequence identities of ±80% and located in close
proximity to one another on six scaffolds. These genes were or-
ganized in series of tandem repeats with <1-kb distance between
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Fig. 1. Colonization of M. persicae on divergent plant species involves coexpression of genes enriched for lncRNAs and those expressed in the aphid salivary
glands. (A) Schematic overview of the experimental setup with B. rapa (Br), A. thaliana (At), N. benthamiana (Nb), S. tuberosum (St), C. indicum (Ci), H. annuus
(Ha), P. sativum (Ps), P. vulgaris (Pv), and Zea mays (Zm). (B) Heatmaps of log-transformed TPM values of 1,984 DE genes of M. persicae colonies on Br versus
colonies on one of the other eight plant species as shown in A at five biological replicates per host. (C) Enrichment scores of 13 WGNCA modules. The x/y
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the gene copies. Given these characteristics, the genes appear to
belong to a gene family.
Tandemly duplicated genes with high sequence identities are

often misannotated due to incorrect alignment of RNA-seq reads.
Therefore, we manually annotated this gene family by searching
via BLAST the entire M. persicae genome for regions that align to
a 148-bp nucleotide sequence that was found to be conserved
among the 23 candidate lncRNA genes (SI Appendix, Fig. S8).
This resulted in the identification of 7 additional genes to make a
30-member gene family (Dataset S4). We updated the tran-
scriptome assembly for this gene locus with the manual annotation
(GSE accession no. 129667). We named this gene family the Ya
family (Yá means aphid in Chinese).
The 3′ ends of the 30 Ya transcripts were manually corrected

based on the presence of a poly(A) signal and 5′ ends via iden-
tification of conserved sequences among the Ya transcripts. All
Ya genes have a three-exon structure and show a modest to high
sequence conservation (ranging between 84.6% and 99.1% nu-
cleotide identities compared with Ya1), including a region that
corresponds to a small open reading frame (ORF) that may
translate into a 38-aa peptide in all 30 Ya transcripts (Fig. 3A and
SI Appendix, Fig. S9).
Phylogenetic analyses based on nucleotide sequence alignment

(SI Appendix, Fig. S9) group the Ya genes into three distinct
clades (Fig. 3B). We also confirmed that the Ya genes form
several tandem repeats in the M. persicae genome in which the
Ya genes were often, but not always, organized in pairs facing
outward on opposite genomic strands (Fig. 3C). The pairs belong
to the same or different phylogenetic clusters of the Ya phylo-
genetic tree. Repeating the WGCNA analysis on RNA-seq of M.
persicae on nine hosts with the new set of manually annotated
30 M. persicae Ya genes grouped all Ya members within the same

(darkslateblue) coexpression module as before (SI Appendix, Fig.
S10), suggesting that the 30 Ya genes are coregulated.
We also manually annotated Ya genes in five other aphid species

from available genomes (Aphis glycines, Acyrthosiphon pisum,
Diuraphis noxia, Myzus cerasi, and Rhopalosiphum padi), resulting
in identification of 13 candidate Ya genes in A. glycines, 16 in A.
pisum, 17 inD. noxia, 29 inM. cerasi, and 33 in R. padi (Fig. 3D and
Dataset S5; GSE accession no. 129667). These numbers of Ya
genes may change when more complete assemblies become avail-
able. In all five aphid species, Ya genes are tandem repeats in
genomes. We did not find Ya genes in genomes of hemipteran
insect species beyond aphids. Therefore, Ya genes are likely unique
to aphids and are part of larger families that form tandem repeats
in aphid genomes and are DE and coregulated in M. persicae on
nine divergent host plant species.

Translocated M. persicae Ya Transcripts Migrate Systemically in Plants.
To evaluate whether aphid Ya transcripts migrate systemically
within plants, we caged 20 adult aphids on leaves of 4-wk-old A.
thaliana plants for 24 h and then examined the presence of aphid
transcripts in the caged area (feeding site), in the area from the
petiole to the aphid cage on the leaf (near the feeding site), and on
a distal leaf (Fig. 4A). We designed specific primers for the nine
Ya transcripts found in the feeding sites (SI Appendix, Fig. S11 and
Table S3). For the six Ya transcripts Ya1, Ya2, Ya3, Ya6, Ya11, and
Ya17, the correct sizes of amplification products were obtained,
and the sequences of these amplification products matched those
of the Ya transcripts, whereas the presence of Ya6, Ya21, and Ya23
transcripts was not confirmed (SI Appendix, Fig. S11). Ya1, Ya2,
and Ya17 transcripts were detected in feeding and distal sites,
indicating that these transcripts migrated away from the feeding
sites to distal tissues (SI Appendix, Fig. S11).
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We focused further analyses on the Ya1 transcript, because the
heatmap of the darkslateblue module suggested that Ya1 is up-
regulated in aphids on Br and At (SI Appendix, Fig. S10). The
predicted size of the Ya1 transcript is 382 nt (Fig. 4B and SI Ap-
pendix, Fig. S12A). The presence of Ya1 transcript in aphids and
plants was analyzed by RT-PCR with a series of specific primers
and by Northern blot hybridizations with a Ya1 probe. RT-PCR
showed that a 357-nt Ya transcript that starts at nucleotide 25 of
exon 1 was detected in aphids but not in plants, whereas a shorter
Ya1 transcript of 273 nt starting at nucleotide 110 near the start of
the sequence corresponding to exon 2 was detected in the plants
and migrated systemically (Fig. 4 B and C and SI Appendix, Fig.
S12 A and B). Our 3′ rapid amplification of cDNA ends (RACE)
experiments showed that the Ya1 transcript has a poly(A) tail (SI
Appendix, Fig. S12C). Northern blot analysis confirmed the sizes
of the Ya1 transcripts in aphids and plants; the fragments that
hybridized to the Ya1-SP6 in aphids were larger than the 291-nt
Ya1-SP6 transcript, whereas the Ya1 fragments in plants were
shorter than this transcript (Fig. 4 D and E). These data indicate
that the first ±100 nt at the 5′ end of the 357-nt aphid Ya1 tran-
script is processed to produce a 273-nt Ya1 transcript in plants.
Northern blot analysis and qRT-PCR showed that the Ya1

transcript gradually decreased in concentration from feeding sites
to near feeding sites and distal leaves of A. thaliana (Fig. 4 E and F
and SI Appendix, Fig. S13). Ya1 also migrated systemically in B.
rapa, P. sativum, and Z. mays exposed to M. persicae (Fig. 4G and
SI Appendix, Fig. S14). Sequencing of the PCR products derived
from of the feeding sites, near feeding sites, and distal leaves of
these three hosts revealed identical sequences to Ya1, which differs

from the other Ya family members (SI Appendix, Fig. S15).
Therefore, M. persicae deposits Ya1 transcript into four divergent
host plant species during feeding and the transcript migrates sys-
temically within these plants away from aphid feeding sites.

M. persicae Ya1 Is a Virulence Factor. The differential expression of
Ya1 in M. persicae among hosts and migration of Ya1 in various of
hosts suggest that Ya1 may have a role in aphid–host interactions.
To investigate this, we generated transgenic lines expressing dsRNA
corresponding to the Ya1 sequence for plant-mediated RNA in-
terference (RNAi) of Ya1 in M. persicae. Two independent trans-
genic A. thaliana lines, 1-5 and 2-8, successfully knocked down Ya1
expression compared with WT Col-0 and lines producing dsRNA
corresponding to GFP (dsGFP) inM. persicae (Fig. 5A).M. persicae
on A. thaliana lines 1-5 and 2-8 had reduced fecundity compared to
aphids on WT Col-0 and dsGFP lines (Fig. 5B); therefore, knock-
down of Ya1 expression is correlated with reduced M. persicae re-
production on A. thaliana.
Given that aphids deposit Ya1 into plants, and that this RNA

migrates systemically, we investigated whether stable expression
of Ya1 in planta affects M. persicae performance. We generated
stable transgenic plants that produced the 273-nt (exons 2 and 3)
Ya1 transcript (35S::Ya1 [Col-0] lines 8-8 and 9-9) and 273-nt
Ya1 mutants in which three ATG start sites within the 38-aa
ORF were mutated to stop codons (35S::Ya1_3AUG [Col-0]
lines 1-1, 3-3, and 4-4) (Fig. 5 C and D and SI Appendix, Figs.
S16–S18). M. persicae produced more progeny on both 35S::Ya1
and 35S::Ya1_3AUG compared with 35S:GFP and Col-0 plants
(Fig. 5E and SI Appendix, Fig. S19), indicating that the Ya1 RNA
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transcript modulates plant processes that lead to increased M.
persicae fecundity. Taken together, our data show that M. persi-
cae translocates the Ya transcript into plants during feeding, and
that this transcript migrates systemically within plants and pro-
motes fecundity of this aphid. Therefore, Ya1 has the charac-
teristics of an aphid lncRNA virulence factor.

Discussion
We found that progeny derived from a single asexually repro-
ducing M. persicae clone O female stably colonized nine di-
vergent plant species of five families that span the angiosperm
phylogeny (27), demonstrating that M. persicae is truly polyph-
agous. We identifiedM. persicae genes that show coordinated up-
and down-regulation depending on the plant species that the
aphid is colonizing and that are organized as repeats in the aphid
genome. The genes are organized in coexpression modules, 13 of
which are enriched for DE genes, genes expressed in the salivary
glands, and candidate lncRNAs. One of these modules includes
all members of the Ya family with 30 genes that are tandemly
repeated in the M. persicae genome. Moreover, transcripts from
six Ya genes translocate into plants during aphid feeding, and
three migrate systemically away from the aphid feeding site to
distant leaves. RNAi-mediated knockdown of Ya expression in
aphids reduces aphid performance on A. thaliana. In contrast,
aphid performance is increased both on stable transgenic A.
thaliana lines that heterologously express the aphid Ya gene and
the Ya gene mutant in which stop codons were introduced into
the small putative ORF. These data indicate that the Ya1 RNA
transcript acts as a lncRNA virulence factor.

Because genome annotation pipelines are generally focused
on protein-coding genes, the majority of Ya family members were
not annotated in the first version of the M. persicae genome (22).
Moreover, because the Ya family is organized as tandem repeats
of highly conserved sequences, genome-guided transcript as-
sembly generated misassembled transcripts. To overcome this,
we performed a thorough manual annotation of the Ya region
and were able to identify the Ya family of 30 members, charac-
terize the expression patterns of each of the family members in
M. persicae in response to the nine plant species, and determine
which family members translocate into plants during aphid
feeding. We found that M. persicae Ya members are character-
ized by a three-exon gene model and produce transcripts ranging
from 357 to 403 nt long. When analyzing other hemipterans, we
identified tandemly repeated Ya family members in the genomes
only of aphid species among hemipterans for which genome
sequence data are available, suggesting that the Ya genes are
unique to aphids.
Members of the Ya family are both coregulated and organized

as repeated clusters in the M. persicae genome. The finding that
M. persicae adjusts to divergent plant species via the coregulation
of tandemly repeated gene families was reported earlier for
Cathepsin B (CathB), Cuticular Proteins (CutP), and other gene
families in host swap experiments involving three plant species:
B. rapa, A. thaliana, and N. benthamiana (22). In this study, the
CathB family members B1 through B7, B10, and B11 are parts of
two modules that are enriched for DE genes and that show up-
regulation of the CathB genes in aphids on B. rapa and A.
thaliana versus N. benthamiana, confirming previous data (22).
The majority of the CutP genes grouped together in the skyblue2
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module. Although this module was not enriched for DE genes,
several CutP genes were significantly DE and, as before (22),
were up-regulated on N. benthamiana and down-regulated on B.
rapa and A. thaliana. Therefore, the previous study (22), as well
as the present work, demonstrate that the coregulation of gene
families that cluster within the M. persicae genome play funda-
mental roles in the ability of this aphid to colonize plants.
Although Ya genes are annotated as genes with low coding

potential, Ya transcripts have a conserved small ORF that po-
tentially translates into a 38-aa peptide. Mutations within the Ya1
transcript that prevent translation of this peptide in plants do not
affect the ability of Ya1 to promote aphid fecundity, indicating that
Ya1 has virulence activity as an lncRNA. ORFs have been de-
tected in number of transcripts known to function as lncRNAs,
including RNAs associated with ribosome function (30, 31) and an
X-inactive specific transcript (Xist) that regulates the X chromo-
some inactivation process (32), and it is being debated whether
lncRNA ORFs may be translated in some situations (33).
Whether the small ORF found to be conserved across Ya genes
has a function remains to be determined, but based on our an-
notations and functional analyses of Ya1, at least one member of
the Ya gene family appears to function as an lncRNA.
Several parasites translocate small RNAs into their hosts

(34–36). The functions of these transkingdom small RNAs are
known for only a few parasites. For example, small RNAs of the
fungal plant pathogen Botrytis cinerea interact with the AGO1
protein of the A. thaliana RNAi machinery to suppress plant de-
fense genes (37), and microRNAs of the parasitic plant dodder
(Cuscuta pentagona) target host messenger RNAs involved in
plant defense (38). In the opposite direction, plants export specific
microRNAs to control virulence of a pathogenic fungus (39). In
some parasite–host interactions, a large number of long transcripts
(>200 nt) were found in hosts, including RNA transcripts of
Cryptosporidium parvum in the nuclei of human intestinal epithe-
lial cells (40) and transcripts of C. pentagona that systemically

migrate in Solanum lycopersicum and A. thaliana (41). However,
whether these larger parasite RNAs modulate parasite–host in-
teractions is unclear. Here we show that M. persicae RNA tran-
scripts translocate into plants; these include transcripts of the Ya
family that migrate systemically. Knockdown of Ya gene expres-
sion via RNAi reduces aphid fecundity, whereas in planta ex-
pression of Ya1 as an lncRNA promotes aphid fecundity. This
suggests that the aphid Ya genes are virulence factors, and that the
Ya1 transcript controls aphid performance via the plant.
TheM. persicae Ya1 lncRNA may be an effector that modulates

specific plant processes. Interestingly, the entire M. persicae Ya
family of 30 members is part of the darkslateblue module, which is
the only module among the 77 coexpression modules that consists
of two groups of genes with exact opposite expression patterns.
The module also includes several protein-coding genes with sim-
ilarities to hemolymph juvenile hormone binding and WD40 and
EGF-like domain-containing proteins that have roles in signal
transduction in insects. Given this finding, a non-mutually exclu-
sive possibility is that Ya1 and other Ya transcripts may have a
sensing role within aphids; for example, lncRNAs not degraded in
plants may migrate back into the aphid to regulate aphid gene
expression, in agreement with lncRNAs often having functions in
gene expression regulation (42–44). Whereas the mechanism by
which Ya1 controls aphid fecundity remains to be determined, our
present results indicate that members of the Ya gene family are
aphid-specific virulence factors.

Materials and Methods
Aphids from a M. persicae clone O colony on B. rapa were transferred to the
nine plant species as shown in Fig. 1A. They were reared on these plants for
at least 10 generations, and stable colonies at five biological replicates per
plant species were processed for RNA extraction, RNA-seq, and downstream
transcriptome analyses as described previously (22).

A genome-guided transcriptome assembly was generated with RNA-seq
data of the 45 libraries of the nine host experiments and RNA-seq data
generated from library LIB1777 (22). Transcripts with an FPKM ≤0.2 were
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removed from downstream analyses. The computational workflow for M.
persicae transcript annotation and lncRNA identification is shown in SI Ap-
pendix, Fig. S2. DE transcripts of M. persicae colonies on the nine plant
species were identified as described previously (22), with lowly expressed
transcripts (mean count <10) removed on the basis of normalized counts and
transcripts considered DE if they had a P value <0.05 after accounting for a
5% FDR according to the Benjamini–Hochberg procedure and if log2 fold
change was >1 (Dataset S1). Genes with >5 TPM in at least one sample per
plant host were included the coexpression analysis using WGCNA and hier-
archical clustering on the basis of dissimilarity of gene connectivity (1-
TOM) (26).

M. persicae Ya genes were manually annotated by selecting gene models
and corresponding transcripts that align to a conserved 148-bp nucleotide
sequence among Ya transcripts (SI Appendix, Fig. S8). Selected transcripts
were further curated by manually annotating the 3′ ends of each of the
transcripts based on the presence of a poly-A tail. The 5′ ends were identi-
fied based on the most conserved sequence among all transcripts combined
with existing RT-PCR data for Ya1 (SI Appendix, Fig. S12). Ya genes were
manually annotated in five other aphid species using publicly available RNA-
seq data and genome assemblies (Dataset S5).

Translocation and systemic migration of aphid transcripts in plants were
determined by caging a leaf section with aphids and detecting aphid tran-
scripts in the caged area (feeding site), next to the caged area of the same leaf
(near-feeding site), and on a distal leaf (distal site). Plants exposed to cages
without aphids served as controls. For RNA-seq analyses, leaf areas covered
by the cages were carefully washed three times with deionized water and
three time with nuclease-free water. RNAs were isolated from four in-
dependent biological replicates of aphid-exposed leaves and nonexposed
control leaves and processed for RNA-seq. Reads were trimmed to remove
sequencing adapters and aligned to A. thaliana genome (TAIR10 database;
https://www.arabidopsis.org/) and the M. persicae G006 genome (22) with
HISAT2 v2.0.5. Reads mapped to the M. persicae genome were retrieved and
subjected to further filtering by mapping them back to the A. thaliana ge-
nome. Reads that did not align to the A. thaliana genome in the last step

were considered unique M. persicae mapping reads. Transcripts with ≥50
TPM in at least one sample and that were present in at least three samples
were selected for further analysis.

DNA amplification, cDNA synthesis, RT-PCR, Sanger sequencing, quanti-
fication of transcript levels by qPCR, and Northern blot hybridization were
conducted using standard procedures and specific primers (SI Appendix,
Table S3).

Stable transgenic A. thaliana lines were generated by cloning specific
genes into pJawohl8-RNAi and pBI121 to generate pJawohl8-RNAi_Ya1,
pBI121_35S::Ya1, and pBI121_35S::Ya1_3UAG plasmids, which were in-
troduced into A. tumefaciens strain GV3101 that carried the helper plasmid
pMP90RK for subsequent transformation of A. thaliana Col-0 using the floral
dip method (45). Transgenic seeds were selected on phosphinothricin
(BASTA) or kanamycin. F2 seedlings with 3:1 alive/dead segregation were
taken forward to the F3 stage, and F3 lines with 100% survival ratio (ho-
mozygous) were selected for aphid experiments. Assessments of gene
knockdown in aphids and aphid fecundity assays were conducted as de-
scribed previously (22).

All data analyses were performed in R Stats Package. All statistical tests are
described in the figure legends. More details on the materials and methods
used in this study are provided in SI Appendix.
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