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Abstract
Here, as part of the Pan-Cancer-Analysis-of-Whole-Genomes (PCAWG), which aggregated
whole genome and, for a subset, transcriptome sequencing data from 2,658 cancers across 38
tumor  types,  we  systematically  investigated  potential  viral  pathogens  using  a  consensus
approach integrating three independent pipelines. Viruses were detected in 382 genome and
68  transcriptome  datasets.  We  showed  the  high  prevalence  of  known  tumor-associated-
viruses such as EBV, HBV and HPV16/18. The study revealed significant exclusivity of HPV
with  driver  mutations  in  head-and-neck  cancer  and  associated  HPV  with  APOBEC
mutational  signatures,  suggesting a role  of  impaired antiviral  defense as  driving force  in
cervical,  bladder  and  head-and-neck  carcinoma.  For  HBV,  HPV16/18  and  AAV2  viral
integration  was associated with local  variations  in  genomic  copy number.  Integrations  at
the TERT promoter  were  coupled  to  high  telomerase  expression  evidently  activating  this
tumor driving process. High levels of endogenous retrovirus ERV1 expression were linked to
worse survival outcome in kidney cancer.

Introduction
The  World  Health  Organization  estimates  that  15.4%  of  all  cancers  are  attributable  to
infections and 9.9% are linked to viruses1,2. Cancers attributable to infections have a greater
incidence  than  any  individual  type  of  cancer  worldwide.  Eleven  pathogens  have  been
classified as carcinogenic agents in humans by the International Agency for Research on
Cancer (IARC)3. After  Helicobacter pylori (associated with 770,000 cases), the four most
prominent infection related causes of cancer are estimated to be viral2: human papilloma virus
(HPV)4,5 (associated with 640,000 cancers), hepatitis B virus (HBV)5 (420,000), hepatitis C
virus (HCV)6 (170,000) and Epstein-Barr Virus (EBV)7 (120,000). It has been shown that
viruses can contribute to the biology of multistep oncogenesis and are implicated in many of
the hallmarks of cancer8.  Most  importantly,  the discovery of links between infection and
cancer  types  has  provided actionable  opportunities,  such  as  HPV vaccines  as  preventive
measure, to reduce the global impact of cancer. The following characteristics were proposed
to define human viruses causing cancer through direct or indirect carcinogenesis9: i) Presence
and persistence of viral DNA in tumor biopsies; ii) Growth promoting activity of viral genes
in model systems; iii) Dependence of malignant phenotype on continuous viral  oncogene
expression or modification of host genes; iv) Epidemiological evidence that a virus infection
represents a major risk for development of cancer.

The  worldwide  efforts  of  comprehensive  genome  and  transcriptome  analyses  of  tissue
samples from cancer patients generate appropriate  facilities for capturing information not
only from human cells, but also from other - potentially pathogenic - organisms or viruses
present in the tissue. A comprehensive collection of whole genome and transcriptome data
from  cancer  tissues  has  been  generated  within  the  ICGC (International  Cancer  Genome
Consortium)  project  PCAWG  (Pan-Cancer  Analysis  of  Whole  Genomes)10,  providing  a
unique opportunity for a systematic search for tumor-associated viruses.

The PCAWG Consortium aggregated whole genome sequencing data from 2,658 cancers
across 38 tumor types generated by the ICGC and TCGA projects. These sequencing data
were re-analyzed with standardized, high-accuracy pipelines to align to the human genome
(build  hs37d5)  and  identify  germline  variants  and  somatically  acquired  mutations10.  The
PCAWG working group “Exploratory Pathogens” analyzed the whole genome sequencing
(WGS)  and  whole  transcriptome  sequencing  (RNA-seq)  data  of  the  PCAWG consensus
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cohort  (2,656  donors).  Focusing  on  viral  pathogens,  we  applied  three  independently
developed pathogen detection pipelines ‘Computational  Pathogen Sequence Identification’
(CaPSID)11,  ‘Pathogen  Discovery  Pipeline’  (P-DiP),  and  ‘SEarching  for  PATHogens’
(SEPATH) to generate a large compendium of viral associations across 38 cancer types. We
extensively  characterized  the  known  and  novel  viral  associations  by  integrating  driver
mutations, mutational signatures, gene expression profiles and patient survival data of the
same set of tumors analyzed in PCAWG.

Results

Identification of tumor-associated viruses
To  identify  the  presence  of  viral  sequences,  we  explored  the  WGS  data  of  5,354
tumor/normal  samples  across  38 cancer  types,  and 1,057 tumor RNA-seq data  across  25
cancer types (Supplementary Tables 1,2,20). 195.8 billion reads were considered for analysis
as  they  were  not  sufficiently  aligned  to  the  human  reference  genome  in  the  PCAWG-
generated alignment. Remaining reads ranged from 28,036 to 800 million per WGS and up to
120  million  per  RNA-seq  tumor  sample  (Fig.  1a,  Extended  Data  Figure  1a-c).  Viral
sequences were detected and quantified independently by three recently developed pathogen
discovery pipelines CaPSID, P-DiP and SEPATH. The estimated relative abundance of a
virus was calculated as viral reads per million extracted reads (PMER) at the genus level to
improve  consistency  between  pipelines.  To minimize  the  rate  of  false  positives  in  virus
detection, we applied a strict threshold of PMER>1 supported by at least three viral reads as
similarly  suggested  by  previous  studies11,12.  Virus  detection  in  a  sample  by  at  least  two
pipelines was considered as a consensus hit. In total,  532 genera were considered for the
extensive  virus  search  in  at  least  two  of  the  pipelines  (Extended  Data  Figure  1d,
Supplementary Table 18). Filtering of suspected viral laboratory contaminants was achieved
through P-DiP, by examining each assembled contig of viral sequence segments for artificial,
non-viral vector sequences and inspecting virus genome coverage across all positive samples
(Extended Data Figure 2a). The most frequent hits prone to suspected contamination were
lambdavirus,  alphabaculovirus,  microvirus,  simplexvirus,  hepacivirus,  cytomegalovirus,
orthopoxvirus and punalikevirus; these were observed across many tumor types (Fig. 1b). For
example,  mastadenovirus  showed  an  uneven  genome  coverage  which  could  result  from
contaminating  vector  sequences.  Therefore,  we  analyzed  the  virus  detections  across
sequencing  dates  (Extended  Data  Figure  2b)  to  assess  any  batch  effect  indicative  of  a
contaminant; in mastadenovirus, we identified an association with sequencing date in early-
onset prostate cancer regardless of tumor/normal state. We conclude that our mastadenovirus
detections  are  due to  a  contamination occurring across  projects  worldwide where  similar
patterns could be identified.

We generally observed a strong overlap of the genera identified across pipelines (Extended
Data Figure 1e, Supplementary Tables 6,7,11). From the whole genome dataset, we identified
321, 598 and 206 virus-tumor pairs for P-DiP, CaPSID and SEPATH, respectively (Fig. 2a,
overlap after random permutation of detections, Extended Data Figure 3a, Supplementary
Tables 3-5).  The number of hits  derived from the RNA-seq dataset differed between the
pipelines  (virus-tumor  pairs:  101  for  P-DiP,  83  for  CaPSID,  41  for  SEPATH;  Fig.  2b,
Supplementary Tables 8-10). SEPATH, using a k-mer approach, detected the lowest number
of virus hits and was the least sensitive. Despite this, the identified viruses matched well with
the consensus (DNA 90%, RNA 95%). P-DiP, based on an assembly and BLAST approach,
detected more hits with 59% of the DNA and 54% of the RNA hits in the consensus set,
while  CaPSID,  being  most  sensitive,  implementing  a  two-step  alignment  process
complemented by an assembly step, identified 60% (DNA) and 80% (RNA) hits within the
consensus  set.  While  the  majority  of  the  virus  hits  from  RNA-seq  (n=61/68)  were
overlapping with the WGS data, a lower fraction of detections in WGS data were present in
the RNA-seq data (n=61/168 of 382 virus detections with RNA-seq data), emphasizing the
importance of DNA sequencing for generating an unbiased catalogue of tumor-associated
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viruses. This difference can also be attributed to the viral life cycle as during incubation or
latent phases, viral gene expression can be minimal13. Contrasting virus positive and negative
samples within each organ type shows that the organ system, as expected, has a significant
influence,  but  not  virus  positivity  (P  <  2  ×  10-16,  ANOVA  modeling  candidate  reads
dependent on organ system and virus positivity, Extended Data Figure 1c). This indicates that
virus-positive tumors were not detected due to a higher number of candidate reads and is in
line with the fact that the viral reads in most cases do not substantially contribute to the reads
analyzed. 86% of the sequence hits detected from WGS and RNA-seq data were found to be
from double-stranded DNA viruses (dsDNA) and dsDNA viruses with reverse transcriptase
(Fig. 1c, Supplementary Table 19). This could be attributed to i) a higher frequency of tumor-
associated  viruses  from these  genome  types15,  ii)  a  larger  sequence  dataset  for  WGS in
comparison to RNA-seq, iii) a potential limitation of our analysis due to DNA and RNA
extraction protocols that are less likely to include single-stranded (ss)DNA or RNA viruses or
iv) the selection bias of tumor entities included in the PCAWG study (Fig. 1c).

The virome landscape across 38 distinct tumor types

We employed a consensus approach that resulted in a reliable set of 389 distinct virus-tumor
pairs from WGS and RNA-seq data (Fig. 2a-d). Overall, 23 virus genera were detected across
356  tumor  patients  (13%).  The  top  five  most  prevalent  viruses  (lymphocryptovirus,
orthohepadnavirus, roseolovirus, alphapapillomavirus, cytomegalovirus) account for 85% of
the consensus virus hits  in tumors (n=329 out of 389). Among these five prevalent virus
genera,  three have been well described in the literature as drivers of tumor initiation and
progression9: i) lymphocryptovirus (n=145 samples, 5.5%, e.g. Epstein-Barr Virus, EBV) is
the  most  common  viral  infection  across  a  variety  of  tumor  entities  mainly  from
gastrointestinal tract, and showed a much lower prevalence in the matched non-malignant
control samples (n=82, 3%) (Fig. 2c); ii) orthohepadnavirus (n=67, 2.5%, e.g. hepatitis B,
HBV) are as expected the most frequent among liver cancer with HBV present in 62 of 330
donors (18.9%); and iii) alphapapillomavirus (discussed below). Lymphocryptovirus (n=11),
orthohepadnavirus (n=18) and alphapapillomavirus (n=32) were detected both in RNA and
DNA sequencing data (Fig. 2c, left panel), with alphapapillomavirus being the most frequent
(32  out  of  39  consensus  hits).  This  is  in  line  with  the  constitutive  expression  of  viral
oncogenes in cancers associated with these viruses, a parameter supporting a direct role in
carcinogenesis9.  An in-depth  analysis  of  the  virus  genome equivalents  per  human  tumor
genome equivalent considering genome sizes, coverage and tumor purity showed overall low
viral  genome  equivalents  even  for  established  tumor  viruses  (Extended  Data  Figure  3c,
Supplementary Table 12). Evidence for mouse mammary tumor virus (MMTV, PMER = 3.4)
was detected in one renal carcinoma sample and in none of the 214 analyzed breast cancer
samples. Previous work has suggested that MMTV may play a role in breast cancer but our
comprehensive  search  of  viral  sequences  could  not  identify  any MMTV-positive  case  in
breast cancer that would support this claim.

Roseolovirus  and  Alphatorquevirus  show  a  higher  number  of  hits  in  the  non-malignant
control samples, which were mainly derived from blood cells (Fig. 2c). For example,  we
identified 59 patients as Roseolovirus-positive (HHV-6A, HHV-6B, HHV-7) in their tumor
(pancreas 6%, stomach 8%, colon/rectum 8.3%) and 90 patients positive in the non-malignant
control samples. Considering the known cell tropism of roseolovirus for B- and T-cells14, we
asked  whether  immune  infiltration  would  be  higher  in  roseolovirus-positive  tumors.
However,  we could not identify a stronger contribution of immune cells in virus positive
tumor cases as estimated using CIBERSORT15 (false discovery rate (FDR) corrected P > 0.05
for pancreas; Extended Data Figure 4a). Therefore, in line with current knowledge (reviewed
in16),  we cannot  confirm a  link  between roseolovirus  and immune cell  content  or  tumor
development.  Furthermore,  we  could  not  identify  actively  transcribed  viral  genes  for
Roseolovirus and Alphatorquevirus at the transcriptome level. This is in agreement with the
latent state of these viruses reported for blood mononuclear cells14, and their transmission
through  blood  transfusions17.  Cytomegalovirus  (CMV)  was  found,  as  expected18,  after
identifying and removing contaminations both in stomach tumors (n=13) and the adjacent
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non-malignant tissue (n=11). In line with a recent publication19, we could not detect CMV in
the  analyzed  294  CNS-tumors  (146  medulloblastomas,  89  pilocytic  astrocytoma,  41
glioblastomas, 18 oligodendrogliomas). Therefore, a previously debated role of this virus is
not  supported.  Notably,  we  did  not  identify  a  significant  enrichment  of  co-infection  of
multiple viruses in any tumor type (Extended Data Figure 3d).

Hepatitis B virus
Hepatitis B virus was most frequently detected among liver cancers (n=62). Comparing to the
histopathological  gold  standard  HBV  PCR  test20,21 (n=228),  we  found  the  WGS-based
consensus detections had the same high specificity (96.1%) and a high sensitivity (84.0%),
indicating that the HBV detections by WGS are reliable (Fig. 3a, Extended Data Figure 4b,
Supplementary Table 13). Furthermore, five out of seven cases positive in WGS and negative
for HBV PCR showed positivity for HBAg indicating a high sensitivity of the WGS analysis.
In summary, the precision (85.7%) and recall (84%) for the detection of HBV based on ~30x
WGS is comparable to targeted PCR. We confirmed a significant exclusivity between HBV
infection and CTNNB1, TP53 and ARID1A mutations that was found in a larger liver cancer
cohort analyzed by high throughput sequencing (FDR corrected P = 5.35 × 10-6, 0.0023 and
0.0023, DISCOVER22)23.

Epstein-Barr virus
Epstein-Barr virus was detected in many different tumor entities and normal samples (Fig.
2c). Comparing EBV PMERs in tumors and matched normals we see a stronger contribution
in matched normals from matched solid tissue or tissue adjacent to the tumor (Extended Data
Figure 4c). For samples showing reads for EBV in WGS and with available RNA sequencing
data,  the  absolute  score  for  immune  cells  based  on CIBERSORT15 was  not  significantly
different  between  virus  positive  and  negative  samples  (FDR  corrected  P >  0.05  for
colon/rectum, head/neck, lymphoid, stomach; Extended Data Figure 4a). In summary, there is
no evidence for a detection of EBV due to infiltrating immune cells. This indicates EBV
presence  in  the  respective  organs.  Based  on the  expression  data  available  for  the  tumor
samples we identified viral transcripts of the latent as well as lytic phase of the viral lifecycle
(Fig.  3b,  Extended  Data  Figure  4d,  Supplementary  Table  13).  Eight  of  the  nine  tumors
expressing lytic  EBV transcripts  are from stomach, confirming the  active  contribution of
EBV to gastric cancer24.

Alphapapillomavirus 
Alphapapillomaviruses were mainly detected in head-and-neck cancer (n=18 of 57), cervical
cancer (n=19 of 20) and in two bladder cancer cases out of 23, in agreement with previous
studies4,25,26. There is also supporting evidence for 32 out of 39 alphapapillomavirus hits in the
transcriptome data (Fig. 2c). We observed only one HPV subtype per tumor according to the
P-DiP results  with HPV16 being the  dominant  type  in  cervix  (n=11) and head-and-neck
(n=15)  tumors,  followed  by  HPV18  only  present  in  cervical  cancer  (n=6).  As  reported
previously27,  HPV33  was  identified  in  head-and-neck  (n=3)  and  cervix  (n=1)  tumors.
Different HPV variants, type 6 and 45, were detected in bladder cancer.

In head-and-neck cancer, HPV-positive tumors exhibit an almost complete mutual exclusivity
with mutations in known drivers like TP53, CDKN2A and TERT (FDR corrected P = 1.73 ×
10-5, 1.73 × 10-5, 0.012; multiple testing corrected for presented mutations in EBV and HPV,
DISCOVER22) (Fig. 3c, Supplementary Table 13), as reported previously25, which could be
explained  by  a  mutation  independent  inactivation  of  TP53  through  the  human
papillomaviruses28–30.  Furthermore,  we  identified  mutational  signature  2  as  enriched  for
alphapapillomavirus positive cases in head-and-neck cancers (FDR corrected  P=0.02; Fig.
3d, Supplementary Table 12,22)31. In addition, the expression of APOBEC3B is significantly
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higher in the virus positive head-and-neck cancers compared to their negative counterparts
(P=1.6  × 10-4, Fig. 3f)32. However, we did not observe enrichment of APOBEC signatures
and expression changes for EBV-positive samples either in cervix or in other tissues.

Distinct  expression profiles between virus positive and negative tumors in head-and-neck
cancer  are  observed  (Fig.  3e,  Supplementary  Table  23)33.  Analyzing  the  immune  cells
estimated by CIBERSORT, we identified a significant increase in macrophages and T-cell
signals in alphapapillomavirus positive head-and-neck cancers (P=0.004, 0.012 and 0.012 for
follicular  helper,  CD8  and  regulatory  T-cells  and  P=0.018  for  M1-Macrophages;  FDR
corrected  for  all  viruses  and  cell  types  tested;  Fig.  3g,  Supplementary  Table  24).  Our
integrative  analysis  on  HPV  reconfirms many  of  the  findings  related  to  HPV  infection,
illustrating the potential of our systematic approach in identifying and characterizing tumor-
associated viruses.

Activation of endogenous retroviruses linked to outcome
Human endogenous retroviruses (HERV) are integrated in the human DNA originating from
infection  of  germline  cells  by  retroviruses  over  millions  of  years34 and  contribute  over
500,000  individual  sites,  or  2.7%  of  the  overall  sequence  the  human  genome35,36.  The
endogenous retroviruses were identified by the three pathogen detection pipelines but filtered
by CaPSID and  SEPATH.  In  addition,  an  alignment-based  approach  was  used  to  detect
HERV sequences embedded in the human reference genome that could be missed by the
pipelines focusing only on non-human reads. In this study, we quantified the expression of
HERV-like LTR (long terminal repeat) retrotransposons categorized into several clades by
Repbase37 as ERVL, ERVL-MaLR, ERV1, ERVK and ERV (Supplementary Table 14). In
comparison to the other HERV families, ERV1 shows the strongest expression on average
(Fig. 4a) and ERVK the highest fraction of active loci (Fig. 4b). Analyzing the expression of
HERVs we could identify a strong expression for ERV1 in chronic lymphocytic leukemia
compared to all other tumor tissues and adjacent normal tissues (Fig. 4c). However, we could
not identify a link between transcriptionally active stemness markers (OCT3/4, SOX2, KLF4)
and  increased  HERV  expression,  in  contrast  to  what  was  reported  in  Ohnuki  et  al.38

(Spearman  Rank  correlation  <  0.35,  Extended  Data  Figure  5).  New  data  suggest  that
expression  of  HERVs  is  associated  with  prognosis  in  clear  cell  renal  cell  carcinoma
(ccRCC)39. Analyzing the HERV expression in relation to patient survival, we identified a
high ERV1 expression in kidney cancer linked to worse survival outcome (P=0.0081; Log-
rank test; Fig. 4d, Extended Data Figure 6, Supplementary Table 15). 

Genomic integration of viral sequences
Viral integration into the host genome has been shown to be a causal mechanism that can lead
to  cancer  development40.  This  process  is  well-established  for  human  papilloma  viruses
(HPVs) in cervical, head-and-neck and several other carcinomas, and for hepatitis B virus
(HBV) in liver cancer41,42. 

Low confidence integration events were detected for the HHV4 (gastric cancer and malignant
lymphoma) and HPV6b (head-and-neck and bladder  carcinoma),  while  integration events
with high confidence were demonstrated for HBV (liver cancer), Adeno-associated virus-2
(AAV2) (liver), HPV16/18 (both in cervical and head-and-neck carcinoma). Most of these
integration events were found to be distributed across chromosomes and a significant number
of viral integrations occur in the intronic (40%) regions while only 3.4% were detected in
gene coding regions (Extended Data Figure 7a-d). 

HBV was found to be integrated in 36 liver cancer specimens out of 61 patients identified as
HBV-positive.  Notably,  genomic  clusters  of  viral  integrations  were  identified  in  TERT
(ngc=6,  number of  integration  sites within a  genomic cluster),  KMT2B (ngc=4),  recently
identified to be a likely cancer driver gene43,44 and RGS12 (ngc=3)(Extended Data Figure 7e).
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Furthermore, two or more integration events in individual samples were observed in the gene
(or gene promoter) regions of CCCNE1, CDK15, FSIP2, HEATR6, LINC01158, MARS2 and
SLC1A7 (Fig. 5a). Additional events with two integration sites were also detected within a 50
kb distance away from CLMP, CNTNAP2 and LINC00359 genes. Integration events at TERT
were found to recur in five different liver cancer samples. One sample had a genomic cluster
of three viral integration events within TERT and four samples contained a single integration
event  in  the  TERT promoter,  (3')  or  5'  UTR  regions  (Supplementary  Table  17).  When
comparing gene expression in samples with virus integration to those without, only TERT
was over-expressed (fold change    2.0) in two liver cancer samples (Fig. 5e). Additional
genes  with increased expression  impacted by integration events  include  TEKT3,  CCNA2,
CDK15 and THRB (Fig. 5a).

There was a significant association between HBV viral integrations and somatic copy number
alterations  (SCNAs,  Fig.  5c).  For  samples  with  HBV  integration  events,  the  number  of
SCNAs was higher on average in the vicinity of viral integration sites (within 1 Mb) when
compared to samples without HBV integration (mean: 4.2 vs 2.3,  P=7.4  × 10-3; two-sided
paired t-test). No evidence for an SCNA association was seen for other integrated viruses like
HPV16/18 (Extended Data Figure 8a-b).

HPV18 integration events were detected in seven tumors in total (Fig. 5b), with the most
notable clusters of integration events in cervical cancer samples affecting TALDO1 (ngc = 4)
(Extended Data Figure 7g). 

In 20 samples, HPV16 integration events were detected. Genomic clusters of viral integration
sites were identified in cervical and head-and-neck cancer samples (Extended Data Figure
7f). None of these multiple integration events were observed to recur across patients (Fig.
5b). Integration events were also observed in two different lncRNAs,  LINC00111  and the
plasmacytoma variant translocation 1 gene (PVT1), an oncogenic lncRNA45,46. Expression of
both genes is strongly increased in the cases with HPV16 integration (Extended Data Figure
8f, Supplementary Table 17).

Using  the  PCAWG single  nucleotide  variant  (SNV)  calls10 we  have  found  a  significant
increase in the number of mutations occurring within +/- 10,000 bp of high-confidence viral
integration  sites  (average  number  of  mutations  per  sample  =  0.41  (HPV16+)  vs  0.14
(HPV16-),  P=0.02; paired  t-test one-sided, alternative greater, Extended Data Figure 8cd).
Interestingly the integration sites are, compared to a random genome background, enriched in
close proximity (<1000 bp) to common fragile sites (P=0.0018, Kolmogorov–Smirnov test).
These  results  suggest  that  HPV16  integration  reflects  either  characteristics  of  chromatin
features that favor viral integration, such as fragile sites or regions with limited access to
DNA repair complexes, or the influence of integrated HPV16 on the host genome. Such a
correlation was not seen for the integration sites of other viruses (Extended Data Figure 8e).
Finally, a single AAV2 integration event located in the intronic region of the cancer driver
gene KMT2B47 was detected in one liver cancer sample.

Identification of novel viral species or strains
De novo analysis using the CaPSID-pipeline has generated 56 different contigs that have
been classified into taxonomic groups at the genus level by CSSSCL48. After filtering de novo
contigs for their homology to known reference sequences, we have identified 29 contigs in 28
different tumor samples showing low sequence similarity (in average 63%) to any nucleotide
sequence contained in the BLAST database. In this respect, our analysis has shown that WGS
and RNA-seq can be used to identify isolates from potentially new viral species. However,
the total number of novel isolates were quite low in comparison to viral hits to well-defined
genera (Fig. 2c). These  de novo contigs were not enriched for a specific tumor entity but
rather  distributed  across  cancer  types  including  bladder,  head/neck  and  cervical  cancers
(Extended Data Figure 9).
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Discussion
Searching large pan-cancer genome and transcriptome data sets allowed the identification of
an unexpectedly high percentage of virus associated cases (16%). In particular, analysis of
tumor genomes, which were sequenced on average to a depth of at least 30-fold coverage,
identified considerably more virus positive cases than investigations of transcriptome data
alone, which is the search space analyzed in most previous virome studies. This is probably
mainly due to viruses with no or only weak transcriptional activity in the given tumor tissue.
Co-infections,  generally  believed  to  indicate  a  weak  immune  system,  were  very  rare
(Extended Data Figure 3d). This could, however, also be the result of selection processes
during tumorigenesis.

While universal criteria for a causality of viral pathogens are prone to errors, it is worthwhile
to look at individual features that might support a potentially pathomechanistic contribution
of a given pathogen. These include aspects that affect the expression of host factors, e.g. upon
viral integration, or the mutual exclusivity of the presence of viral genomes and other host
factors, which are already known to play a role in the etiology of a given tumor type. Such
aspects need to be carefully considered when discussing of what strengthens a potentially
pathogenic role of virus.

Not surprisingly, known tumor associated viruses, such as EBV, HBV and HPV16/18, were
among the most frequently detected targets.  Interestingly,  viral  detection based on whole
genome sequencing showed similar performance with respect to precision and recall  as a
targeted PCR for HBV indicating the sensitivity of this approach to detect viruses. This is
particularly true for the common integration verified for HBV and HPV 16/18 in our study. In
addition, the common theme of potential pathomechanistic effects by the genomic integration
of viruses, also supported by the observations of multiple nearby integration sites in a given
tumor  genome  that  we  also  report  in  the  present  study,  has  gained  further  momentum.
Analyzing the effect of viral integrations on gene expression, we identified several links to
genes nearby the integration site. In this regard, the frequently observed integration of HBV
at the TERT promoter accompanied with the transcriptional upregulation of TERT, constitutes
an intriguing mechanistic example, since an increased activity of TERT is a well-understood
driver  of  carcinogenesis49.  Furthermore,  we  also  linked  viral  integrations  to  increased
mutations (SNVs and SCNAs) nearby the integration site.

The known causal role of HPV16/18 in several tumor entities, that triggered one of the largest
measures  in  cancer  prevention,  has  been the  motivation  for  extensive  elucidation  of  the
pathogenetic processes involved. Nevertheless, comprehensive analyses of WGS and RNA-
seq data sets revealed additional novel findings. While we confirmed the exclusivity of HPV
infection and TP53, CDKN2A and TERT mutations in head-and-neck tumors, we could also
link virus presence to an increase in mutations attributed to the mutational  signature 250.
These are explained by the activity of APOBEC, which – among other effects – changes viral
genome sequences as a mechanism of cellular defense against viruses51,52.  This activation
could  play  an  important  role  in  introducing  further  host  genome  alterations  and,  thus,
constitute an important mechanism driving tumorigenesis32,52.  In liver cancer mutations in
CTNNB1,  TP53  and  ARID1A,  major  primary  oncogenes  in  this  cancer  type  and  HBV
infections were confirmed to occur significantly exclusive23. Furthermore, the virus positive
head-and-neck  cancer  samples  had  a  significantly  higher  abundance  of  T-cell  and  M1
macrophage  expression  signals,  which  matches  with  the  recently  described  subtypes  of
HNSCC that differ – among others – in virus infection and inflammation features.
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Figure Legends
Fig. 1: Overview, design and summary statistics. (a) Workflow to identify and characterize
viral sequences from the whole-genome and RNA sequencing of tumor and non-malignant
samples.  Viral  hits  were  characterized  in  detail  using  several  clinical  annotations  and
resources generated by PCAWG. The red line represents the median. (b) Identified viral hits
in contigs showing higher  PMER’s (viral  reads  per  million  extracted  reads) for artificial
sequences  like  vectors  than the virus.  Displayed are all  viruses that  occur  in  at  least  20
primary tumor samples in the same contig together with an artificial sequence. (c) Summary
of the viral search space used in the analysis grouped by virus genome type. The number of
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virus positive tumor samples are indicated in the outer rings (PMER log scale for WGS and
RNA sequencing data) as detected by any of the pipelines. Taxonomic relations between the
viruses are indicated by the phylogenetic tree. dsDNA: double stranded DNA virus, dsDNA-
RT: double-stranded DNA reverse transcriptase virus, ssDNA: single-stranded DNA virus,
ssRNA-RT: single-stranded RNA reverse transcriptase virus, ssRNA: single-stranded RNA
virus, dsRNA: double-stranded RNA virus. Fraction of hits in WGS and RNA sequencing
data are depicted as stacked barplot.

Fig.  2:  Detected  viruses:  Consensus  for  detected  viruses  in  whole  genome  and
transcriptome  sequences. Number  of  genus  hits  among  tumor  samples  for  the  three
independent pipelines and the consensus set defined by evidence from multiple pipelines. (a)
based on whole genome sequencing, (b) and based on transcriptome sequencing. (c) Heatmap
showing the total number of viruses detected across various cancer entities. The sequencing
data  used for  detection is  indicated among the total  number of  hits  (WGS= blue,  RNA-
seq=green). The fraction of virus positive samples is  shown on top and the type of non-
malignant tissue used in the analysis is indicated if more than 15% of the analyzed samples
are from a respective tissue type (solid tissue,  lymph node, blood or adjacent to primary
tumor). (d) t-SNE clustering of the tumor samples based on PMER of their consensus virome
profiles, using Pearson correlation as the distance metric. Major clusters are highlighted by
indicating the strongest viral genus and the dominant tissue types that are positive in that
cluster. Dot size represents the viral reads per million extracted reads (PMER).

Fig. 3: Virus specific findings. (a) HBV detections, validations and driver mutations in liver
cancer. Star indicating mutual exclusivity between HBV detections and somatic driver gene
mutations.  Red  boxes  represent  virus-positive  tumor  samples,  purple  -  viral  genomic
integrations, green – driver mutations, grey – missing data. (b) Virus detections in gastric
cancer samples, indication of virus phase (lytic/latent, dark red) and driver mutations (green).
Yellow color indicates donors with virus-positive non-malignant samples. Grey box refers to
samples with available RNA-seq data. (c) Virus detections (red) and driver mutations (green)
in  cervix  (blue)  and  head  and  neck  cancer  (brown).  Star  indicating  mutual  exclusivity
between  alphapapillomavirus  detections  and  somatic  driver  gene  mutations.  (d)
Alphapapillomavirus detection and exposures of mutational APOBEC signatures SBS2 and
SBS13,  with  sample  sizes  shown below.  Wilcoxon  rank-sum test  (two-sided)  revealed  a
significant difference (P = 0.02) of mutational signature exposure between virus-positive and
negative  head/neck tumor  samples.  Black line  indicates  median in  each group.  (e)  Gene
expression based tSNE map of head and neck cancer samples show a distinct gene expression
profile for virus positive samples. Virus-positive and negative samples were labeled as red
and  grey  dots,  respectively.  (f)  The  violin  plot  of  APOBEC3B  gene  expression  for
alphapapillomavirus  positive and negative  samples  in  cervix and head/neck cancer  (FDR
corrected Wilcoxon rank-sum test,  two-sided,  P = 1.6  ×  10-4).  The center line represents
median,  the  upper  and  lower  boundaries  of  the  violin  plot  refer  to  the  maximum  and
minimum  values,  respectively.  (g)  Tumor-infiltrating  immune  cells  as  quantified  by
CIBERSORT using RNA-seq samples from head and neck cancer patients. All four cell types
showed significant enrichment of immune cells  in virus positive samples (FDR corrected
Wilcoxon rank-sum test two-sided, n=24 vs 18). Tukey boxplot indicates the median by the
middle line and the 25-75th percentiles by the box. The whiskers were drawn up to the 1.5
interquartile range from the lower and upper quartile. 

Fig. 4: Endogenous retroviruses.  (a) Heatmap showing the HERV expression across all
tumor  samples.  HERV  TPMs  were  grouped  by  family  and  summed  up.  Hierarchical
clustering was performed by family based on Manhattan distance with complete linkage after
log2 transformation of HERVs transcripts per million (TPM) expression values. (b) Fraction
of active loci in the genome with a TPM >0.2 plotted against the fraction of samples. (c)
TPM based expression of the highly expressed HERVs ERV1 and ERVK across tumor types.
n described number of tumor samples analyzed. Violin plots marked with the median as red
dot.  The upper  and lower boundaries  of  the violin  plot  extend out  to  the maximum and
minimum values.  (d) Survival difference between kidney cancer samples expressing high
(red)  and low levels  (blue)  of  ERV1.  Kaplan-Meier  curve  shows the  overall  survival  of
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patients (n=113) with high and low levels of ERV1 using a cutoff of 16.3 tpm (Log-rank test
P=0.0081). Patients at risk are provided below. 

Fig. 5: Impact of virus integration. (a) Integration sites detected in gene regions (including
promoter, exon, intron and 5' UTR regions) are labeled in red for increased gene expression
and blue for expression measured.  Rows of each heatmap designate nearest genes to the
integration sites and columns represent individual ICGC donor and project IDs. Intragenic
HBV integration sites detected in liver cancers (ICGC project codes: LIRI, LIHC and LINC).
For  TERT and SEMA6D intergenic  integrations  are  shown as  well.  (b)  Integration  sites
detected  for  HPV-16  and  18  in  head/neck  (samples  color  coded  magenta)  and  cervical
(samples color coded blue) cancers (ICGC project codes: HNSC and CESC) gene labels with
star indicated HPV18 as opposed to HPV16 viral integrations. (c) A local increase in the
number  of  SCNAs  was  shown  in  the  vicinity  of  HBV  viral  integrations  (n=21  viral
integrations  in  individual  patients,  P=7.4  × 10-3;  two-sided  paired  t-test).  (d)  Genomic
visualization of the HBV virus integration sites relative to the TERT gene in five liver tumor
patients. (e) The increased gene expression (FPKM) of TERT gene in two liver tumors with
HBV viral integrations in comparison to the  TERT expression in tumor and non-malignant
adjacent tissue. Tumor samples with a non-coding driver mutation were labeled in orange.

Methods

Identifying potential pathogenic reads
To reduce  the  number  of  reads  to  be  considered  for  the  pathogen  search,  we identified
potential pathogenic reads using script available at https://github.com/mzapatka/p-dip. Based
on the reads aligned by BWA53 or STAR54 to hg19 using the standard PCAWG approach, we
identified read pairs where at  least one read did not show a good mapping to the human
genome (longest stretch of mapped bases from 20 to 30 bases), were unmapped or mapped to
NC_007605 (human herpesvirus 4, which is contained in the 1000 genomes version of the
hg19 human reference genome) and extracted these for further processing. To speed up the
extraction, we used bamcollate2 from Biobambam255 v2.08 as input stream to the python
script.

Identification of endogenous retroviruses
The expression of the endogenous retroviruses was analyzed based on the RNA sequencing
data and aligned STAR based on the setting developed within PCAWG (hg19 and Gencode
19).  In contrast  to the standard pipeline, the reference transcripts from Gencode 19 were
enriched  by  adding  HERV  locations  extracted  from  RepeatMasker  (URL:
http://www.repeatmasker.org,  rmsk  from  UCSC,  version  17/08/03)  and  Featurecounts
(subread-1.5.3)56 applied  to  identify  reads  mapping to  the  modified reference  transcripts.
Resulting  reads  counts  were  converted  into  transcripts  per  million  (TPM)  according  to
Wagner et al.57.

Norwich SEarching for PATHogens (SEPATH) pipeline
Our  starting  point  is  to  take  reads  that  are not  mapped to  the  human genome using  the
extracted potential pathogenic reads. Low quality bases (q<30) are trimmed from the read
ends  and  the  TruSeq  indexed  adapter  and  TruSeq  universal  adapter  are  removed  using
Cutadapt v1.8.158. Reads less than 32 bp were discarded. Additional filtering is performed to
remove reads containing more than 5% of Ns or those with low complexity (dust method
with  maximum  score  of  10)  using  Prinseq  v0.20.359.  Metagenomic  Phylogenic  Analysis
(MetaPhlAn)60,61 is then applied to identify and quantify the presence of bacterial and viral
populations. MetaPhlAn comes with a curated marker database of ~1M unique clade-specific
marker  genes  identified from reference  genomes  (version  2.0  of  the  database  was used).
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Reads are aligned against  the unique marker gene database using BowTie2 v2.2.162 with
presets set to sensitive. Reads are then counted and normalized giving a relative-abundance
estimation at each level of the phylogenetic tree.

Detection  and  Analysis  of  Microbial  Infectious  Agents  by  NGS  P-DiP  -
Pathogen discovery pipeline

The assembly based pipeline (P-DiP) was further developed based on a version implemented
by  Malik  Alawi  and  Adam  Grundhoff63.  In  summary,  the  pipeline  runs  preprocessing,
assembly and BLAST searches and stores processing details and final results in a postgresql
database.  For  the  whole  genome  sequencing  and  RNA sequencing,  we  started  with  the
potential pathogenic reads extracted from the BWA aligned whole genome sequencing bam
files. As a first step, reads were trimmed based on quality using trimmomatic. Thereafter, host
reads were subtracted by aligning to the human reference genome (WGS: hg19 excluding
NC_007605  and  hs37d5  and  adding  phiX,  RNAseq:
Homo_sapiens.GRCh37.dna.primary_assembly)  using  Bowtie2  (2.2.8)62.  Trinity  (v2.0.6)64

was  used  for  the  read  assembly  of  WGS reads  which  were  not  aligned by bowtie  with
sufficient  quality  (not  aligned  with  --very-fast  (-D  5  -R  1  -N  0  -L  22  -i  S,0,2.50)  to
Homo_sapiens.GRCh37.ncrna,  Homo_sapiens.GRCh37.cdna.all  or  PhiX)  for  the  RNA
sequencing data we applied idba assembler (V1.1.3)65. Assembled contigs were filtered by
size  (minimal  length  of  300  bp).  Abundance  was  estimated  by  remapping  all  reads  not
aligning to the human reference to the assembled contigs using bowtie2 again. Putative PCR
duplicates  identified by  mapping location  were  removed from the  abundance count.  The
taxonomic  classification  of  the  size  filtered  contigs  was  performed  using  the  BLAST+
package (2.2.30)66 and nucleotide databases nt (2015-05-15) and nr (2015-04-20). For the
extraction  of  pathogen  hits  R-scripts  were  used  to  filter  the  blast  results  (at
https://github.com/mzapatka/p-dip). In summary, for each of the contig, the best BLAST hits
for each segment of the contig were considered and the reads aligning to these segments
identified. Potential contaminants were defined based on the taxonomy annotation in NCBI
taxonomy.  Any  taxonomy  id  below  plasmids  (36549),  transposons  (2387),  midivariant
sequences  (31896),  insertion sequences  (2673),  artificial sequences  (81077) and synthetic
viruses (512285) was annotated as potential contamination. Segments with higher read counts
of these sequences compared to pathogen hits were flagged as contaminants and not further
considered.

Computational Pathogen Sequence Identification (CaPSID) description of the
analysis workflow

CaPSID's11 metagenomic analysis pipeline starts by first processing a BAM file containing
reads sequenced from a tumor (or normal) sample aligned to the human reference sequence
(GRCh37/hg19). Reads that did not map to the human reference are extracted and filtered for
low complexity and quality using the SGA67 preprocessing module and then aligned in single-
end mode using the Bowtie2 aligner62 to 5,652 NCBI68 viral reference sequences (RefSeq)
and  a  filter  sequence  reference  database  composed  of  5,242  bacterial  and  1,138  fungal
reference sequences also downloaded from the NCBI. In order to improve the sensitivity and
specificity with which viral sequences are detected, reads that did not map to any reference
with Bowtie2 are realigned against the same viral RefSeq database, using a more sensitive
SHRiMP2  aligner  using  its  local  alignment  mode69.  At  the  completion  of  this  two-step
alignment  process,  reads  aligning  to  viral  reference  sequences  are  annotated  using  the
information stored in the CaPSID's genome database containing full NCBI GenBank and taxa
information. Using information from each aligned read CaPSID then calculates the following
four metrics: (i) the total number of reads (or hits) aligning across any given viral genome,
(ii)  the  total  number  of  reads  aligning  only  across  gene  regions  within  any  given  viral
genome, (iii) the total coverage across each viral genome and (iv) the maximum coverage
across any of the genes in a given viral genome.

Filtering of viral candidates with low significance
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In  a  typical  analysis  of  tumor  whole  genome  or  transcriptome  sample,  CaPSID  reports
candidate sequences from dozens of different viral genomes, some of which are not related to
cancer phenotype. Some of these reported viral hits are also due to a series of experimental
and computational artifacts. In order to reduce the number of potential false positives CaPSID
pipeline flags viral genomes could be the result of artifacts present in the sequencing data or
those with no obvious relation to cancer phenotype and that could be filtered later on. The
following  criteria  are  used  to  flag  and  filter  for  potential  viral  candidates:  (i)  flag  viral
candidates with low coverage,  (ii)  flag bacteriophage viral  genome sequences, (iii)  report
only viral candidates with read composition different from the one expected when generated
from the host’s reference GRCh37/hg19 sequence, (iv) flag viral candidates that are typically
not known to infect humans and those with low read abundance and/or low overall alignment
read accuracy.

In the first step CaPSID flags viral genomes with low read count and/or coverage using its
three metrics including: total number of uniquely aligned reads < 3, total genome coverage <
10% and maximum gene coverage < 50%. Viral genomes with low read count can arise as a
result of i) low read/transcript abundance in the human sequenced sample, ii) non-specific
alignment  between  sequenced  short  reads  (for  example  low complexity  reads)  and  viral
reference  sequences  and  iii)  for  RNA-seq  library  preparation  where  highly  expressed
transcripts generally dominate over low abundance targets. In order to limit reporting viral
genomes with very low coverage, we chose to flag all those with maximum gene coverage <
50%. Since this lower bound on the maximum gene coverage applies to individual genes and
not  to  the complete viral  genome, it  is  unlikely that  viruses with such low coverage are
biologically significant. The second step in our filtering approach is to flag bacteriophage
viral genomes that are most likely not related to any cancer phenotype. Bacteriophages are
detected  as  a  result  of  the  presence  of  bacteria  (or  bacterial  contamination)  in  human
sequenced  samples.  The  third  step  is  used  to  determine  whether  the  genome  coverage
observed for  each viral  candidate is  different  from the one expected to  arise  from reads
originating exclusively from the human reference DNA GRCh37/hg19 sequence. To build the
CaPSID background model we use the ART NGS read simulator. The entire GRCh37/hg19
sequence reference file is first fed to the ART70 simulator (parameters: art_illumina [Illumina
platform] -l [read length = 100 bp] -f [the fold of read coverage to be simulated = 100] with
default values for indels and substitution rates), which then generates single-end (or paired-
end) reads and base quality values. 

Reads simulated by ART are then aligned to the viral reference sequence database using the
same alignment approach for reads originating from tumor samples (see above). CaPSID then
calculated the four metrics for the GRCh37/hg19 background model using the alignment
information  from simulated  reads  aligning  to  viral  reference  sequences.  The  fourth  step
consists of flagging viral candidates that are typically not known to infect humans using a
dictionary of ~ 130 terms that we have compiled from a database of all viruses known to
infect  humans.  In  addition to  the above filtering criteria  CaPSID also considers  the read
abundance associated with each viral candidate sequence (abundance is expressed in terms of
aligned reads in parts-per million of total number of unmapped reads) and the average read
percent identity with which reads align to a given viral candidate reference sequence.

De novo assembly and taxonomic classification of contigs

The purpose of this analysis step is to attempt to characterize potential novel viral sequences
at the species or subspecies level. Unaligned reads which could not be aligned to any of the
filter/host or viral reference sequences are assembled into contigs using the IDBA algorithm65.
Assembled contigs are then masked for repeat regions using RepeatMasker and then filtered
for their  size and read coverage (contig length >= 500 bp and coverage > 5x). Resulting
contigs  are  then  assigned  into  taxonomic  groups  at  the  genus  level  using  the  CSSSCL
algorithm48.  Contigs  lacking sequence homology to  reference  sequences  contained in  the
CaPSID  or  blast  nucleotide  databases  with  percent  identity  <  90% are  then  selected  as
suggestive of the presence of new viral strains/isolates or species.
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Defining consensus hits
Identification of the consensus hits was achieved by optimizing two features of the individual
genus hits:  PMER 1 as cutoff (see analysis of the validation set)  and percentage identity
>90%. 90% percentage identity threshold was determined based on our benchmarking study12

indicating that an alignment-based approach can still accurately characterize viral sequences
with up to 10% mutation rate (when compared to sequences stored in a reference database).
Lowering the threshold, with which short reads align to any given reference sequence below
90% identity on average, results in a drop of sequence coverage due to a high attrition rate of
aligned reads, lowering the detection rate and thus providing more uncertain characterization
of viral candidates. Notably, there was no difference in the PMER distribution of common
hits  across  the  three  pipelines  indicating  that  a  common  detection  cut-off  is  reasonable
(Extended Data Figure 3b).

The  consensus  set  was  restricted  to  genera  that  were  covered  in  at  least  two  detection
pipelines (Extended Data Figure 1b). Notably, we could not detect any more hits with high
PMERs using the unique search space of P-DiP, indicating that almost all of the viral hits
from individual pipelines were also screened by another pipeline.

Virus integration detection analysis
A subset  of  viral  candidates  identified to  be  present  in  tumor  samples  by  the  CaPSID's
analysis  pipeline  (parameters  used:  PMER  >=  1.1  and  genome  coverage  >  simulated
background  model)  was  selected  for  the  detection  of  viral  integration  events  using  the
VERSE71 algorithm. This subset of viruses included: Herpesviruses (HHV-1, 2, 4, 5, 6A/B),
Simian virus 40 (SV40) and 12 (SV12), Human immunodeficiency virus (HIV1), Human and
Simian T-cell lymphotropic virus type 1 (HTLV1 and STLV1), BK polyomavirus (BKP),
Human parvovirus B19, Mouse mammary tumor virus, Murine type C retrovirus, Mason-
Pfizer monkey virus, Hepatitis B (HBV), Papilloma viruses (HPV-16, 18 and 6a and Adeno-
associated virus - 2 (AAV2). Below we describe the steps used for viral integration detection
analysis.

Viral integration events in the host can be detected using paired-end NGS technologies that
facilitate  the  detection  of  genomic  rearrangements,  as  well  as  gene  fusions  and  novel
transcripts.  VERSE is  capable of  determining virus integration sites  within a  single base
resolution by requiring the presence of both chimeric and soft  clipped reads. In addition,
VERSE improves the detection through customizing reference genomes and was shown to
substantially enhance the sensitivity of virus integration site detection71. VERSE categorizes
its predictions into one of two classes: (a) a 'high' confidence hit with a single base resolution
- if there is a sufficient number of soft-clipped reads to support an integration locus so that
CREST is able to detect it; (b) a 'low' confidence hit with a 10 bp resolution where CREST
has failed to detect an integration event for the lack of high quality soft-clipped reads. 

In  order  to  further  limit  the  false  positive  rate  associated  with viral  integration  sites  we
compare  results  obtained with  VERSE to  those  from Fujimoto  et  al72.  Out  of  64  whole
genome liver cancer samples with HBV integration events reported in Fujimoto et al., 50 are
part  of the PCAWG dataset analyzed in this  study. 45 out of 50 of these samples tested
positive for HBV when analyzed by CaPSID (filtering criteria used; PMER >= 1.0, genome
coverage > host background model and read % identity >= 89%). In addition, 50 of these
WGS samples had 23 matching whole transcriptome (WT) samples and 22 of these were
identified to be positive for HBV by CaPSID (filtering criteria used; maximum gene coverage
>=  50%,  read  % identity  >= 89% and PMER >= 1.0).  By combining  WGS and  whole
transcriptome tumor samples together, 47/50 in total tested positive for HBV when analyzed
by CaPSID.

Using VERSE, virus integration sites were detected in 28/47 (60%) of these.  This result
indicates  that  for  a  subset  of  viral  integration events,  VERSE might  be a  more stringent
approach when compared to the one used in Fujimoto et al. This can be explained by the fact
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that VERSE requires both the presence of paired-end chimeric and soft clipped reads while
the method presented in Fujimoto et al. relies on paired-end reads only. In order to explore
these results further we compared integration sites obtained with VERSE and Fujimoto et al.
with an overlapping window of 10 bp. Our analysis indicates that among 23 integration sites
identified by VERSE in whole transcriptome data and that  overlap with the results  from
Fujimoto et al., 91% of these are classified with high confidence hits and only 9% with low
(N total overlap = 23, high = 21 (91%) and low = 2 (9%)). However, a similar result is not
observed for integration events found using WGS data (N total overlap = 14, high = 6 (43%),
low = 8 (57%)) where the proportion of integration events  classified as high and low is
similar.
Thus, our analysis indicates that one important factor for improving the agreement between
these two datasets is the confidence level assigned by VERSE to each candidate integration
site - but only in the case when integration sites are detected using whole transcriptome data.
In order to reduce the potential number of false positives we decided to use all integration
sites predicted by VERSE when these are obtained using WGS data and only high confidence
calls when using whole transcriptome data. 

Contaminations
Based on the presence of vector sequences in the contig assembled by the P-DiP and based on
the  background  model  from  CaPSID we  could  identify  which  virus  hits  originate  from
common lab contaminants or due to sequence similarities to the human genome. In addition,
we filtered known contaminants (see below). For P-DiP we filtered all hits not having more
target reads than any artificial sequence (excluding artificial viruses) on an individual contig
region. Hits  caused by vector and other  artificial sequences were identified analyzing the
assembled contigs for combined hits to viral pathogens and artificial sequences. Checking
viral hits occurring at least 40 times in a such contig we could clearly separate contaminants
from viral pathogens.
The gammaretrovirus hits (NCBI taxonomy id: 153135, species: murine leukemia virus) were
also marked as artifacts, based on the additional BLAST hits of the corresponding contigs to
the  Mus musculus genome by P-DiP, as well as on the background model of the CaPSID
pipeline designed to limit the number of spurious hits.  Most frequent  virus hits  prone to
contamination by artificial sequences  are Lambdalikevirus,  Alphabaculovirus,  Microvirus,
Simplexvirus,  Hepacivirus,  Cytomegalovirus,  Orthopoxvirus  and  Punalikevirus.  But
restricting  to  at  least  1  PMER  for  the  potential  virus  hit  contaminants  drop  to  one
Cytomegalovirus case.

Filtering contaminants
We filtered all  Microviridae (taxonomy ID:  10841)  because of the phix174 spike-in used
during sequencing. Caudovirales (taxonomy ID: 28883), tailed bacteriophages, were removed
as they typically infect bacterial hosts. Baculoviridae were filtered because of infecting insect
cells and commonly being used in the lab. The virus coverage was analyzed by aligning the
potential pathogenic reads with BWA mem to the human hg19 reference genome after adding
the respective virus reference sequence most frequently detected within the genus. Coverage
was thereafter calculated base specific using BEDTools coverage. As we identified EBV in
all 14 normal blood controls from ovarian cancer that were EBV immortalized these were
removed from the virus hits.

Integration of external PCAWG datasets
We tested for mutual exclusivity e.g between virus detections and driver gene mutations by
applying DISCOVER22. Based on the gene expression data, immune cell proportions were
analyzed by CIBERSORT15.  For  survival analysis,  Cox proportional hazards analysis was
performed using R libraries ‘survival’ and ‘survminer’ for the figures. The optimal cutpoints
were identified by maxstat using the method presented in Lausen and Schumacher73 (library
maxstat).
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Virus load
The viral  load in relation to the human genome equivalents was calculated based on the
human bases sequenced (read length x number of reads mapped to the human genomes),
tumor sample purity (if available 100% otherwise) assuming a ploidy of two and using a
human genome size of 2,897,310,462 bases (mappable part  of the human genome).  This
number  of  human genome equivalents  was  then  related  to  the  viral  genome equivalents
calculated based on viral reads identified, read length and virus genome size.

Human research participants
The Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office
and the Ethics and Governance Committee of the ICGC. Each individual ICGC and TCGA
project  that  contributed  data  to  PCAWG  had  their  own  local  arrangements  for  ethics
oversight and regulatory alignment.

Statistics
If not specified otherwise, we used two-sided Wilcoxon rank-sum test for groups with n >3.
Further details can be accessed at the ' Life Sciences Reporting Summary’.

Data Availability Statement
Somatic  and  germline  variant  calls,  mutational  signatures,  subclonal  reconstructions,
transcript abundance, splice calls and other core data generated by the ICGC/TCGA Pan-
cancer  Analysis  of  Whole  Genomes  Consortium  is  described  here10 and  available  for
download at https://dcc.icgc.org/releases/PCAWG. Additional information on accessing the
data,  including  raw  read  files,  can  be  found  at  https://docs.icgc.org/pcawg/data/.  In
accordance with the data access policies of the ICGC and TCGA projects, most molecular,
clinical and specimen data are in an open tier which does not require access approval. To
access  potentially  identification  information,  such  as  germline  alleles  and  underlying
sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC)
via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA
portion  of  the  dataset,  and  to  the  ICGC  Data  Access  Compliance  Office  (DACO;
http://icgc.org/daco) for the ICGC portion. In addition, to access somatic single nucleotide
variants  derived  from  TCGA  donors,  researchers  will  also  need  to  obtain  dbGaP
authorization.
Data sets described specifically in this manuscript can be found in the Supplementary Tables.

Code availability Statement
The core computational pipelines used by the PCAWG Consortium for alignment, quality
control  and  variant  calling  are  available  to  the  public  at  https://dockstore.org/search?
search=pcawg under  the  GNU General  Public  License  v3.0,  which  allows  for  reuse  and
distribution.  The  pathogen  discovery  pipeline  P-DiP  is  available  on  github  at
https://github.com/mzapatka/p-dip. CaPSID is available from the github pages ( 
pipeline: https://github.com/capsid/capsid-pipeline,
webapp: https://github.com/capsid/capsid-webapp).  The  taxonomic  classifier  CSSSCL  is
available from https://github.com/oicr-ibc/cssscl.
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