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Evidence for parietal reward prediction errors using great grand average meta-analysis 

 

Abstract 

 

As a basic principle within the economics of decision-making, reinforcement learning 

dictates that individuals strive to repeat behaviour that elicits reward, and avoid behaviour 

that elicits punishment. Neuroeconomics aims to measure reinforcement learning physically 

in the brain through the use of reward prediction errors: the difference between expected 

outcome value and actual outcome value following decision-making behaviour. Two 

electrophysiological components, the frontocentral feedback-related negativity and the more 

parietal P3, are implicated in outcome processing, but whether these components encode a 

reward prediction error has been unclear. A source of the unclear literature is likely to be 

inconsistent quantification of the components. A recent meta-analysis that directly quantified 

published waveforms rather than using reported effect sizes found strong evidence that the 

feedback-related negativity encodes a reward prediction error. In the current study, such a 

meta-analysis was performed on parietal waveforms to establish whether the P3, or parietal 

areas generally, are sensitive to reward prediction errors. A strong effect was found, both of 

reward prediction error encoding and simple valence sensitivity at a latency associated with 

the P3.  
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Introduction 

 

According to reinforcement learning, an agent seeks to repeat behaviours that are 

rewarding, and avoid behaviours that are punishing (Thorndike, 1898). With an effective 

learning mechanism, rewards and punishments are not valued dichotomously, but instead as 

reward prediction errors (Sutton and Barto, 1998). A reward prediction error (RPE) is the 

signed difference between the value of an obtained outcome and its prior expected value, and 

it is this difference that guides future action valuation and thus future behaviour. 

Computationally, the value of an RPE is determined by two terms; the valence, or 

sign, of the prediction error (positive vs. negative, based on whether an outcome is better or 

worse than expected) and its size (how great the discrepancy in value is between expected 

and obtained outcomes).  Positive RPEs can be the result of either elicited rewards (such as 

receiving more money for a gamble than expected) or omitted punishments (such as not 

receiving an electric shock when one was expected to occur). Conversely, negative RPEs are 

the result of either omitted rewards or incurred punishments. It is important to distinguish 

between RPE valence and outcome valence; a reward (winning a sum of money, say) can still 

generate a negative RPE if it was less rewarding than was expected. For reinforcement 

learning models, it is the valence of the RPE that is relevant and in the present study we use 

valence to refer to the sign of the RPE not the outcome.  

Distinguishing RPE valence is crucial for reinforcement learning, however optimal 

learning should also be influenced by the size of an RPE: big or unexpected outcomes should 

drive greater learning than small or expected outcomes. RPE size refers to the amount of 

“error” in an RPE, with the level of learning adjustment proportional to the difference 

between an outcome and its expected value. Since the direction of this learning (i.e. whether 

an action is more or less likely to be repeated) is determined by valence, with large RPEs 
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having opposite effects depending on whether they are positive or negative, the signature 

response of a neural RPE encoder consists in a sign x size interaction (Caplin & Dean, 2008). 

Feedback related negativity (FRN) is a frontocentral component occurring 

approximately 240 ms – 340 ms after feedback is received in a task involving either rewards 

or punishments. It has been proposed as an RPE encoder (Holroyd & Coles, 2002). It is 

typically quantified by a difference wave created by subtracting the voltage of positive RPEs 

from negative RPEs. This results in the FRN’s characteristic negative peaked difference wave 

when, in the simple waveforms underlying it, positive RPEs produce a relatively positive-

going voltage compared to negative RPEs. The term ‘reward positivity’ may refer to this 

relative positive-going voltage of the simple waveforms but also to the claim that the 

component is sensitive specifically to rewards rather than non-rewards (Proudfit, 2015).  

A number of authors have asserted that this component reflects not RPE sign, but size, 

i.e. how unexpected or surprising an outcome is (Garofalo, Maier, & di Pellegrino, 2014; 

Hauser et al., 2014; Talmi, Fuentemilla, Litvak, Duzel, & Dolan, 2012) This claim predicts a 

flat difference wave for the negative – positive contrast (provided each outcome is equally 

likely) and instead a difference wave for a small – large contrast. A meta-analysis by 

Sambrook and Goslin (2015) showed both these effects to be present in the interval 

associated with the FRN. Importantly however, there existed also the signature sign x size 

interaction indicating the encoding of an RPE proper, i.e. a signed quantitative term 

complying with reinforcement learning theory (Sutton and Barto, 1998). 

 The P3, or P300 is a parietally distributed, positive going ERP, occurring 250 ms – 

500 ms after presentation of task-relevant information. The P3 has been widely studied in 

decision-making research, and is associated with engagement of attention, the processing of 

novelty and expectation, and cognitive workload (Polich, 2003). As with the FRN, its status 

with regard to RPE encoding has been unclear. An influential “independent coding model” 
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(Yeung & Sanfey, 2004) has claimed that the P3 is sensitive only to RPE size, with the FRN 

sensitive only to RPE valence. It is certainly the case that the P3 is usually represented by 

larger amplitudes following larger outcomes regardless of their valence, (Bellebaum, Kobza, 

Thiele, & Daum, 2010; Gu et al., 2011; Kreussel et al., 2012; Toyomaki & Murohashi, 2005), 

and unexpected outcomes likewise (Bellebaum & Daum, 2008; Hajcak, Holroyd, Moser, & 

Simons, 2005; Hajcak, Moser, Holroyd, & Simons, 2007; Wu & Zhou, 2009) and, as such, 

may indicate RPE size encoding. This does not entail coding for valence however. In fact, in 

a review of the effect of valence on the P3, San Martin (2012) found that sensitivity to 

valence was also typically found, though the direction of effect was not consistent. Similarly, 

a review (Glazer, Kelley, Pornpattananangkul, Mittal, & Nusslock, 2018) found equivocal 

evidence for the P3’s status as a valence encoder. In contrast to these main effects, there has 

been a dearth of research on the P3’s status as a full RPE encoder, capturing the RPE sign x 

size interaction. 

 The present study addresses this. It uses the great grand average methodology of ERP 

meta-analysis, in which published effect sizes are disregarded in favour of direct 

quantification of published waveforms. The method has been extensively validated 

(Sambrook and Goslin, 2015) and in the case of the FRN was shown to provide superior 

estimates of effect size than conventional meta-analysis. We have previously argued the 

benefits of this approach as a solution to inconsistencies in the latency at which ERP 

components are identified. The present study demonstrates a further advantage of the method, 

which is its capacity to use data for purposes other than those to which it was originally put. 

The meta-analysis provided here is based on thirty-three studies, of which only a small 

number specifically addressed the P3. 

 In this study, the principal effect under investigation is an RPE encoding at parietal 

sites. However, we also present effect sizes for a simple dichotomous coding of valence and 
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for prediction error size (sometimes referred to as salience, surprise or unsigned prediction 

error). We additionally perform a moderator analysis on the RPE effect to establish if it is 

sensitive to the degree of control over the outcome that the task appears to afford.  
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Method 

 

Inclusion and Exclusion Criteria 

 

For inclusion, a study needed to manipulate the independent variables of prediction 

error valence (either positive or negative) and prediction error size (either small or large). 

Experiments were included provided that both of these variables were manipulated in a 2 x 2 

factorial design. Prediction error size could be manipulated by adjusting either the magnitude 

of outcomes or their likelihood. Experiments were included if they had intermediary levels of 

prediction error size, although these were ignored in favour of the most extreme levels to 

maximise contrasts. Experiments had to provide, as a dependent variable, simple waveforms 

corresponding to the design above, or difference waves appropriate for the analysis as 

described below. Importantly, provided that such voltage x time waveforms were presented, 

no statistics associated with these needed to be reported. Waveforms had to be presented 

parietally (Pz, CPz or POz) but also frontocentrally (FCz, Fz, Cz) in order to distinguish 

parietal effects from those of the FRN. The feedback-locked epoch needed to run, at 

minimum, from -100 to 500 ms. 

Regarding participants, experiments either needed a population of healthy adults or a 

healthy control group if an alternative experimental group was used. Any studies including 

participants who had been selected based on a screening process were excluded. 

Experimental tasks were restricted to those offering monetary stakes (either wins or 

losses) but could otherwise vary, including passive tasks in which participants knew they 

could not influence outcomes, guessing tasks in which participants were encouraged to 

increase the likelihood of desirable outcomes despite no control being really available, and 

rule implementation tasks in which outcomes were probabilistically linked to a choice rule 
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that participants had to learn. These three kinds of task also constituted the three levels of the 

moderator variable “control over outcome” described below. Criteria for inclusion and 

exclusion were identical to those used by Sambrook and Goslin (2015) with the exception of 

the additional requirement of a parietal waveform. 

 

Moderator analyses 

 

A sole moderator, control over outcome was operationalised at three levels: “passive”, 

“guessing” and “rule implementation”, following Sambrook and Goslin (2015). 

 

Search Strategies 

 

English language journals and books were searched using following databases: PsycInfo, 

PsycArticles, ERIC, PubMed and Web of Science. Results were compiled in Zotero. The 

search covered journal titles, abstracts and keywords. Articles were gathered based on three 

searches. First, articles used in the Sambrook and Goslin (2015) meta-analysis of the FRN 

were used if they featured parietal waveforms. This yielded twenty studies. Second, the 

principal search string used in that meta-analysis was used once again but in the time frame 

2015 to present, in order to capture articles published subsequently. This string was 

“feedback negativity” OR “feedback related negativity” OR “feedback error-related 

negativity” OR “reward positivity” OR “feedback correct related positivity”. This search was 

conducted on the basis that much RPE research is focussed on the FRN and likely to be 

associated with this term, but that parietal waveforms might nevertheless be provided. This 

search provided twelve more studies. Third, a mutually exclusive search was performed on 

articles targeting the P3 but with limiting terms owing to the extensive P3 literature. The 
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search string was ("P3" OR "P300") AND ("learning" OR "motivational significance" OR 

“prediction error”) AND NOT ("feedback negativity" OR "feedback related negativity" OR 

"feedback error-related negativity" OR "reward positivity" OR "feedback correct related 

positivity"). This search yielded one more study. In total, these searches gave a final study 

sample of thirty-three studies. The set of studies overlapped heavily with the studies used to 

meta-analyse the frontal, FRN component in Sambrook and Goslin 2015. Given so few 

additional non-FRN studies of reward prediction error were found by our literature search, we 

thought it highly unlikely that there would be a significant number of obtainable unpublished 

studies that had not been located in the generation of that paper. 

 

Coding Procedures 

 

Electronic copies of experiments were accessed and screenshots were taken of grand average 

waveforms. Where multiple parietal waveforms were available, they were taken in preference 

order Pz, CPz, POz; where multiple frontocentral waveforms were available they were taken 

in preference order FCz, Fz, Cz. Screenshots were cropped and enlarged, and the waveforms 

digitised with Plot Digitizer (http://sourceforge.net/projects/plotdigitizer) by using a mouse to 

manually lay points along the waveform at approximately 5 ms intervals. A custom Excel 

macro (available as a supplementary file in Sambrook and Goslin, 2015) linearly interpolated 

coordinates at 2 ms intervals between the existing manually assigned ones. The digitizing 

process was performed twice for each waveform and a mean taken in order to provide greater 

accuracy. Waveforms were then replotted to make sure that they corresponded visually with 

the original. Further details can be found in Sambrook and Goslin (2015). In the case of one 

paper (Banis & Lorist, 2012) original data was used, previously obtained from the authors, 
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since no parietal waveform was presented in the paper. Original data was also used from 

papers authored by Sambrook. 

 

Statistical Methods 

 

A major strength of the great grand average method of meta-analysis is that it establishes 

average effect size at all points on the waveform, not merely those reported in individual 

papers, thus maximising the data used, and eliminating idiosyncrasies in quantification in 

individual papers. It means however, that study-level variance is unknown, since this is rarely 

shown in the grand average waveforms we use here as data. Instead of standardised effect 

sizes, which are the norm in conventional meta-analysis, simple or “raw” effect sizes are used 

(see Sambrook and Goslin, 2015 for a discussion of the merits of each). Three simple effect 

sizes were computed, realised in each case as a waveform of effect size, based on 

differencing of the simple waveforms described in the design earlier. The valence effect was 

computed by a difference wave (large negative RPE - large positive RPE). Large prediction 

errors only were used in order to maximise the contrast. The prediction error size effect was 

computed by the difference wave (small negative RPE + small positive RPE) - (large 

negative RPE + large positive RPE). Following Sambrook and Goslin (2015), the RPE effect 

was computed by the difference wave (small negative RPE - small positive RPE) - (large 

negative RPE - large positive RPE), a difference of difference waves which implements an 

axiomatic test for RPE encoding (Caplin and Dean, 2008). In the case of the FRN 

(operationalised as a difference wave), it predicts that the FRN for small outcomes will be of 

lower amplitude than the FRN for large outcomes, generating a difference of difference 

waves of non-zero amplitude. An equivalent rationale was used here to establish parietal RPE 

encoding. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

Study weighting in conventional meta-analysis is based either on a study’s variance or its 

sample size. Since variance was unavailable, study size was used instead, implemented in the 

form of weighted t tests. The significance of effect sizes was established by submitting the 

appropriate difference waves to running univariate weighted one-sample t tests (test value = 

0) at each 2 ms time point. All figures in the Results section, both of t tests and voltage plots 

show weighted effects. Publication bias was assessed by subjecting funnel plots to the trim 

and fill procedure of Duval and Tweedie (2000) implemented in R (R Core team) using the 

metafor package (Viechtbauer, 2010). Owing to a dearth of studies at the “passive” level of 

the moderator, moderator analysis was performed on just the “guessing” and “rule 

implementation” levels. This was implemented as a 2 x 2 (moderator x site) ANOVA on RPE 

effect size at its peak (286 ms frontally and 348 ms parietally). 

 

Results 

 

Effect of valence 

 

Figure 1a shows the valence effect at parietal and frontal sites. A typical frontocentral FRN is 

found, peaking at 286 ms, and a later parietal effect peaking at 312 ms with an effect size of -

2.33 µv. One-sample t tests were conducted on these waveforms and are shown in Figure 1b. 

Between 400 ms and 442 ms a significant valence effect was found only at parietal sites. 

Results were similar when unweighted t tests were performed and also when effects were 

examined separately for studies using likelihood and magnitude as the prediction error size 

modulators (Supplementary Figure 1). Trim and fill applied to the parietal effect size at peak 

revealed evidence of publication bias. After this was removed with the addition of ten 

imputed studies, the effect size fell to -1.43 µv but remained highly significant (z = -3.42, p = 
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0.0007). The funnel plot with imputed studies is shown in Supplementary Figure 2. The main 

effect of prediction error size (i.e. ignoring valence) is shown in Supplementary Figure 3 and 

simple waveforms for these effects are provided in Supplementary Figures 4 and 5. 

 

Figure 1. Effect of valence (negative – positive difference wave) at frontal and parietal sites 

with standard deviations shown in shadow. a. Great grand average voltage. b. Significance of 

each difference wave under a one-sample t test over experiments. 

 

Effect of reward prediction error 

 

Figure 2a shows the RPE effect at parietal and frontal sites. In keeping with Sambrook and 

Goslin (2015) a frontal RPE effect is found at a latency associated with the FRN, peaking at 

286 ms and a later parietal effect peaking at 348 ms with an effect size of -.89 µv. Figure 2b 

shows the significance of the effect at each site. In the interval 356 ms to 418 ms a significant 

effect was found only at parietal sites. Again, results were similar when using unweighted t 

tests or analysing likelihood or magnitude modulated studies only (see Supplementary Figure 

6). Trim and fill applied to the parietal effect size at peak revealed no evidence of publication 

bias (funnel plot shown in Supplementary Figure 7). Moderator analysis showed a main 

effect of moderator: as in Sambrook and Goslin (2015) the RPE effect was stronger in rule 

implementation than in guessing (F1,28 = 4.24 p = .031, σ
2
 = .16), but no interaction between 

a. b. 
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this and site (F1,28 = .59 p = .45). Supplementary Figure 8 shows moderator effects across the 

full waveform. 

 

Figure 2. Effect of RPE encoding (small negative – small positive difference wave) – (large 

negative – large positive difference wave) at frontal and parietal sites with standard 

deviations shown in shadow. a. Great grand average voltage. b. Significance of each 

difference wave under a one-sample t test over experiments. 

 

Independent components vs. information relay 

 

The parietal effect demonstrated does not necessarily imply an independent process since the 

underlying generator may simply be receiving information relayed from the generator 

responsible for the FRN. If this were the case we would expect a strong correlation, across 

experiments, of the two effects in the intervals in which they were significant. In contrast, a 

weak correlation between these effects, despite their being strong responses in their own 

right, would suggest independent processes. Such a correlation, performed across subjects, is 

commonly used within individual experiments for the purpose of demonstrating common vs. 

separate processes. It is equally valid when run across experiments however. Fully 

independent RPE encoders are likely to capture different aspects of this property, which can 

take forms beyond its basic formulation (as we cover in the Discussion), and different tasks 

a. b. 
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would thus be expected to variably elicit one or other component if those components are 

independent.  

As an indicator of non-independent processes, correlated activity needs to be taken in 

the context of the strong temporal and spatial correlations present in any ERP. If an effect at a 

parietal site constitutes the arrival of information previously held only at a frontal site then 

we would expect the correlation between parietal and frontal sites, at this time lag, to be 

greater than the correlation between the parietal site and itself over the same lag. The heat 

map in Figure 3 shows the difference between these correlations, expressed as a signed Z 

score. Two masks have been applied, first the parietal-frontal correlation must be greater than 

the parietal-parietal correlation (since this is signature of a relayed signal described above) 

and second the parietal-frontal correlation must be significant in its own right (r = .343, N = 

33). The rectangle indicates the temporal co-ordinates at which both frontal and parietal sites 

show a significant RPE effect (as portrayed in Figure 2b), which is where we would expect 

relatively large parietal – frontal correlations if information were being relayed. These are 

largely absent, suggesting independent frontal and parietal components. 
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Figure 3. Heat map depicting superiority of parietal-frontal correlations over parietal-parietal 

correlations at all possible temporal co-ordinates. Regions where parietal-parietal correlations 

are superior are masked with blue (for example the diagonal from top left to bottom right 

where the parietal-parietal correlation must be 1). Regions where the parietal-frontal 

correlation is non-significant are also masked out. The rectangle encloses co-ordinates where 

both frontal and parietal effect are in operation (see Figure 2): if a signal is relayed between 

sites, correlations should be strong at these co-ordinates. 

 

Discussion 

 

This meta-analysis has established the reality of a parietal encoding both of valence 

and RPE, with better outcomes in both cases associated with a relative positivity in voltage. 

The existence of these parietal effects has been unresolved in the literature, with the 

comprehensive review of San Martin (2012), concluding a parietal valence effect was likely, 
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but that its direction was unclear. Unfortunately, such a conclusion is very possible when 

attempting to collate effects taken from inconsistent intervals of the feedback-locked 

waveform since it comprises a series of peaks and troughs and small shifts in the 

measurement window can reverse the polarity of effects. The great grand averaging method 

used here reveals the underlying direction of effect and its latency.  

One benefit of a GGA meta-analysis is that it may indicate an appropriate interval in 

which to measure a component in the future, as Sambrook and Goslin (2015) provided for the 

FRN. This is somewhat problematic in the present case because the parietal effect of RPE 

encoding overlaps closely with the much stronger, and same-signed, frontal effect. Indeed, 

we cannot rule out the possibility that the earlier portion of the parietal effect is entirely due 

to volume conduction from the frontal effect. However, this cannot be the case in the interval 

in which the parietal response is stronger. On a pragmatic basis, we therefore recommend the 

parietal RPE encoding component be quantified as mean activity in the interval 350 ms to 

420 ms, this corresponding to the interval in which our meta-analysis found the parietal effect 

to be stronger than the frontal effect and still significant (as shown in Figure 2b). Future 

studies that better separate the two components will be used to refine this. 

We should clarify that the difference wave approach we have used does not allow us 

to conclude whether the valence effect arises from sensitivity (in opposing directions) to both 

good and bad outcomes, or from sensitivity to just one valence. Nor does it inform us whether 

the RPE effect arises from a sensitivity to prediction error size in both negative RPEs and 

positive RPEs, i.e. reflects a full bivalent coding across the range of possible prediction 

errors. The significant difference of difference waves could be generated by an encoder that 

is sensitive to the size of positive RPEs but not negative RPEs or vice versa. Difference 

waves indicate that the brain performs discriminations along the lines of an experiment’s 

conditions but the observed wave is not necessarily representative of neural activity. This is 
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true whether difference waves are built from great grand averages as in the present case, or 

from the grand averages found in a single experiment. Establishing the contribution of 

positive RPEs or negative RPEs to the observed RPE effect depends on the interpretation of 

simple, single condition waveforms, however this is inherently problematic owing to the 

multiple components contributing to such waveforms (Luck, 2014) and problems arising 

from interpreting single condition waveforms in the specific context of the FRN have been 

illustrated by Sambrook and Goslin (2016). While this question can be addressed using 

methods for decomposing component overlap, these methods lie beyond the current study 

which thus restricts itself to difference waves. 

The parietal effects, particularly in the case of the RPE effect, lie within the range of 

activity typically ascribed to the P3 component. An influential model (Yeung and Sanfey, 

2004) claims that in reinforcement learning tasks such as those used in this study, the P3 

codes only for outcome magnitude (unsigned prediction error size) while the FRN codes only 

for outcome valence. This claim is not supported by the present study. Nevertheless, we 

would be cautious in ascribing to the P3 the role of encoding all three properties of valence, 

RPE, and unsigned prediction error size. First, it must be noted that there is too little spatial 

information in our meta-analysis to know whether the observed parietal effect is centred at a 

site representative of the P3 (e.g. Pz). Second, it must be borne in mind that the P3 is a large 

sustained potential evoked by many tasks. It appears to be broadly implicated in a cluster of 

related operations: context updating, surprising (e.g. oddball) events and salient and task 

relevant information processing (Courchesne, Hillyard, & Galambos, 1975; Donchin & 

Coles, 1988; Donchin, Tueting, Ritter, Kutas, & Heffley, 1975). In practice however, given 

its large amplitude, the P3 probably has widespread sources (Lutzenberger, Elbert, & 

Rockstroh. 1987), and so multiple components doubtless occupy the P3 interval. For this 

reason, not all effects observed in that interval need be attributed to that component. In fact it 
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would be highly problematic to label the P3 solely as an RPE encoder since, as shown in this 

study, (Supplementary Figure 3), by Sambrook and Goslin (2015, fig. 7), by Yeung and 

Sanfey (2004) and by many others (San Martin, 2012) there is a strong parietal encoding of 

absolute, unsigned prediction error size and this property is well aligned with the P3’s 

sensitivity to oddball and salient stimuli. Since absolute prediction error size is orthogonal to 

both valence and RPE it is not possible for all these codings to be carried out by a single 

neural generator. The temporally overlapping presence of all these codings at the scalp 

implies temporally overlapping but spatially separate neural generators of the effect, and we 

thus limit our conclusions to there being a ‘parietally expressed RPE encoder’. Note that we 

can be confident that the RPE effect does not simply arise from overlapping components 

coding for prediction error valence and prediction error size separately because these would 

sum rather than interact in the manner characteristic of an axiomatic RPE encoder. 

Notwithstanding the difficulty of assigning experimental effects to existing 

components, an important finding is the unequivocal demonstration of RPE encoding beyond 

the FRN. Since this does not appear to be merely the relaying of earlier frontocentral activity, 

it raises the question of what a second RPE encoding achieves. Previous studies have 

highlighted a role for the P3 in behavioural change (Chase, Swainson, Durham, Benham, & 

Cools, 2011; Zhang et al., 2013). This is the ultimate purpose of RPE computation: to update 

action values in the light of experience and promote optimal choice. It is thus possible that 

the parietal effect is a representation of RPEs in the context of action value updating. If this 

were the case however, it might be expected that the parietal RPE would be more dependent 

than the frontal RPE on the task being clearly controllable. However, no site x controllability 

interaction was found.   

Alternatively, the parietal effect may reflect the encoding of a different kind of RPE. 

There has been a recent growth in studies investigating the neural correlates of model-free vs. 
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model-based reinforcement learning. Model-free learning, as indexed in the tasks represented 

in this meta-analysis, merely entails the actor maintaining action values and updating them 

with RPEs. In model-based learning, the actor explicitly models environmental 

contingencies, updating these in the light of unexpected outcomes. RPEs are not generally 

needed for model-based reinforcement learning. Nevertheless, research has provided 

evidence for neural encoding of model-based RPEs (Daw et al., 2011; Sambrook, Hardwick, 

Wills, & Goslin, 2018), and the parietal effect shown here may constitute such an encoding. 

It is not possible to test this hypothesis without a design that incorporates opportunities for 

both kinds of learning and which is furthermore sensitive to which kind of learning a 

participant is engaged in. In fact, the experiments used here do not support model-based 

learning insofar as they are “structureless” and a model-free process of tracking action values 

could not be improved upon. Nevertheless, we might expect model-based RPE encoding to 

occur insofar as participants are likely to have generated ad-hoc models to explain the pattern 

of outcomes they witness, using these to generate expectations and consequent prediction 

errors. 

A further possibility that must be considered is that the parietal RPE encoding (and 

indeed the frontocentral one) is not an RPE in the strict computational sense at all, but some 

other construct that correlates with this quantity. Model-free learning can be thought of as a 

simple mathematical model of propositional reasoning (Mitchell, Houwer, & Lovibond, 

2009). Alternatively, RPE effects may be better explained by episodic memory formation 

(Gershman & Daw, 2017; Vikbladh, Shohamy, & Daw, 2017). In both these cases, 

computational models employing quite different psychological constructs can lead to the 

same predictions as those from reinforcement learning, making them difficult to distinguish. 

Rather than reflecting methodological limitations, this may aptly describe the underlying 
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processes however, since model-based reinforcement learning is likely to be continuous with 

general cognition (Chater, 2009). 

The present study presents evidence for the parietal encoding of RPEs. It demonstrates 

sensitivity not merely to whether outcomes are good or bad, but the degree to which this is 

so, thus complying with an axiomatic test for RPE encoding. It uses the great grand averaging 

technique to “repurpose” scientific articles that had as their principal aim the study of the 

FRN. While it is not the first study to assess encoding of parietal RPEs (and certainly not the 

first to assess the P3’s response to valence), it enjoys the benefits of a large sample size and 

incorporates sufficient spread in tasks and other experimental details to ensure the 

demonstrated effect is robust. By clarifying the presence and time-course of parietal RPE 

encoding it is hoped that future studies will be able to use this information to better interpret 

feedback-locked ERPs in order to begin to reveal the circuitry underlying human 

reinforcement learning. 
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Supplementary Figure 1. Effect of valence (Figure 1a) broken down by whether likelihood or 

magnitude is used to modulate prediction error size. 

 

 
 

Supplementary Figure 2. Funnel plot for the parietal effect of valence at its peak of 312 ms. 

Imputed studies resulting from trim and fill are shown in white. 
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Supplementary Figure 3. Effect of prediction error size broken down by whether likelihood or 

magnitude is used as its modulator. 

 

 
 

Supplementary Figure 4. Simple ERPs for prediction error size, for rewarding outcomes only. 
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Supplementary Figure 5. Simple ERPs for prediction error valence, for large outcomes only. 

 

 
 

Supplementary Figure 6. Effect of RPE (Figure 2a) broken down by whether likelihood or 

magnitude is used to modulate prediction error size. 
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Supplementary Figure 7. Funnel plot for the parietal effect of RPE at its peak of 354 ms. 

Trim and fill reveals no publication bias. 

 

 
 

Supplementary Figure 8. Effect of RPE (Figure 2a) broken down by moderator level. 
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Supplementary Table 1. Studies used for the meta-analysis. 

 

Experiment N Modulator Frontal 

Site/s 

Parietal 

Site/s 

Moderator Level 

Bellebaum and 

Daum (2008) 

17 Likelihood FC3, FCz, 

FC4 

P3, Pz, P4 Rule 

Implementation 

Bellebaum et al. 

(2011) 

18 Likelihood Cz Pz Rule 

Implementation 

Hajcak et al. 

(2005). Expt 1 

17 Likelihood Fz Pz Guessing 

Hajcak et al. 

(2005). Expt 2 

12 Likelihood Fz Pz Guessing 

Hajcak et al. 

(2007) 

17 Likelihood Fz Pz Guessing 

Hu et al. (2018) 22 Likelihood FCz CPz Guessing 

Kreussel et al. 

(2012) 

24 Likelihood Fz Pz Rule 

Implementation 

Liao et al. (2011) 15 Likelihood Fz Pz Rule 

Implementation 

Pfabigan et al. 

(2011) 

20 Likelihood FCz Pz Guessing 

Salim et al. 

(2015) 

39 Likelihood Fz Pz Passive 

Sambrook and 

Goslin (2016) 

42 Likelihood FCz Pz Guessing 

Sambrook and 

Goslin 

Unpublished 

48 Likelihood FCz Pz Guessing 

Walentowska et 

al. (2016) 

30 Likelihood Fz, FCz CPz, Pz, P1, 

P2 

Guessing 
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Wu and Zhou 

(2009) 

16 Likelihood FCz Pz Guessing 

Bellebaum et al. 

(2010) 

15 Magnitude Fz Pz Rule 

Implementation 

Banis and Lorist 

(2012) 

32 Magnitude FCz Pz Guessing 

Gu et al. (2011) 24 Magnitude Fz CPz Guessing 

Kamarajan et al. 

(2009) 

48 Magnitude FCz Pz Guessing 

Kreussel et al. 

(2012) 

24 Magnitude Fz Pz Rule 

Implementation 

Luo and Qu 

(2013) 

18 Magnitude FCz Pz Guessing 

Meadows et al. 

(2016) 

19 Magnitude FCz Pz Guessing 

Pfabigan et al. 

(2015) 

31 Magnitude Fz Pz Rule 

Implementation 

Sato et al. (2005) 18 Magnitude Fz Pz Guessing 

Schuermann et 

al. (2012) 

20 Magnitude FCz CPz Passive 

Sambrook and 

Goslin (2014) 

55 Magnitude Fz Pz Passive 

Sambrook and 

Goslin (2016) 

45 Magnitude FCz Pz Guessing 

Van den Berg et 

al. (2011) 

42 Magnitude Fz Pz Guessing 

Wei et al. (2018) 22 Magnitude FCz Pz Guessing 

Wischnewski and 

Schutter (2018) 

20 Magnitude Fz, FC1, 

FC2, Cz 

Cz, CP1, 

CP2, Pz 

Guessing 

Wu and Zhou 

(2009) 

16 Magnitude FCz Pz Guessing 

Yu and Zhou 20 Magnitude Fz Pz Guessing 
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(2006) 

Yu and Zhou 

(2008) 

14 Magnitude Fz Pz Guessing 

Zheng and Liu 

(2015) 

43 Magnitude FCz Pz Guessing 
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Highlights 

 A frontocentral component, the FRN, is believed to code reward prediction error. 

 The P3 has also been implicated in reward prediction error but findings are mixed. 

 A meta-analysis using great grand averages addressed this question. 

 Evidence was found for a separate parietal encoding of reward prediction error. 
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