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Abstract

Five upper ocean mixed layer models driven by ERA-Interim surface forcing
are compared with a year of hydrographic observations of the upper 1000 m,
taken at the Porcupine Abyssal Plain observatory site using profiling gliders.
All the models reproduce sea surface temperature (SST) fairly well, with
annual mean warm biases of 0.11◦C (PWP model), 0.24◦C (GLS), 0.31◦C
(TKE), 0.91◦C (KPP) and 0.36◦C (OSMOSIS). The main exception is that
the KPP model has summer SSTs which are higher than the observations by
nearly 3◦. Mixed layer salinity (MLS) is not reproduced well by the models
and the biases are large enough to produce a non-trivial density bias in the
Eastern North Atlantic Central Water which forms in this region in winter.

All the models develop mixed layers which are too deep in winter, with
average winter mixed layer depth (MLD) biases between 160 and 228 m. The
high variability in winter MLD is reproduced more successfully by model es-
timates of the depth of active mixing and/or boundary layer depth than by
model MLD based on water column properties. After the spring restratifica-
tion event, biases in MLD are small and do not appear to be related to the
preceding winter biases.

There is a very clear relationship between MLD and local wind stress in
all models and in the observations during spring and summer, with increased
wind speeds leading to deepening mixed layers, but this relationship is not
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present during autumn and winter. We hypothesize that the deepening of
the MLD in autumn is so strongly driven by the annual cycle in surface heat
flux that the winds are less significant in the autumn. The surface heat flux
drives a diurnal cycle in MLD and SST from March onwards, though this
effect is much more significant in the models than in the observations.

We are unable to identify one model as definitely better than the others.
The only clear differences between the models are KPP’s inability to accu-
rately reproduce summer SSTs, and the OSMOSIS model’s more accurate
reproduction of MLS.

Keywords: Ocean models, surface mixed layer, ocean gliders

1. Introduction1

Climate models are important tools for understanding the climate and2

its response to various forcings (Flato et al., 2013). The surface mixed layer3

forms the boundary between the ocean and atmosphere, and regulates ex-4

changes of heat, momentum and trace gases. The ability of the oceans to5

buffer atmospheric climate change by absorbing and then storing heat and6

radiatively important trace gases relies heavily upon the exchanges in the7

surface mixed layer (Belcher et al., 2012). Thus surface mixed layer param-8

eterisations which accurately reproduce observed behaviour are a vital tool9

in developing climate models which can make reasonable predictions of the10

future response to anthropogenic activity.11

Here we compare various 1D mixed layer models with observations (Damerell12

et al., 2016) of mixed layer properties taken over a full year in the Northeast13

Atlantic using profiling gliders, as part of the Ocean Surface Mixing, Ocean14

Submesoscale Interaction Study (OSMOSIS). Various properties are consid-15

ered to compare the performance of the various models. First and foremost16

is the ability of the models to reproduce the observed sea surface tempera-17

ture (SST), since this is of considerable importance for the exchange of heat18

with the atmosphere. Unlike at Ocean Station Papa (OSP), where Large19

et al. (1994) find that model/observation SST comparisons are only reliable20

from April to October because of the relative importance of net surface heat21

fluxes and advective fluxes at different times of year, Lazarevich et al. (2004)22

found that in the North Atlantic a modified form of the Price-Weller-Pinkel23

mixed layer model, using NCEP-derived surface forcing, accurately repro-24

duced float-observed temperatures and meteorological-based SSTs to within25
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1◦C for an entire year. Moreover, Damerell et al. (2016), using the same ob-26

servational dataset as used here, found that the mixed layer temperature is27

strongly correlated (r = 0.87) with the cumulative net surface heat flux from28

ECMWF ERA-Interim reanalysis data (Dee et al., 2011). The main differ-29

ences were during the autumn, when cooler water from below is entrained30

into the mixed layer, and late summer, when the very shallow mixed layer31

depth (MLD) means that some of the absorption of solar radiation will occur32

below the mixed layer. These processes (entrainment of water from below33

and penetration of solar radiation) are represented in the models used here,34

so we expect the models to reproduce observed SST reasonably well for the35

whole year.36

Mixed layer salinity (MLS) is discussed because of its impact on mixed37

layer density and MLD. (It was not practical to compare sea surface salinity38

as the nature of glider data collection means there are gaps in the surface39

salinity data after quality control.) Unlike SST, Damerell et al. (2016) find40

that the MLS of this dataset is not correlated with the surface freshwater41

fluxes from ERA-Interim though it is weakly correlated with the currents42

(r = 0.4). They conclude that the changes in MLS must be influenced by43

advection into the area of water masses of different salinity and/or vertical44

mixing with waters of different salinity from the ocean interior, and while45

the latter may be reproduced in 1D models, the former is not. Hence we do46

not necessarily expect the MLS of the models to agree with the observations47

particularly well. We also compare the MLD, since this is an important factor48

in the development of the surface mixed layer and interaction with the ocean49

interior.50

We discuss the coherence between observations and model output, and51

coherence with surface forcing. Note that we use potential temperature and52

practical salinity throughout, and all densities are potential density anomalies53

(σθ) relative to the surface and will be given without units.54

Many other authors have compared 1D models to ocean observations,55

e.g., Large et al. (1994); Kantha and Clayson (1994); Burchard and Bold-56

ing (2001); Lazarevich et al. (2004); Acreman and Jeffery (2007); Pookkandy57

et al. (2016). However, this has generally been done using observations from58

moorings (such as OSP) where the limited vertical resolution will affect mea-59

surement of the MLD, or observations from floats which may have limited60

vertical and/or temporal resolution, or from ship CTDs which will not pro-61

vide long time series of profiles in one location. The profiling gliders used here62

provide profiles to 1000 m with a vertical resolution of 2 m, at approximately63
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2-hourly intervals for a whole year. Thus the observational data is partic-64

ularly well suited to comparisons with model output. The good temporal65

resolution also allows the application of wavelet coherence methods (section66

4) to this question.67

Section 2 describes the observational data set with which the models will68

be compared. Section 3 summarizes the key features of each of the models69

and describes the model setup. The Price-Weller-Pinkel (PWP), K-Profile-70

Parameterisation (KPP), Generic Length Scale (GLS) and Turbulent Kinetic71

Energy (TKE) models are described extensively elsewhere (e.g., Price et al.,72

1986; Lazarevich and Stoermer, 2001; Large et al., 1994; Gaspar et al., 1990;73

Rodi, 1987) so we give only brief descriptions here. We include a more74

complete description of the recently developed OSMOSIS model. Section 475

describes the wavelet analysis methods used to investigate the periodic be-76

haviour of the data and models. Section 5 presents the results and compares77

the model and observed behaviour, and section 6 contains the conclusions.78

2. Ocean glider observations of upper ocean hydrography79

The OSMOSIS project incorporated a year-long observational programme80

centred 41 km to the southeast of the Porcupine Abyssal Plain sustained81

observatory (PAP-SO; Lampitt et al., 2010a), with observations collected82

within a 15 km radius of 48.7◦ N, 16.2◦ W (figure 1). This location is con-83

sidered remote from the topographic complexities of the continental slope84

and the Mid-Atlantic Ridge (Hartman et al., 2012), and thus remote from85

places where strong internal tides might be generated. It is located in the86

inter-gyre region between the North Atlantic subpolar and subtropical gyres87

where the mean flow is relatively weak and eddy kinetic energy is moderate.88

The variability in physical properties is likely to be representative of large89

areas of the mid-latitude gyres.90

As part of the OSMOSIS field campaign, profiling ocean gliders (Seaglid-91

ers) were deployed for periods varying between two and five months, between92

them covering an entire year from 4th September 2012 to 7th September 2013.93

The Seaglider dataset consists of 3785 profiles at approximately 2-hourly in-94

tervals of temperature and salinity to 1000 m, with a vertical resolution of 295

m after gridding. Details of the sensors, data processing, quality control and96

calibration are given by Damerell et al. (2016). Temperature and salinity97

are considered accurate to 0.01◦C and 0.01 respectively. The 15 km radius98

within which the observations were collected is comparable to the spacing99
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Figure 1: Bathymetry of the north-east Atlantic basin. The white cross marks the location
of the OSMOSIS field campaign. MAR=mid-Atlantic Ridge. IE=Ireland.

between CTD locations of a typical ship-based hydrographic survey, and for100

the purposes of this paper, we treat the data as if they had all been ob-101

tained at the same location. There is an implicit linkage between spatial and102

temporal variability in glider observations, and here we choose to treat it as103

purely temporal variability.104

The depth of the surface mixed layer is calculated using a threshold value105

of temperature or density from a near-surface value at 5 m depth (∆T = 0.2◦C106

or ∆σθ =0.03), whichever is the shallower (de Boyer Montegut et al., 2004).107

(MLD is calculated in the same manner for each model, see section 3.2.)108

Thus, we aim to find the MLD even in cases where temperature and salinity109

vary with depth in a density-compensating manner, as well as cases where110

density varies with depth due to changes in salinity rather than temperature.111

In 67% of the record the MLD is set by the density threshold, 19% by the112

temperature threshold, and in 13% of the record the two thresholds give the113

same MLD. There is no clear seasonal pattern in which threshold sets the114

MLD. We chose 5 m as the reference depth because above that there are too115
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many gaps in the observational data due to the removal of salinity spikes116

during quality control. Spiking in the near-surface is unfortunately common117

in glider observations due to surface manoeuvres altering the flow of water118

past the sensors, cooling or warming while at the surface and air bubbles and119

particulates in/on sensors when leaving the surface. Note that this means120

that MLDs shallower than 5 m cannot be identified.121

Figure 2: Definition of seasons as used in this paper. a) MLD calculated from the obser-
vations (gray), and running mean MLD (blue) calculated at each observation time over a
5-day window (i.e., with a window extending from 2.5 days before that observation time
to 2.5 days after that observation time). Black horizontal lines are at 25 and 100 m.
b) standard deviation of the observed MLD, calculated over a 5-day window as for the
running mean MLD. This will be referred to as the running standard deviation of MLD.
Black horizontal lines are at 10 and 35 m. Black vertical dotted lines on both panels show
the dates which divide the year into seasons, as labeled on b).

We divide the year into four seasons based on the behaviour of the ob-122

served MLD. The start of winter is deemed to be the day when the running123
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mean MLD, calculated over a 5 day window, is deeper than 100 m and the124

running standard deviation of MLD (calculated over the same 5 day window)125

is greater than 35 m (figure 2), and these criteria are fulfilled for a period126

of at least 5 days. In other words, winter is the period when the MLD is127

consistently deeper than 100m but is also quite variable due to the lack of128

a strong pycnocline within the upper water column (see below). The start129

of spring is deemed to be the day when the running mean MLD is shallower130

than 100 m and remains so for a period of at least a week, consistent with131

previous definitions used in this area (Lampitt et al., 2010b). Summer is132

deemed to be the period when the running mean MLD is shallower than 25133

m, and the running standard deviation of MLD is less than 10 m, i.e., the134

MLD is consistently shallow and shows low variability due to the presence of135

a strong pycnocline. Using these definitions, autumn is the period from the136

start of the time series on 24 September 2012 to 10 January 2013, winter is137

from 11 January to 20 April 2013, spring is from 21 April to 27 June 2013,138

and summer from 28 June to the end of the time series on 7 September 2013.139

A strong, stable pycnocline forms in summer, then gradually erodes dur-140

ing the autumn, until during winter there is very weak stratification to consid-141

erable depth. Erickson and Thompson (2018), using the same dataset, found142

that this definition of MLD still retained credibility in winter as chlorophyll143

values become near-zero at approximately the same depth (their figure 5).144

However, the winter MLD is sensitive to the precise thresholds used and it145

may be more accurate to say that the base of the mixed layer is no longer146

very well defined because of the lack of a strong pycnocline within the upper147

water column.148

3. Models149

3.1. Model selection150

Although 1D models do not include full ocean physics and in particular151

the many lateral processes, this can allow for a cleaner inter-comparison of152

those processes which are included. The topics studied using 1D models vary153

widely. Some examples include: studies of the effect of new model processes154

(Chen et al., 1994) which is easier to do in a 1D model before integration155

into a full ocean model; studies of the effect of model resolution and tuning156

(Acreman and Jeffery, 2007); understanding physical processes varying from157

the role of local atmospheric forcing on mixed layer depth (Pookkandy et al.,158

2016), to tidally driven controls on the location of mixing fronts (Sheehan159
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et al., 2018), to glacial meltwater fractions in the polar oceans (Biddle et al.,160

2017); investigating net community production (Martz et al., 2008; Yang161

et al., 2017); understanding spring bloom dynamics (Sharples et al., 2006).162

Models were chosen for this study to include commonly used examples163

of the range of approaches used to parameterise the surface mixed layer164

(see, for example, Burchard et al. (2008) for a discussion of the different165

approaches to this question). These models assume the turbulent mixing166

is dominated by vertical fluxes, and varying degrees of complexity are used167

to parameterise these fluxes. Perhaps the simplest approach is that of bulk168

boundary layers where ocean properties are assumed to be vertically uniform169

in the mixed layer. PWP (Price et al., 1986) is an example of this type: a170

computationally efficient bulk mixed layer model which has been used for171

many years to study ocean physics and biogeochemistry (e.g., Lazarevich172

et al., 2004; Frants et al., 2013; Viglione et al., 2018; Farahat and Abuelgasim,173

2019) due to its simplicity and ease of use (further details in section 3.3).174

Another widely used approach is that of turbulent kinetic energy closure175

(TC), where the profiles of eddy diffusivity and viscosity are dependent on the176

local turbulent kinetic energy, which is prognostic (e.g., Mellor and Yamada,177

1982; Kantha and Clayson, 1994; Harcourt, 2015). The properties of the178

turbulent flow are modelled directly by solving the Reynolds budgets for the179

second-order moments. The GLS and TKE mixed layer models used here180

are examples of ’one-’ and ’two-equation’ TC schemes (see further details in181

section 3.5). GLS and TKE are implemented in the NEMO ocean modelling182

framework (Madec, 2008) which is widely used for climate modelling (see,183

for example, list of publications at https://www.nemo-ocean.eu/).184

K-profile parameterisation models aim to fill the middle ground between185

bulk mixed layer models and TC schemes by allowing for vertical property186

variations in the mixed layer via a specified vertical shape function (Large187

et al., 1994). Vertical turbulent fluxes in the absence of vertical gradients of188

ocean properties are permitted through a non-local transport parameterisa-189

tion (Burchard et al., 2008; Van Roekel et al., 2018). The version used here190

is a single column of the Multi-Column K Profile Parameterisation mixed191

layer model (Hirons et al., 2015), which is used as a relatively computation-192

ally efficient alternative to a full ocean model in coupled atmosphere-ocean193

climate simulations and process studies (e.g., Lee and Klingaman, 2018; Hi-194

rons et al., 2018) (further details in section 3.4). Modifications to the KPP195

scheme to represent Langmuir turbulence (which arises through the interac-196

tion of ocean surface waves and the currents (McWilliams et al., 1997)), have197
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been described by Li et al. (2016) and Li and Fox-Kemper (2017). However,198

for this study only the standard version of the KPP model is considered.199

Finally, the OSMOSIS mixed layer model is a new boundary layer model200

developed as part of OSMOSIS, and currently undergoing implementation201

in NEMO (further details in section 3.6). Like the KPP scheme, turbulent202

transports in the OSMOSIS scheme are parameterised using non-local flux-203

gradient relationships which are related to the Reynolds budgets for the204

turbulent fluxes (Holtslag and Moeng, 1991; Abdella and McFarlane, 1997)205

obtained from large-eddy simulation. In the OSMOSIS scheme non-local206

flux-gradient relationships are used for both unstable and stable boundary207

layers. Unlike the KPP version used here, the OSMOSIS model has been208

designed to represent Langmuir turbulence, which has been advocated for in209

second-moment closures (e.g., Harcourt, 2013, 2015). The OSMOSIS scheme210

does not contain a parameterisation for the effects of shear across the base of211

the pycnocline, and there is no contribution of shear-driven mixing in either212

the mixed layer or the interior.213

3.2. Model initiation and setup214

All the models are forced at the surface with ECMWF ERA-Interim re-215

analysis data (Dee et al., 2011) listed in table 1 and shown in figure 3. ERA-216

Interim has a horizontal resolution of 0.75◦, or approximately 80 km. We217

use data from the closest grid point (48.75◦ N, 16.5◦ W), 23 km from the218

centre of the OSMOSIS observations (48.7◦ N, 16.2◦ W). The time resolution219

of the surface fluxes is three hours. All models use a 10 minute time step,220

and the surface forcing data were linearly interpolated to the same 10 minute221

intervals to avoid any differences in how the models treat forcing data which222

are more sparse than the model time step.223

Model performance has been shown to depend on vertical resolution (e.g.,224

Large et al., 1994; Acreman and Jeffery, 2007), so here we use a fairly high225

vertical resolution of 1 m in every model. The models were all initialised with226

the same observed profiles of temperature and salinity collected by glider227

SG566 on 24th September 2012, interpolated to the 1 m grid (figure 4). The228

models are run from 24th September 2012 to 7th September 2013 (the end229

of the observational period) and output variables every hour.230

All models use Jerlov water type 1B, which is considered to be an appro-231

priate water type for the open Atlantic (Simonot and Le Treut, 1986; Stips,232

2011). Jerlov water type refers to a set of coefficients that define the double233
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Parameter Units
Surface thermal radiation W m−2

Surface solar radiation W m−2

Surface sensible heat flux W m−2

Surface latent heat flux W m−2

Precipitation m of water
Wind components at 10 m+ m s−1

Coefficient of drag with waves+

2D wave spectra m2 s radians−1

Surface Stokes drift components∗ m s−1
∗ Obtained from 2D wave spectra
+ Surface stress calculated using drag coefficient and wind components

Table 1: Surface forcing parameters from ECMWF ERA-Interim reanalysis data.

exponential profile for shortwave radiation absorption (Paulson and Simp-234

son, 1977). In using the same water type for the whole year we are ignoring235

the effect of changes in the optical properties of the water column due to,236

for example, phytoplankton growth. While this may increase differences be-237

tween each model’s output and the observations (Large et al., 1994), this will238

affect all the models similarly so should not invalidate comparisons between239

models. Since not all the models incorporate background diffusion, this is set240

to zero in those models which do include it. All model parameters (except241

background diffusion and Jerlov water type) are set to the default values for242

that model as described in the cited literature. This amounts to a partic-243

ular choice of parameter values for each model and the results might differ244

for other choices, however investigation of the effect of parameter values is245

beyond the scope of this study.246

SST for each model is the temperature at the first model grid depth, i.e.,247

1 m, comparable to the SST for the glider data which is the median value248

in the uppermost 2 m bin. We calculate MLD for each model based on the249

output profiles of temperature and salinity in exactly the same way in which250

MLD is calculated for the observations, so that we will be comparing like251

with like. However, each model also provides an estimate of the depth of252

active mixing or boundary layer depth, which are described below for each253

model. These will be referred to as the model’s ’internal’ mixing layer depth254

(IMLD), but note that this is not the same parameter for each model. For the255

TKE and GLS models this is diagnosed from the vertical eddy diffusivity and256
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Figure 3: Surface forcing used to drive the models. a) Outgoing surface heat flux, positive
upwards. Blue = longwave radiation, red = sensible heat, orange = latent heat. b) Blue
= incoming shortwave radiation, positive downwards, red = total cumulative surface heat
flux, positive downwards. c) Wind stress. Blue = zonal component, red = meridional
component. d) Freshwater flux, i.e., precipitation minus evaporation, positive downwards.
The coloured bars at the base of the panels mark the seasons: blue = autumn; green =
winter; magenta = spring; cyan = summer.

has no impact on the vertical mixing scheme itself, but for the PWP, KPP257

and OSMOSIS models these are length scales that have actual numerical258
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Figure 4: Profiles used to initialize the models: a) potential temperature, b) practical
salinity, c) potential density.

impacts. All MLDs and IMLDs will be shown as positive downwards.259

The observational dataset does not include estimates of the depth of260

active mixing, so we are unable to make direct comparisons between an261

observed depth of active mixing and the models’ IMLDs. However, one262

would always expect the MLD in the ocean to be greater than or equal to263

the depth of active mixing because properties will be homogeneous at the264

depths where mixing is occurring plus there may be remnant homogeneous265

layers beneath from previous mixing episodes.266

In model studies the relationship between MLD and IMLD can depend267

on the definition of IMLD used in that model, and on the definition of MLD268

with which it is compared. For example, Large et al. (1994) found boundary269

layer depths (IMLDs in our terminology) in large eddy simulations around270

10% deeper than the mixed layer depth definition they were using (their271

figure 1). However, in the simulations discussed here, each model’s IMLD272

was shallower than that model’s MLD at all time steps. In other words,273

there is no prima facie reason to expect model IMLD to be deeper than the274

observed MLD. Hence, if a model’s IMLD is deeper than the observed MLD275

we can deduce that it must be deeper than the depth of active mixing in the276

real ocean by at least as much as the difference between the model’s IMLD277

and the observed MLD. If the model’s IMLD is shallower than the observed278
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MLD we do not know how it differs from the depth of active mixing in the279

real ocean.280

3.3. PWP281

The PWP model (Price et al., 1986) was developed to investigate mixed282

layer processes in tropical oceans. It is a bulk mixed layer model, which283

means that it considers the main driving equations over the entire mixed284

layer, and averages the ocean properties (temperature, salinity, and merid-285

ional and zonal current velocities) over that layer. The focus is on the param-286

eterisation of shear production of turbulent kinetic energy across the base of287

the mixed layer and in the pycnocline, which is parameterised through gradi-288

ent Richardson number calculations. (Richardson number is a measure of the289

relative importance of stratification to destabilizing shear. ”Bulk” Richard-290

son number is a term used when the Richardson number is calculated over a291

slab containing several depth bins, whereas ”gradient” Richardson number is292

not defined in the mixed layer itself but is calculated in the stratified region293

below the mixed layer.) The IMLD is found as the minimum depth required294

to keep a bulk Richardson number (Rib) of a well-mixed layer greater than295

a prescribed critical value, Rib > 0.65. This value was determined from field296

and laboratory experiments (Price et al., 1978). The model implementation297

used originates from Lazarevich and Stoermer (2001), which is a translation298

of the original PWP Fortran implementation into Matlab code.299

3.4. KPP300

The KPP mixed layer model is a turbulence closure scheme model which301

uses eddy diffusivity to parameterise small-scale turbulence within the mixed302

layer (Large et al., 1994). The model was developed from atmospheric bound-303

ary layer models that incorporated nonlocal transport terms in their mixing304

parameterisations. The diffusivity is formulated to agree with similarity the-305

ory of turbulence in the surface layer and is subject to the conditions that306

both it and its vertical gradient match the interior values at the base of the307

boundary layer. The diffusivities of the interior mixing processes (internal308

waves, shear instability, and double diffusion) are modeled as constants, func-309

tions of a gradient Richardson number, and functions of the double-diffusion310

density ratio. The IMLD is the minimum of three mixed layer depth defini-311

tions: the Ekman depth, the Monin-Obukhov length, and the depth where312

the bulk Richardson number exceeds the threshold Rib > 0.3 (Large et al.,313
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1994). An important feature of this model is that the boundary layer al-314

lows entrainment into stable stratification below the mixed layer and can315

produce realistic exchanges of properties between the mixed layer and ther-316

mocline. The model script used is a single column of the Multi-Column K317

Profile Parameterisation ocean model (Hirons et al., 2015), developed by the318

National Centre for Atmospheric Science at the University of Reading (see319

https://puma.nerc.ac.uk/trac/KPP ocean).320

3.5. TKE and GLS321

The TKE and GLS models refer to the ’TKE’ and ’GLS’ vertical mixing322

schemes implemented in the NEMO model (Madec, 2008). These schemes323

are based on the Turbulent Kinetic Energy scheme of Gaspar et al. (1990)324

and the Generic Length Scale framework of Umlauf and Burchard (2003)325

respectively, which both belong to the so-called ’Algebraic Stress Model’326

class of vertical mixing parameterisation (Burchard et al., 2008). This type of327

parameterisation approximates the turbulent fluxes using the eddy viscosity328

principle:329

w′U ′ = −KM∂zU

w′T ′ = −KH∂zT
(1)

where U is a horizontal velocity component, w is the vertical velocity com-330

ponent (positive upwards), T is a tracer, and KM and KH are respectively331

the eddy viscosity and eddy diffusivity. The prime and overbar notations332

represent the fluctuating and time-average components of the quantity re-333

spectively (i.e. Reynolds decomposition). KM and KH have the form:334

KM = cklk
√
k

KH = cHk lk
√
k

(2)

where ck and cHk are dimensionless coefficients or stability functions, lk is a335

mixing length and k is the turbulent kinetic energy. The calculation of ck, c
H
k ,336

lk and k depends on the choice of turbulence closure. In the TKE scheme337

ck and cHk are constant coefficients, and k is calculated using a prognostic338

budget equation. In stable stratification lk is calculated using the simplified339

algebraic form suggested by Blanke and Delecluse (1993) where lk ∝ N−1340

(N is the buoyancy frequency), and lk is bounded by the distance to the341

nearest physical boundaries (sea surface and bottom). In unstable stratifi-342

cation where N2 < 0, lk is the distance to the nearest physical boundary343
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(sea surface/bottom) or layer of stable stratification. In the GLS framework344

ck and cHk are complex nonlinear stability functions, and both lk and k are345

calculated using prognostic budget equations. The GLS framework encom-346

passes several well known closures for lk and k, including ’k−kl’ (Mellor and347

Yamada, 1982), ’k − ε’ (Rodi, 1987) and ’k − ω’ (Wilcox, 1988). Due to the348

number of prognostic equations solved, the TKE scheme and GLS framework349

are examples of ’one-’ and ’two-equation’ closures respectively.350

Reffray et al. (2015) explore the performance of the NEMO TKE and GLS351

vertical mixing schemes in a 1D column model case study at Ocean Station352

PAPA. Of the various closures implemented in the GLS framework, they353

find that the ’k− ε’ model gives the best results in terms of temperature and354

salinity biases. Furthermore, they find that the TKE scheme significantly355

understates vertical mixing in the boundary layer and show that an ad-hoc356

parameterisation representing unresolved vertical mixing processes (Rodgers357

et al., 2014) is able to alleviate this. This parameterisation is implemented as358

an additional source of TKE that decays exponentially with depth. Reffray359

et al. (2015) show the TKE scheme to be highly sensitive to the choice of360

e-folding length scale and find that a 10 m length scale (their ’TKE 10m’361

experiment) gives the best results.362

We use the ’TKE 10m’ and ’k− ε’ configurations of Reffray et al. (2015)363

as the basis for our TKE (’NEMO TKE’) and GLS (’NEMO GLS’) simula-364

tions respectively. The reader is referred to Reffray et al. (2015) for more365

details but should note that our simulations use a more recent version of366

NEMO (3.6), although this should have a negligible impact on the results.367

Additionally, KM and KH are set to an arbitrarily large value wherever static368

instabilities occur to ensure that these are homogenised within a time step.369

This has the effect of reducing the winter MLD by O(10m).370

For both NEMO simulations the IMLD is taken as the turbocline depth,371

which is the shallowest model depth where KH < 5× 10−4 m2 s−1.372

3.6. OSMOSIS model373

The OSMOSIS scheme combines a bulk model of the surface boundary374

layer (e.g. Kraus and Turner, 1967), which is coupled to a turbulence model375

based on non-local flux-gradient relationships (e.g. Large et al., 1994). The376

bulk model is used to determine the evolution of the depth of the boundary377

layer, and the turbulence model determines the mean profiles within the378

boundary layer, which are represented on a finite difference grid.379
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In unstable conditions the boundary layer is assumed to deepen through380

entrainment. The energy needed to entrain denser water from below the381

boundary layer is assumed to be supplied by a combination of Langmuir tur-382

bulence (McWilliams et al., 1997) and convective turbulence. The equation383

for the depth of the boundary layer is384

∂hbl
∂t

= −w
′b′ent
∆B

+ w (3)

where hbl is the boundary depth, w′b′ent is the buoyancy flux associated385

with entrainment, ∆B is the difference between the buoyancy averaged over386

the depth of the boundary layer and the buoyancy just below the base of the387

boundary layer, and w is the large-scale vertical velocity, which is assumed388

to be zero in the integrations presented here. The layer averaged buoyancy389

is obtained by averaging the buoyancies on the model levels, which provides390

the coupling between the bulk and turbulence components of the OSMOSIS391

scheme.392

The buoyancy flux associated with entrainment is parameterised as393

w′b′ent = −0.03
w3
∗L
hbl
− 0.2w′b′0 (4)

where w∗L is the velocity scale for Langmuir turbulence (Grant and Belcher,394

2009) and w′b′0 is the surface buoyancy flux. The parameterisation of the395

contribution made by Langmuir turbulence to w′b′ent is taken from Grant396

and Belcher (2009).397

w∗L = (u2∗us0)
1/3 (5)

where u∗ is the surface friction velocity and us0 is the surface Stokes drift.398

For stable conditions the equation for the depth of the boundary layer is399

∆B̃
∂hbl
∂t

=

(
0.06 + 0.52

hbl
LL

)
w3
∗L
hbl

+ w′b′L (6)

where w′b′L is the buoyancy flux averaged over the depth of the boundary400

layer and LL is analogous to the Obukhov length (Pearson et al., 2015), and401

is defined as LL = −w3
∗L/2w

′b′L. The definition of ∆B̃ depends on whether402

the depth of the boundary layer is increasing or decreasing. When hbl is403

increasing, ∆B̃ = ∆B, and when hbl is decreasing, ∆B̃ = w2
∗L/hbl. The404
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choice for ∆B̃ when hbl is decreasing limits the rate at which the depth of405

the boundary layer can decrease.406

The layer average buoyancy flux, w′b′L, is estimated by assuming that the407

sum of the turbulent and radiative heating rates is constant over the depth408

of the boundary layer (Kim, 1976), which gives409

w′b′L =
1

2
w′b′0 + gαE

(
〈I〉 − 1

2
(I0 + Ih)

)
(7)

where αE is the thermal expansion coefficient of sea water, 〈I〉 is the solar410

irradiance averaged over the depth of the boundary layer, I0 is the solar411

irradiance at the surface and Ih is the solar irradiance at the base of the412

boundary layer.413

A more complete description of the OSMOSIS scheme can be found at414

https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/manual/pdf/NEMO manual.pdf.415

4. Wavelet analysis methods416

To investigate variations in the spectral properties of the data, we use the417

wavelet analysis method of Torrence and Compo (1998). Given the number418

of factors which can affect mixed layer properties it was deemed important to419

use an analysis method which could pick out significant periodicities which420

are only present for a portion of the total record, because such periodicities421

might not be identified in power spectra of the whole time series.422

The time series of observed SST and MLD were first linearly interpo-423

lated to regular 4-hourly intervals, and the output from each model was424

sub-sampled to the same 4-hourly intervals. (This sub-sampling does not425

make a significant difference to the results presented.) We chose to use 4-426

hourly intervals because although the gliders obtain profiles roughly every427

2 hours, they are not regularly spaced in time. Due to the ”V” shape of428

glider movement, each upcast and next downcast are separated by only a429

few minutes near the surface, with a wait of nearly 4 hours until the next430

pair. Similarly near the bottom of the profile each downcast and next upcast431

are closely spaced in time with a wait of nearly 4 hours until the next pair.432

It is only around the middle of the profiling depth that data is obtained at433

approximately regular 2-hourly intervals. Hence 4 hours was considered a434

more appropriate interpolation interval.435

Because the distributions of SST and MLD are distinctly non-normal,436

we transform all the time series into records of percentiles (in terms of their437
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cumulative distribution function), thus forcing the probability density func-438

tions to be rectangular (Grinsted et al., 2004). The resulting time series439

are padded with zeros to avoid wraparound effects and the wavelet power440

spectra calculated using a Morlet wavelet. Significance is determined by441

comparison with a theoretical red-noise spectrum calculated from the lag-1442

autocorrelation coefficient for each time series. The null hypothesis is defined443

for the wavelet power spectrum as follows (Torrence and Compo, 1998): it444

is assumed that the time series has a mean power spectrum (the theoretical445

red-noise spectrum, given in equation 8); if a peak in the wavelet power spec-446

trum is significantly above this background spectrum, then it can be assumed447

to be a true feature with a certain percent confidence.448

Pk =
1− α2

1 + α2 − 2α cos(2πk/N)
(8)

where Pk is the mean power spectrum, k = 0, 1 ... N/2 is the frequency449

index, α is the lag 1 autocorrelation coefficient, and N is the number of450

values in the time series. Wavelet spectra of the total surface heat flux and451

wind speed were calculated in the same way, except that the time series were452

not transformed into records of percentiles because the distribution of these453

variables was approximately normal.454

To further investigate the relationships between different time series, we455

calculate wavelet coherence following the methods of Torrence and Webster456

(1999), using the code made available by Grinsted et al. (2004). Wavelet457

coherence can be thought of as the localized correlation coefficient in time458

frequency space; it shows whether non-stationary time series are co-varying459

at a particular frequency (but not at other frequencies) and at a particular460

time (but not throughout the entire record). This analysis method was cho-461

sen because simple correlations or coherence tests over the entire time series462

might not identify the relationships which the wavelet coherence method ex-463

poses. Significance is determined using Monte Carlo methods as detailed by464

Grinsted et al. (2004). Note that the annual relationship between surface465

forcing and mixed layer properties (cooling and deepening in autumn, warm-466

ing and shoaling in spring) will not appear significant because the time series467

are too short. Hence the strong correlation between SST and cumulative468

net surface heat flux found by Damerell et al. (2016) will not be apparent469

because it was largely a consequence of the strong annual cycle. Multi-year470

time series would be required for the annual cycle to appear significant in471

this wavelet analysis.472
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Figure 5: Mixed layer and sea surface properties over the year of the OSMOSIS field
campaign, from both the glider observations and the models. a) MLD. b) MLD smoothed
by applying a 5-day running mean as in section 2; this is shown for clarity only and is
not used in the analysis. c) Observed MLD and models’ internal MLDs, all smoothed by
applying a 5-day running mean as in panel b). d) SST. e) MLS. In all panels, green line =
glider observations, dashed blue line = PWP, cyan line = NEMO GLS, dashed magenta
line = NEMO TKE, black line = KPP, red line = OSMOSIS model. The coloured bars
at the base of the panels mark the seasons: blue = autumn; green = winter; magenta =
spring; cyan = summer. 19



5. Results and Discussion473

5.1. SST overview474

All the models output SSTs which are broadly representative of the ob-475

served time series (figure 5d). The annual cycle of cooling during autumn, a476

fairly constant temperature over the winter, then warming to a peak in July477

is seen clearly in all the models. Seasonal mean biases in each model are less478

than 1◦C (table 2), similar to the model/observation differences found by479

Lazarevich et al. (2004), except that KPP is considerably warmer than the480

observations in summer. This suggests that the drivers of SST variability in481

this region are largely 1-dimensional, unlike at OSP where advective effects482

are considered important in the winter (Large et al., 1994).483

observed model bias
model SST PWP NEMO GLS NEMO TKE KPP OSMOSIS
Autumn 13.75 0.48 0.37 0.45 0.47 0.39
Winter 12.12 -0.05 -0.07 -0.06 -0.06 -0.07
Spring 12.87 0.29 0.51 0.67 0.97 0.58
Summer 18.15 -0.40 0.22 0.30 2.91 0.74
whole year bias 0.11 0.24 0.31 0.91 0.36
rms difference 0.57 0.52 0.60 1.48 0.66

Table 2: Seasonal mean observed SST, and seasonal biases between each model and ob-
served SST (◦C). Positive bias = model SST warmer than observed SST.

The distribution of observed SST is bimodal (figure 6a) with a large peak484

at a temperature of 12◦C. This is due to the period from early February until485

late May when the SST remains nearly constant at around 12◦C. The average486

winter SST of 12.12◦C (table 2) is slightly cooler than the winter SSTs of487

12.14◦C (2003), 12.25◦C (2004) and 12.61◦C (2005) found by Hartman et al.488

(2010) at the PAP-SO. None of the models reproduce the coldest SSTs seen489

in the observations, which reach a minimum of 11.1◦C. GLS, TKE and KPP490

reach a minimum temperature of 11.8◦C and PWP and OSMOSIS reach491

a minimum of 11.9◦C. However, it is clear (figure 5d) that this is because492

the models show less variability in winter SSTs than the observations. The493

average winter SST is in fact slightly cooler in each model (table 2) than in494

the observations (between 0.05 and 0.07◦C cooler).495

The second, smaller peak of the bimodal distribution (figure 6 and figure496

5d) is due to the period in late July and August when the SST again remains497
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Figure 6: Histograms of SST for the observations and for each model. These are shown
as probabilities, i.e., the height of the bar equals the number of counts in that bin divided
by the total number of data points for that variable.

nearly constant around 18 - 19◦C, consistent with the summer SSTs reported498

by Hartman et al. (2010). PWP, GLS, TKE and OSMOSIS have summer499

temperature biases between -0.40 and 0.74◦C, but it is only KPP which really500

differs from the observations, with a mean bias in the summer of 2.9◦C (table501
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2), similar to the summer SST bias in KPP seen by Acreman and Jeffery502

(2007). KPP also has the largest warm bias in spring (0.97◦C). We postulate503

that this is related to differences in MLD/IMLD: KPP has the shallowest504

MLD and IMLD in the spring and summer (table 4) which will tend to trap505

heat in the mixed layer. TKE, in particular, has similar MLD biases to506

KPP (though not quite as shallow in spring and summer), but KPP’s IMLD507

is considerably shallower than TKE’s in spring and summer. Unlike TKE,508

where the IMLD is purely diagnostic, KPP’s IMLD has an impact on model509

physics so may be a factor in KPP’s SST bias in spring and summer.510

Burchard and Bolding (2001) compared two 1D TC schemes with obser-511

vations at OSP and found a shallow MLD bias in summer, which we estimate512

to be around 10 m from their figure 18. They attribute this to either erro-513

neous surface fluxes or strong advective effects. However, they also comment514

that one model’s predicted MLD is shallower than the other’s, leading to515

warmer summer SSTs in that model. We estimate from their figure 18 that516

the difference in MLD is perhaps around 2 m, and the difference in SST517

around 0.3◦C. This illustrates that during the summer when the mixed layer518

is shallow, relatively small differences in MLD can produce quite significant519

differences in SST.520

PWP is unusual in exhibiting a cold bias in the summer. Archer et al.521

(1993) compared PWP simulations with observations at OSP over a 6-year522

period and also found cold biases in model summer SSTs of a similar magni-523

tude to those seen here, as did Lazarevich et al. (2004) in their comparisons524

of PWP with float-observed temperatures and NCEP reanalysis SSTs in the525

north Atlantic. Archer et al. (1993) suggest that this may be due to small526

inaccuracies in the surface heat fluxes, but that seems unlikely here since the527

other models all have warm SST biases in summer.528

5.2. Mixed layer salinity529

The models do not do a very good job of reproducing the observed MLS530

(figure 5e and figure 7), though this is not entirely unexpected (section 1).531

In particular, they fail to capture the short term variability over periods532

of hours to days. Only some large-scale changes are captured, notably the533

increase in MLS in mid-July when the mixed layer is extremely shallow and534

high temperatures are leading to large surface evaporation (see also the large535

latent heat flux in July despite low wind speeds in figure 3). The distribution536

of the observed MLS (figure 7a) is approximately a wide Gaussian, with a537

mean of 35.57 and a large standard deviation of 0.06. The distributions are538
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much narrower for all the models and are shifted towards higher salinities,539

with only a small tail of values at the lower end. OSMOSIS has a mean540

MLS of 35.59 (closest to the observations), PWP, KPP and TKE have a541

mean MLS of 35.61 and GLS a mean of 35.62, considerably higher than the542

observed mean of 35.57. OSMOSIS has the smallest bias in all seasons except543

the autumn (table 3). However, it is worth noting that the lower annual bias544

Figure 7: Histograms of MLS for the observations and for each model, shown as probabil-
ities as in figure 6.
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achieved by OSMOSIS is largely because it has both positive and negative545

biases which cancel out to some extent; the rms difference between OSMOSIS546

and the observations is only slightly smaller than for the other models. The547

annual average biases in MLS (table 3) of 0.02 to 0.05 represent 6-14% of548

the range in observed MLS over this year. When comparing the model-549

observation agreement of MLS and SST (e.g., figure 5), it is worth bearing in550

mind that the range in SST is determined by a very large scale process, i.e.,551

the annual cycle in surface heat flux. Without a similar driver of large annual552

change in MLS, small variations can appear more significant than they really553

are. However, as will be discussed in section 5.3, the salinity biases here are554

large enough to produce significant density biases.555

observed model bias
MLS PWP NEMO GLS NEMO TKE KPP OSMOSIS

Autumn 35.55 0.02 0.04 0.02 0.02 0.03
Winter 35.57 0.05 0.05 0.05 0.05 0.04
Spring 35.57 0.05 0.06 0.07 0.07 0.04
Summer 35.60 0.03 0.04 0.04 0.05 -0.02
whole year bias 0.04 0.05 0.04 0.04 0.02
rms difference 0.07 0.07 0.07 0.07 0.06

Table 3: Seasonal mean observed MLS, and seasonal biases between model and observed
MLS (psu). Positive bias = model MLS greater than observed MLS.

Model MLS is dependent on the surface fluxes of precipitation and latent556

heat (from which evaporation is calculated). These fluxes can be very local-557

ized and are difficult to measure and model consistently (e.g., difficulties in558

modelling cloud cover), so it is not surprising that MLS derived from reanal-559

ysis surface flux products is not very similar to observed values. Moreover560

the localized nature of these fluxes means MLS can vary considerably in the561

horizontal, leading to variability in observed MLS due to advection which is562

obviously not present in a 1D model.563

It is worth noting, however, that local differences in MLS in this region564

are unlikely to have a large influence on large scale climate modelling because565

MLS does not directly affect the atmosphere in the same way that SST does.566

Biases in MLS over a wide area and long time scales might be important567

since these would affect water mass formation and circulation, but that is568

beyond the scope of this paper.569
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5.3. Mixed layer density570

The study region is a region where Eastern North Atlantic Central Water571

(ENACW) forms during the winter (Pollard and Pu, 1985; Pollard et al.,572

1996). The slightly cooler SSTs and slightly higher MLSs (tables 2 and 3)573

in winter would lead to the formation of a higher density water mass than574

that found in the real ocean, which could have implications for the wider575

circulation.576

We estimate equivalent density biases by calculating density for the ob-577

served average winter temperature of 12.12◦C and salinity of 35.57, then578

subtracting(adding) the winter temperature(salinity) bias for each model and579

recalculating density. The winter temperature biases in table 2 lead to den-580

sity biases of approximately +0.01, and the winter salinity biases in table581

3 lead to density biases of approximately +0.04. The combined biases (i.e.,582

calculating density using both the temperature and salinity biases) amount583

to an increase in density of approximately 0.05. Since the ENACW of sub-584

tropical origin found beneath the surface mixed layer in this region (Damerell585

et al., 2016) is found at σθ in the range 27 to 27.2 (Harvey, 1982), a density586

bias of 0.05 is not insignificant. However, as will be discussed in section 5.4,587

the wintertime density biases do not seem to impact negatively on the spring588

restratification and subsequent development of the MLD and SST.589

5.4. MLD overview590

The observed MLDs (figure 5a, b) are broadly consistent with previous591

observations in this area (e.g., Hartman et al., 2015; Henson et al., 2012;592

Martin et al., 2010; Steinhoff et al., 2010; Hartman et al., 2010), taking into593

account the varying MLD definitions used in different studies. Henson et al.594

(2012) consider differences in monthly mean MLD in years with positive595

or negative North Atlantic Oscillation (NAO) index in winter. They used596

the Hadley Centre’s EN3 objectively analysed temperature and salinity data597

from 1959 to 2009, and calculated MLD as the depth at which a density598

difference of 0.03 kg m−3 from the surface was observed. The composite MLD599

for positive NAO years reached a maximum of 280 m in March, whereas in600

negative NAO years it reached only 170 m. They relate this to the greater601

wind stress in positive NAO years, resulting in increased mechanical mixing.602

Our results are in agreement, with an average winter mixed layer depth of603

165 m (table 4) and weakly negative winter NAO index in 2013.604

Winter MLD has been shown to be an important driver of nitrate flux605

into the surface mixed layer (Hartman et al., 2010; Steinhoff et al., 2010).606
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Temporary shoaling of the MLD during winter and spring may therefore607

influence nutrient fluxes. In this region, the winter shoaling of the MLD ap-608

pears to be linked to sporadic short-lived chlorophyll blooms observed during609

OSMOSIS in winter, well before the main spring bloom event in June (Erick-610

son and Thompson, 2018; Binetti et al., this issue; Rumyantseva et al., this611

issue). Previous studies have used data from Argo floats, XBTs, CTDs and612

moorings over a wide area (45◦N to 52◦N and 26.08◦W to 8.92◦W, excluding613

the shelf area) around the PAP-SO to estimate MLDs (Hartman et al., 2010,614

2015). In all the years considered, those estimates showed MLDs increas-615

ing fairly smoothly from September to the time of maximum depth (which616

varied from January to March), and then decreasing again to the summer617

minimum. This differs from the pattern observed here where the mean MLD618

remained approximately constant over the winter (167, 161 and 163 m in619

January, February and March respectively) but with high variability. (For620

example, compare our figure 5b with Hartman et al. (2010) figure 4b and621

Hartman et al. (2015) figure 3b.) The winter time range of MLD observed622

by the gliders was 11 m to 378 m. This high variability in MLD is likely to623

be significant for nutrient fluxes and winter blooms (Hartman et al., 2010;624

Steinhoff et al., 2010; Erickson and Thompson, 2018; Binetti et al., this issue;625

Rumyantseva et al., this issue).626

Model MLDs are broadly representative of the observed MLDs (figure 5a627

and b) except in winter when the model MLDs are too deep, with winter628

average biases between 160 and 228 m (table 4), and do not exhibit the same629

variability as the observations. This can be partially explained by the fact630

that in this region there is considerable submesoscale activity in winter, which631

observed model bias
model MLD PWP NEMO GLS NEMO TKE KPP OSMOSIS
Autumn 91 25(-3) 12(1) 2(-6) 7(-5) 25(23)
Winter 165 228(104) 169(16) 160(59) 173(7) 198(82)
Spring 42 -3(-21) -11(-15) -16(-15) -17(-21) -10(-15)
Summer 15 1(-5) 0(-1) -3(-1) -5(-7) 0(-2)
whole year bias 74(24) 51(2) 44(12) 48(-5) 64(28)
rms difference 137(106) 105(73) 102(74) 110(79) 121(90)

Table 4: Seasonal mean observed MLD, and seasonal biases between model and observed
MLD (m). Figures in brackets are mean differences between each model’s IMLD and the
observed MLD. Positive bias = model MLD/IMLD deeper than observed MLD.
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will tend to restratify the mixed layer (Thompson et al., 2016). This subme-632

soscale activity is not present in these one dimensional models. Viglione et al.633

(2018) find a similar result when comparing MLDs from a 1D PWP model634

with observations in Drake Passage: the lack of submesoscale instabilities in635

the model results in MLDs which are too deep and insufficiently variable.636

The models’ IMLDs are also deeper than the observed MLD in winter, indi-637

cating that they are likely to be deeper than the depth of active mixing in the638

real ocean. The winter-time difference between model IMLD and observed639

MLD is smallest for KPP and GLS (table 4) but this is largely because they640

are too deep at the start of winter and become shallower than the observed641

MLD towards the end of winter (figure 5c) and these differences cancel out,642

whereas for PWP and OSMOSIS, the winter-time IMLDs remain consistently643

too deep giving a greater average difference with the observations.644

It is noticeable, however, that all the model IMLDs reproduce the ob-645

served wintertime shoaling and deepening of the MLD much better than the646

model MLDs (figure 5b, c), as well as having smaller average differences in647

winter (table 4). As discussed above, this temporary shoaling may be sig-648

nificant for fluxes of nitrates into the mixed layer in winter, so model IMLD649

may be more useful for understanding winter bloom dynamics than MLD650

calculated in the manner used for observations.651

The general pattern is that in autumn and winter, model MLDs are deeper652

than the observed MLDs, whereas in spring and summer the model MLDs are653

shallower than observed MLDs. The shallow biases in spring and summer654

will result in a ’trapping’ of surface forcing effects, i.e., the effects of the655

surface forcing will tend not to reach as deep as they should. This will affect656

the ability of these models to reproduce summer water mass formation, air-657

sea fluxes, and bloom dynamics through the interaction between mixed layer658

depth and nutrient fluxes.659

All the models reproduce the observed spring restratification, though one660

or two days later than in the observations (table 5). One would generally661

expect the depth of active mixing to shoal before the mixed layer depth, and662

indeed each model’s IMLD shoals several days earlier than that model’s MLD.663

However, we could not find any observations in this region in the literature664

which indicate how much earlier one would expect the depth of active mixing665

to shoal than the MLD, so we are unable to comment on which model’s IMLD666

behaves most like the real ocean.667

It is noticeable that the biases in MLD are fairly small in spring and668

summer despite the preceding large biases in winter MLD and the winter669
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observations PWP NEMO GLS NEMO TKE KPP OSMOSIS
MLD 21 23 22 22 23 23
IMLD 21 17 19 17 19

Table 5: Date (in April 2013) of spring restratification of the MLD for the observations,
and date of spring restratification of the MLD and IMLD for each model. Model dates are
calculated in the same way as for the observations, as described in section 2.

mixed layer density biases (which are largely due to biases in MLS (section670

5.2)). Large et al. (1994) compared KPP with observations at OSP, and also671

found that the spring restratification reduced biases in MLD. However, their672

simulation was initialised on 15th March, only about a month before the673

spring restratification, and the initial MLD bias was only about 15 m. Here674

the spring restratification removes much larger MLD biases.675

The spring and summer MLD biases are not correlated with the winter676

MLD or MLS biases (tables 3 and 4). Similarly, the spring and summer SST677

biases are not correlated with the winter MLD or MLS biases (tables 2, 3678

and 4). The surface forcing generating the spring restratification appears679

to be a sufficiently dominant process that preceding biases are unimportant.680

This suggests that when using a 1D model in a similar ocean environment681

(mid-latitudes away from topography) it may be acceptable to initialize the682

model using a relatively low resolution profile (e.g., from an Argo float) in late683

winter when stratification is low, and simply allow the model to generate the684

spring stratification, rather than requiring a higher resolution profile (capable685

of resolving a steep pycnocline) suitable for initializing during the spring or686

summer.687

5.5. Diurnal cycles688

All the models show some evidence of a diurnal cycle in SST (figure 8),689

significant at the 95% confidence level, starting in March and continuing to690

the beginning of September. The surface forcing which drives the models691

also shows a significant diurnal cycle in total surface heat flux from March to692

September (figure 9a), and all the model SSTs show evidence of a coherent693

relationship with the cumulative total surface heat flux at a diurnal timescale694

for much of the year (figure 10), though this is more obvious from mid-695

February onwards than in the autumn and early winter.696

This diurnal cycle is not, however, as significant in the observed SSTs697

as in the model SSTs (figure 8), and the observations also show much less698
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Figure 8: Wavelet spectra of SST for the observations and for each model. In each panel,
the black contours enclose regions of greater than 95% confidence level calculated using the
corresponding red-noise spectrum as the null hypothesis (see text). The shaded regions on
either end indicate the cone of influence, where edge effects become important and results
should be viewed with caution.
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Figure 9: Wavelet spectra of the surface forcing: a) total surface heat flux, b) wind stress.
Otherwise as figure 8.

coherence with the surface heat flux (figure 10). In the real ocean the diurnal699

cycle may be masked by noise from other ocean processes not present in the700

models, such as the influence of advection, internal waves and submesoscale701

processes, and from the fact that the glider is not sampling in one location.702

Biases or missing processes in the surface forcing may also lead to discrep-703

ancies between the observed and modelled SSTs. For example, Giglio et al.704

(2017) have recently demonstrated the significance of wind gusts in regulat-705

ing how fast surface water is mixed to greater depths when daily mean winds706

are weak, and the reanalysis wind stress used to drive the models will not707

include wind gusts in a realistic fashion. Moreover, cloud cover is known to708

be difficult to model and this will lead to discrepancies between the reanal-709

ysis surface heat flux driving the models and the surface heat flux affecting710

the real ocean (Taylor , ed.; Large and Yeager, 2009). For example, reduced711

cloud cover during the spring and summer will tend to lead to increased heat712

flux into the ocean during the day, and increased heat flux out of the ocean at713

night. This would increase the magnitude of the diurnal cycle of SST in the714

models as compared with the observations. All these factors could lead to a715

much reduced diurnal cycle in the observations compared with the models.716

As with SST, we again see a significant relationship between MLD and717

the cumulative surface heat flux at diurnal time scales (figure 11), though718

this is not as pronounced as for SST. This relationship is again considerably719
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Figure 10: Wavelet coherence for SST and cumulative total surface heat flux. In each
panel, the black contours enclose regions of greater than 95% confidence level calculated
using Monte Carlo simulations (see text). The shaded regions on either end are as in
figure 8. The arrows represent the relative phase - arrows pointing to the right imply the
time series are in phase, arrows pointing left imply anti-phase, arrows pointing straight up
imply the surface heat flux leads SST by a quarter of a cycle. Note that this indication of
lag in all wavelet coherence figures is relative to the length of the cycle. For example, an
arrow pointing up and right at an angle of 45◦ refers to a lag of an eight of a cycle - e.g.,
arrows pointing up and right at 45◦ in this figure mean SST lags the surface heat flux by
one day for a cycle with an 8-day period but by 4 days for a cycle with a 32-day period.
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Figure 11: Wavelet coherence for MLD and cumulative surface heat flux. Otherwise as in
figure 10.
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more present in the models than in the observations. The MLD and surface720

heat flux are in approximate anti-phase, as one would expect (i.e., surface721

heat flux increases, MLD shoals). With solar radiation incoming during the722

day the SST warms and the mixed layer shoals due to thermal stratification.723

At night the ocean loses heat to the atmosphere, convection occurs, the SST724

decreases and the MLD increases. But the relationship with surface heat flux725

is less pronounced for MLD than for SST because the MLD is also influenced726

by the stratification in the profile below the mixed layer, and also is more727

directly affected by wind driven mixing.728

5.6. Longer time scales729

In May and June, at periods between approximately 4 and 20 days, the730

cumulative total surface heat flux is in anti-phase with the observed MLD731

(figure 11), and approximately in phase with the observed SST (figure 10),732

i.e., surface heat flux increases, MLD shoals, SST increases. These can be733

seen as the main warming events in SST, clearly related to large changes in734

MLD in the spring (figure 5). All the models exhibit similar behaviour. This735

timescale is typical for the passage of weather regimes. Wind stress is also a736

factor in these events both through the effect of wind driven mixing on the737

MLD and through the effect of wind speed on the latent and sensible heat738

fluxes.739

There is clear evidence of a coherent relationship between wind stress and740

MLD for all models and the observations from late March onwards (figure 12)741

at periods between 4 and 60 days. MLD and wind stress are approximately742

in phase (i.e., wind stress increases, mixed layer deepens), though with the743

MLD lagging the wind stress by around an eighth of a cycle. This highlights744

the significance of local wind events in the spring, which can temporarily745

deepen the mixed layer. During the year observed, such spring deepening746

events reached as much as 100 m which is likely to be significant for spring747

bloom dynamics (Erickson and Thompson, 2018). No such relationship with748

local wind events is seen earlier in the year, despite the generally stronger749

wind stress in autumn and winter than spring and summer. We hypothesize750

that the deepening of the mixed layer seen in the autumn is so strongly751

driven by the annual cycle in surface heat flux that the additional effect of752

the winds at this time of year is less significant.753

There is also some evidence of a coherent relationship between SST in the754

models and wind stress (figure 13), from March onwards. This is a lagged755

anti-phase relationship, i.e., as wind stress decreases, SST increases but with756
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a lag of approximately an eighth of a cycle or less. This is due to the shoaling757

of the mixed layer as wind stress decreases: a shallower mixed layer will mean758

the effect of the surface heat flux will be concentrated in a thinner band of759

water, and in the spring the surface heat flux will tend to warm the ocean.760

Hence SST increases as the wind stress decreases. The relationship between761

wind stress and observed SST is much more tenuous than with the model762

SSTs, due to the processes in the real ocean and atmosphere not present in763

Figure 12: Wavelet coherence for MLD and wind stress. Otherwise as in figure 10.

34



the models nor in the reanalysis surface forcing.764

6. Conclusions765

Five mixed layer models driven by ERA-Interim surface forcing have been766

compared with a year of observations in the North Atlantic. All the mod-767

Figure 13: Wavelet coherence for SST and wind stress. Otherwise as in figure 10.
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els reproduce SST fairly well in terms of the annual cycle, except that the768

KPP model has summer SSTs which are approximately 3◦C warmer than769

the observations. Short timescale variability in SST is not predicted well by770

the models, likely due to the many sources of variability in SST not present771

in a 1-D model. The models do not reproduce the observed MLS well, but772

this is not unexpected as advection is expected to play a role in MLS in773

this region, and because precipitation biases are not uncommon in reanalysis774

surface forcing data. The biases are large enough to produce a non-trivial775

density bias. In particular, the slightly cooler temperatures and higher salin-776

ities in the winter in all models would lead to the formation of ENACW of777

greater density than that in the real ocean, which could have related effects778

on ocean circulation. However, this does not seem to affect the subsequent779

spring restratification and evolution of the MLD and SST.780

Both the wind stress and surface heat flux are involved in driving periods781

of temporary deepening and shoaling of the MLD through the spring, though782

the effects of wind stress are felt throughout spring and summer whereas the783

surface heat flux is only a factor in May and June. Wind stress is not related784

to MLD during the autumn despite the high wind stresses in autumn. We785

hypothesize that the deepening of the MLD in autumn is so strongly driven786

by the annual cycle in surface heat flux that the winds are less significant in787

the autumn.788

The surface heat flux also drives a diurnal cycle in MLD and SST from789

March onwards, though this effect is much clearer in the models than in the790

observations. We believe this is because the models and reanalysis forcing791

data do not include a number of processes which complicate the observed792

SST and MLD, so the diurnal cycle is less apparent in the observations.793

We are not able to say that one model is ’better’ than the others, they794

all have strengths and weaknesses. PWP has the lowest bias in spring MLD,795

second lowest in summer MLD, but it has the largest biases in autumn and796

winter MLD. Similarly it has the lowest biases in winter and spring SST, but797

fairly large SST biases in autumn and summer. KPP’s IMLD has by far the798

smallest deep bias in winter, but KPP also has by far the largest bias in SST.799

TKE has the smallest annual mean bias in MLD but the second largest bias800

in spring SST. GLS has the second smallest annual mean bias and smallest801

rms difference in SST, but the largest bias in annual mean MLS and largest802

rms difference for MLS. OSMOSIS has the smallest bias in annual mean803

MLS, but the second largest bias in annual mean MLD and SST.804

It is noticeable that all models had low biases in MLD in spring and sum-805
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mer despite the MLS and MLD biases in the preceding winter. This suggests806

that initializing these models using a relatively low resolution profile (e.g.,807

from an Argo float) in late winter when stratification is low may give a quite808

reasonable spring stratification, which could be useful in regions where higher809

resolution profiles capable of resolving a steep pycnocline are not available.810

The variability in winter time MLD, which may be of significance for nutri-811

ent fluxes and winter bloom dynamics, is reproduced much better by model812

IMLDs than model MLDs.813

Given the lack of differences between them, any of these models would814

give similar results when used for modelling in seasonal areas similar to the815

OSMOSIS site, i.e., at mid latitudes away from topography.816
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Highlights 

 

Unique, year‐long, high resolution glider dataset compared with 5 mixed layer models. 

 

Model winter mixed layers are too deep, with average biases between 160 and 228 m. 

 

After spring restratification, biases in MLD are small and unrelated to winter biases. 

 

Model biases in mixed layer salinity produce non‐trivial density biases, but this does not affect the 

subsequent spring and summer MLD and SST. 
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