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Abstract

Lysine-specific demethylase 1 (LSD1) is frequently elevated in acute myeloid leukemia 

(AML) and often leads to tumorigenesis. In recent years, numerous LSD1 inhibitors 

based on tranylcypromine (TCP) scaffolding have reached clinical trials. Most TCP 

derivatives were modified at the amino site of cyclopropane motif. Herein, we for the 

first time introduced a sulfonamide group in TCP benzene ring of series a compounds 

and performed a systematical study on structure and activity relationships by varying 

sulfonamide groups. The introduction of sulfonamide significantly increased the 

targeting capacity of TCP against LSD1. Moreover, we discovered that the Boc attached 

LSD1 inhibitors (labelled as series b compounds) substantially improved their anti-

proliferation capacity towards AML cells. The intracellular thermal shift and LC-

MS/MS results implied that Boc enhanced the drug lipophilicity and might be removed 

under the cancerous acidic environment to release the real pharmacophore, evidenced 

by the fact that a structurally similar but acidic inert pivaloyl to replace Boc 

dramatically dropped the cellular anti-proliferation effect. Finally, a benzyl group 

installed at the amino site to appropriately increase lipophilicity led to trans-4-(2-

(benzylamino)-cyclopropyl)-N,N-diethylbenzenesulfonamide a10 that showed better 

anti-proliferation activity in AML cells and enzymatic inhibition against LSD1. Taken 

together, our work offers a novel TCP-based structure and provides a prodrug strategy 

for the discovery of potent LSD1 inhibitors by having appropriate lipophilicity.

Keywords: Lysine-specific demethylase 1; Inhibitor; Acute myeloid leukemia; 

Lipophilicity; Prodrug.
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1. Introduction

Aberrant epigenetic modification is a hallmark of hematological malignancy and 

correlated with the leukemic transformation.[1, 2] Simultaneously, epigenetic 

regulation is a highly dynamic process manipulated by multiple enzymes, and such 

process can be used as a potential drug target.[3-6] An epigenetic modification enzyme, 

lysine-specific demethylase 1 (LSD1, also known as KDM1A), is a nuclear amine 

oxidase homolog and specifically targets mono- and di-methylated lysine 4 and lysine 

9 of histone H3 (H3K4me1/2, H3K9me1/2) using flavin adenine dinucleotide (FAD) 

as the coenzyme.[7-11] Evidences suggest that LSD1 is often elevated in acute myeloid 

leukemia (AML), particularly poor-differentiated AML harboring chromosomal 

translocation.[12] A combination of LSD1 inhibitors with all-trans-retinoic acid 

(ATRA) has been used to break the differentiation blockade in AML.[13] Therefore, 

LSD1 is emerging as an essential target for AML therapy.

In the past decades, numerous LSD1 inhibitors were developed and could be divided 

into irreversible and reversible types according to their action mechanisms.[14-25] 

Currently, irreversible LSD1 inhibitors based on tranylcypromine (TCP) scaffolding 

have achieved good progress, illustrated by the two most advanced drug candidates 

ORY-1001 and GSK2879552 (Figure 1A).[26, 27] Their inhibition mechanism 

involves the formation of an amine cation radical to covalently react with FAD to block 

the biological function of LSD1 (Figure 1B). As far as we know, ORY-1001 and 

GSK2879552 have entered into phase Ⅰ clinal trials with enzymatic inhibition at a 

nanomolar level (Figure 1C). The development of irreversible LSD1 inhibitors often 

focuses on the alteration of the cyclopropane amino side, and there are relatively few 

reports of modifications on the benzene ring.[28-31] The sulfonamide group is 

frequently employed in the drug development [32] and it is shaped in a tetrahedron 

three-dimension, very different from the planar amides.[33] Thus, it was of our interest 

to install a sulfonamide on the benzene ring of TCP to develop novel potent LSD1 

inhibitors.
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Figure 1. (A) The structures, (B) inhibitory mechanism and (C) enzymatic activities of 

three representative irreversible LSD1 inhibitors based on TCP scaffolding.

2. Results and discussion

2.1. Chemistry

Numerous LSD1 inhibitors were often modified at the cyclopropane amino side. 

Structure-activity relationship studies (SARs) on the benzene ring were relatively scant, 

for example, a reported LSD1 inhibitor T-3775440 has a para-positioned 

carboxamide.[34] For the first time, we introduced the sulfonamide group at the 

benzene ring side of TCP to develop novel LSD1 inhibitors (Figure 2). As a result, a 

series of compounds defined as series a was designed. Simultaneously, in our previous 

work, compounds with Boc group contributed to an increased cellular uptake, and it 

was of our interest to further explore its advantage. Thus, Boc group was newly 

introduced at the cyclopropane amino side to obtain series b compounds. Meanwhile, 

c9 with a structurally similar pivaloyl was also designed.
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Figure 2. The racemic compounds designed from tranylcypromine. (A) Series a 

compounds with a free amine. (B) Series b compounds with Boc at the cyclopropane 

amino site. (C) Series c compound with a pivaloyl.

All the racemic compounds a1-a10, b1-b10 and c9 were synthesized via the routes 

described in Scheme 1. Commercially available 2-phenyloxirane (labeled as 1) was 

reacted with triethyl phosphonoacetate in the presence of n-BuLi to acquire trans-

cyclopropyl ester 2.[33] Following a procedure of Huntress’ work,[35] 2 was treated 

with chlorosulfonic acid in anhydrous dichloromethane, and a chlorosulfonyl group was 

successfully installed in the para position of the benzene ring to afford compound 3. 

Then, a series of different amino groups were added respectively to get 4 with varying 

sulfonamides. Series b compounds b1-b9 were then obtained after three steps. Firstly, 

4 were hydrolyzed into acids 5 under subjection to LiOH, and the following coupling 

reaction with DPPA at room temperature provided acyl azide 6. Curtius rearrangement 

in the refluxing t-BuOH resulted in the formation of compounds b1-b9. Meanwhile, 

deprotection of Boc using HCl in methanol gave series a compounds a1-a9 in a 

hydrochloride salt form (Scheme 1A). For the preparation of c9, compound a9 reacted 

with pivaloyl chloride in presence of DIPEA to assemble c9 (Scheme 1B). Additionally, 

compound b10 was also synthesized from b9 by introducing a benzyl group (Scheme 

1C), and the Boc deprotection from b10 afforded compound a10. As a result, both alkyl 

and aryl primary amines as well as both cyclic and acyclic secondary amines were 
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installed to construct three series of novel sulfonamide TCP derivatives for further 

anticancer screening.

Scheme 1. Synthesis of the designed compounds. Reagents and conditions: (a) triethyl 

phosphonoacetate, n-BuLi, 1,4-dioxane, r.t., then microwave at 135 oC for 60 min; (b) 

chlorosulfonic acid, anhydrous CH2Cl2, 0 oC-r.t., 3 h; (c) DIPEA, anhydrous CH2Cl2, 0 

oC-r.t., 2 h; (d) THF/H2O (3:1), LiOH, r.t., 3 h; (e) Et3N, DPPA, THF, r.t., 4 h; (f) t-

BuOH, reflux, 12 h; (g) HCl/MeOH, r.t., 2 h; (h) DIPEA, anhydrous CH2Cl2, r.t., 2 h; 

(i) NaH, benzyl bromide, THF, r.t., 2 h. Note: the compounds are racemic.

2.2. Preliminary anti-proliferation screening of modified TCP derivatives at the 

cellular level

The selection of appropriate cancer cell lines to evaluate the anti-proliferation effect 

of inhibitors is essential for acquiring realistic results. Several reports have studied drug 

sensitivity to LSD1 inhibitors in numerous cell lines of hematopoietic malignancy, and 

acute myeloid leukemia MV4-11 was regarded as the drug-sensitive cell line towards 

LSD1 inhibition.[36, 37] Before the preliminary screening of our synthetic compounds, 

we wanted to confirm the reported results firstly. LSD1 was significantly elevated in 

acute myeloid leukemia via analyzing patient-derived data from the Oncomine database 

(Figure S1A). After ORY-1001 and GSK2879552 were confirmed to inhibit LSD1 at 

nanomolar concentrations (Figure 1C), these two compounds and TCP were employed 

to screen AML cell lines treated with each drug at 5 μM for 8 days. Among six tested 
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AML cell lines, MV4-11 was found to be most sensitive towards LSD1 inhibition, 

which was consistent with literature reports (Figure 3A and Figure S1B-F).[36] 

Although both ORY-1001 and GSK2879552 quickly reached 40 % inhibition of cancer 

cell growth at low concentrations (< 1 μM), they could not inhibit cell growth further 

at higher concentrations (Figure 3B). The results suggested that the development of 

more potent LSD1 inhibitors to increase their cellular anti-proliferation capacity would 

be highly favorable.

Compounds a1-a9 and b1-b9 were screened for their anti-proliferation capacity 

using MV4-11 cell line at three gradient concentrations (1 μM, 10 μM and 30 μM) via 

MTS assay, as shown in Figure 3C-E. At a low concentration of 1 μM, most of the 

synthetic compounds did not prevent cancerous cell growth obviously. While the 

dosage increased (10 μM and 30 μM), some compounds especially b9 started to show 

substantial anti-proliferation capacity, which was significantly better than the three 

typical positive compounds (TCP, ORY-1001 and GSK2879552). Series b compounds 

with Boc group exhibited better anti-proliferation activity than the corresponding series 

a compounds with only free amines at 10 μM and 30 μM (Figure 3F).

Compared to the simple TCP, the lipophilic alkylsulfonamides seemingly increased 

the anti-proliferation potency of many of series b compounds. Notably, the best 

compound b9 almost fully inhibited the cell growth of MV4-11, much better than three 

well-known LSD1 inhibitors. CLogP is a classic parameter representing lipid solubility, 

and its range between 1 to 5 is optimal for the drug development. To study the potential 

relationship between lipophilicity and anti-proliferation capacity of the synthetic 

compounds, CLogP values were calculated by ChemDraw and the correlation analysis 

was conducted through GraphPad Prism. Series a compounds exhibited a lower CLogP 

value (< 2.4), likely leading to the worse cellular uptake. Consequently, the cell growth 

inhibitory rate of a1-a9 at 30 μM were below 50 % (Table S1). Introduction of Boc 

group improved the lipophilicity of compounds b1-b9, and the inhibition rates were 

elevated as a result. Especially, while the ClogP reached the range of between 3.0 and 

4.0, the anti-proliferation capacity of compounds was enhanced significantly. 
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Collectively, there was an apparent positive correlation between cell inhibition at 30 

μM dosage and lipophilicity as shown in Figure 3G, implying that series b compounds 

might increase their cellular anti-proliferation capacity via an elevated lipophilicity 

mediated by the Boc group.

Figure 3. Primary cellular anti-proliferation screening of our synthetic compounds. (A) 

Cell counting after treatment with three typical TCP-derived LSD1 inhibitors at 5 μM 

for 8 days. (B) Cell viability after treatment with three inhibitors at gradient dosages for 

6 days, determined by MTS assay. (C-E) Preliminary anti-proliferation effect screening 

of TCP derivatives in MV4-11 cell line via MTS assay at three gradient concentrations, 

(C) 1 μM, (D) 10 μM and (E) 30 μM. (F) Quantitative anti-proliferation comparison of 

three known inhibitors, series a and series b compounds. (G) Correlation analysis of 

anti-proliferation capacity at 30 μM against CLogP values. All data are representative 
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of 3 independent experiments and shown as mean ± SD of triplicates. n.s. no 

significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by unpaired, 2-tailed 

Student’s t test.

2.3. Comparison between series a and b compounds at the enzymatic level

Following the preliminary cellular anti-proliferation screening results, we further 

look at the enzymatic inhibition activity of these two series compounds. Targeting 

ability against LSD1 was determined by a commercially available LSD1 Inhibitor 

Screening Assay Kit (#700120, Cayman Chemical, USA), and IC50 values in the 

enzymatic inhibition level were presented in Table 1. Enzymatic curves were shown in 

Figure S2A-L. All series a compounds were better than the parent inhibitor TCP (IC50, 

22 μM) with their IC50 values at nanomolar levels, indicating that the introduction of 

sulfonamide groups significantly enhanced their LSD1 targeting ability. Surprisingly, 

no significant LSD1 inhibition was observed in all series b compounds at 1000 nM 

(Figure S2M), which was counterintuitive. It seemed that other factors including 

lipophilicity might play a crucial effect on the ani-proliferation capacity of series b 

compounds.

Table 1. Enzymatic inhibitory activity of the synthetic compounds (IC50).

Series a  IC50 (μM) Series b     IC50 (μM)
a1 0.3691 b1     > 1
a2 0.2006 b2     > 1
a3 0.4927 b3     > 1
a4 0.4973 b4     > 1
a5 0.2922 b5     > 1
a6 0.8413 b6     > 1
a7 0.1994 b7     > 1
a8 0.2382 b8     > 1
a9 0.1229 b9     > 1

The IC50 value indicated the concentration that achieved half inhibition of enzymatic activity.

2.4. The Boc in series b compounds served as a prodrug functional group

Due to the potential lability of Boc to acids, we hypothesized that Boc might be 

removed within cancerous acid environment to release the real LSD1 inhibitors from 
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series b compounds that did not show detectable inhibition on recombinant LSD1 as 

shown in Table 1. Therefore, the intracellular LSD1 targeting ability was further tested 

via thermal shift experiments within cells that were pretreated with each compound. 

The results, as shown in Figure 4A, indicated that both a9 and b9 could stabilize LSD1 

protein almost to the same level, confirming that series b compounds were able to target 

cellular LSD1. The action mechanism of TCP compounds to inhibit LSD1 is associated 

with the generation of amino cation radicals to covalently form an adduct with FAD 

(Figure 1B).[26, 27] The Boc at the amino site might decrease the nitrogen 

electronegativity to prevent a cation radical from formation, which was the reason why 

b9 did not show apparent enzymatic inhibition of recombinant LSD1. Meanwhile, these 

results might support our hypothesis that Boc in b9 might be removed intracellularly to 

generate the free amine a9 to act as a real LSD1 inhibitor. To further validate our 

hypothesis, the Boc in b9 was changed to a structurally similar pivaloyl group that is 

not easily removed even under strong acid environment. Thus, compound c9 was 

designed and synthesized as shown in Scheme 1B. Cellular thermal shift experiments 

showed that c9 did not stabilize LSD1 significantly and moreover its cellular anti-

proliferation effect dropped dramatically (Figure 4B and 4C). Meanwhile, c9 did not 

inhibit the enzymatic activity of LSD1 in vitro (Figure S3A). Based on these findings, 

the Boc might serve as a prodrug functional group in TCP derivatives to increase cell 

permeability and achieve a more effective anti-proliferation effect.

Furthermore, LC-MS/MS was used to investigate the potential intracellular 

conversion of b9 to a9 into a real LSD1 inhibitor. Firstly, such conversion was tested 

in the culture medium without cells in vitro (Figure S3B). The mass ion signal of a9 

could be detected at pH 6.5 and it substantially increased at pH 6, indicating a 

possibility that series b compounds were able to convert to series a compounds under 

such weak acid conditions. To further validate the in vitro results, MV4-11 cells were 

treated with 10 μM of either a9, b9 or c9 for 3 days and 6 days, and then the cells were 

lysed and extracted using a solvent system (chloroform : methanol : water = 6 : 3 : 1). 

The extract was dried via nitrogen blower concentrator and then re-dissolved in 50 % 
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MeOH/H2O solution for further LC-MS/MS analysis. The data as shown in Figure 4D 

and 4E, clearly demonstrated that a9 could be detected in both samples treated with a9 

and b9. The signal of a9 detected in b9-treated cell samples was significantly higher 

than in a9-treated cell samples. Moreover, cellular concentration of a9 converted from 

b9 steadily sustained high while the a9-treated samples contained less a9 after 6 days, 

likely resulting from the continuous consumption of a9 by covalently binding to LSD1 

co-enzyme FAD as shown in Figure 1B. Meanwhile, a9 was rarely detected in the c9-

treated samples as expected. Taken together, the continuous and steady supply of 

cellular a9 from b9 might contribute to its better anti-proliferation capacity, 

demonstrating the potential of Boc as a prodrug group (Figure 4F).

Figure 4. The intracellular LSD1 targeting capacity of series b compounds with the 

Boc group. (A-B) Cellular thermal shift assay of LSD1 in MV4-11 cells treated for 24 

h with (A) a9, b9 and (B) c9 at 5 μM. The level of LSD1 was determined by Western 

blot. (C) Dose-response curves for the cell viability of MV4-11 cells treated with each 

drug for 6 days, determined by MTS assay. (D-E) LC-MS/MS detection of a9 in MV4-

11 cells treated with each drug at 10 μM for (D) 3 days and (E) 6 days. (F) Potential 

conversion mode from b9 to a9 within cancerous acid environment. All data are 
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representative of 3 independent experiments and shown as mean ± SD. **p < 0.01, ***p 

< 0.001, ****p < 0.0001 by One-way ANOVA, Dunnett test.

2.5. Compounds a9 and b9 promoted myeloid differentiation

Many examples in the literatures demonstrated that the anticancer effect of LSD1 

inhibitors is often involved in the induction of cell differentiation in AML.[26] Since 

CD11b is regarded as a myeloid differentiation marker, we detected the level of CD11b 

to compare the effect of compounds a9, b9 and c9. The treatment with each of these 

three compounds for 24 h did not show any impact on MV4-11 cells. However, after 

96 hour treatment, both a9 and b9 significantly induced myeloid differentiation while 

c9 did not (Figure 5A-C). Meanwhile, compound b9 induced more differentiation than 

a9, which might result in the better anti-proliferation activity of series b compounds. 

Similar results were also validated in another AML cell line, HL-60 (Figure 5D-F).

Figure 5. Compounds a9 and b9 induced myeloid differentiation. (A, B) Flow 

cytometry analysis of CD11b on MV4-11 cells treated for (A) 24 h and (B) 96 h with 

each drug at 10 μM. (C) Statistic quantitative analysis of the mean CD11b fluorescence 

intensity from Figure 5A and 5B. (D, E) Flow cytometry analysis of CD11b of HL-60 

cells treated for (D) 24 h and (E) 96 h with each drug at 10 μM. (F) Statistic quantitative 

analysis of the mean CD11b fluorescence intensity from Figure 5D and 5E. All data are 

representative of 3 independent experiments and shown as mean ± SD. n.s. no 
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significance, ***p < 0.001, ****p < 0.0001 by unpaired, 2-tailed Student’s t test.

2.6. Further lipophilic benzyl installation led to a10 with potent LSD1 inhibition 

and improved anticancer capacity

Based on our observation, appropriate lipophilicity was crucial for TCP-based LSD1 

inhibitors to enter cancer cells to enact their intracellular biological function. Compared 

with series a compounds, series b compounds with a Boc had a properly high CLogP 

values and displayed better anticancer capacity, likely due to their improved 

intracellular uptake. Therefore, a lipophilic functional group could be installed at the 

amino site to increase lipophilicity while remaining enzymatic LSD1 inhibitory 

potency. Thus, compound a9 with the best enzymatic LSD1 inhibition was selected to 

install a benzyl group at the cyclopropane amino site, leading to a new compound a10 

with an elevated CLogP. The introduction of the lipophilic benzyl group surprisingly 

improved the cell growth inhibition and LSD1 targeting capacity (Table 2 and Figure 

S4). Notably, a10 showed better selectivity against LSD1 over other homologous 

enzymes MAO-A and MAO-B. Meanwhile, the cellular anti-proliferation capacity of 

b10 dropped compared to the parental compound b9, implying that too high 

lipophilicity (CLogP > 5) might impair cell permeability of b10 although b10 was able 

to bind to cellular LSD1 as demonstrated in the cellular thermal shift experiment (Table 

S2 and Figure S5A). Since a10 showed the best potency against recombinant LSD1 

although it inhibited MV4-11 at a slightly higher IC50 concentration compared to b10 

(Figure S5B), a10 was chosen for further biological studies. Cell counting experiments 

confirmed that a10 significantly blocked cell growth at 5 μM after 6 days of treatment 

(Figure S5C). Moreover, two other AML cell lines Kasumi-1 and BaF3/ITD also 

displayed good anti-proliferation responses to the treatment of a10 (Figure S5D). The 

direct outcome of LSD1 inhibition was an elevation of H3K4 and H3K9 methylation 

levels. Indeed, our experiment confirmed that the degrees of H3K4me1, H3K4me2 and 

H3K9me2 increased significantly after a treatment with a10, especially at 10 μM 

(Figure 6A and 6B). Thermal shift experiment also verified that a10 could bind to 

cellular LSD1 to prevent its thermal destabilization (Figure 6C).
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Table 2. Enzymatic activity (IC50), cell growth inhibition and CLogP of TCP, a9, and 

a10.
IC50 (μM)

Compounds Structure
Cell Growth LSD1 MAO-A MAO-B CLogP

TCP > 30 22a 0.2691 0.5067 1.5

a9 > 30 0.1229 0.8067 0.8975 1.7

a10 15.4 0.0290 0.5255 0.7017 3.9

The IC50 value indicated the concentration that achieved half inhibition of either cell growth or enzymatic 
activity. CLogP values were analyzed via ChemDraw. a Reported in the commercial LSD1 Inhibitor 
Screening Assay Kit.

Since a10 inhibited LSD1 both extracellularly and intracellularly, the consequent 

effect on cell cycle and cell differentiation was tested. After 24 hour treatment, a10 

blocked the cell cycle at G0/G1 phase along with the proportional decrease at S and 

G2/M phase (Figure 6D). Three reported LSD1 inhibitors required longer time to cause 

a substantial cell cycle arrest (Figure S5E), whereas a10 already caused more AML 

cells death. CD11b, a marker of myeloid differentiation, was also examined. The four 

compounds did not exhibit an obvious impact on CD11b expression in MV4-11 cells 

treated for a short 24 h time. However, after 96 hour treatment, a10 substantially 

increased the level of CD11b, better than the other three known LSD1 inhibitors (Figure 

6E). The induction of myeloid differentiation was also validated in HL60 cell line 

(Figure S5F). Taken together, compound a10 targeted LSD1 and subsequently 

prevented cell growth via cell cycle blockade and myeloid differentiation promotion.

The combination of two drugs is often employed to increase their pharmacological 

efficacy.[38, 39] Examples in the literature have demonstrated that LSD1 inhibitors in 

a combination with the clinical drug ATRA exhibited better anticancer effects.[13, 37] 

Our synthetic compound a10 was further investigated in a co-treatment with ATRA, 
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and indeed such a combination achieved a synergistic anti-proliferation effect towards 

MV4-11 cells via MTS assay (Figure 6F，6G and Figure S5G).

Figure 6. Compound a10 caused cell cycle blockade, induced myeloid differentiation 

and exhibited a synergistic effect with the clinical drug ATRA in MV4-11 cell line. (A) 

Western blot of LSD1 methylated markers treated with a10 at various concentrations 

for 24 h. (B) Statistical analysis of the methylation levels in A (Student’s t test, 

unpaired, 2-tailed). (C) Thermal shift assay of intracellular LSD1 with a10 at 5 μM for 

24 h. (D) Flow cytometry analysis of cell cycle after 24 hours treatment with each drug 

at 10 μM (One-way ANOVA, Dunnett test). (E) Flow cytometry analysis of CD11b 

after treatment with each drug at 10 μM for 24 h and 96 h (One-way ANOVA, Dunnett 

test). (F) Dose-response curves of cells co-treated with a10 at various concentrations 

and ATRA at indicated concentrations for 6 days. (G) Combination index (CI) of 

combinations of a10 and ATRA, analyzed by Calcusyn Software. CI less than 1 means 
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a synergistic effect. All data are representative of 3 independent experiments and shown 

as mean ± SD. n.s. no significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3. Conclusions

In our present work, a new series of TCP-based LSD1 inhibitors were developed and 

evaluated against AML. The introduction of sulfonamide groups in TCP benzene ring 

site substantially increased the LSD1 inhibition potency. Meanwhile, our work 

demonstrated that an appropriate lipophilicity and potent LSD1 inhibition contributed 

to the improved anti-proliferation effect of LSD1 inhibitors towards AML cell lines. 

The lipophilic Boc group installed in the polar TCP derivatives benefited the drug 

cellular uptake and could be removed to release the real LSD1 inhibitors under acidic 

microenvironment in cancer cells. Cellular protein thermal shift experiments further 

verified that the best anticancer Boc-attached TCP derivative b9 stabilized intracellular 

LSD1 although it did not inhibit the recombinant enzyme. Moreover, the mass 

spectroscopy further confirmed the intracellular release of the real LSD1 inhibitor a9 

from b9. Finally, a novel compound a10 bearing an appropriate lipophilicity was 

developed, and it substantially inhibited LSD1 and exhibited a good anticancer capacity 

in several AML cell lines. a10 may provide a new structural scaffolding to develop 

more potent LSD1 inhibitors for the therapeutic treatment of acute myeloid leukemia.

4. Experimental section

4.1. Chemistry

4.1.1. General information

Reagents and solvents were commercially available and used without further 

purification. All nuclear magnetic resonance (NMR) spectra, including 1H NMR and 

13C NMR spectra, were recorded on a Bruker Avance 400 MHz and 100 MHz 

spectrometer with TMS as an internal standard. Chemical shifts were exhibited in parts 

per million (δ, ppm) and referenced to CDCl3 with 7.26 for 1H and 77.16 for 13C, and 

to methanol-d4 with 3.31 for 1H and 49.00 for 13C. High-resolution mass spectra (HRMS) 
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were recorded on a Shimadzu Micromass Q-T of Micromass spectrometer by 

electrospray ionization (ESI). Agilent 1100 HPLC system equipped with an Eclipse 

XDB-C18 column was used to determine the purity of all final compounds. The flow 

rate of HPLC was set at 1 mL/min and the gradient elution was run for 15 min, from 10 

% MeOH/H2O to 90 % MeOH/H2O for 8 min and 90 % MeOH/H2O for another 7 min. 

In addition, 1 ‰ formic acid was added to the methanol to elevate the solubility of free 

amine compounds.

4.1.2. The procedures for synthesis of series a and b compounds

The appropriate triethyl phosphonoacetate (4.11 g, 1.1 equiv) was dissolved in 8 mL 

of anhydrous 1,4-dioxane (8 mL), and then n-BuLi (1.23 g, 1.2 equiv) was added at 0 

oC carefully. After stirring for 30 min, 2-phenyloxirane (2.0 g, 1.0 equiv) was added, 

and then the reaction mixture was subjected to microwave at 135 oC for 1 h. The 

reaction was stopped using aqueous saturated NH4Cl, and the mixture was extracted 

with EtOAc. The organic phases were washed with brine, dried over Na2SO4 and finally 

purified with column chromatography (PE/EtOAc = 50:1) to obtain 2 as a red oil (2.87 

g, 91 % yield). Then chlorosulfonic acid (12.5 equiv) was dissolved in anhydrous 

CH2Cl2 (20 mL), and then 2 (2.87 g, 1.0 equiv) in anhydrous CH2Cl2 (5 mL) was 

dropped into the mixture over a period of 1 h at 0 oC. The reaction continued for another 

2 h at room temperature. The mixture was finally extracted with CH2Cl2 three times 

and purified via column chromatography (PE/EtOAc = 5:1) to obtain 3 as a yellow oil 

(2.79 g, 64 % yield). Then a series of amines were introduced at the sulfonyl group side 

and all compounds shared the following general synthetic procedure.

Compound 3 (1.0 equiv) was sufficiently dissolved in anhydrous CH2Cl2, then each 

type of amine (1.2 equiv) and DIPEA (2.0 equiv) was added at 0 oC respectively. The 

reaction was stirred at room temperature for 2 h to obtain 4. Compound 4 (1.0 equiv) 

was dissolved in THF/H2O (3:1) and then LiOH (2.0 equiv) was added. The reaction 

continued for 12 h at room temperature to get 5. DPPA (1.2 equiv) and Et3N (1.2 equiv) 

were added dropwise at 0 oC into the solution of 5 (1.0 equiv) in anhydrous THF. The 

reaction mixture was stirred for 2.5 h at room temperature, and extracted with EtOAc 
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and purified with column chromatography to get 6. The solution of 6 (1.0 equiv) in t-

BuOH was refluxed at 110 oC for 12 h to finally obtain series b compounds b1-b9.

Deprotection of Boc group under an acidic condition gave compounds a1-a9. Series 

b compound was weighed into the bottle, and a HCl solution in methanol was added at 

0 oC carefully. The reaction mixture was stirred at room temperature for 2 h to acquire 

series a compound.

4.1.3. The procedure for synthesis of c9

  Compound c9 was obtained from a9. To a solution of a9 (138.4 mg, 1.0 equiv) in 

anhydrous CH2Cl2 (2 mL), DIPEA (276.8 μL, 3.5 equiv) was added at 0 oC carefully. 

After stirring for 5 minutes, pivaloyl chloride (83.9 μL, 1.5 equiv) was added dropwise 

and the reaction continued at room temperature for 2 h. The mixture was extracted with 

EtOAc and the organic phases were washed with brine, dried over Na2SO4 and finally 

purified with column chromatography (PE/EtOAc = 3:1) to obtain c9 as a white solid 

(43 mg, 27 % yield).

4.1.4. The procedures for synthesis of a10 and b10

  Compounds a10 and b10 were obtained from b9. To a solution of b9 (50 mg, 1.0 

equiv) in anhydrous THF at 0 oC was added NaH (8 mg, 1.5 equiv). The reaction 

mixture was stirred for 30 min, and then benzyl bromide (24 μL, 1.2 equiv) was added. 

The reaction mixture was then warmed to room temperature and stirred for 2 h. The 

mixture was extracted with EtOAc and the organic phases were washed with brine, 

dried over Na2SO4 and finally purified with column chromatography (PE/EtOAc = 8:1) 

to obtain b10 as a white solid (30 mg, 48 % yield). Compound b10 (25 mg, 1.0 equiv) 

was weighed into the bottle, and a HCl solution in methanol was added at 0 oC carefully. 

The reaction mixture was stirred at room temperature for 2 h to acquire a10 as a yellow 

solid (10 mg, 46 % yield) after the solvent was removed under a vacuum.

4-(2-Aminocyclopropyl)-N-ethylbenzenesulfonamide (a1).

Yellow solid, 91 % yield, 96 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.78 (d, 

J = 8.0 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 3.00-2.93 (m, 1H), 2.87 (q, J = 7.2 Hz, 2H), 
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2.51 (m, 1H), 1.59-1.49 (m, 1H), 1.43 (m, 1H), 1.04 (t, J = 7.2 Hz, 3H). 13C NMR (100 

MHz, methanol-d4) δ 145.1, 140.3, 128.4, 128.1, 39.0, 32.4, 22.4, 15.2, 14.5. HRMS 

(ESI): m/z calcd for C11H16N2O2S (M+H)+, 241.1005; found, 241.1000.

Tert-butyl (2-(4-(N-ethylsulfamoyl)phenyl)cyclopropyl)carbamate (b1).

White solid, 72 % yield, 99 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.72 (d, J 

= 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.86 (q, J = 7.3 Hz, 2H), 2.72 (m, 1H), 2.10-

2.02 (m, 1H), 1.43 (s, 9H), 1.25 (t, J = 7.0 Hz, 2H), 1.04 (t, J = 7.3 Hz, 3H). 13C NMR 

(100 MHz, methanol-d4) δ 159.0, 148.2, 139.1, 128.0, 127.6, 39.0, 34.6, 28.7, 25.7, 17.1, 

15.2. HRMS (ESI): m/z calcd for C16H24N2O4S (M-H)-, 339.1384; found, 339.1377.

4-(2-Aminocyclopropyl)-N-phenethylbenzenesulfonamide (a2).

Yellow solid, 92 % yield, 98 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.70 (d, 

J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 7.18 (m, 2H), 7.11 (m, 1H), 7.06 (d, J = 6.9 

Hz, 2H), 3.03-2.96 (m, 2H), 2.95-2.89 (m, 1H), 2.70-2.63 (m, 2H), 2.52 (m, 1H), 1.58-

1.50 (m, 1H), 1.41-1.32 (m, 1H). 13C NMR (100 MHz, methanol-d4) δ 145.1, 140.3, 

139.9, 129.7, 129.5, 128.3, 128.1, 127.4, 45.6, 37.1, 32.4, 22.4, 14.5. HRMS (ESI): m/z 

calcd for C17H20N2O2S (M+H)+, 317.1318; found, 317.1333.

Tert-butyl (2-(4-(N-phenethylsulfamoyl)phenyl)cyclopropyl)carbamate (b2).

White solid, 64 % yield, 100 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.70 (d, 

J = 8.4 Hz, 2H), 7.22-7.28 (m, 4H), 7.17 (d, J = 7.2 Hz, 1H), 7.10 (d, J = 7.0 Hz, 2H), 

3.04 (t, J = 7.5 Hz, 2H), 2.75-2.67 (m, 3H), 2.09-2.00 (m, 1H), 1.43 (s, 9H), 1.31-1.21 

(m, 2H). 13C NMR (100 MHz, CDCl3) δ 156.4, 146.5, 137.8, 137.3, 128.9, 127.3, 127.0, 

126.9, 80.0, 44.3, 35.9, 28.5, 17.0. HRMS (ESI): m/z calcd for C22H28N2O4S (M-H)-, 

415.1697; found, 415.1689.

4-(2-Aminocyclopropyl)-N-cyclohexylbenzenesulfonamide (a3).

Pale yellow solid, 76 % yield, 99 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.80 

(d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 2.97 (m, 1H), 2.50 (m, 1H), 1.65 (m, 4H), 

1.57-1.50 (m, 2H), 1.44 (m, 1H), 1.24-1.05 (m, 6H). 13C NMR (100 MHz, methanol-

d4) δ 144.9, 141.9, 128.2, 128.0, 53.9, 34.9, 32.5, 26.3, 26.0, 22.4, 14.6. HRMS (ESI): 
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m/z calcd for C15H22N2O2S (M+H)+, 295.1475; found, 295.1483.

Tert-butyl (2-(4-(N-cyclohexylsulfamoyl)phenyl)cyclopropyl)carbamate (b3).

White solid, 62 % yield, 100 % purity. 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 

8.3 Hz, 2H), 7.21 (d, J = 7.7 Hz, 2H), 4.94 (s, 1H), 4.68 (d, J = 7.5 Hz, 1H), 3.15-3.03 

(m, 1H), 2.77 (m, 1H), 2.09 (m, 1H), 1.66-1.57 (m, 2H), 1.54-1.46 (m, 2H), 1.43 (s, 

9H), 1.28-1.06 (m, 8H). 13C NMR (100 MHz, CDCl3) δ 146.2, 138.9, 127.1, 127.0, 80.0, 

52.7, 34.0, 29.8, 28.5, 25.3, 24.7, 17.0. HRMS (ESI): m/z calcd for C20H30N2O4S 

(M+H)+, 395.1999; found, 395.1984.

4-(2-Aminocyclopropyl)-N-(tert-butyl)benzenesulfonamide (a4).

Yellow solid, 97 % yield, 96 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.81 (d, 

J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.31 (s, 1H), 2.99-2.91 (m, 1H), 2.48 (m, 1H), 

1.58-1.47 (m, 1H), 1.43 (m, 1H), 1.16 (s, 9H). 13C NMR (100 MHz, methanol-d4) δ 

144.7, 144.0, 128.2, 127.8, 54.8, 32.4, 30.4, 22.4, 14.6. HRMS (ESI): m/z calcd for 

C13H20N2O2S (M+H)+, 269.1318; found, 269.1310.

Tert-butyl (2-(4-(N-(tert-butyl)sulfamoyl)phenyl)cyclopropyl)carbamate (b4).

White solid, 44 % yield, 99 % purity. 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.4 

Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 4.98 (s, 1H), 4.90 (s, 1H), 2.75 (m, 1H), 2.07 (m, 

1H), 1.43 (s, 9H), 1.23 (m, 1H), 1.20 (m, 1H), 1.19 (s, 9H). 13C NMR (100 MHz, CDCl3) 

δ 156.5, 145.9, 141.1, 127.1, 126.8, 80.0, 54.7, 33.3, 30.2, 28.5, 25.4, 16.9. HRMS (ESI): 

m/z calcd for C18H28N2O4S (M-H)-, 367.1697; found, 367.1684. 

4-(2-Aminocyclopropyl)-N-phenylbenzenesulfonamide (a5).

White solid, 82 % yield, 96 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.69 (d, J 

= 7.8 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.19 (t, J = 7.6 Hz, 2H), 7.09-7.01 (m, 3H), 

2.94-2.87 (m, 1H), 2.46-2.38 (m, 1H), 1.52-1.45 (m, 1H), 1.39 (d, J = 6.9 Hz, 1H). 13C 

NMR (100 MHz, methanol-d4) δ 145.5, 139.4, 138.9, 130.1, 128.6, 127.9, 125.7, 122.2, 

32.4, 22.4, 14.6. HRMS (ESI): m/z calcd for C15H16N2O2S (M+H)+, 289.1005; found, 

289.0995.

Tert-butyl (2-(4-(N-phenylsulfamoyl)phenyl)cyclopropyl)carbamate (b5).
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White solid, 26 % yield, 99 % purity. 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 

Hz, 2H), 7.22 (d, J = 7.7 Hz, 2H), 7.13 (m, 3H), 7.05 (d, J = 7.9 Hz, 2H), 6.73 (s, 1H), 

4.86 (s, 1H), 2.73 (m, 1H), 2.04 (m, 1H), 1.42 (s, 9H), 1.24 – 1.16 (m, 2H). 13C NMR 

(100 MHz, methanol-d4) δ 159.0, 148.6, 139.0, 138.2, 130.1, 128.2, 127.4, 125.7, 122.2, 

80.4, 34.6, 28.7, 25.7, 17.1. HRMS (ESI): m/z calcd for C20H24N2O4S (M+H)+, 

389.1530; found, 389.1531.

4-(2-Aminocyclopropyl)-N-(pyridin-2-yl)benzenesulfonamide (a6).

Yellow solid, 89 % yield, 95 % purity. 1H NMR (400 MHz, methanol-d4) δ 8.25 (d, 

J = 5.7 Hz, 1H), 8.13 (t, J = 7.9 Hz, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.45-7.30 (m, 4H), 

2.92 (m, 1H), 2.49 (m, 1H), 1.56-1.49 (m, 1H), 1.38 (dd, J = 14.0, 6.8 Hz, 1H). 13C 

NMR (100 MHz, methanol-d4) δ 150.3, 146.9, 141.7, 139.2, 128.5, 120.2, 117.6, 101.3, 

32.5, 22.4, 14.7. HRMS (ESI): m/z calcd for C14H15N3O2S (M+H)+, 290.0958; found, 

290.0958.

Tert-butyl (2-(4-(N-(pyridin-2-yl)sulfamoyl)phenyl)cyclopropyl)carbamate (b6).

Yellow solid, 50 % yield, 99 % purity. 1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 

5.9 Hz, 1H), 7.79 (d, J = 8.2 Hz, 2H), 7.64 (t, J = 7.3 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 

7.17 (d, J = 7.9 Hz, 2H), 6.78 (t, J = 6.4 Hz, 1H), 4.89 (s, 1H), 2.72 (m, 1H), 2.05 (m, 

1H), 1.42 (s, 9H), 1.27-1.15 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 155.4, 145.8, 

142.5, 140.2, 139.4, 127.0, 126.9, 115.4, 113.9, 33.1, 28.5, 25.3, 16.9. HRMS (ESI): 

m/z calcd for C19H23N3O4S (M+H)+, 390.1482; found, 390.1468.

2-(4-(Morpholinosulfonyl)phenyl)cyclopropan-1-amine (a7).

Pale yellow solid, 91 % yield, 95 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.72 

(d, J = 7.9 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 3.72-3.66 (m, 4H), 2.99 (m, 1H), 2.96-

2.91 (m, 4H), 2.55-2.47 (m, 1H), 1.59-1.50 (m, 1H), 1.46 (dd, J = 13.8, 6.9 Hz, 2H). 

13C NMR (100 MHz, methanol-d4) δ 146.0, 142.6, 129.4, 128.3, 67.2, 47.4, 32.5, 22.4, 

14.7. HRMS (ESI): m/z calcd for C13H18N2O3S (M+H)+, 283.1111; found, 283.1104.

Tert-butyl (2-(4-(morpholinosulfonyl)phenyl)cyclopropyl)carbamate (b7).

Yellow solid, 37 % yield, 97 % purity. 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 
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7.9 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 4.92 (s, 1H), 3.76-3.68 (m, 4H), 2.99-2.91 (m, 

4H), 2.77 (m, 1H), 2.11 (m, 1H), 1.44 (s, 9H), 1.25 (m, 2H). 13C NMR (100 MHz, 

CDCl3) δ 156.3, 147.0, 132.6, 128.1, 127.1, 66.2, 46.1, 28.5, 17.0. HRMS (ESI): m/z 

calcd for C18H26N2O5S (M+H)+, 383.1635; found, 383.1621.

2-(4-(Pyrrolidin-1-ylsulfonyl)phenyl)cyclopropan-1-amine (a8).

Yellow solid, 94 % yield, 97 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.72 (d, 

J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 3.16 (t, J = 6.7 Hz, 4H), 2.98-2.91 (m, 1H), 

2.51 (m, 1H), 1.73-1.64 (m, 4H), 1.58-1.50 (m, 1H), 1.40 (m, 1H). 13C NMR (100 MHz, 

methanol-d4) δ 145.6, 136.6, 129.0, 128.2, 32.5, 26.2, 22.4, 14.6. HRMS (ESI): m/z 

calcd for C13H18N2O2S (M+H)+, 267.1162; found, 267.1156.

Tert-butyl (2-(4-(pyrrolidin-1-ylsulfonyl)phenyl)cyclopropyl)carbamate (b8).

White solid, 57 % yield, 99 % purity. 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.3 

Hz, 1H), 7.24 (d, J = 8.2 Hz, 1H), 3.21 (t, J = 6.7 Hz, 2H), 2.76 (m, 1H), 2.14-2.05 (m, 

1H), 1.78-1.71 (m, 4H), 1.44 (s, 9H), 1.27-1.20 (m, 2H). 13C NMR (100 MHz, CDCl3) 

δ 156.5, 146.4, 134.5, 127.8, 126.9, 80.0, 48.0, 28.5, 25.3, 16.9. HRMS (ESI): m/z calcd 

for C18H26N2O4S (M+H)+, 367.1686; found, 367.1678.

4-(2-Aminocyclopropyl)-N,N-diethylbenzenesulfonamide (a9).

Yellow solid, 58 % yield, 99 % purity. 1H NMR (400 MHz, methanol-d4) δ 7.71 (d, 

J = 8.0 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.18 (q, J = 7.1 Hz, 4H), 2.95-2.88 (m, 1H), 

2.48 (m, 1H), 1.56-1.47 (m, 1H), 1.39 (m, 1H), 1.07 (t, J = 7.1 Hz, 6H). 13C NMR (100 

MHz, CDCl3) δ 143.5, 138.9, 127.8, 127.6, 42.5, 14.5, 14.2. HRMS (ESI): m/z calcd 

for C13H20N2O2S (M+H)+, 269.1318; found, 269.1310.

Tert-butyl (2-(4-(N,N-diethylsulfamoyl)phenyl)cyclopropyl)carbamate (b9).

White solid, 47 % yield, 99 % purity. 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.4 

Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 3.20 (q, J = 7.1 Hz, 4H), 2.75 (m, 1H), 2.13-2.03 (m, 

1H), 1.44 (s, 9H), 1.26-1.18 (m, 2H), 1.12 (t, J = 7.1 Hz, 6H). 13C NMR (100 MHz, 

CDCl3) δ 156.3, 146 .0, 137.8, 127.2, 126.9, 80.0, 42.2, 33.2, 28.5, 25.3, 16.9, 14.4. 

HRMS (ESI): m/z calcd for C18H28N2O4S (M+H)+, 369.1843; found, 369.1846.
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N-(2-(4-(N,N-diethylsulfamoyl)phenyl)cyclopropyl)pivalamide (c9).

White solid, 27 % yield, 95 % purity. 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.3 

Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 5.90 (s, 1H), 3.20 (q, J = 7.1 Hz, 4H), 2.88 (m, 1H), 

2.05 (m, 1H), 1.29 (m, 2H), 1.20 (s, 9H), 1.12 (t, J = 7.1 Hz, 6H). 13C NMR (100 MHz, 

CDCl3) δ 180.0, 145.8, 137.9, 127.2, 127.2, 42.2, 38.7, 32.9, 27.6, 25.2, 16.4, 14.3. 

HRMS (ESI): m/z calcd for C18H28N2O3S (M+H)+, 353.1893; found, 353.1885.

4-(2-(Benzylamino)cyclopropyl)-N,N-diethylbenzenesulfonamide (a10).

Yellow solid, 46 % yield, 97 % purity. 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 

7.8 Hz, 2H), 7.53 (s, 2H), 7.34 (m, 3H), 7.04 (d, J = 7.9 Hz, 2H), 4.12 (m, 2H), 3.20 (q, 

J = 7.1 Hz, 4H), 2.75 (m, 1H), 2.55 (m, 1H), 1.25 (m, 2H), 1.11 (t, J = 7.1 Hz, 6H). 13C 

NMR (125 MHz, CDCl3) δ 142.9, 139.1, 131.6, 130.0, 129.8, 129.6, 128.0, 127.7, 53.6, 

42.5, 29.8, 14.5. HRMS (ESI): m/z calcd for C20H26N2O2S (M+H)+, 359.1788; found, 

359.1777.

Tert-butyl benzyl(2-(4-(N,N-diethylsulfamoyl)phenyl)cyclopropyl)carbamate (b10).

White solid, 48 % yield, 96 % purity. 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.3 

Hz, 2H), 7.33-7.28 (m, 2H), 7.23 (t, J = 6.5 Hz, 3H), 7.16-7.09 (m, 2H), 4.62 (d, J = 

15.2 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H), 3.20 (q, J = 7.1 Hz, 4H), 2.73-2.66 (m, 1H), 

2.18 (m, 1H), 1.41 (s, 9H), 1.20 (m, 2H), 1.10 (t, J = 7.2 Hz, 6H). 13C NMR (125 MHz, 

CDCl3) δ 146.2, 138.6, 137.8, 130.6, 128.7, 127.6, 127.3, 127.1, 126.7, 80.4, 42.1, 39.6, 

28.5, 14.2. HRMS (ESI): m/z calcd for C25H34N2O4S (M+H)+, 459.2312; found, 

459.2312

4.2. Biological assays

4.2.1. Cell culture

AML cell lines MV4-11, HL-60, THP-1, U937, ML1, MOLM-13 and BaF3/ITD 

were obtained from American Type Culture Collection (Rockville, MD, USA) and 

maintained in RPMI-1640 medium (Gibco, Carlsbad, CA, USA) supplemented with 10 

% fetal bovine serum (FBS, Biological Industries, Israel). Kasumi-1 cell line was kindly 

provided by Stem Cell Bank, Chinese Academy of Sciences and cultured in RPMI 1640 
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medium containing 20 % FBS, 1 % GlutaMAX™-I (Gibco, Carlsbad, CA, USA) and 1 

% sodium pyruvate (Gibco, Carlsbad, CA, USA). All cell lines were incubated at 37 oC 

supplied with 5 % carbon dioxide.

4.2.2. Cell proliferation assays through MTS and cell counting

Cell viability was determined by MTS assay. MTS (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) can be 

reduced by dehydrogenase enzymes in metabolically active cells into a colored 

formazan product that is soluble in the medium and is directly detected by visible light 

absorption at 490 nm with a 96-well plate reader. Briefly, cells were plated at 5000 cells 

per well in round bottom 96-well plates in triplicate. After 2 h of incubation at the 37 

oC incubator, the cells were exposed to gradient concentrations of typical LSD1 

inhibitors or our synthetic compounds for 6 days. At the end of the incubation, 20 μL 

of MTS solution (2 mg/mL) was added into each well and the cells were incubated at 

37 oC supplied with 5 % carbon dioxide for 4 h. Then the optical density value (OD) 

was determined at 490 nm wavelength with a BioTek Gen5 microplate-reader (BioTek 

Instruments, Winooski, Vermont, USA).

To directly quantify the cell proliferation, cell numbers were counted using a cell 

counter (Cellometer Auto T4, Nexcelom Bioscience, Lawrence, MA, USA). Briefly, 

cells were plated at 1 × 105 cells per well in 6-well plates. After 2 h of incubation, the 

cells were subjected to three typical LSD1 inhibitors (TCP, ORY-1001 and 

GSK2879552) at 5 μM for 8 days. On the last day, the cells were resuspended 

thoroughly and counted via the cell counter.

4.2.3. LSD1 enzymatic inhibition measurement

Enzymatic inhibition rate was measured by a commercially available LSD1 Inhibitor 

Screening Assay Kit (#700120, Cayman Chemical, USA) according to the 

manufacturer’s instructions. In brief, the reagents including diluted assay buffer, LSD1 

protein, horseradish peroxidase and fluorometric substrate were added into the plates 

successively. Then gradient concentrations of our synthetic compounds were added. 

Finally, the reaction was initiated by the addition of the peptide corresponding to the 
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first 21 amino acids of N-terminal tail of histone H3 with a di-methylated lysine at 

residue 4. The plate was covered and incubated at 37 oC for 30 minutes. At the end of 

the incubation, the plate was read using an excitation wavelength of 530-540 nm and 

an emission wavelength of 585-595 nm. The enzymatic inhibition rates were calculated 

by dividing the control group after deduction of the background effect.

4.2.4. Cellular thermal shift assay

Exponential growth phase MV4-11 cells (1 × 106 cells/well) were seeded in a 6-well 

plate and incubated with compounds either a9, b9, c9 or a10 at 5 μM for 24 h in the 5 

% CO2 containing incubator at 37 oC. Then, the cells were centrifuged at 1000 rpm for 

3 min, washed three times with PBS, resuspended with 1 mL PBS containing 1 % 

protease inhibitors, and divided equally into eight PCR tubes (100 μL cell solution per 

tube). The tubes were treated with gradient temperatures (40 oC-58 oC) for 3 minutes in 

a PCR thermal cycler, placed at room temperature for 3 minutes and then subjected to 

snap-freezing in liquid nitrogen for 3 minutes. The above cycles were repeated three 

times. The thawed cell lysates were centrifuged at 20000 g at 4 oC for 20 minutes, and 

then the supernatants were collected carefully for further Western Blot analysis.

4.2.5. Detection of a9 in cell samples via LC-MS/MS

The cells were seeded in a 6-well plate and incubated with compounds either a9, b9 

or c9 at 10 μM for 3 days and 6 days, respectively. At the end of the incubation, the 

cells were washed twice with cold saline, lysed and extracted using the solution 

(chloroform : methanol : water = 6 : 3 : 1). The extract was dried via nitrogen blower 

concentrator and then re-dissolved in 100 μL of 50 % MeOH/H2O solution for LC-

MS/MS detection.

Chromatographic separation was performed using an Agilent 1290 Infinity II liquid 

chromatography system (Agilent, USA) with ZORBAX Eclipse Plus C18 analytical 

column (2.1×50 mm, 1.8 µm particle size) (Waters, USA). The flow rate of HPLC was 

set at 0.4 mL/min and the gradient elution was run for 15 min, from 10 % MeOH/H2O 

to 90 % MeOH/H2O for 10 min and 90 % MeOH/H2O for another 5 min. The 6495 

Triple Quad mass spectrometer (Agilent, USA) with an electrospray ionization (ESI) 



26

interface operated in positive mode was used for the multiple reaction monitoring 

(MRM) LC-MS/MS analysis. The following precursor and product ion transitions were 

used for MRM: a9, 269.1→115.1, 269.1→162.2. MS data were processed using the 

Agilent MassHunter Quantitative Analysis (Version B.07.00, Agilent, USA).

4.2.6. Flow cytometric analysis of cell differentiation and cell cycle

Cell differentiation was determined by flow cytometry using anti-CD11b (#553311, 

BD biosciences, New Jersey, USA). In brief, cells were seeded in the 24-well plate and 

incubated with different compounds at 10 μM for 24 h and 96 h. At the end of the 

incubation, the cells were centrifuged at 800 rpm for 5 minutes to remove dead cells, 

washed twice with 1 mL cold PBS and then incubated with a solution containing CD11b 

antibody at 4 oC for 30 minutes. Then, the cells were washed and resuspended with 300 

μL cold PBS for final detection by flow cytometer.

Cell cycle was detected by staining DNA with PI/RNase solution (#550825, BD 

biosciences, New Jersey, USA) using flow cytometry. Briefly, the cells (1×105 for 24 

h and 4×105 for 96 h treatment) were seeded in the 24-well plate and incubated with 

either TCP, ORY-1001, GSK2879552 or a10 at 10 μM for 24 h and 96 h. At the end of 

the incubation, the cells were centrifuged at 1000 rpm for 3 min, washed once with 1 

mL cold PBS and then resuspended with 500 μL of 70 % MeOH/H2O solution for 4 h. 

After removal of methanol through centrifugation at 1000 rpm for 3 min, the cells were 

incubated with 300 μL PI/RNase solution, for 30 minutes at room temperature. At the 

end of the incubation, the resuspended cell solution was directly tested by flow 

cytometry.

4.2.7. MAO-A and MAO-B enzymatic inhibition assay

The measurement of MAO-A and MAO-B enzymatic inhibition rates was conducted 

by the company (Jiangsu Meimian industrial Co., Ltd). In brief, recombinant MAO-A 

protein (240 μL), inhibitors (360 μL) and 100 mM potassium phosphate solution (100 

μL) were added into the tubes sequentially and incubated at 37 oC for 20 min. At the 

end of the incubation, 10 g/L 5-hydroxytryptamine (100 μL) was added and incubated 

at 37 oC for 60 min. Then the reaction was stopped with 60 % HClO4 (200 μL). The 
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reaction product (5- hydroxyindole-3-acetaldehyde) was extracted using butyl acetate 

(3 mL), centrifuged at 10000 g for 5 min, and the OD value was finally determined at 

280 nm wavelength. Similarly, recombinant MAO-B protein (190 μL), inhibitors (460 

μL) and 100 mM potassium phosphate solution (50 μL) were added into the tubes 

sequentially and incubated at 37 oC for 20 min. At the end of the incubation, 98.1 g/L 

benzylamine (100 μL) was added and incubated at 37 oC for 60 min. Then the reaction 

was stopped with 60 % HClO4 (200 μL). The reaction product (benzaldehyde) was 

extracted using cyclohexane (3 mL), centrifuged at 10000 g for 5 min, and the OD value 

was finally determined at 242 nm wavelength.

4.2.8. Western Blot

The MV4-11 cells (1 × 106 cells/well) were seeded in a 6-well plate and incubated 

with compound a9 at 1, 5, or 10 μM for 24 h in the 5 % CO2 containing incubator at 37 

oC. At the end of the incubation, the cells were centrifuged at 1000 rpm for 3 min, 

washed with PBS twice. Proteins from the collected cells were extracted in lysis buffer 

(5 % SDS, 10 mM EDTA, 250 mM NaCl, 10 mM Tris-HCl, pH 7.4), and were subjected 

to 95 oC heating for 15 min for thorough denaturation. The protein concentrations were 

measured via Pierce BCA protein assay (#23225, Thermo Fisher, Rockford, IL, USA). 

Each sample was adjusted to equal protein concentrations with relative quantification 

methods for Western Blot analysis. Briefly, the samples were subjected to 12 % SDS-

PAGE, and then transferred to PVDF membranes (Millipore, Billerica, MA, USA). 

After that, the proteins on the membranes were probed with primary antibodies and 

secondary antibodies, and then detected by ECL reagent (#34579, Thermo Fisher, 

Rockford, IL, USA). The antibodies used for Western Blot analysis, anti-H3 (#4499), 

anti-H3K4me1 (#5326), anti-H3K4me2 (#9725), anti-H3K9me2 (#4658) and anti-

LSD1 (#2139) were purchased from Cell Signaling Technology (Danvers, MA, USA).
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Highlights

⚫ 21 novel compounds with para-sulfonamides based on TCP scaffolding were

synthesized to provide a potent LSD1 inhibitor with IC50 of 29 nM.

⚫ Boc was found to be a potential prodrug functional group which enhanced cellular

uptake of LSD1 inhibitors and improved their anti-proliferation activity.

⚫ Appropriate lipophilicity and potent LSD1 inhibition contributed to the improved

anti-proliferation effect towards acute myeloid leukemia of LSD1 inhibitors.


