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Abstract  50 

Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people 51 

with diabetes mellitus. A diagnosis of DKA is confirmed when all of the three criteria are present 52 

—‘D’, either elevated blood glucose levels or a family history of diabetes mellitus; ‘K’, the 53 

presence of high urinary or blood ketoacids; and ‘A’, a high anion gap metabolic acidosis. Early 54 

diagnosis and management is paramount to improve patient outcome. The mainstays of 55 

treatment include restoration of circulating volume, insulin therapy, electrolyte replacement and 56 

treatment of any underlying precipitating event. Without optimal treatment, DKA remains a 57 

condition with an appreciable, although largely preventable morbidity and mortality. In this 58 

Primer, we discuss the epidemiology, pathogenesis, risk factors and diagnosis of DKA, as well 59 

as we provide practical recommendations for management of DKA in adults and children. 60 

 61 

  62 
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[H1] Introduction 63 

 64 

Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people 65 

with diabetes mellitus. DKA is the consequence of an absolute (that is, total absence of) or 66 

relative (that is, levels insufficient to supress ketone production) lack of insulin and concomitant 67 

elevation of counter-regulatory hormones, usually resulting in the triad of hyperglycaemia, 68 

metabolic acidosis and ketosis (elevated levels of ketones in the blood or urine; serum ketone 69 

concentration of >3.0mmol/l), often accompanied by varying degrees of circulatory volume 70 

depletion [G]. DKA occurs mostly in people with uncontrolled type 1 diabetes mellitus (T1DM, 71 

which results from the autoimmune destruction of the β-cells of the islets of Langerhans), but can 72 

also occur in adults with poorly controlled type 2 diabetes mellitus (T2DM, a result of impaired 73 

insulin secretion or action) under stressful conditions such as acute medical or surgical illnesses 74 

and, in adolescents, new onset T2DM (also known as ketosis-prone T2DM) (Figure 1). Although 75 

any illness or physiological stress can precipitate DKA, the most frequent causes are infections, 76 

particularly urinary tract infections and gastroenteritis1,2.  77 

 78 

DKA was previously considered to be a key clinical feature of T1DM, but has been documented 79 

in children and adults with newly diagnosed T2DM2,3. Although ketosis-prone T2DM can occur in 80 

all populations, epidemiological data suggest that people of African or Hispanic origin seem to be 81 

at greater risk2. This predisposition likely has a genetic component, but this has yet to be 82 

elucidated. Most often individuals with ketosis-prone T2DM have obesity and a strong family 83 

history of T2DM and evidence of insulin resistance. Despite presenting with DKA and decreased 84 

insulin concentrations, on immunological testing these individuals have the same frequency of the 85 

typical autoimmune markers of T1DM such as islet cell, insulin, glutamic acid decarboxylase, and 86 

protein tyrosine phosphatase autoantibodies as those who present with HHS and their β-cell 87 

function recovers with restoration of insulin secretion quickly after treatment2. Thus, individuals 88 

with ketosis-prone T2DM can often go back to oral glucose-lowering medication, without the need 89 

for continuing insulin therapy. DKA is associated with significant morbidity and utilization of health 90 

care resources, accounting for 4–9% of all hospital discharges among those with a diagnosis of 91 

diabetes as the primary cause for their acute hospital admission4. DKA remains an expensive 92 

condition to treat. In the USA, a single episode of DKA is estimated to cost ~$26,566 (Ref5). In 93 

the UK, the cost of one DKA episode is estimated to be £2,064 in adults and £1,387 in 94 

adolescents (11–18 years of age) 6,7. 95 
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 96 

The criteria used to define DKA differ in different parts of the world (Table 1). In 2001, the 97 

American Diabetes Association (ADA) expanded the definition of DKA to include mild metabolic 98 

acidosis, hyperglycaemia and positive ketone tests8,9 (Table 1). Although all the definitions of 99 

DKA concur by saying that all three components need to be present, the glucose concentrations 100 

and method of documenting ketosis vary. Additionally, all guidelines agree that venous or arterial 101 

pH should be <7.30. Early diagnosis and treatment are paramount to improve patient outcomes. 102 

In developed countries, the risk of death resulting from DKA is <1% in children and adults 10,11 103 

whereas in developing countries, mortality rates are much higher, with reported rates as high as 104 

3–13% in children12. Among adults, DKA-related deaths occur primarily in older persons (>60 105 

years of age) or in those with severe precipitating illnesses1. In children, the majority of DKA-106 

related deaths result from cerebral injuries or cerebral oedema. Evidence-based treatment 107 

strategies include correction of fluid deficits, insulin therapy, potassium repletion and correction of 108 

the precipitating factor.  109 

 110 

The other hyperglycaemic emergency that occurs is hyperosmolar hyperglycaemic state, which 111 

has a distinct pathophysiology to DKA (Box 1).  112 

 113 

This Primer aims to provide up to date knowledge on the epidemiology, pathophysiology, clinical 114 

presentation, management of DKA. In addition, we also discuss prevention measures after 115 

discharge in adults and children with DKA.  116 

 117 

[H1] Epidemiology 118 

 119 

As the majority of people with DKA are hospitalized, most epidemiological data comes from 120 

hospital discharge coding. Among adults, two-thirds of episodes of DKA occur in people 121 

diagnosed with T1DM and one-third occur in those with T2DM3,11,13. In children (<18 years of 122 

age), DKA commonly occurs at the initial diagnosis of T1DM, with incidence varying in different 123 

populations from 13% to 80%14-16. Adolescents with T2DM also present with DKA, although less 124 

frequently than children with T1DM14. In addition, the frequency of DKA at diagnosis correlates 125 

inversely with the frequency of T1DM in the population, suggesting that the more frequent T1DM 126 

occurs in the general population, the more likely that symptoms of new onset are recognised 127 

before it becomes an episode of DKA17-19. DKA occurs as the earliest presentation of diabetes in 128 

children <5 years of age, and in people who do not have easy access to medical care for 129 
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economic or social reasons20-22. Among individuals ( between 4.6 to 19.8 years of age), who were 130 

antibody negative and with median BMI z-score [G] 2.3 (2.0, 2.6), 11% presented with ketosis-131 

prone T2DM23. The percentage of adults with ketosis-prone T2DM is unknown; however, since 132 

the early 2000s, the prevalence of ketosis-prone T2DM worldwide has increased3,13. Studies 133 

investigating autoimmunity in ketosis-prone T2DM that have suggested an association between 134 

developing the condition and full-length tyrosine phosphatase IA-2 antibody (IA-2FL) or its 135 

extracellular domain (IA-2EC)24. Thus, individuals with genetic predisposition might be at greater 136 

risk of developing ketosis-prone T2DM. 137 

 138 

Epidemiological studies in the USA and Europe revealed increasing hospitalizations for DKA in 139 

adults10,13,25. In 2014, the US Centers for Disease Control and Prevention reported a total of 140 

188,950 cases of DKA10. Between 2000 and 2009, an average decline of 1.1% in the annual age-141 

adjusted DKA hospitalization rate was noted among people with any form of diabetes mellitus 142 

between10. However, the estimated average annual hospitalization rate increased to 6.3% 143 

between 2009 and 2014, that is, a rise of 54.9% in this period (from 19.5 to 30.2 per 1,000 144 

persons). This increase was observed across all age groups and sexes. The highest 145 

hospitalization rates were in individuals <45 years of age, which might be attributed to poor 146 

control (44.3 per 1,000 persons in 2014) and lowest in persons >65 years of age for reasons 147 

unknown (<2.0 per 1,000 persons in 2014)10. The causes of increased DKA hospitalizations are 148 

not clear, but might relate to changes in DKA definition8,9, use of new medications associated with 149 

increased DKA risk and lower thresholds for hospitalization (that is, admission of individuals with 150 

less serious disease)10,13.  151 

 152 

The rise in hospitalizations for DKA in the USA parallels the increased trend observed in the UK, 153 

Australia, New Zealand and Denmark11,26,27. A study from the UK examined nationally 154 

representative data in those with existing T1DM and T2DM using the Clinical Practice Research 155 

Datalink and the Hospital Episode Statistics databases between 1998 and 2013 (Ref11). The 156 

study found that the incidence of DKA was highest in adults between 18 and 24 years of age 157 

within 1 year of diagnosis, potentially suggesting a need for greater education on managing their 158 

diabetes at the time of diagnosis. In agreement with these reports, a systematic review25 reported 159 

worldwide incidence of 8–51.3 cases per 1,000 patient-years in individuals with T1DM, which has 160 

shown to be the highest in men between 15 to 39 years of age28. These data made no distinction 161 

between first or recurrent (an individual presenting with >1 episode at any time after their first 162 

event) episodes of DKA. Furthermore, the Guangdong Type 1 Diabetes Translational Study 163 
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Group reported a much higher incidence across China (263 per 1,000 patient-years), which the 164 

investigators attributed to differences in national health care systems where people with T1DM 165 

have limited access to routine health care as well as infrequent self-monitoring of blood 166 

glucose29. However, in jurisdictions such as Taiwan, Germany and Italy, DKA hospitalization rates 167 

have decreased30-32. The reasons for this decrease are unknown, but might be due to 168 

improvements in access to healthcare and/or increased recognition of the early signs of 169 

hyperglycaemia and DKA.  170 

 171 

Recurrent DKA accounts for a substantial portion of the hospitalizations amongst adults with 172 

diabetes mellitus; 66% for T1DM and 35% for T2DM in the UK11. However, a study in the USA 173 

reported recurrent DKA in 21.6% of adults with T1DM or T2DM between 18 and 89 years of age. 174 

Of those with recurrent DKA, 16% had been hospitalized at more than one hospital33, implying 175 

that patients do not get continuity of care and that their care is fragmented. Recurrent DKA often 176 

occurs in a small number of adults or children who have behavioural, social or psychological 177 

problems who make up a disproportionate number of DKA admissions33,34.  178 

 179 

In developed countries, hospital case-fatality rates have declined over time with current reported 180 

mortality rates of <1% were observed across all age groups and sexes10,35. However, DKA is the 181 

leading cause of mortality among children and adults <58 years old with T1DM, accounting for 182 

>50% of all deaths in children with diabetes mellitus36. Mortality increases substantially in those 183 

with comorbidities and with ageing, reaching 8–10% in those >65–75 years of age1,37. The 184 

highest rates of DKA have been suggested to occur in regions least able to afford healthcare38. 185 

Mortality might also be higher in these populations, for example, data from India showed a 30% 186 

mortality in those presenting with DKA39 and studies from sub-Saharan Africa have reported 187 

similarly high mortality (26–41.3%), whereas a study from Jamaica reported a mortality of 6.7%39-
188 

41. Limited resources in the treating hospital, late presentation or higher case load in larger 189 

institutions might contribute to the higher mortality. 190 

 191 

[H2] Risk factors  192 

In adults with known diabetes mellitus, precipitating factors for DKA include infections, 193 

intercurrent illnesses such as acute coronary syndrome, insulin pump issues (for example, 194 

dislodgement or blockage of infusion sets), and poor adherence and noncompliance with insulin 195 

therapy (Table 2)1,35. Several new studies have emphasized the impact of poor treatment 196 

adherence on the incidence of DKA. For example, in the USA, among urban Afro-Caribbean 197 
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populations and in underinsured people, noncompliance was the principal cause for the 198 

development of DKA42. As a result, poor adherence to insulin treatment accounted for >50% of 199 

DKA admissions to a large urban hospital33,42. A study reported that persons without health 200 

insurance or with Medicaid alone (in the USA) had hozpitalisation rates 2–3 times higher for DKA 201 

than those with private insurance. A study examining two community hospitals in Chicago, IL, 202 

identified that most cases of DKA were caused by people with diabetes mellitus omitting their 203 

insulin (failure to administer insulin as directed) and medical illness accounted for less than one-204 

third of admissions33. In the UK, the most frequent cause of DKA was infection, followed by non-205 

compliance35. Other conditions that are known to precipitate DKA include myocardial infarction, 206 

cerebrovascular accidents, pancreatitis, alcohol misuse, pulmonary embolism and trauma1,8,35. 207 

The risk factors for recurrent DKA include low socioeconomic status, adolescence, female sex 208 

(possibly due to a higher incidence of deliberate insulin omission, psychological issues, eating 209 

disorders, and body dysmorphia43), high glycated haemoglobin (HbA1c), previous episodes of 210 

DKA and a history of mental health problems44-49. 211 

 212 

In children, lack of prompt recognition of new-onset T1DM by healthcare providers increases the 213 

risk of DKA at diagnosis50. Among children with known T1DM, the majority of DKA episodes are 214 

caused by insulin omission with a minority of episodes occurring in association with infections — 215 

most often gastrointestinal infections with vomiting and an inability to keep hydrated51. Risk 216 

factors for DKA in children with known diabetes mellitus include poor diabetes control, previous 217 

episodes of DKA, unstable or challenging family or social circumstances; adolescent age, being a 218 

peripubertal girl, and having limited access to medical services52,53. A study showed that in the 219 

USA and in India, a small proportion (5.5% and 6.6%, respectively) of people aged ≤19 years 220 

who are eventually diagnosed with T2DM present with DKA54. Whether this is ketosis-prone 221 

T2DM is unknown as genetic analyses on these individuals is unavailable.  222 

 223 

Psychological factors also influence the likelihood of developing DKA55,56. A report of ~350 224 

adolescent girls and women (aged 13–60 years) suggested that disordered eating and was a 225 

contributing factor in ~20% of recurrent episodes of DKA57. Furthermore, ~30% of young women 226 

(15 ± 2 years of age) with T1DM have been suggested to have an eating disorder58. When 227 

questioned, the women omitted insulin because of a fear of weight gain with good glycaemic 228 

control, diabetes-related distress, fear of hypoglycaemia, and rebellion from authority59.  229 

 230 

[H3] Pharmacological risk factors.  231 
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As mentioned, insulin mismanagement or omission can lead to DKA. Most often treatment 232 

involves insulin given in a multiple dose regimen. However, data from the UK National 233 

Paediatric Diabetes Audit shows that insulin pump use is also associated with an increased 234 

risk of DKA in the <18 year old population60. DKA has also been reported in people with 235 

diabetes mellitus treated with sodium–glucose transport protein 2 (SGLT2) inhibitors. Results 236 

from randomized controlled trials (RCTs) have indicated that DKA is rare in patients with 237 

T2DM treated with SGLT2 inhibitors (incidence of 0.16–0.76 events per 1,000 patient-238 

years61). Several RCTs, however, have reported a higher risk of SGLT2 inhibitor-associated 239 

ketosis in adults with T1DM (5–12%)62-64 and an incidence of DKA in ~3–5% in those with 240 

T1DM treated with SGLT2 inhibitors62,65. The incidence of DKA in those receiving placebo in 241 

these RCTs of people with T1DM was 0–1.9%64 and DKA occurred despite the use of 242 

measures designed to minimize the risk of ketosis. These risk mitigation strategies have 243 

been described elsewhere66,67. With the regulatory approval of SGLT2 inhibitors for use in 244 

patients with overweight and T1DM in Europe68, the actual rates of DKA outside of a clinical 245 

trial setting remain to be determined. The only other drug licensed in the USA for use in 246 

people with T1DM is pramlintide69. The use of this drug is not associated with the 247 

development of DKA, but is seldom used because it needs to be injected at each meal as a 248 

separate injection to insulin, causes nausea, and hypoglycaemia might occur if the insulin to 249 

carbohydrate ratio is incorrect. Thus, there is a need to develop better adjunctive treatments 250 

alongside insulin for people with T1DM.  251 

 252 

Data from the T1DM exchange registry in the USA has shown that cannabis use is associated 253 

with an increased risk of developing DKA70. In addition, drugs that affect carbohydrate 254 

metabolism such as corticosteroids, sympathomimetic agents (used in nasal decongestants) 255 

and pentamidine (an antimicrobial agent most frequently used to treat protozoal infection or 256 

pneumonia) can precipitate the development of DKA1,9. Atypical antipsychotic agents have been 257 

associated with weight gain and T2DM, but are also associated with DKA, which occur acutely 258 

even in the absence of weight gain71,72. Cancer treatment using immune check-point inhibitors 259 

(ICIs), such as those that block CTLA-4, and PD-1 or its ligand PD-L1 (Refs73,74), have been 260 

linked to new-onset autoimmune T1DM54,75,76. The WHO database of individual case safety 261 

reports described a total of 283 cases of new-onset diabetes with >50% of patients with ICI-262 

induced diabetes mellitus presenting with DKA75,76. Additionally, a case series involving large 263 

academic medical centres estimated an incidence of 1% of new-onset T1DM with a median time 264 

of 49 days to onset and 76% of the cases presented with DKA74,76,77.  265 
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  266 

[H1] Mechanisms/pathophysiology 267 

 268 

In T1DM or T2DM, when there is absolute or relative insulin deficiency or in times of acute 269 

illness, which is associated with an increase in the counter-regulatory hormones, cortisol, 270 

growth hormone, glucagon and catecholamines, DKA may occur. These alterations in hormone 271 

levels and the subsequent inflammatory response form the basis of the pathophysiological 272 

mechanisms involved in DKA. The changes in hormone concentrations lead to alterations in 273 

glucose production and disposal, as well as increased lipolysis and ketone body production 274 

(Figure 2). Intercurrent illness can lead to the production of counter regulatory hormones leading 275 

to hyperglycaemia and the pro-inflammatory state resulting from an infection precipitate DKA.  276 

  277 

[H2] Gluconeogenesis and hyperglycaemia  278 

In diabetes mellitus, insulin deficiency leads to increased gluconeogenesis (hepatic glucose 279 

production), which is simultaneously accompanied by impaired glucose uptake and use in 280 

peripheral tissues78,79, resulting in hyperglycaemia. In healthy individuals, ~20% of total 281 

endogenous glucose production also comes from the kidneys as a result of a combination of 282 

gluconeogenesis and glycogenolysis80. Endogenous renal glucose production has been 283 

speculated to be increased in DKA because data from the 1970’s suggest that the presence of 284 

an acidosis increase renal glucose output, whilst impairing hepatic gluconeogenesis81. In T1DM 285 

and T2DM, increased hepatic gluconeogenesis results from the increased availability of 286 

gluconeogenic precursors such as lactate, glycerol and several gluconeogenic amino acids 287 

including alanine, glycine and serine. Furthermore, low insulin concentrations lead to catabolism 288 

of protein from muscles, liberating amino acids that are gluconeogenic and ketogenic such as 289 

tyrosine, isoleucine and phenylalanine, or purely ketogenic such as lysine and leucine. 290 

Catabolism of isoleucine, lysine and tryptophan lead to the formation of acetyl coenzyme A 291 

(acetyl CoA); catabolism of phenylalanine and tyrosine lead to the formation of acetoacetate; 292 

and leucine leads to the production of β-Hydroxy-β-methylglutaryl-CoA (HMG-CoA) — all of 293 

which feed into the production of ketone bodies. High glucagon, catecholamine and cortisol 294 

concentrations relative to insulin levels stimulate gluconeogenic enzyme activity, in particular 295 

phosphoenol pyruvate carboxykinase, fructose-1,6-bisphosphatase and pyruvate carboxylase, 296 

all of which augment hyperglycaemia79,82,83.  297 

 298 

[H3] Ketogenesis. The increase in counter-regulatory hormone concentrations associated with 299 
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severe insulin deficiency activates hormone-sensitive lipase in adipose tissue. Lipolysis of 300 

endogenous triglycerides by this enzyme releases large quantities of free fatty acids (FFAs) and 301 

glycerol into the circulation84. These FFAs are oxidized to ketone bodies in the hepatic 302 

mitochondria, a process mediated by high glucagon concentrations. Glucagon reduces the 303 

hepatic concentrations of malonyl CoA, which is the first committed intermediate in the lipogenic 304 

pathway85. Malonyl CoA is also a potent inhibitor of fatty acid oxidation and inhibits the enzyme, 305 

carnitine palmitoyltransferase 1 (CPT1). CPT1 regulates the uptake of FFAs into the 306 

mitochondria for -oxidation86, causing an accumulation of acetyl CoA. Under normal 307 

circumstances, acetyl CoA enters the tricarboxylic acid (TCA) cycle (also known as Krebs cycle) 308 

and, subsequently, the mitochondrial electron transport chain to synthesize ATP. However, 309 

when acetyl CoA production exceeds the levels that can be metabolized by the TCA cycle, two 310 

molecules of acetyl CoA condense to form acetoacetyl-CoA, which can condense with another 311 

acetyl CoA molecule to form β-hydroxy-β-methylglutaryl-CoA (HMG-CoA). The enzyme HMG-312 

CoA synthase is stimulated by glucagon and inhibited by insulin, therefore, in times of fasting or 313 

insulin deprivation, the enzyme actively produces HMG-CoA. HMG-CoA within the mitochondria 314 

is lysed to form acetoacetate (as opposed to in the cytosol, where it is involved in cholesterol 315 

synthesis), which can further spontaneously degrade to form acetone or be metabolized to -316 

hydroxybutyrate87. The acetone, acetoacetate and -hydroxybutyrate constitute the three ketone 317 

bodies produced by the liver. The exhaled acetone is what gives the classic ‘fruity’ breath in 318 

people presenting with DKA. Of these, acetoacetate and -hydroxybutyrate are acidic, that is, 319 

they are ketoacids having pKa [G] values of 3.6 and 4.7 respectively. Concurrent with increased 320 

ketone body production, the clearance of -hydroxybutyrate and acetoacetate is reduced. 321 

Acidosis occurs due to the buffering of the protons produced by the dissociation of ketoacids 322 

that occurs at physiological pH. The reduced clearance of ketones contributes to the high 323 

concentration of anions in the circulation, which also contributes to the development of DKA88. 324 

However, the reason for this decreased clearance remains uncertain79,89. 325 

 326 

Accumulation of ketoacids leads to a decrease in serum bicarbonate concentration and 327 

retention of these ‘fixed acids’ leads to the development of high anion gap metabolic acidosis. 328 

The anion gap is a calculation of the difference between the cations and anions in the serum 329 

and the difference can be used as a guide to the cause of the excess acidity. If there is a large 330 

difference that is not accounted for by the anions and cations in the equation, then alternative 331 

causes for the difference must be found. The most frequently used equation to calculate anion 332 

gap is ([Na+] + [K+]) − ([Cl−] + [HCO3
−]), although some investigators do not include potassium 333 
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ion concentration owing to its negligible effect on the overall result. In healthy individuals, the 334 

reference range is most frequently 10–14 mmol/l90-92. The relationship between the change in 335 

the anion gap and the change in serum bicarbonate concentration is not always 1:1, as was 336 

previously postulated, which might be owing to the contribution of unmeasured cations (UC) (for 337 

example, Ca2+ and Mg2+) and unmeasured anions (UA) (for example, HPO4
-, SO4

2-). Thus, the 338 

true equation for anion gap can be expressed as [Na+] + [K+] + UC = [Cl−] + [HCO3
−] + UA, 339 

which can be arranged as [Na+] + [K+] – [Cl−] + [HCO3
−] = UA – UC = anion gap. Thus, the 340 

difference between the UAs and UCs also constitutes the anion gap90. Other components of the 341 

plasma, in particular albumin, can affect the relationship between the severity of the acidosis, 342 

the bicarbonate and anion gap and this relationship is discussed in more detail elsewhere90,93. 343 

The measure of acidity is important because as pH falls <7.35, intracellular biological systems 344 

begin to fail, leading to irreversible damage at ~pH <6.8. This low pH can lead to neurological 345 

dysfunction, leading the coma, and if severe or prolonged enough, death.  346 

 347 

 [H2] Osmotic diuresis 348 

The severity of hyperglycaemia and the high concentrations of acetoacetate and β-349 

hydroxybutyrate cause osmotic diuresis leading to hypovolaemia (state of extracellular volume 350 

depletion) with contraction of arterial blood volume. The osmotic diuresis also leads to a 351 

decreased glomerular filtration rate [G], therefore, reducing the ability to excrete glucose. The 352 

hypovolaemia leads to further increases in the levels of counter-regulatory hormones, further 353 

aggravating hyperglycaemia94. The resulting low circulating volume leads to generalised 354 

hypoperfusion and can also lead to a rise in lactic acid. Owing to lack of perfusion, peripheral 355 

tissues become deprived of oxygen and switch to anaerobic respiration, thereby generating 356 

lactate, worsening the acidaemia (the state of low blood pH). The lack of renal perfusion can 357 

lead to pre-renal renal failure. This lack of renal perfusion means that there is an inability to 358 

adequately excrete acids such as sulphate, phosphate or urate, further exacerbating the high 359 

anion gap acidaemia. The osmotic diuresis, as well as the associated vomiting and inability to 360 

take fluid orally or a lower conscious level lead to worsening of the dehydration. The 361 

hyperglycaemia might be worsened by the ingestion of sugar sweetened beverages to quench 362 

the thirst experienced by these individuals.  363 

 364 

[H2] Electrolyte disturbance  365 

Insulin maintains the potassium (a predominantly intracellular cation) concentrations within the 366 

intracellular fluid. Thus, the lack of insulin causes potassium to move into the extracellular 367 
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space. As the plasma pH falls due to the rise in ketone concentrations, plasma bicarbonate ions 368 

act as one of the main buffers to maintain the physiological pH (that is, pH 7.4). As acidaemia 369 

progresses and the pH falls further, the bicarbonate concentration drops because it buffers [G] 370 

the increase in hydrogen ion concentration, and further tissue buffering becomes crucial. To 371 

achieve this, extracellular hydrogen ions from the ketoacids are exchanged for intracellular 372 

potassium ions. In addition, the extracellular hypertonicity [G] causes movement of water from 373 

the intracellular space to the extracellular space leading to further loss of intracellular 374 

potassium. Furthermore, owing to the osmotic diuresis, the circulating volume decreases and 375 

aldosterone concentration increases. Aldosterone works by conserving sodium reabsorption in 376 

the kidney by excreting potassium in the urine, leading to further potassium loss. The end effect 377 

of these physiological attempts at maintaining buffering capacity and electrical neutrality is 378 

hyperkalaemia. A study from 1956 showed that for each 0.1 unit fall in pH, serum potassium 379 

concentration increased by 0.6mmol/l95. Thus in the acute stage before fluid and insulin 380 

treatment is started, serum potassium can be as high as ≥7.0mmol/l, yet because of the renal 381 

loss, total body potassium stores are usually substantially depleted, which is estimated to be 3–382 

5mmol/Kg9. 383 

 384 

[H2] Inflammation 385 

Severe hyperglycaemia and the occurrence of ketoacidosis result in a pro-inflammatory state, 386 

evidenced by an elevation of oxidative stress markers and increased concentrations of pro-387 

inflammatory cytokines96-99. This increase in inflammatory cytokines leads to white adipose 388 

tissue dysfunction by inhibiting insulin signalling or increasing lipolysis , thereby leading to 389 

greater transport of FFAs to the liver, which act as ketogenic substrates100-102. In diabetic 390 

conditions, impaired insulin signalling that results in severe hyperglycaemia can induce the liver 391 

to produce CRP (a pro-inflammatory marker) under the influence of activated macrophages that 392 

secrete pro-inflammatory cytokines such as, IL-6, IL-1, and TNF. These cytokines, in turn, can 393 

impair insulin secretion and reduce insulin action further exacerbating DKA97,98,103,104. The 394 

elevated FFAs also induce insulin resistance and at the same time cause endothelial 395 

dysfunction by impairing nitric oxide production in endothelial cells105,106. Together, the 396 

inflammatory response induces oxidative stress and the subsequent generation of reactive 397 

oxygen species lead to capillary endothelial disruption and damage of cellular lipids, proteins, 398 

membranes, and DNA97,99. The inflammatory state caused by has also been hypothesized to be 399 

involved in causing complications of DKA in children, particularly cerebral oedema and cerebral 400 

injury107-109. The cerebral oedema in DKA is vasogenic (that is, resulting from the disruption of 401 



 

 13 

the blood–brain barrier) but the mechanism remains undetermined.  402 

 403 

The reasons for coma or reduction in cognitive ability in DKA are yet to be elucidated. Given 404 

that some people are fully alert and orientated with a pH of 6.9, whereas others are obtunded at 405 

a pH of 7.2 suggests that an element of ‘physiological reserve’ might be involved. However, the 406 

degree of circulatory volume depletion, high glucose concentrations and rapid shift of 407 

electrolytes between the intracellular and extracellular spaces might also play a part.  408 

 [H2] SGLT2 inhibitor-induced ketoacidosis 409 

 410 

By promoting a glycosuria, the SGLT2 inhibitors lower circulating glucose concentrations110. 411 

As glucose concentrations drop, insulin concentrations also drop and glucagon rises. 412 

Together these changes promote lipid β-oxidation, and ketoacid production occurs 111-113. In 413 

patients already using insulin, as glucose concentrations drop, insulin doses may be 414 

reduced, but ketogenesis is not prevented. As ketone concentrations continue to rise, DKA 415 

may occur – but crucially, as the circulating glucose concentrations are low, euglycaemic 416 

DKA occurs more frequently in these individuals 114,115. The mechanism for the development 417 

of DKA with SGLT2 inhibitors has been discussed in detail elsewhere 114,115. 418 

 419 

 420 

[H2] Alcoholic ketoacidosis 421 

Alcoholic ketoacidosis has a different pathogenesis from DKA and develops in people with 422 

chronic alcohol abuse who have binged, resulting in nausea, vomiting and acute 423 

starvation116,117. Blood glucose concentration is the key diagnostic feature that differentiates 424 

DKA and alcohol-induced ketoacidosis. Acute alcohol withdrawal can cause counter-regulatory 425 

hormone release and any accompanying starvation will be associated with low insulin secretion, 426 

which, in turn, causes lipolysis and ketogenesis. Furthermore, the enzyme, alcohol 427 

dehydrogenase, metabolizes ethanol to acetaldehyde, which is metabolized to acetic acid and 428 

transported into the mitochondria, where it is converted into acetyl CoA that subsequently 429 

condenses to acetoacetate118. In contrast to DKA that usually presents with severe 430 

hyperglycaemia, the presence of ketoacidosis without hyperglycaemia in an alcoholic patient is 431 

virtually diagnostic of alcoholic ketoacidosis117,119. 432 

 433 

[H2] Starvation ketosis  434 

Starvation ketosis occurs when a person has a prolonged reduced calorie intake of 435 
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<500Kcal/day120. With little or no carbohydrate intake, insulin secretion is decreased, leading to 436 

lipolysis and ketogenesis. However, starvation ketosis differs from DKA; in healthy individuals or 437 

in individuals with obesity without diabetes who starve, -hydroxybutyrate concentrations can 438 

reach 5–6mmol/l, but this takes several days of absolute starvation with almost very little or no 439 

caloric intake121,122, or 4–5mmol/l after 10 days of starvation123. For comparison, in a healthy, 440 

non-starving individual, -hydroxybutyrate concentrations should be <0.3mmol/l. An individual is 441 

able to adapt to prolonged fasting by increasing brain and muscle ketone clearance as well as 442 

renal compensation by increasing acid excretion, in particular ammonia121,124. As this condition 443 

develops over many days, electrolyte imbalance (for example, low bicarbonate concentrations) 444 

is less likely to occur due to the ability of the kidney to compensate. However, if electrolyte 445 

intake is also limited, then eventually electrolyte disturbances will occur124.. Thus, as a result of 446 

renal compensation, starvation-induced ketosis is unlikely to present with a serum bicarbonate 447 

concentration <18.0mmol/L120. This serum bicarbonate corresponds to a mean ß-448 

hydroxybutyrate concentration of 5.68 (±1.5) mmol/l in the UK national survey of DKA; it is likely 449 

that it took only a few hours of insulin deprivation to achieve that ketone concentration in 450 

patients with DKA35.  451 

 452 

 453 

 454 

[H1] Diagnosis, screening and prevention 455 

 456 

[H2] Presentation  457 

DKA frequently presents with a short history, with symptoms developing usually over a few 458 

hours. These include the classic symptoms of hyperglycaemia — polyuria (excessive urine 459 

production), polydipsia (excessive thirst) and, in those for whom DKA is the first presentation of 460 

diabetes, weight loss (Figure 3). Polyphagia (excessive hunger) has been reported in children, 461 

but remains rare in adults125 Gastrointestinal symptoms such as nausea, vomiting and 462 

generalized abdominal pain are reported in >60% of patients1,126. Abdominal pain, sometimes 463 

mimicking an acute abdomen, is especially common in children and in patients with severe 464 

metabolic acidosis. Abdominal pain typically resolves during the first 24 hours of treatment and 465 

lack of resolution of abdominal pain within this time frame should prompt a search for other 466 

causes126. Although the cause of the gastrointestinal complaints has not been fully elucidated, 467 

delayed gastric emptying, ileus (that is, lack of movement in the intestines that leads to a delay 468 

in transit), electrolyte disturbances and metabolic acidosis have been implicated1,126.  469 
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 470 

Physical examination of adults and children usually reveals signs of circulatory volume 471 

depletion, including dry mucous membranes and tachycardia. Mental status on admission varies 472 

from full alertness to lethargy and stupor, with <20% of adults hospitalized showing loss of 473 

consciousness127. As pH drops, respiratory compensation for the metabolic acidosis, that is, 474 

excreting acidic carbon dioxide in an attempt to maintain plasma pH, leads to Kussmaul 475 

respirations (a deep and laboured breathing pattern) in individuals with DKA and the breath 476 

might have a classic fruity odour owing to acetone exhalation. Most adults and children are 477 

normothermic or even hypothermic at presentation even in the presence of infection. 478 

Hypotension might be observed in adults but is rarely present in children. In fact, for reasons 479 

unknown, studies have documented a high frequency of hypertension in children with DKA, in 480 

spite of substantial volume depletion128. Therefore, it is important not to rely on blood pressure 481 

as a marker of DKA severity in children.  482 

 483 

[H2] Diagnosis  484 

The diagnosis of DKA is based on the triad of hyperglycaemia, ketosis and metabolic 485 

acidosis129. Although the ADA, Joint British Diabetes Societies and the International Society of 486 

Pediatric and Adolescent Diabetes agree that the main diagnostic feature of DKA is the 487 

elevation in circulating total blood ketone concentration, the other diagnostic criteria such as 488 

serum glucose and bicarbonate concentrations differ(Table 1)8,9,52,130. Studies have shown that 489 

between 3–8.7% of adults who present with DKA have normal or only mildly elevated glucose 490 

concentrations (<13.9mmol/l [250mg/dl]) — a condition known as euglycaemic DKA131-133. 491 

Euglycaemic DKA has been reported during prolonged starvation, with excessive alcohol intake, 492 

in partially treated individuals (i.e. those receiving inadequate doses of insulin), during 493 

pregnancy and in those who use an SGLT-2 inhibitor65,133,134. In those taking SGLT-2 inhibitors 494 

who may present with DKA but without severe hyperglycaemia, a thorough medication history is 495 

key to confirming the diagnosis.  496 

 497 

When individuals present with euglycaemic DKA, the admission biochemistry is relatively non-498 

specific and might be affected by the degree of respiratory compensation, the coexistence of a 499 

mixed acid–base disturbance or other comorbidities116. Studies from the 1980s documented 500 

high anion gap acidosis in 46% of people (14–55 years of age) admitted for DKA, whilst 43% 501 

had mixed anion gap acidosis and hyperchloraemic metabolic acidosis, and 11% develop 502 

hyperchloraemic metabolic acidosis135, however, current data do not describe patterns of 503 
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acidosis on admission and these differing categories have no impact on the diagnosis or 504 

immediate treatment of DKA. The fact that not all people fall into a single category indicated the 505 

heterogeneity of the biochemical abnormalities observed in DKA. The hyperchloraemic 506 

metabolic acidosis is most frequently observed in those given large volumes of 0.9% sodium 507 

chloride solution, during the recovery phase of the admission136. 508 

 509 

Assessment of ketonaemia (that is, blood ketone concentration) can be performed by the 510 

nitroprusside reaction in urine or serum or by direct measurement of -hydroxybutyrate in 511 

capillary blood using point-of-care testing or by the hospital laboratory8,88. Although easy to 512 

perform, the nitroprusside test measures acetoacetate and does not detect -hydroxybutyrate, 513 

the main ketone in DKA79,137. As plasma or urine acetoacetate concentration only accounts for 514 

15–40% of the total ketone concentration, relying on acetoacetate using urine ketone testing 515 

alone is likely to underestimate the severity of ketonaemia52,138. In addition, several sulfhydryl 516 

drugs (for example, captopril) or medications such as valproate that are taken for comorbidities 517 

including hypertension or epilepsy, give false-positive nitroprusside urine tests52,87. Using 518 

expired or improperly stored test strips can give false-negative results, which can also occur 519 

when urine specimens are highly acidic, for example, after the consumption of large amounts of 520 

vitamin C87. In addition, unlike the ADA guidelines, the Joint British Diabetes Societies strongly 521 

discourages the use of urinary ketone tests8,88 and recommends direct measurement of -522 

hydroxybutyrate from a blood sample to assess ketonaemia in ambulatory and hospital care. A 523 

more detailed explanation of the differences of urinary and plasma ketone tests can be found 524 

elsewhere88.  525 

 526 

Studies in adults and children with DKA have reported a good correlation between -527 

hydroxybutyrate and the severity of acidaemia measured from serum bicarbonate 528 

concentration139,140. A bicarbonate concentration of 18.0 and 15.0mmol/L corresponds to 3.0 529 

and 4.4mmol/L of -hydroxybutyrate, respectively, suggesting that when plasma ketone tests 530 

are unavailable, a ‘best guess’ can be made according to the bicarbonate concentration. 531 

Measurement of -hydroxybutyrate can also guide response to treatment. The UK guidelines 532 

recommends to intensify the treatment if the plasma concentration of -hydroxybutyrate does 533 

not decrease by 0.5mmol/l per hour following fluid and intravenous insulin administration130.  534 

 535 

Many individuals with hyperglycaemic crises present with combined features of DKA and HHS 536 

(Box 1). Previous work has reported that among 1,211 patients who had a first admission with 537 



 

 17 

hyperglycaemic crises criteria based on the ADA guidelines8, 465 (38%) had isolated DKA, 421 538 

(35%) had isolated HHS, and 325 (27%) had combined features of DKA and HHS. After 539 

adjustment for age, sex, BMI, ethnicity and Charlson Comorbidity Index score (which predicts 540 

the 1-year mortality of a patient with a range of comorbidities) with combined DKA–HHS had 541 

higher in-hospital mortality compared with patients with isolated DKA (adjusted OR 2.7; 95% CI 542 

1.4–4.9)141.  543 

 544 

[H2] Systemic assessment  545 

Upon hospital admission, immediate assessment of the haemodynamic state and level of 546 

consciousness, together with measurement of blood glucose, blood or urine ketones, serum 547 

electrolytes, venous blood gases and complete blood count should be performed. As part of the 548 

rapid assessment of the individual, precipitants for DKA should be sought, including an ECG to 549 

exclude acute coronary syndrome and repolarization abnormalities (that is, peaked T waves) 550 

due to hyperkalaemia. 551 

 552 

The systemic effect of DKA in adults depends on the severity of the acidaemia and circulatory 553 

volume depletion (Table 1). However, one of the drawbacks of the ADA classification is that the 554 

degree of acidaemia is imperfectly correlated with the patient’s level of consciousness8. Thus, it 555 

is unclear whether a patient who presents with a pH of <7.0, yet is fully conscious, or another 556 

who presents comatose with a pH of 7.26 are mild or severe. Other markers of severity 557 

including ketone concentrations (>6.0mmol/l), venous pH <7.0, hypokalaemia on admission 558 

(<3.5mmol/l), systolic blood pressure (<90mmHg), pulse rate (either >100bpm or <60bpm), 559 

oxygen saturations (<92%, assuming it is normal at baseline), and Glasgow Coma Scale Score 560 

(<12) have been suggested by the UK guideline130. The Glasgow Coma Scale comprises 561 

subscale scores for behaviours (such as eye opening and verbal and motor responses to 562 

stimuli), with a higher total score indicating a higher level of consciousness of the patient)142. If 563 

breathing is compromised due to lethargy or coma, then urgent airway management needs to 564 

be initiated with support of the intensive care team.  565 

 566 

In adults, mortality is often due to the underlying precipitant such as infection or intercurrent 567 

illness. However, lack of access to treatment might be the cause of excess mortality in low-568 

resource environments. In children, mortality resulting from DKA is mainly the result of cerebral 569 

oedema or cerebral injury. Thus, assessment of consciousness level is of particular importance.  570 

 571 
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[H2] Prevention 572 

In individuals with known diabetes, prevention of DKA and hospital admission is feasible. ‘Sick 573 

day rules’ are a simple set of instructions that patients can follow when they are unwell for any 574 

reason. These rules state that — particularly in those with T1DM, insulin must never be 575 

stopped, even if the individuals do not consume solids or fluids143. Also, when unwell, blood 576 

glucose concentrations should be measured every few hours and blood or urine ketone 577 

concentrations should be measured at least twice a day. If ketones are detected, increased 578 

insulin doses should be administered. Maintaining good hydration is also important. If vomiting 579 

due to illness is persistent, then hospital admission is often necessary. One study reported that 580 

telephone consultations with nurses or diabetes educators can help prevent DKA admissions144. 581 

  582 

[H1] Management 583 

 584 

Most of the data regarding management of DKA come from North America, Europe and 585 

Australia. Data from other parts of the world show a lack of accessibility of treatments. 586 

Individuals living in areas of low socio-economic status have no or limited access to insulin 587 

owing to an inability to main ‘security of supply’145. Many studies have shown that in parts of 588 

Africa, DKA was the main cause of death in people who require insulin who were admitted to 589 

hospital41,146.  590 

 591 

Insulin therapy and fluid and electrolyte replacement are the cornerstones of DKA treatment. 592 

The aim is to correct acidaemia, restore normal circulatory volume and normalize blood glucose 593 

concentrations and acid-base disturbances to restore normal levels of inflammatory and 594 

oxidative stress markers106,147.  595 

 596 

Careful monitoring of the patient’s response to DKA treatment and appropriate adjustments in 597 

treatment based on this response are essential. Monitoring should include tracking of blood 598 

pressure, pulse and respiratory rate as well as accurate documentation of fluid intake and 599 

output. For most patients, glucose levels should be monitored hourly and electrolytes (sodium, 600 

potassium, chloride and bicarbonate), urea nitrogen, creatinine and venous pH should be 601 

measured every 2–4 hours. Levels of phosphate, calcium and magnesium are measured less 602 

frequently (generally every 4–6 hours). Neurological status should be monitored hourly using 603 

the Glasgow Coma Scale142 or similar assessments, for example, AVPU (Alert, Voice, Pain, 604 

Unresponsive) scale148. More frequent monitoring (that is, every 30 minutes) might be 605 
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necessary for children with DKA and impaired cognitive status. There should be a low threshold 606 

for moving individuals presenting with altered cognitive status or severe metabolic derangement 607 

and those who fail to improve after initial treatment to an intermediate care unit (high 608 

dependency) or critical care unit in the hospital1,149. Alternatively, people with the ADA-classified 609 

mild DKA (Table 1) who have normal cognition and are able to eat and drink can be treated with 610 

oral fluids and subcutaneous insulin in an acute care setting, potentially avoiding 611 

hospitalization1,149. 612 

 613 

The criteria for the resolution of a DKA episode should be a combination of a blood glucose of 614 

<200mg/dL (11.1mmol/l), a serum bicarbonate level of ≥18.0mmol/l, a venous pH >7.30 and a 615 

calculated anion gap of ≤14.0mmol/l8. A serum -hydroxybutyrate <1.0mmol/l can also be used 616 

to determine resolution of DKA. In settings where -hydroxybutyrate measurements are 617 

unavailable, normalization of the anion gap is the best indicator of DKA resolution8. 618 

 619 

[H2] Volume correction  620 

Administration of intravenous fluid is the key to intravascular volume correction, thereby 621 

improving renal perfusion. The concomitant decrease in circulating counter-regulatory hormone 622 

concentrations also reduces insulin resistance150. In adults with DKA, the ADA and UK 623 

guidelines recommend normal saline (0.9% sodium chloride solution) for the initial fluid 624 

replacement8,130, administered at an initial rate of 500–1000 ml/hour during the first 2–4 hours. 625 

In an attempt to understand the best resuscitation fluid to use in DKA, a study comparing 626 

intravenous infusion of normal saline with Ringer’s lactate (a mixture of sodium chloride, sodium 627 

lactate, potassium chloride and calcium chloride) found no difference in the time to resolution of 628 

DKA, although hyperglycaemia resolved later in the Ringer’s lactate group 151,152. A potential 629 

‘trap’ for the unwary is the development of hyperchloraemic metabolic acidosis owing to 630 

excessive chloride resulting from the administration of high volumes of saline. This is because 631 

0.9% saline contains a higher concentration of chloride ions than serum (154mmol/l compared 632 

with 100mmol/l)9. Although there are generally no acute adverse effects of hyperchloraemic 633 

metabolic acidosis, the development of hyperchloraemic metabolic acidosis can delay transition 634 

to subcutaneous insulin treatment if the serum bicarbonate concentration is used as an indicator 635 

of DKA resolution. After restoration of intravascular volume, the serum sodium concentration 636 

and state of hydration assessed by blood pressure, heart rate and fluid balance should 637 

determine whether the rate of normal saline infusion can be reduced to 250 ml/hour or changed 638 

to 0.45% sodium chloride (250–500 ml/h)8. A study has proposed different approaches for 639 
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individualizing fluid treatment based on calculations of sodium and fluid deficits153. Plasma 640 

glucose concentrations typically decrease to <200mg/dl (11.1mmol/l) before ketoacidosis 641 

resolves. Thus, once the plasma glucose concentration is ~200mg/dL (11.1mmol/L), the 642 

replacement fluids should contain 5–10% dextrose (to prevent hypoglycaemia) to allow 643 

continued insulin administration until ketonaemia is corrected1..  644 

 645 

In children (<18 years of age) with DKA, fluid deficits can vary between 30 and 100 ml/Kg, 646 

depending on the duration of symptoms and ability to maintain hydration. Clinical assessments 647 

(using capillary refill time, skin turgor and other aspects of the physical exam) to estimate the 648 

degree of fluid deficit are frequently inaccurate in children with DKA154-156, therefore, average 649 

fluid deficits of ~70 ml/Kg should be assumed for most children. An initial bolus of 10–20 ml/Kg 650 

of 0.9% normal saline or other isotonic fluid should be administered promptly over 30–60 651 

minutes to help restore organ perfusion. In children with hypovolaemic shock, the initial fluid 652 

administration should be 20 ml/kg over 15–30 minutes. Fluid boluses can be repeated if 653 

necessary based on the haemodynamic state. Such bolus fluid administration is preferred in 654 

children to ensure more rapid tissue perfusion than can be achieved than by slower continuous 655 

fluid infusion. Following the initial fluid bolus, the remaining fluid deficit should be replaced over 656 

24–48 hours, using 0.45–0.9% sodium chloride. In the 1980s and early 1990s, slower 657 

administration of intravenous fluids was recommended in paediatric patients with DKA to 658 

prevent cerebral oedema 157,158. A large RCT (the Pediatric Emergency Care Applied Research 659 

Network FLUID Study), however, found no differences in acute or post-recovery neurological 660 

outcomes in children with DKA treated with rapid versus slower volume correction159 or between 661 

the use of 0.9% versus 0.45% sodium chloride. In a sub-analysis involving children with severe 662 

acidosis and cognitive impairment resulted in improved mental status during DKA treatment159. 663 

These findings are reassuring as they assure that variations in fluid treatment protocols are not 664 

the cause of cerebral oedema or cerebral injury during DKA.  665 

 666 

In both adult and paediatric DKA, the ‘two bag’ method of fluid replacement is often used, 667 

whereby two concurrent bags of fluid are used. Although both bags have identical electrolyte 668 

content (0.45% or 0.9% saline with potassium), only one bag contains 10% dextrose. The bag 669 

without dextrose is used initially as the resuscitation fluid and the dextrose infusion is added 670 

when the glucose drops to 200–250mg/dl (11.0–13.9mmol/l). The two bag method prevents the 671 

need to continually change infusion fluids according to glucose concentrations160-162. 672 

 673 
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The measured serum sodium concentration at presentation reflects relative losses of sodium 674 

and extracellular free water as well as the osmotic effect of hyperglycaemia. Most adults and 675 

children with DKA have mild hyponatraemia at presentation, which gradually returns to the 676 

normal range of 135–145mmol/l as blood glucose levels decline and water moves back into 677 

intracellular space. The measured sodium concentration has been proposed to decline by 678 

1.6mmol/l for every 100mg/dl (5.5mmol/L) rise in the serum glucose concentration above the 679 

normal range such that a ‘corrected’ sodium concentration can be calculated as the measured 680 

serum sodium concentration + 1.6 × [(glucose concentration in mg/dL – 100)/100]. This 681 

theoretically determined correction factor was found to correlate well with empirical data from a 682 

study of children with DKA163 that enables a better assessment of sodium deficit (and therefore, 683 

requirements for replacement) can be made. Alternative correction factors have also been 684 

proposed and tracking the corrected sodium concentration during treatment can be useful for 685 

monitoring the adequacy of relative rates of fluid and sodium administration164,165.  686 

 687 

[H2] Insulin administration  688 

Most people with DKA will be treated initially with an intravenous insulin infusion until the DKA 689 

has resolved and the patients are eating and drinking normally, at which time they will be 690 

transferred to subcutaneous insulin.  691 

 692 

[H3] Intravenous infusion. In most adults with DKA, a continuous intravenous infusion of 693 

regular (soluble) insulin is the treatment of choice. In many hospitals, the intravenous fluids are 694 

administered whilst the intravenous insulin infusion is being prepared35. In adults, many 695 

treatment protocols recommend the administration of insulin (0.1 unit per kg body weight) bolus 696 

intravenously or intramuscularly if a delay in getting venous access is anticipated, which is 697 

immediately followed by fixed rate intravenous insulin infusion at 0.1 unit/kg/hour. Once the 698 

blood glucose concentration is ~200mg/dl (11.0mmol/l) the insulin infusion rate is adjusted to 699 

between 0.02–0.05 units/kg/hour and an of 5% dextrose is added to the infusion, to maintain 700 

glucose concentrations at 140–200mg/dL (7.8–11.0mmol/l) until resolution of ketoacidosis8.  701 

 702 

For treatment of DKA in children, the International Society for Pediatric and Adolescent 703 

Diabetes (ISPAD) guidelines recommend intravenous administration of regular insulin as a 704 

continuous infusion at 0.1units/kg/hour22, which should be started immediately after the initial 705 

intravenous fluid bolus(es). Intravascular volume expansion before insulin administration is 706 

particularly important in children who present with very high glucose levels and hyperosmolality 707 
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because intravascular volume will decline substantially as the hyperosmolar state resolves. An 708 

initial bolus of insulin is not necessary as continuous intravenous insulin infusion rapidly 709 

achieves steady state serum insulin levels166,167. A few small studies reported that insulin 710 

infused at 0.05unit/kg/hour can resolve hyperglycaemia over a similar time frame compared with 711 

the standard dosage of 0.1units/kg/hour168-170. This lower dosage might be considered for very 712 

young children (< 6 years old) or others with greater insulin sensitivity for whom the standard 713 

dosage might not be necessary168. In general, intravenous insulin is recommended for treating 714 

children with DKA due to unreliable subcutaneous insulin absorption in the volume-depleted 715 

state. However, subcutaneous administration can be used in children with mild DKA (Table 1)or 716 

in situations when intravenous administration is not possible. When the serum glucose 717 

concentration decreases to ~250mg/dL (13.9mmol/L), intravenous fluids containing dextrose 718 

should be used to maintain the serum glucose concentration at ~100-150mg/dl (5.5 to 719 

8.3mmol/l) while maintaining the total fluid infusion rate22.  720 

  721 

[H3] Maintenance insulin therapy.  722 

Once biochemical resolution of DKA is achieved and the patient is eating and drinking normally, 723 

subcutaneous insulin therapy can be started in adults as well as children. Adults with newly 724 

diagnosed diabetes mellitus or those who have not previously received insulin should be started 725 

on total insulin dosage of 0.5–0.6 units/kg/day. Patients who were already on subcutaneous 726 

insulin prior to DKA admission should resume their previous insulin regimens.  727 

 728 

For most adults, a basal bolus regimen (that is, rapid-acting insulin given with each meal as well 729 

as a once or twice daily administered long-acting basal insulin) is preferred over the use of 730 

regular insulin because of the lower rate of in-hospital hypoglycaemia despite similar glucose 731 

control171. In children, insulin regimens differ depending on the centre; however, basal-bolus 732 

regimens are generally preferred. Previous work has shown that the administration of frequent 733 

doses of subcutaneous rapid-acting insulin analogues (given every 1–2 hours), can be an 734 

acceptable alternative to an intravenous insulin infusion as both treatments resolve DKA in 735 

similar time172-174. In adults and children, subcutaneous rapid-acting insulin is given as a bolus of 736 

0.2unit/kg at the start of treatment, followed by 0.1–0.2unit/kg every 1–3 hours until the blood 737 

glucose concentration is <250mg/dl (13.9mmol/l), then the dose is reduced by half and 738 

continued every 1–2 hours until resolution of DKA172,175. The total insulin daily dose is generally 739 

0.7–0.8unit/Kg/day in the prepubertal child and 1.0–1.2unit/Kg/day in the pubertal adolescent176. 740 

 741 
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Clinical trials and meta-analyses that compared continuous subcutaneous insulin infusion (CSII) 742 

with discrete subcutaneous insulin doses (for example, basal bolus regimens) have shown 743 

small but significant reductions in HbA1c and risk of severe hypoglycaemia in those receiving 744 

CSII. In addition, these studies have found an increased risk of developing ketoacidosis with 745 

CSII primarily due to device malfunction and/or catheter occlusion177-179, a finding confirmed 746 

by the UK National Diabetes Pump Audit60. However, the use of frequent home glucose 747 

monitoring has reduced this complication considerably178. In adults and children, intramuscular 748 

administration of rapid-acting insulin is also effective. However, this route is more painful than 749 

subcutaneous injections and potentially would be contraindicated in those taking 750 

anticoagulants1,180,181. 751 

 752 

[H2] Potassium replacement  753 

Nearly all patients with DKA have substantial potassium deficits at the time of presentation and 754 

potassium replacement is almost always required (Box 2). At presentation, serum potassium 755 

concentrations are frequently normal or slightly elevated in spite of total body deficits. As insulin 756 

treatment starts, ketone production is suppressed, and the acidosis begins to resolve. In 757 

addition, insulin drives potassium back into the cell, and the individual can become profoundly 758 

hypokalaemic. Hypokalaemia occurs frequently despite aggressive potassium replacement35,141 759 

and frequent monitoring of potassium during the first few hours of treatment is an essential part 760 

of managing DKA8,130. Because of potentially rapid shifts in potassium and the possible risk of 761 

developing cardiac arrhythmias, continuous cardiac monitoring is recommended in all cases 762 

where potassium is being administered at >10mmol/hr.  763 

Two studies showed that within 24–48 hours of admission, potassium levels declined on 764 

average from 4.8  1.0 and 4.9  1.1 to 3.65 ( 0.66) and 3.66 ( 0.6) mmol/l, respectively, 765 

among adults with DKA35,141. The development of severe hypokalaemia (<2.5 mmol/l) was 766 

associated with increased mortality (OR 3.17; 95% CI 1.49–6.76)141. The association between 767 

hypokalaemia within 48 hours and mortality remained significant after adjusting for demographic 768 

variables and metabolic parameters on admission suggesting that hypokalaemia is most likely 769 

the cause of increased mortality and not any other confounding factors.  770 

In patients who develop symptomatic hypokalaemia (muscle weakness and cardiac arrhythmia), 771 

potassium replacement should be started and insulin administration should be delayed until the 772 

potassium concentration has risen to >3.3mmol/l. A survey of the management of DKA in the 773 
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UK showed that an intravenous insulin infusion rate of 0.1unit/Kg/hour was associated with 55% 774 

of adults developing hypokalaemia35. Although no harm was associated with this hypokalaemia, 775 

it provides support for the practice of reducing the insulin infusion rate to 0.05unit/Kg/hr after 776 

glucose levels decline.  777 

 778 

Similar to adults, hypokalaemia is rarely present in children before DKA treatment. In these rare 779 

cases, earlier and more aggressive potassium replacement is necessary and the insulin infusion 780 

should be delayed until urine output is documented and serum potassium has been restored to 781 

a near normal concentration22. Serum potassium levels should be monitored every 2–4 hours 782 

and the potassium concentration in intravenous fluids adjusted to maintain normal potassium 783 

levels. A cardiac monitor or frequent ECGs should be considered during intravenous potassium 784 

replacement. 785 

 786 

The choice of potassium salts to use for replacement has been a subject of debate. Adult 787 

protocols typically recommend potassium chloride alone, but paediatric protocols often 788 

recommend using a mixture of potassium chloride and potassium phosphate or potassium 789 

acetate22 to reduce the chloride load thereby diminishing the risk of hyperchloraemic acidosis.  790 

 791 

[H2] Bicarbonate administration 792 

Treatment with intravenous bicarbonate is not routinely recommended for adults or children with 793 

DKA. Time to biochemical resolution, length of hospitalisation or mortality have not been shown 794 

to improve with bicarbonate treatment182-185. Bicarbonate therapy might increase the risk of 795 

hypokalaemia, slow the resolution of ketosis, cause paradoxical increases in cerebral acidaemia 796 

due to an increase in tissue pCO2 and increase the risk of cerebral injury186,187. Some 797 

commentaries have suggested that specific subsets of adults with DKA might benefit from 798 

bicarbonate administration, however, data from randomized trials are lacking 93. 799 

 800 

[H2] Phosphate replacement 801 

Similar to potassium, serum phosphate concentrations are typically normal at presentation but 802 

intracellular depletion is present and serum concentrations decline during DKA treatment. 803 

Phosphate replacement is necessary in those with serum phosphate concentration <1.0–804 

1.5mg/dl (0.3–0.5mmol/l)8. Inclusion of phosphate in the infusion has been proposed to diminish 805 

the risk of hypophosphataemia, which has been associated with severe complications in some 806 

patients including rhabdomyolysis (breakdown of skeletal muscles), renal failure, respiratory 807 
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failure, arrhythmias and haemolytic anaemia98,188-191. Thus, for individuals with cardiac 808 

dysfunction, anaemia or respiratory depression, phosphate replacement should be strongly 809 

considered. Concern over phosphate replacement mainly centres on an increased risk of 810 

hypocalcaemia; however, studies documenting hypocalcaemia with phosphate replacement 811 

used more aggressive phosphate replacement than recommended in current protocols192. 812 

Studies in the 1980s found increases in red blood cell 2,3-disphosphoglycerate (DPG, which 813 

liberates oxygen from haemoglobin in peripheral tissues) levels with phosphate replacement but 814 

did not detect any beneficial effect of phosphate replacement on clinical outcomes193,194. The 815 

sample size for these studies, however, was very small and statistical power to detect 816 

differences in outcomes was very limited. Phosphate levels should be monitored during 817 

treatment at least every 4–6 hours, although more frequent monitoring (every 2–3 hours) is 818 

recommended for those not receiving phosphate replacement.  819 

 820 

[H2] Cerebral injury  821 

Among the severe complications of DKA, cerebral injury is the most well recognized (Table 3). 822 

Although rare in adults, severe cerebral injury occurs in 0.3–0.9% of DKA episodes in 823 

children186,195,196 and is associated with high rates of mortality (21–24%) and permanent 824 

neurological morbidity (20–26%)186,195,196. Risk factors for cerebral injury include severe 825 

acidaemia and severe deficits in circulatory volume186,195,196. Younger children (<5 years) are at 826 

greater risk for DKA-related cerebral injury, reflecting the greater severity of DKA at presentation 827 

in this age group in whom symptoms of diabetes can be less apparent and β-cell destruction is 828 

often aggressive. Although severe cerebral injury occurs in <1% of children with DKA, mild 829 

cerebral injury occurs much more commonly – possibly in the majority of children197,198. Subtle 830 

deficits in memory, attention and intelligence quotient have been reported in children with T1DM 831 

with a history of DKA compared with children with T1DM without DKA history199-201. These 832 

differences persist after adjusting for HbA1cand demographic factors. Microstructural and 833 

macrostructural alterations, such as increased total white matter volume and other changes in 834 

the in the frontal, temporal, and parietal white matter in the brain have also been associated with 835 

DKA in children199. 836 

 837 

Cerebral injury can exist at the time of presentation, before starting treatment, but is more 838 

common during the first 12 hours of treatment186,196,202. Changes in mental status, onset of 839 

headache during DKA treatment and recurrence of vomiting are indicative of cerebral injury203. 840 

Cerebral oedema may be found on imaging studies, but many individuals have no detectable 841 
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imaging abnormalities at the time of neurological deterioration, suggesting that cerebral oedema 842 

and/or infarction can develop hours or days after treatment has started203. For this reason, 843 

treatment for DKA-related cerebral injury should not be delayed while awaiting imaging studies. 844 

Treatment involves administration of mannitol or hypertonic saline, both of which induce osmotic 845 

shifts of fluid from within the intracellular space into the vascular compartment.  846 

 847 

[H2] The precipitating illness 848 

The most common precipitant of DKA in adults is infection, which vary from gastrointestinal 849 

upset, with diarrhoea and vomiting, to chest or urinary tract infections. These precipitating 850 

illnesses need to be treated at the same time as the DKA. In addition, non-infectious illnesses, 851 

such as acute coronary syndrome that precipitate DKA need to be evaluated and addressed at 852 

the time of presentation. In children, episodes of DKA generally occur at onset or time of 853 

diagnosis of diabetes or because of insulin omission. Serious intercurrent illnesses are rarely 854 

present and routine investigation for precipitating causes of DKA is unnecessary.  855 

 856 

[H1] Quality of Life 857 

The UK National Institute for Health and Care Excellence (NICE) systematically reviewed the 858 

evidence for the management of DKA and found no studies in adults that evaluated quality of 859 

life204. However, fear of DKA is one of the factors affecting the quality of life in those with 860 

T1DM205. Of note, despite the lower quality of life experienced by those with T1DM, recurrent 861 

DKA does not contribute to further reductions42. The development of any systemic or 862 

neurological injury can also lead to a reduction in quality of life and prevention of these 863 

complications remains a priority206. As mentioned previously, DKA remains an expensive 864 

condition to treat5-7. These costs place huge burdens on those who have to pay themselves and 865 

on society in general.  866 

 867 

[H2] Other complications 868 

DKA is associated with a wide range of complications. For example, hypokalaemia and 869 

hypoglycaemia are the most frequent complications of DKA treatment, but are generally mild 870 

and easily treated with ongoing careful biochemical monitoring22,35. Other important 871 

complications of DKA include the development of a hypercoagulable state with increased risk of 872 

deep venous thromboses, particularly when central venous catheters are used to gain 873 

intravenous access if peripheral access was not possible due to severe dehyration207. DKA also 874 

frequently causes acute kidney injury (AKI) in children. In one study, 64% of children with DKA 875 
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were found to have AKI; >50% had stage 2 or stage 3 AKI, suggesting renal tubular injury, 876 

rather than simply pre-renal uraemia due to circulatory volume depletion with renal 877 

hypoperfusion208. Other complications of DKA are rare (Table 3).  878 

Patients with DKA with chronic poor glycaemic control are uniquely susceptible to rhinocerebral 879 

or pulmonary mucormycosis209, which is frequently fatal. Acidotic conditions decrease iron 880 

binding to transferrin, creating conditions that support fungal growth. Some rare complications of 881 

DKA include cardiac arrhythmias due to electrolyte derangements, intestinal necrosis, 882 

pulmonary oedema and pneumomediastinum (abnormal presence of air in the mediastinum), 883 

which might be associated with pneumothorax and is thought to be caused by protracted 884 

vomiting and hyperventilation210,211. Multiple organ dysfunction syndrome is another rare 885 

complication of DKA causing multiple organ failure, which may be associated with 886 

thrombocytopenia in children; reported cases in adults often involve elevated liver enzymes, 887 

elevated pancreatic enzymes and renal dysfunction212-214. Peripheral neuropathy has been 888 

reported in children, and might occur in association with other DKA complications including 889 

cerebral injury or disseminated intravascular coagulation215-219. Other isolated case reports have 890 

described rare neurological complications including cerebellar ataxia, movement disorder 891 

(choreiform movements and pill rolling tremor) and hemiparesis in children219. 892 

 893 

[H1] Outlook 894 

Increasing numbers of DKA hospitalizations highlight the need for targeted programmes to 895 

prevent DKA at new-onset of diabetes and recurrent episodes of DKA in children and adults 896 

with previously diagnosed diabetes. Education and the implementation of protocols aimed at 897 

maintenance insulin administration after discharge might reduce lapses in treatment and are a 898 

cost-effective way to reduce future risk of hospitalization for hyperglycaemic emergencies220. 899 

Several strategies including early screening, close follow-up of high-risk individuals (for 900 

example, those with multiple admissions), availability of telephone support from diabetes 901 

specialist nurses, and education of parents and communities have been proposed13,144. Studies 902 

have reported a lower incidence of DKA when parents were made aware of the higher risk of 903 

diabetes in their children (due to the presence of autoantibodies) 221. Similarly, another study 904 

showed close follow-up of high-risk children in the prediabetes stage reduced hospitalizations 905 

for DKA 222. In Italy, a prevention programme educating parents, paediatricians and school staff 906 

reduced the number of children presenting with DKA at initial diagnosis of diabetes223. In 1991, 907 

when the study started, this programme cost $23,470 to deliver, and led to a reduction of DKA 908 
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as the presenting feature of diabetes from 78% to 12.5% over the 8 years of follow up. Thus, 909 

delivering targeted education to those who have most contact with children might be beneficial.  910 

 911 

 912 

[H2] Clinical priorities 913 

More intensive coordination of care with patients and greater family engagement are some of 914 

the additional strategies for prevention of recurrent episodes of DKA. The Novel Interventions in 915 

Children’s Healthcare programme uses care coordination with family and telemedicine in an 916 

attempt as a part of the preventive strategy to engage young people with multiple 917 

hospitalizations for DKA 224. This work used text messages and other forms of communication 918 

with the adolescents and showed that daily communication decreased DKA readmissions. 919 

Furthermore, the Type 1 Diabetes Exchange programme showed that the use of new 920 

technology such as insulin pumps and real-time continuous glucose monitoring could be useful 921 

in preventing recurrent DKA225-227.  922 

 923 

In the 1990s, the use of CSII or insulin pumps was associated with increased risk of DKA in 924 

children and adults with T1DM228. A series from 2017, however, reported a low incidence of 1.0 925 

case/100 patient years229. An analysis of 13,487 participants (aged 2–26 years) in the T1DM 926 

Exchange clinic registry found that a lower incidence of DKA in those treated with CSII than in 927 

patients treated with multi-dose subcutaneous insulin injections230. However, as these 928 

individuals were looked after in specialist diabetes centres in the USA, rates of DKA amongst 929 

those cared for in other centres may be higher. Similarly, in a German study in children with 930 

T1DM, those who used CSII had lower rates of DKA than those receiving insulin by injection 931 

(2.29 versus 2.80 per 100 patient-years)231, suggesting that increasing CSII use might be an 932 

alternative method for reducing DKA incidence. However, pump use is expensive and requires 933 

access to specialist centres with appropriate expertise.  934 

 935 

Patients with treatment adherence problems account for a disproportionate number of recurrent 936 

DKA episodes. In the USA, 50% of first episodes of DKA in adults with T2DM and ~80% of 937 

recurrent DKA episodes are caused by poor compliance with therapy42. In the UK, adults who 938 

had attended a structured diabetes education programme and were on a flexible basal-bolus 939 

insulin dosing regimen based on individualizing carbohydrate ratios at each meal experienced a 940 

61% reduction in risk for DKA232. Similarly, a multidisciplinary, multi-pronged approach 941 

incorporating more flexible intensive insulin regimens, standardizing diabetes education and 942 
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empowering community engagement, reported a 44% reduction in DKA admissions in those 943 

with T1DM233. Future strategies to increase treatment adherence combining increased 944 

education, motivational interviews, patient support technology (continuous glucose monitoring, 945 

CSII, telephone support, text and e-mail messaging) are needed to improve adherence to 946 

therapy and to reduce the risk of DKA. 947 

 948 

In less developed parts of the world, efforts need to be made to ensure easy availability of 949 

insulin at an affordable price. Insulin and 0.9% saline solution are on the WHO list of essential 950 

medicines234. Education of local health care providers also remains key to the recognition of 951 

DKA as well as prompt access to health care facilities with the ability to administer appropriate 952 

care. 953 

  954 

[H2] Unmet needs and areas for future research 955 

 956 

To date, many of the guidelines used to treat DKA have evolved over time, which are largely 957 

based on consensus and opinion. Thus, large RCTs are needed to help determine the best 958 

management options including optimizing electrolyte content of intravenous fluids (for example, 959 

Ringer’s lactate versus 0.9% saline)151,152,235. In addition, further investigations are necessary to 960 

determine the optimal rates and optimal technique of insulin administration 236. Additional 961 

studies are also needed to determine the ideal combination of potassium salts for replacement. 962 

In essence, most stages of the patient journey from the time of diagnosis and admission to the 963 

time of discharge has areas of uncertainty that need good quality data to help improve overall 964 

patient management. Furthermore, the advent of closed loop systems for those with T1DM 965 

where the subcutaneously implanted interstitial glucose sensor is wirelessly linked to an insulin 966 

pump and other ‘artificial intelligence’ systems may also improve outcomes. They have been 967 

shown to improve time in glucose range, and thus, the likelihood of developing hyperglycaemia 968 

and subsequent DKA may be reduced237,238. However, this has yet to be determined 969 

 970 

  971 
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Table 1: Diagnostic Criteria for DKA.  972 

 973 

Severity 
Glucose 
(mg/dl) 
(mmol/L) 

Arterial or 
venous pH 

Bicarbonate 
(mmol/L) 

Urine or serum 
ketones 
(nitroprusside 
test) 

β-hydroxy 

butyrate 

(mmol/L) 

Anion gap 

(mmol/L) 
Mental status  Refs 

American Diabetes Association criteria for adults  

Mild 
>250 
(13.8) 

7.25-7.30 15–18 Positive >3.0 >10 Alert 

8 Moderate 
>250 
(13.8) 

7.24-7.0 10–15 Positive >3.0 >12 Alert/drowsy  

Severe 
>250 
(13.8) 

<7.0 <10 Positive >3.0 >12 Stupor/coma  

Joint British Diabetes Societies  

 NA  
>200 
(11.1) <7.30

a <15 Positive >3.0 NA  
 

NA 
130 

International Society of Pediatric and Adolescent Diabetes  

Mild 
>200 
(11.1) <7.30

a <15 Positive >3.0 NA  NA 

22 Moderate 
>200 
(11.1) <7.2

a <10 Positive >3.0 NA  NA  

Severe 
>200 
(11.1) <7.1

a <5 Positive >3.0 NA  NA  

 974 

Adapted from Refs8,22,130. The ADA criteria recommends the use of arterial pH be for diagnosis 975 

and venous pH as a guide to evaluate the need for bicarbonate therapy and to measure 976 

resolution. Note that severity of DKA is defined by the degree of acidosis and level of 977 

consciousness, not by the degree of hyperglycaemia or ketonaemia. NA, not applicable. 978 

aVenous pH can be used to diagnose DKA.  979 

 980 

 981 

  982 
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Table 2: Precipitating causes of diabetic ketoacidosis in adults by region.  983 

 984 

Region 
New-onset 

diabetes mellitus 
(%)  

Infection (%) 
Poor treatment 
adherence (%) 

Other (%) 
Unknown 

(%) 

Australia 5.7 28.6 40 25.7 NR 

Brazil 12.2 25 39 15 8.8 

China NR 39.2 24 10.9 25.9 

Indonesia 3.3 58.3 13.3 17.1 8 

South Korea NR 25.3 32.7 11.2 30.8 

Nigeria NR 32.5 27.5 4.8 34.6 

Spain 12.8 33.2 30.7 23.3 NR 

Syria NR 47.8 23.5 7.8 20.9 

Taiwan 18.2 31.7 27.7 6.2 16.2 

UK 6.1 44.6 19.7 10.9 18.7 

USA 17.2–23.8 14.0–16.0 41.0–59.6 9.7–18.0 3.0–4.2 

Adapted from1,35. NR, not reported. Other causes include the use of medications that 985 

affect carbohydrate metabolism, insulin pump failure, or alcohol or drug misuse. 986 

 987 

  988 

 989 

 990 

  991 

 992 

 993 

 994 

 995 

 996 

  997 
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 1 

Table 3: Complications of DKAa  2 

 3 

 4 

Complication Frequency Description Risk factors Refs 

Cerebral injury  

0-3–0.9% of 
children, rare 
in adults 

Cerebral oedema; cerebral 
thromboses, haemorrhage 
and infarction; posterior 
reversible encephalopathy 
syndrome has also been 
described 

Impaired renal function, low 
pH, low pCO2, lack of rise in 
measured serum Na+ during 
DKA treatment, low Na+ at 
presentation, high K+ at 
presentation 

186,195,203,239-241 

Acute kidney injury  

30–64% of 
children, 
50% of 
adults 

Stage 1 (pre-renal) is most 
common but stage 2 and 
stage 3 occur in substantial 
numbers of patients 
(children); rare episodes of 
renal failure; some episodes 
of renal failure associated 
with rhabdomyolysis (adults 
and children) 

High acidaemia (children), high 
heart rate (children), high 
corrected Na+ concentration 
(children), older age, high 
glucose (adults), low serum 
protein (adults) 

208,242,243 

Large vessel 
thromboses  

50% of 
childrenb  

Rare reports in children of 
stroke and other 
thromboses not associated 
with central venous catheter 
use. Thrombophilia in some 
cases in children; fatal 
pulmonary 
thromboembolism as well 
as thromboses in other 
regions in adults  

Central venous catheter use, 
DKA causes a 
hypercoagulable state  

244-247 

Subclinical interstitial 
pulmonary oedema  

Common in 
childrenb  

Generally subclinical but 
rare episodes of ARDS 
have been described; 
episodes of simultaneous 
pulmonary oedema and 
cerebral oedema are 
described in both adults and 
children  

Hypokalaemia or 
hypophosphataemia in some 
cases in adults and children  

248,249 

Symptomatic 
pulmonary oedema  

Rare in 
adults and 
children 

Pancreatic enzyme 
elevation  

20–30% of 
children, 16–
29% of 
adults 

Acute pancreatitis, 
sometimes associated with 
hypertriglyceridaemia or 
alcohol; asymptomatic 
pancreatic enzyme 
elevation without acute 
pancreatitis is common in 
both children and adults; 
pancreatitis is rare in 
children  

High acidaemia, impaired renal 
function, hypophosphataemia 
in adults and children 

250-252 

Pancreatitis  

2% of 
children, 10–
11% of 
adults 

Cardiac arrhythmias  

47% of 
childrenb 

Prolonged QTc occurs 
commonly but is 
asymptomatic; Brugada 
pattern of arrhythmia has 
been described in multiple 
adult and paediatric case 
reports; Electrolyte 
abnormalities including 
hypophosphataemia has 
been shown to cause rare 
episodes of arrhythmia  

In adults and children high 
anion gap (QTc), 
hypokalaemia, 
hypophosphataemia and 
hyperkalaemia  

253-258 
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Subtle or asymptomatic 
diastolic dysfunction  

47% of 
childrenb 

Asymptomatic elevations of 
cardiac troponin I and CK-
MB detected in children; 
might be associated with 
systemic inflammatory 
response; possibly 
associated with thiamine 
deficiency  

High acidaemia; presence of 
the systemic inflammatory 
response  

259-262 

Symptomatic 
cardiomyopathy  

Rare in 
adults and 
children 

Rhabdomyolysis  

16% of 
adults,10% 
of children 

Often subclinical; occurs 
more frequently in HHS but 
also described in DKA; 
some cases are associated 
with hypophosphataemia. 
Severe rhabdomyolysis are 
mainly described in mixed 
DKA and HHS and in 
severe hypophosphataemia  

Low pH, impaired renal 
function, High glucose and 
Na+, hypophosphataemia, 
increased osmolality 

191,263-266 

Asymptomatic 
hypophosphataemia  

Up to 90% of 
adultsc  

Asymptomatic 
hypophosphataemia is 
common; case reports of 
severe hypophosphataemia 
causing rhabdomyolysis, 
renal failure, haemolytic 
anaemia, arrhythmia, 
respiratory failure 

High acidaemia 98,188-191 

Severe or 
symptomatic 
hypophosphataemia  

Rare in 
adults and 
children 

Intestinal necrosis or 
GI bleeding  

 

Rare in 
children, 
upper GI 
bleeding in 
9% of adults 

Intestinal necrosis thought 
to be related to 
hypoperfusion and 
microangiopathy; intestinal 
necrosis is described in 
children and adolescents 
but not adults, upper GI 
bleeding is frequent in 
adults, which might be 
related to acid reflux during 
DKA 

Impaired renal function, high 
glucose  

267,268  

  5 

aHypoglycaemia and hypokalaemia are well known complications of DKA treatment that occur commonly and are not 6 

included here as they are discussed extensively in the text. bRates in adults are unknown; cRates in children unknown 7 

ARDS, acute respiratory distress syndrome; CK-MB, creatine kinase - myocardial band; DKA, diabetic ketoacidosis; GI, 8 

gastrointestinal; HHS, hyperglycaemic hyperosmolar state, pCO2, partial pressure of carbon dioxide; QTc, corrected QT 9 

interval.  10 

  11 
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Figure legends 12 

 13 

Figure 1. The history of DKA.  14 

The first reports of diabetic coma date back to the early 1800s and included isolated cases of 15 

children and adults with previously undiagnosed or established diabetes who presented with rapid 16 

onset symptoms of hyperglycaemia that led to coma and death269. In 1857, the presence of acetone 17 

was identified in the urine of an individual presenting in a diabetic coma270. Two decades later, the 18 

German physician Adolf Kussmaul reported severe dyspnoea (hyperventilation) in patients271. A 19 

decade later, Stadelmann reported that the urine of most patients with diabetic coma contained 20 

large quantities of -hydroxybutyric acid, in addition to acetoacetate272. The mortality rate was >90% 21 

in the pre-insulin era273 with only a few patients living longer than a few months. In subsequent 22 

decades, the mortality associated with DKA decreased to <1–2% since the 2010s in developed 23 

countries1,8. It was not until in the 1970s that it was established that low-dose intravenous insulin 24 

infusions were introduced following data to show that they lowered glucose and ketone 25 

concentrations just as well as higher doses274. The first American Diabetes Association (ADA) 26 

guideline was published in 2001.and the first edition of the UK guideline was published in 2011. In 27 

2018, the first randomized controlled trial of fluid replacement in children showed no differences in 28 

acute or post-recovery neurological outcomes in children with DKA treated with rapid versus slower 29 

volume correction using either 0.9% or 0.45% saline159.  30 

 31 

Figure 2: Pathogenesis of diabetic ketoacidosis.  32 

 33 

Hyperglycaemia develops in insulin deficiency because of three processes: increased 34 

gluconeogenesis, accelerated glycogenolysis, and impaired glucose utilization by peripheral 35 

tissues. The reduction in insulin concentration together with the increase in counter-regulatory 36 

hormones, leads to the activation of hormone sensitive lipase in adipose tissue with the 37 

subsequent breakdown of triglyceride into glycerol and free fatty acids (FFAs). In the liver, FFAs 38 

are oxidized to ketoacids, mainly under the influence of glucagon. FFAs undergo β-oxidation to 39 

form acetyl CoA. Excess acetyl CoA that does not enter the Krebs cycle generates acetoacetyl 40 

CoA, three molecules of which condense to form hydroxyl-3-methylgluterate-CoA (HMG-CoA). 41 

This is turn is cleaved to form acetoacetate and acetyl CoA. The acetoacetate is further reduced by 42 

NADH to form -hydroxybutyrate. The two major ketoacids are -hydroxybutyrate and 43 

acetoacetate. Accumulation of ketoacids leads to a high anion gap metabolic acidosis due to the 44 
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reduction in serum bicarbonate concentration and ‘fixed acid’ retention. Hyperglycaemia also 45 

activates macrophages to produce pro-inflammatory cytokines, and the liver to produce CRP, 46 

which in turn impair pancreatic β-cell function, as well as reducing endothelial nitric oxide, leading 47 

to endothelial dysfunction. Hyperglycaemia and high ketone levels cause an osmotic diuresis that 48 

leads to hypovolaemia, decreased glomerular filtration rate worsening hyperglycaemia. As a result 49 

of respiratory compensation for the metabolic acidosis, Kussmaul breathing characterized by deep, 50 

regular breaths (often with a ‘fruity’ odour) are taken by those in DKA as a way of excreting acidic 51 

carbon dioxide. Cerebral oedema is increased fluid content of the brain tissue that may lead to 52 

neurological signs and symptoms.  53 

 54 

Figure 3: Symptoms and signs of DKA.  55 

The osmotic diuresis of hyperglycaemia and ketonuria causes circulatory volume depletion. This in 56 

turn can cause the lethargy, stupor and coma. The metabolic acidosis stimulates respiratory 57 

compensation, with the classic hyperventilation (‘air hunger’) that is Kussmaul breathing — the 58 

volatile ketones can be smelt on the breath. Changes in visual acuity, which is thought to be due to 59 

changes in water content in the eye ball or the lens are also observed. Patients with diabetic 60 

ketoacidosis also experience abdominal pain, nausea and vomiting that resolve with treatment.  61 

 62 

  63 
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Box 1. Hyperglycaemic hyperosmolar state  64 

 65 

Hyperglycaemic hyperosmolar state (HHS) is another commonly encountered hyperglycaemic 66 

emergency. HHS occurs less frequently than DKA (<1% of diabetes-related emergencies269), but 67 

has a substantial mortality of up to 20%149,269. HHS is characterized by severe hyperglycaemia and 68 

high serum osmolality (concentration of electrolytes and glucose in the serum) accompanied by 69 

circulatory volume depletion275. In HHS, insulin concentrations are adequate to inhibit ketogenesis, 70 

but not high enough to ensure adequate cellular glucose uptake. So, HHS is characterized by 71 

hyperglycaemia and an osmotic diuresis that perpetuates dehydration without ketosis. As with 72 

DKA, concurrent illness, such as infection or acute coronary syndrome can lead to an increase in 73 

counter-regulatory hormones, which exacerbates hyperglycaemia. Medications such as 74 

corticosteroids and atypical antipsychotics can also precipitate HHS276,277.  75 

 76 

 77 

The UK and US guidelines for diagnosing HHS slightly differ from eachother8,275. The UK 78 

guidelines define HHS as a glucose concentration >30mmol/l, pH>7.3, bicarbonate >15mmol/l, and 79 

blood β-hydroxybutyrate <3.0mmol/l, and osmolality of >320mosmol/l275; US guidelines define HHS 80 

as glucose levels >33.3mmol/l, pH>7.3, bicarbonate >18mmol/l, with ‘small’ concentrations or 81 

urinary or serum ketones and osmolality of >320mosmol/l8. In addition to detecting and treating any 82 

precipitating cause, the management of HHS involves correction of fluid deficits including 83 

potassium replacement and reducing hyperosmolality. The administration of intravenous fluids, 84 

such as 0.9% saline will also lower glucose concentrations by addressing the haemoconcentration 85 

(an increase in the proportion of the blood that is cells, due to the loss of water) and restoring renal 86 

perfusion. Circulatory volume depletion is more severe in HHS than in DKA and higher rates of 87 

fluid administration are typically necessary. Consensus recommendations from various groups are 88 

slightly different owing to lack of trials8,275. Intravenous insulin is started immediately after the initial 89 

fluid bolus if there is evidence of a metabolic acidosis (DKA and HHS can frequently co-exist278). 90 

However, in the absence of acidosis, a weight-based fixed rate intravenous insulin infusion is 91 

started only after the glucose concentration ceases to decline with fluid replacement alone275, or 92 

after potassium levels have been corrected8.  93 

94 
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Box 2. Current potassium replacement guidelines  95 

 96 

[H1] Adults  97 

 98 

• K+ ≥5.5mmol/l: no supplementation is required due to the risk of precipitating cardiac 99 

arrhythmias with additional potassium  100 

• K+ = 4.0–5.0mmol/l: 20mmol/l of replacement fluid 101 

• K+ = 3.0–4.0mmol/l: 40mmol/l of replacement fluid 102 

• K+ = <3.0mmol/l: 10–20mmol per hour until serum K+ >3.0mmol/l, then add 40mmol/l to 103 

replacement fluid.  104 

 105 

 106 

[H1] Children  107 

 108 

• K+ >5.0mmol/l: delay potassium administration until K+ <5.0mmol/l.  109 

• K+ 3.5 – 5.0mmol/l: add potassium 40 mmol/l to the infusion after administering the initial fluid 110 

replacement bolus.  111 

• K+ <3.5mmol/l: begin potassium replacement 40mmol/l as soon as possible and delay insulin 112 

administration until potassium level is normal. 113 

 114 

  115 
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Glossary terms  116 

 117 

BMI z-score  118 

Also known as the BMI standard deviation scores, the z-score is a measure of a child’s relative 119 

weight adjusted for age and gender 120 

 121 

Buffering 122 

The ability of molecules in the circulation to stabilise the acid base balance in an attempt to 123 

maintain the pH  124 

 125 

pKa 126 

This is the negative base-10 logarithm of the acid dissociation constant (Ka) of a solution. The 127 

lower the pKa, the stronger the acid.  128 

 129 

Circulatory volume depletion  130 

A reduction in intravascular and / or extracellular fluid volume, such that there may be an inability 131 

to adequately perfuse tissue.  132 

 133 

Glomerular filtration rate 134 

This is an estimate of how much blood passes through the renal glomeruli every minute. Is it often 135 

a calculation from the serum creatinine, age, gender and body weight 136 

 137 

Hypertonicity – A state where the circulating extracellular fluid has a higher osmotic pressure, than 138 

would be observed in a healthy individual.  139 

 140 

Pre-renal renal failure  141 

The loss of kidney function as a result of poor renal or glomerular perfusion, e.g. haemorrhage, 142 

cardiac failure or hypovolaemia.  143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 
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 158 

 159 

 160 

 161 

 162 

 163 

 164 
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