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ABSTRACT 

Legal Judgement Prediction (LJP) is the task of automatically 

predicting the outcome of a court case given only the case 

document. During the last five years researchers have successfully 

attempted this task for the supreme courts of three jurisdictions: 

the European Union, France, and China. Motivation includes the 

many real world applications including: a prediction system that 

can be used at the judgement drafting stage, and the identification 

of the most important words and phrases within a judgement. The 

aim of our research was to build, for the first time, an LJP model 

for UK court cases. This required the creation of a labelled data 

set of UK court judgements and the subsequent application of 

machine learning models. We evaluated different feature 

representations and different algorithms. 

Our best performing model achieved: 69.05% accuracy and 69.02 

F1 score. We demonstrate that LJP is a promising area of further 

research for UK courts by achieving high model performance and 

the ability to easily extract useful features. 

CCS Concepts 

• Information systems➝Content analysis and feature selection 

• Information systems➝Clustering and classification                

• Information systems➝Document topic models. 
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1. INTRODUCTION 
The ability of computers to predict the outcome of legal cases 

from the text documentation began to attract serious attention 

from the 1960s onward. Lawlor [13] argued that it should be 

possible to predict how the facts and legal arguments of a case 

would be received by a judge. In the subsequent decades several 

studies [2, 3, 26] have attempted to manually derive a legal 

calculus, which is defined as an abstract system of argument 

structures or schemes that are linguistically realised in legal texts. 

A new approach [21], based on machine learning techniques, 

emerged to move the field forward. The first attempts [9, 11, 17] 

used machine learning models to predict the judgements of the 

Supreme Court of the United States (SCOTUS). These attempts 

used document tags as predictive features, tags such as type of 

case and judge name.  

Subsequent researchers built predictive models which relied only 

on unstructured text features, this became known as LJP. Aletras 

et al. [1] were the first to apply this approach, attempting LJP on 

the European Court of Human Rights (ECHR) data set. Three 

subsequent published studies share a common methodology and 

research objectives, two of those also used the ECHR data set [16, 

18], and the other used the French Court of Cassation data set [19]. 

Our research also aims to rely solely on text-derived features and 

machine learning. It will be the first study to attempt LJP for UK 

court decisions and represents further important evidence of the 

potential to successfully apply machine learning for LJP. 

There are two significant problems this study is required to 

overcome when attempting LJP on UK court documents. The first 

is the currently limited ability of Natural Language Processing 

(NLP) techniques to recognise complex semantic structures such 

as arguments. The second problem is specific to the UK; there is 

currently no structured public data set of UK court cases. 

Our research aim is to build an interpretable predictive model for 

UK court cases using only the court documents. The objectives 

that will help us to achieve this aim are: 

 To build a labelled data set of UK court judgements with an 

outcome variable that can be used in prediction tasks. 

 To build a prediction model using machine learning 

techniques previously applied by comparable studies. 

 To test alternative text mining techniques such as word 

embedding features with neural network models. 

In this paper we explain how we built our labelled data set for UK 

court judgements and then used it to test existing and newer text 

mining techniques obtaining good accuracy and usable features. 

Section 2 reviews similar work done by other researchers; Section 

3 explains our methodology; Sections 4 and 5 present our text 

mining results and discussions; and finally we present our 

conclusions in Section 6. 

2. RELATED WORK 
One of the very important decisions that affects any text mining 

application is how to represent text as features that can be handled 

by machine learning algorithms. The n-gram has become a hugely 

popular feature set in text classification tasks, where a gram is 

often equivalent to a word. First utilised by Shannon [23], its main 

advantage is that it allows documents to be represented as vectors. 

All individual words (one-grams) or larger n-grams from the 

corpus are represented as columns, and each document is 

represented as a single row in the matrix. The value at the 

intersection of the row and column represents how often a term, 

or n-gram, appears in a document. This value is most commonly a 

simple count statistic or the Term Frequency-Inverse Document 

Frequency (TFIDF) [25] statistic. These vector space models 

proved beneficial for the application of machine learning models. 

The first paper to apply these features to the task of LJP was 

Aletras et al. [1], who used n-grams ranging from one-grams to 
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four-grams. Three other published studies [16, 18, 19] followed 

using the same methodology. 

An alternative approach known as generative language models 

has also been applied to extract feature sets for the task of text 

classification. Blei et al. [5] developed the Latent Dirichlet 

Allocation (LDA) algorithm which implements this theory by 

constructing topic clusters out of text documents. The algorithm 

assumes that documents are composed of a random mixture of 

latent topics, and each of the topics is characterised by a 

distribution over words. Some studies [5, 15] have been able to 

demonstrate a performance benefit in text classification tasks to 

support the application of LDA feature sets. 

A recent alternative to the vector space feature set emerged to 

address their short-comings; Bengio et al. [4] argued that n-gram 

feature sets were problematic as they did not consider the 

similarity between words. They developed a technique known as 

neural network-based word embeddings in which each word is 

represented as a vector with multiple dimensions. These 

dimensions contain values that encode information concerning the 

target word’s surrounding words. This work was supported by 

Mikolov et al. [20] who developed the Word2Vec algorithm that 

we will use. This algorithm has two distinct phases: the first phase 

involves training a neural network to learn word distributions. We 

will use the Continuous Bag Of Words (CBOW) architecture, 

where a window of surrounding words is used to predict a target 

word. The second phase feeds the word vectors from the learned 

hidden layer into an output layer, to represent each word as an n-

dimensional vector. 

In terms of classification algorithms, we looked at the current LJP 

literature to select suitable models. All the LJP studies mentioned 

so far have used Support Vector Machine (SVM)s. Their 

popularity is due to their high performance across a range of text 

classification tasks [10, 27, 29]. Additionally we included the 

Logistic Regression (LR), Random Forest (RF), and k-Nearest 

Neighbour (k-NN) as used by Liu and Chen [16]. To meet our 

third research objective we included two neural networks: a 

Single Layer Perceptron (SLP) and a Multi-Layer Perceptron 

(MLP).  

Figure 1. Research methodology workflow. 

3. RESEARCH METHODOLOGY 

3.1 Data Collection 

The data set used in this study was restricted to the judgements 

issued by the UK’s highest court of appeal, similar to other 

studies [1, 6, 16, 18, 19] which focused on one court within one 

country’s legal system. To collect these judgements a web scraper 

was built. 

3.2 Data Labelling 
Each web-scraped case file was divided into the separate 

judgements passed down by the individual judges. Next, each of 

these rulings were automatically labelled into ‘allow’ or ‘dismiss’ 

using a pattern matching approach. The files which could not be 

labelled with an outcome were individually examined before 

being excluded from the data set. They represent the cases where 

no final judgement was reached by the judges. To check the 

accuracy of the labelling methodology a random stratified sample 

of 5% of the data set was examined. A total of 4,959 text files 

were labelled after exclusions. This is comparable to three other 

studies where 584 cases [1, 16] and 3,132 cases [18] were used. It 

is, however, far fewer than the number of cases used in the study 

by Medvedeva et al. [19] on the French court of Cassation which 

had 126,865 cases. Our data collection methodology and code has 

been made publicly available
1
. 

3.3 Pre-processing 
Text that identified with the outcome labels was removed from 

the data set to avoid giving the classifier the obvious information; 

this approach is inline with three other studies [1, 18, 19]. 

However, Liu and Chen [16] do not mention this stage in their 

review, we are thus cautious about their model results. To ensure 

that no words could be used as proxies for the labels an additional 

review of the most highly correlated model features was 

performed. 

The remaining text consisted of a total set of 188,294 unique 

tokens (words). Reducing this high degree of dimensionality in 

our data set was considered important to prevent generalisation 

error and model over fitting. Therefore, we used the pre-

processing steps set out by Joachims [10] as our guide and we 

achieved a significant reduction. The results of applying the 

different pre-processing steps such as converting to lowercase, 

removing numbers and stop words and lemmatization are 

presented in Table 1. 

Table 1. Pre-processing steps and resulting token count 

 Unique token (word) count 

No pre-processing 188,294 

Lowercase conversion 170,126 

Numbers removed 166,949 

Stop words removed 166,638 

Lemmatize 157,648 

 

3.4 Feature Engineering 
To investigate which features gave best results for our specific 

environment, our feature sets were: n-grams, topic clusters and 

word embeddings. For n-grams we used the standard count and 

TFIDF implementations. We set n as one of the parameters to be 

optimised with a range from one to four. For the topic clusters we 

decided upon the LDA algorithm; a popular topic modelling 

                                                                 

1 Code available at 

https://github.com/BStricks/legal_document_classifier_V2 
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algorithm [5, 15]. We set the number of topics as one of the 

parameters to be optimised, ranging from five to thirty. For the 

word embedding feature set there was only one relevant study to 

draw from [6]. We chose to use untrained embeddings because 

our corpus contained a large number of words that was unique to 

the legal domain. These context specific words could have been 

problematic for pre-trained models such as those trained on 

Google’s news feed. We also chose to use the Doc2Vec algorithm 

[14], which is an extension of the original Word2Vec algorithm 

that is able to generate document level vectors. 

3.5 Model Tuning 
All the above algorithms were implemented in the Python 3 

language using the Scikit-learn package [22]. Below are the 

optimal parameters for each algorithm found by cross-validated 

random search, taken from the feature set that performed best: 

SVM and TFIDF vectors: n-gram range (1,3), minimum feature 

occurrence (1), maximum features (10000), kernel (linear), c (5).  

RF and TFIDF vectors: n-gram range (1,4), minimum feature 

occurrence (4), maximum features (4000), number of estimators 

(1000), max depth (20).  

LR and TFIDF vectors: n-gram range (1,2), minimum feature 

occurrence (4), maximum features (None), solver (lbfgs), c (5).  

k-NN and Doc2Vec: clusters (5).  

SLP and TFIDF vectors: n-gram range (1,2), minimum feature 

occurrence (2), maximum features (10000).  

MLP and TFIDF vectors: n-gram range (1,3), minimum feature 

occurrence (4), maximum features (10000), solver (adam), hidden 

layers (2,2), activation (logistic). 

We report also for comparison the accuracy of Scikit-learn’s 

dummy classifier which respects the training set’s class 

distribution [22]. 

3.6 Evaluation 
Our data set was split into two partitions. The first 80% of the 

data was used for a ten-fold cross-validated random search for 

hyperparameter optimisation with Scikit-learn [22]. The final 20% 

of the data, was used as a test set to report model scores. In LJP 

research average accuracy is the most commonly reported model 

score, we will report this for our test data. Our study will 

additionally report: F1, precision, and recall, as they provide 

important additional information on performance. 

4. RESULTS 
As shown in Table 3, the top performing combination of model 

and feature set was the LR algorithm paired with the TFIDF 

vector representation. This combination achieved an F1 score of 

69.02, a precision of 69.05% and a recall of 69.02%. Overall both 

the RF and LR algorithms performed well across feature sets. 

SVM, k-NN, and SLP algorithms tended to perform worse across 

most of the feature sets. Overall the best performing feature sets 

were the Count and TFIDF vectors, with the topic clusters and 

word embeddings feature sets performing worse. 

For the majority of the model and feature set pairings the F1, 

recall, and precision scores were roughly equivalent. This is partly 

due to having a balanced data set; with 2,525 ’Allow’ cases and 

2,434 ’Reject’ cases. It also suggests that the models are generally 

good at selecting true positives and avoiding false positives, as 

well as selecting many of the relevant data points, avoiding false 

negatives. Additionally the best performing models from each 

feature set models were analysed with Receiver Operating 

Characteristic (ROC) curves. This was done to better understand 

performance at various threshold levels of sensitivity (True 

Positive Rate or recall) and specificity (or False Positive Rate). 

The curves, see Fig. 2, support our initial observations of stronger 

model performance for the count and TFIDF vector feature sets. 

 

Figure 2. ROC curves for best model and features pairings. 

 

5. DISCUSSION  

5.1 n-grams 
The strongest performing feature set as measured by the 

prediction scores was the TFIDF vectors composed of one-grams 

to two-grams. Given other text classification study results in this 

area, the high performance of this feature set was expected. Next 

we considered the usability of the n-gram features, this was an 

important secondary consideration when evaluating model 

performance. We extracted the most important n-gram features for 

our strongest performing vector-space model. Separating the 

features by outcome label, these are presented in Table 2. A 

preliminary review shows that these features contain interpretable 

meanings, and that most of them would generalise well to new 

cases. 

 

Table 2. Most important n-gram features for the LR model 

extracted from the TFIDF representation associated with each 

outcome 

 Top 15 most important features 

Reject 

rely, Iraq, instance, submit, minimum, actual, main, 

wreck, hire, hall, covenant, territory, 

regime, agency, product 

Allow 

restore, remit, siac, cross appeal, restore order, 

carrier, situation, segregation, account, declaration, 

directive, commission, avoid, perform, long 
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5.2 Topic Clusters 
Topic clusters performed relatively poorly compared to the other 

feature sets, with the best performing model achieving an F1 score 

of 57.63. Despite these low scores, we assessed their usability by 

extracting the main features for each topic in Table 4. We can see 

promising results with each of the topics appearing to coalesce 

around similar legal areas and terminology. However, a full 

review of the topics by a trained lawyer may be necessary, though 

it is considered outside the scope of this paper. 

 

Table 4. Topic clusters and the most important features 

associated with each. (’pron’ is code for all pronouns) 

Topic number Top 5 most important topic features 

1 act, pron, provision, section, parliament 

2 pron, court, right, tax, company 

3 pron, order, court, make, sentence 

4 pron, act, lord, rule, board 

5 pron, lord, friend, noble, pron noble 

6 pron, company, pay, tax, payment 

7 pron, article, right, state, convention 

8 pron, offence, criminal, act, police 

9 pron, child, case, pron, pron court 

10 pron, court, decision, case, appeal 

11 pron, law, state, court, jurisdiction 

12 pron, regulation, work, member, directive 

13 pron, case, claim, damage, lord 

14 pron, right, property, land, use 

15 pron, contract, party, agreement, clause 

5.3 Word Embeddings 
Our experiments show that the Doc2Vec word embedding feature 

set performed reasonably well with the best model achieving an 

F1 score of 64.17. The expectation had been that word 

embeddings would deliver the best overall model, given that other 

researchers have used this feature set to achieve state of the art 

results. Our explanation for the observed results is that whilst the 

word embeddings incorporated more contextual information than 

the other feature sets, the low number of data points in our data 

set may not have provided the necessary context. Given the 

success found elsewhere with pre-trained word embeddings we 

could attempt to construct these for future studies. A potential 

corpus constructed of all legal judgements from UK courts would 

provide ideal pretraining for our task. Finally we considered 

feature usability; it is noted that they provide significantly less 

insight than our alternative feature sets. 

5.4 Machine Learning Algorithms 
We can say that the k-NN and RF algorithms delivered the most 

consistent results across the feature sets. Whereas the SVM and 

LR algorithms less consistent performance, determined partly by 

feature set. We can say that in almost all cases the machine 

learning algorithms performed better with a reduced feature space. 

As demonstrated by the parameters selected during cross-

validation. 

5.5 Neural Nets 
Our choice of artificial neural network architectures for our LJP 

task did not provide a clear improvement over our standard 

machine learning models. We used two of the simplest models, 

whereas text mining researchers working in other domains have 

recently applied more complex architectures with good results. As 

expected the MLP out-performed the SLP; this was most likely 

due to the complex nature of the classification problem. MLP’s 

have an ability to handle complex decision boundaries which may 

exist in this problem. 

Convolution Neural Networks [12, 30], Recurrent Neural 

Networks [24] or other Deep Learning algorithms may be more 

suitable for word embeddings [7, 8]. Also, the unpublished results 

of Chalkidis et al. [6] show the promise of the Hierarchical 

Attention Network (HAN) architecture. Their models achieved 

state of the art performance, due to the HAN architecture’s 

suitability for document classification [28]. 

It is also worth considering that given the black box nature of 

these algorithms it is much harder to understand which features 

are used by the models when making their predictions. This 

means that even those studies [6] which have successfully used 

neural networks to boost LJP results have been unable to justify 

model decisions. Current research [6] indicates that there is the 

potential for attention scores to be used as a proxy for feature 

extraction; however, this metric has not been thoroughly reviewed 

or tested for use by legal experts. 

6. CONCLUSION AND FURTHER WORK 
Against our first objective we achieved the creation of 100 years 

of labelled UK court judgements. Against our second objective 

we delivered a predictive model that was both accurate and highly 

interpretable. We found that both vector space feature sets were 

able to deliver good results, though TFIDF features paired with 

the LR algorithm achieved the highest F1 score of 69.02. 

Extracting the most important features from the vector space and 

topic cluster models was a relatively easy task and indicates good 

Table 3. Results showing Accuracy, F1, Precision and Recall measurements on the test data for different model and feature pairings 
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potential model usability. Our third objective was the application 

of word embeddings and neural networks to the task of LJP. Our 

results were unable to show that word embeddings combined with 

our choice of neural networks could improve model performance. 

A number of more advanced neural network architectures have 

been used to great effect in other text classification tasks, we 

believe these could be used to great effect for LJP. Significantly 

improving the results we had with the SLP and MLP algorithms. 

The use of ngrams and topic clusters proved successful as 

predictive feature sets, however, in order to understand their 

usefulness further testing is needed. Our proposal would be for the 

independent examination and testing of the extracted features by 

professional lawyers. 
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