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Spectroscopic characterisations of the radical polyinter-
halogen molecules IF, and |,F are reported using anion
photoelectron spectroscopy. The corresponding parent
anions, IF; and I,F~, are common products formed in hard
Ar-CF;l plasmas and are relevant in the semiconductor
manufacture industry. The ,F~ species, which is present
as the [I-I-F]~ isomer, is a “non-classical” polyinterhalogen.

The propensity for halide anions to combine and form poly-
halogen anions, such as Iy, has been known for around 200
years.' However, examples and spectroscopic characterisation of
polyinterhalogen molecules, particularly open-shell species, have
proven to be elusive.2 To date, most spectroscopic characteri-
sations of polyinterhalogen anions are as crystallised solids or
have been performed in matrix isolation with a counter cation. 2
There are no known vibrationally-resolved spectroscopic determi-
nations of radical (open-shell) polyinterhalogen molecules. On
the other hand, closed-shell polyinterhalogen molecules such as
IF3, IFs, IF; and I,F,4 are relatively stable compounds. Polyinter-
halogen anions and their corresponding radical neutrals are ap-
pealing targets for gas-phase spectroscopy due to being textbook
examples for valence-shell electron pair repulsion (VSEPR) theory
and the Rundle-Pimentel scheme for hypervalency.>® They are
also desirable systems to benchmark high-level quantum chemical
calculations due to challenges associated with describing heavy
atoms.Z8

This paper reports a combined photoelectron spectroscopy and
electronic structure theory study on the IF,, I,F~, IF, and L,F
species. There have been several reports of synthesis, crystallog-
raphy and spectroscopic characterisation of IF;, embedded in a
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solid state matrix,?¥ and computational studies on IF; and L,F~
and related species, 710714 however, a recent review by Riedel
and co-workers2 noted “Thus far, ... [I,F]~ have not been de-
tected experimentally.” While this statement might be true for
condensed phases, L,F~ appears to be a common product formed
in hard Ar-CF3I plasmas.

There are only a handful of examples of gas-phase spectro-
scopic studies on polyhalogen species, mostly targeting I5. A se-
ries of pioneering investigations by Neumark and co-workers 12718
applied anion photoelectron spectroscopy with different laser
sources to characterise vibronic properties of the radical neutral
I3, and photodissociation dynamics of the parent anion. Several
other studies have focussed on photodissociation dynamics.12722
There have been two investigations on I,Br~ probing the dissocia-
tion dynamics, with one of these studies providing a single-colour
photoelectron spectrum at 267 nm.’232% In the present work, we
have coupled a jet-cooled plasma discharge source with time-of-
flight mass spectrometry and anion photoelectron spectroscopy.
This strategy allows for generation and mass selection of IF, and
I,F~, and determination of spectroscopic properties for the radi-
cal neutral IF, and L,F species.

Intriguingly, radical polyinterhalogen molecules may have a
significant bearing in industrial plasma processes. In particu-
lar, in the present study we produced the IF, and I,F~ species
through plasmisation of an Ar-CF;I mixture; this mixture and
process is relevant in the semiconductor manufacture industry.
In this industry, dry-etching plasma processes utilise the reaction
between silicon wafers, which are the substrate for semiconduc-
tor and microprocessors, and fluorine atom and CF; radicals to
etch the substrate at specific locations on the wafer.22 Conven-
tionally, these radical species are produced in a plasma consisting
of an intert carrier gas seeded with CF4 or C3Fg. In recent years,
there has been growing interest in the use of CF3I as an alter-
native to CF4 because the use of CF, is restricted in many coun-
tries by the Montreal Protocol due to the molecule’s high global
warming potential (GWP).2%27 For example, even though CFsI is
infrared active, CF3I has an atmospheric residence life of ~1 day
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Fig. 1 Photoelectron spectra for IF; at hv = 4.66eV and 4.13 eV (inset)
and Franck-Condon simulation (red sticks) of the Dy +S, detaching tran-
sition for the [F-I-F]~ isomer. Electron binding energy (eBE) and electron
kinetic energy (eKE) are related by eBE = hv — eKE, where hv is the
photon energy.

and corresponding GWP~1.2829 In contrast, CF4 has a residence
life of ~~50,000 years and corresponding GWP ~6,000.22:30 Fur-
thermore, although iodine atoms formed through UV photodisso-
ciation of CF31 are exceptionally destructive towards stratospheric
ozone,?! the short residence time of CF31 released at terrestrial al-
titudes means that these molecules do not reach the stratosphere
and contribute to ozone destruction. Ultimately, modelling and
tuning of the etching process allows maximisation of process ef-
ficiency and minimisation of unwanted by-products. Theoretical
plasma models require a detailed qualitative and quantitative un-
derstanding of the rich ion-molecule and electron-molecule chem-
istry that occurs in dry-etching plasmas (particularly the chem-
istry associated with fluorine-containing radicals).32"3

IF; & IF,

Photoelectron spectra for IF, are shown in Fig. revealing a
clear vibrational progression with spacing 600+50cm~!. The
ADE, assigned as the lowest energy discernible detaching vi-
bration in the hv=4.13 eV spectrum, is ADE=4.031+0.02eV. The
VDE, determined as the most intense vibration in the 7v=4.66 eV
photoelectron spectrum, is VDE=4.23+0.04 eV. These ADE and
VDE values are most consistent with the calculated values (Ta-
ble for the [F-I-F]~ isomer shown in Fig. there was no evi-
dence for the [F-F-I]~ isomer, which was calculated to lie 2.74 eV
(264kJmol™ 1) higher in energy. Calculated ADE and VDE val-
ues for [F-I-F]~ at the CCSD(T)//def2-TZVPD level of theory (Ta-
ble[I) are both ~4% larger than the experimental values (similar
to the result for I~ given in the ESI). Increasing the basis set to
def2-QZVPD gave calculated values that were ~6% larger than
the experimental values (Table[I). The better agreement with the
smaller basis set is presumably a fortuitous cancellation of errors
with some fraction of this associated with heavy atom/relativistic
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Fig. 2 Calculated equilibrium geometries at the CCSD(T)//def2-TZVPD
level of theory for: (a) [F-I-F]~ and [F-I-F], and (b) [F-F-1]~ and [F-F-I].
NBO charges (red and blue font) are given for the anions. The lowest
energy isomer, [F-I-F]~ has D..;, symmetry, and [F-I-F] has C,, symmetry.

effects.

A Franck-Condon simulation of the photoelectron spectrum for
the [F-I-F]~ configuration is shown in Fig. and has good agree-
ment with the experimental spectrum. The simulation suggests
that the vibrational progression is dominated by detaching tran-
sitions to the v, (asymmetric stretch) and v; (symmetric stretch)
vibrations of the [F-I-F] radical neutral species; calculated fre-
quencies suggest that these two vibrations are nearly degenerate
— see Table[2] We can therefore assign the experimental value of
v2/v3 at 600+50cm~! for the [F-I-F] species. The small feature
denoted by * in the inset in Fig.[T]is probably a hot band from
hot ions produced in the plasma (see ESI). The ADE assignment
should be reliable based on alignment of the VDE with the Franck-
Condon simulation. It is worth noting that a Franck-Condon sim-
ulation of the photoelectron spectrum for the [F-F-I]~ isomer (see
vibrational frequencies for [F-F-I] in Table is inconsistent with
the experimental spectra, lending support to the above assign-
ment.

Calculated vertical excitation energies for the [F-I-F]~ iso-
mer are given in Table S1 in the ESI. These data show that al-
though an excited state resonance is energetically accessible with
a hv=4.66 €V photon, oscillator strengths are zero and therefore
the photoelectron spectra in Fig.[I] should be described by direct
photodetachment to the ground electronic state of the neutral.
Calculated vertical excitation energies for neutral [F-I-F], i.e. elec-
tronic excited states of [F-I-F] at the [F-I-F]~ equilibrium geom-
etry, suggested that only the ground electronic state is accessible
using the photon energies in Fig.[I} consistent with a single vibra-
tional progression.

LF & LF
Photoelectron spectra for [,F~ at three photon energies are shown
in Fig.[3h, revealing two detachment bands. The lower bind-

[E-I-F1~ [F-E-I1™ [-I-F]~ [I-E-I1~
ADE, 4.03+0.02 — 4.04+0.06 —
VDE, 4.23+0.04 — 4.234+0.04 —
ADE. 4.14 (4.15) 3.17 4.22 (4.28) 3.19 (3.38)
VDE. 4.40 (4.50) 3.88 4.40 (4.55) 3.96 (4.08)

Table 1 Experimental (subscript €) and calculated (subscript c) elec-
tron detachment energies for IF, and LF~. Calculations are at the
CCSD(T)/def2-TZVPD level of theory (CCSD(T)/def2-QZVPD in paren-
theses). Experimental uncertainties account for calibration uncertainity
from |~ and pixel-to-energy conversion in image reconstruction.
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Mode [FI-F1~ [FI-F] [FFII- [FFI]

Vi 1937 067 1374 184
V2 193¢ 547¢ 1374 184
V3 401¢ 548° 230°¢ 38P
V4 4370 — 247b 614¢

Table 2 Calculated harmonic vibrational frequencies for IF, and IF,
at the CCSD(T)//def2-TZVPD level of theory in units of cm~!. “Bend.
bSymmetric stretch. °Asymmetric stretch. [F-F-I] has C.., symmetry.
Note the symmetric vs asymmetric stretch mode ordering.

ing energy band has ADE=4.04+0.06 eV and VDE=4.231+0.04 eV.
There is no clear vibrational structure. The higher binding energy
band has ADE2=4.60+0.04 €V and VDE2=4.68+0.04 €V, and vi-
brational spacing of 550+100cm™".

The ADE and VDE parameters for the lower energy band are
consistent with the calculated values for the [I-I-F]~ isomer (Ta-
ble, again with a small overestimation by theory. The two
bands in Fig.[3h are thus assigned to detaching transitions to the
ground and excited electronic states of the [I-I-F] radical neu-
tral. Equilibrium geometries for the I,F~ and I,F isomers are
shown in Fig. the [I-I-F]~ isomer is more stable by 1.35eV
(130kJmol 1), consistent with it being the predominant isomer
formed in the plasma. There was no evidence for the [I-F-I]~
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Fig. 3 (a) Photoelectron spectra for I,F~ at 7v=4.43, 4.66 and 5.17eV.
Electron binding energy (eBE) and electron kinetic energy (eKE) are re-
lated by eBE = hv — eKE, where hv is the photon energy. (b) Franck-
Condon simulation of direct photodetachment to the first two neutral elec-
tronic states. The simulations suggest that the D, +—S, detaching transi-
tion is dominated by low frequency modes and combination bands. See
ESI for Franck-Condon simulations at higher temperatures which assign
the feature denoted by * to a hot band.
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Fig. 4 Calculated equilibrium geometries at the CCSD(T)//def2-TZVPD
level of theory for: (a) [I-I-F]~ and [I-I-F], and (b) [I-F-I]~ and [I-F-1]. NBO
charges (red and blue font) are given for the anions. The lowest energy
isomer, [I-I-F]~ has C..;, symmetry, and [I-I-F] has C; symmetry.

isomer when photoelectron spectra were recorded at photon en-
ergies below the ADE for the [I-I-F]~ isomer. A Franck-Condon
simulation of the photoelectron spectrum to give the ground elec-
tronic state of the neutral (red in Fig.) shows no clear vibra-
tional structure, consistent with experimental spectrum.

The second, higher binding energy photodetachment band in
Fig.[3h was assigned to direct photodetachment to the A; state
of the [I-I-F] species. Geometry optimisation of this state at
the EOM-CCSD//def2-TZVPD level of theory produced a lin-
ear (C.; symmetry) structure with rH=3.021°\ and r1F=1.96f\.
Using this structure, ADE2 was calculated at 4.79¢eV (0.57 eV
difference to ADE), which is again ~4% larger than experi-
ment. Calculated vibrational frequencies for the A state state
are v;=109cm~! (bend), vo=157 cm~! (symmetric stretch) and
v3=530cm~! (asymmetric stretch). A Franck-Condon simulation
of the photoelectron spectrum associated with formation of the
A state of the neutral is shown in green in Fig., and predicts
that the vibrational structure is predominantly from the v; mode.
The feature denoted by * in Fig.[3p at eBE=4.56 €V is assigned to
hot band signal (see ESI).

Calculated vertical excitation energies for the I,F~ isomers are
given in TableS1 in the ESI. For the [I-I-F]~ isomer, the first
few electronic states have very low oscillator strengths and the
photoelectron spectra for photon energies <5 eV should be domi-
nated by direct photodetachment. There is, however, a bright A, -
symmetry resonance with a calculated vertical excitation energy
in the 5.1-5.2 €V range (see ESI). Fortunately, the photoelectron
spectra for both of these species are at lower binding energies
and should not interfere with the spectra shown in Fig.[3] It is
worth noting that the issue of bright excited state resonances in
the detachment continuum is more serious for Iy 15H18I and larger
polyinterhalogen anions due to an increased density of electronic
states, hampering measurement of photoelectron spectra.

Polyinterhalogen molecules can be divided into two categories,

Mode [I-I-FI~  [I-I-F] [I-EI]- [I-EID

Vi 124 102¢ 997 207
V2 124¢ 158" 99¢ 72b
V3 136 502¢ 120° 606°
V4 402¢ — 229¢ —

Table 3 Calculated harmonic vibrational frequencies for I,F~ and I,F
at the CCSD(T)//def2-TZVPD level of theory in units of cm~'. “Bend.
bSymmetric stretch. ¢Asymmetric stretch.
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classical and non-classical.® The former is defined as contain-
ing an electropositive central atom surrounded by electronegative
halogen atoms, e.g. [F-I-F]~. In contrast, for a non-classical poly-
interhalogen molecule, the central halide is more electronegative
than the coordinating dihalogen or interhalogen molecules, e.g.
Cl(Iy); in which four I, molecules coordinate a Cl~.*37 Interest-
ingly, the [I-I-F]~ species satisfies the non-classical criterion, pos-
sessing covalent-like bond lengths and a terminal F~ coordinated
to an I, molecule (see NBO charges in Fig.[). Similar arguments
have been made about the [I-I-Cl]~ species in the solid state.'*38
Finally, it is worth noting that Mabbset al.2 reported a 267 nm
photoelectron spectrum of I,Br~, which presumably exists as the
[I-I-Br]~ isomer and also is an example of a non-classical poly-
interhalogen, however, the photoelectron spectrum showed no
vibrational structure.

Our experiments suggest that IF, , LF~ and most likely the cor-
responding neutrals are amongst the major products formed in a
hard Ar-CF;l plasma. In the semiconductor manufacture indus-
try, radical neutrals including IF, and I,F formed in the etching
plasma may collide and react with etchant substrates. In this con-
text, the bond dissociation energy (BDE) to produce a fluorine
atom is related to etching efficiency — a lower BDE gives enhanced
etching capacity. For the [F-I-F] and [I-I-F] isomers, BDE:s for flu-
orine atoms were calculated at 1.74 €V and 1.35 eV, respectively,
using the CCSD(T)//def2-TZVPD level of theory. For compari-
son, the calculated BDE for a fluorine atom from the CF3 radical
is 3.51 eV, which is substantially larger than that for the [F-I-F]
and [I-I-F] isomers and suggests that polyinterhalogen radicals
formed in hard Ar-CF;3I plasmas are important etching species.

In summary, this paper has reported a combined photoelectron
spectroscopy and electronic structure theory study on the IF;,
IF,, IF, and L, F species, determining the gas-phase structures and
electron detachment parameters for the anions and vibrational
structure of the neutrals. This determination provides the first
vibrationally-resolved spectroscopic characterisation of isolated
polyinterhalogen radicals. Whereas IF; as the [F-I-F]~ isomer is a
classical polyinterhalogen molecule, IF; as the [I-I-F]~ isomer is
classified as a non-classical polyinterhalogen molecule. Theoreti-
cal modelling of these species has shown that the CCSD(T)//def2-
TZVPD level of theory, on average, predicts ADE and VDE param-
eters to within ~4% of experiment, however, this level of theory
suffers from some degree of Pauling-point agreement. The IF,
and I,F radicals may play an important role in plasma etching
processes due to having low bond dissociation energies to give
fluorine atoms.
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