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Abstract

Background: Prostate cancer exhibits severe clinical heterogeneity and there is a

critical need for clinically implementable tools able to precisely and noninvasively

identify patients that can either be safely removed from treatment pathways or

those requiring further follow up. Our objectives were to develop a multivariable

risk prediction model through the integration of clinical, urine‐derived cell‐free
messenger RNA (cf‐RNA) and urine cell DNA methylation data capable of non-

invasively detecting significant prostate cancer in biopsy naïve patients.

Methods: Post‐digital rectal examination urine samples previously analyzed sepa-

rately for both cellular methylation and cf‐RNA expression within the Movember

GAP1 urine biomarker cohort were selected for a fully integrated analysis (n = 207).

A robust feature selection framework, based on bootstrap resampling and permu-

tation, was utilized to find the optimal combination of clinical and urinary markers in

a random forest model, deemed ExoMeth. Out‐of‐bag predictions from ExoMeth

were used for diagnostic evaluation in men with a clinical suspicion of prostate

cancer (PSA ≥ 4 ng/mL, adverse digital rectal examination, age, or lower urinary

tract symptoms).

Results: As ExoMeth risk score (range, 0‐1) increased, the likelihood of high‐grade
disease being detected on biopsy was significantly greater (odds ratio = 2.04 per 0.1

ExoMeth increase, 95% confidence interval [CI]: 1.78‐2.35). On an initial TRUS

biopsy, ExoMeth accurately predicted the presence of Gleason score ≥3 + 4, area

under the receiver‐operator characteristic curve (AUC) = 0.89 (95% CI: 0.84‐0.93)
and was additionally capable of detecting any cancer on biopsy, AUC = 0.91 (95% CI:

0.87‐0.95). Application of ExoMeth provided a net benefit over current standards
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of care and has the potential to reduce unnecessary biopsies by 66% when a risk

threshold of 0.25 is accepted.

Conclusion: Integration of urinary biomarkers across multiple assay methods has

greater diagnostic ability than either method in isolation, providing superior

predictive ability of biopsy outcomes. ExoMeth represents a more holistic view of

urinary biomarkers and has the potential to result in substantial changes to how

patients suspected of harboring prostate cancer are diagnosed.
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1 | INTRODUCTION

Prostate cancer exhibits extreme clinical heterogeneity; 10‐year sur-

vival rates following diagnosis approach 84%, yet prostate cancer is still

responsible for 13% of all cancer deaths in men in the United King-

dom.1 Coupled with the high rates of diagnosis, prostate cancer is more

often a disease that men die with rather than from. This illustrates the

need for clinically implementable tools able to selectively identify those

men that can be safely removed from treatment pathways without

missing those men harboring a disease that requires intervention.

An opportune point to intervene or supplement current clinical

practices would be before an initial biopsy in men suspected of having

prostate cancer, reducing costs to men, health care systems and pro-

viders alike. In current clinical practice men are selected for further

investigations for prostate cancer if they have an elevated prostate‐
specific antigen (PSA) (≥4 ng/mL) and an adverse finding on digital

rectal examination (DRE) or lower urinary tract symptoms; other

factors such as age and ethnicity are also considered.2‐4 However, the

rates of negative biopsies in men with a clinical suspicion of prostate

cancer are overwhelming; a recent population‐level study of 419 582

men fromMartin et al5 observed that 60% of all biopsies in the control

arm of the Cluster‐Randomised Trial of PSA Testing for Prostate

Cancer (CAP) were negative for prostate cancer, similar to the rates

observed by Donovan et al6 as part of the ProtecT trial.6 Needle

biopsy is invasive, and not without complications: 44% of patients

report pain, and detection of clinically insignificant disease can result

in years of monitoring, causing patients undue stress.4 Multiparametric

magnetic resonance imaging (MP‐MRI) has been developed as a triage

tool to reduce the rates of negative biopsy and its use has become

increasingly widespread since its validation.7 However, MP‐MRI is

relatively expensive and has shown a high rate of interoperator and

intermachine variability, leading to MP‐MRI missing up to 28% of

clinically significant diseases in practice.4,8‐10

The interconnected nature of the male urological system makes it

an ideal candidate for liquid biopsy and noninvasive biomarkers for

prostate cancer. There is a sizeable interest in the development of

such noninvasive tests and classifiers capable of reducing the rates

of initial biopsy in men while retaining the sensitivity to detect

aggressive disease. Single‐gene or expression panels of few genes,

such as the PCA3,11 SelectMDx,12 ExoDx Prostate(IntelliScore)13 tests

have published promising results to date for the noninvasive detection

of significant disease (Gleason score [Gs] ≥7). Similarly, several urine

methylation panels have been developed; the ProCUrE assay from

Zhao et al14 quantifies the methylation of HOXD4 and GSTP1 for the

detection of CAPRA score 3 to 10 disease, while Brikun et al15 as-

sessed the binary presence or absence of CpG island methylation as-

sociated with 18 genes to predict the presence of any prostate cancer

on biopsy. However, these biomarker panels have yet to be widely

implemented in clinical settings, and none are currently recommended

within the NICE guidelines,4 suggesting that improvements are re-

quired. Other studies have aimed to detect the most aggressive can-

cers by utilizing tissue samples taken at the time of biopsy, resulting in

moderate success and wider clinical adoption.16‐18 However, due to

their proposed implementation within current clinical pathways, these

tests may not take into consideration the considerable economic,

psychological, and societal costs of unnecessarily subjecting men with

low volume, indolent disease to biopsy.19‐21

In 2012, the Movember Global Action Plan 1 (GAP1) initiative

was launched, a collaborative effort between multiple institutes fo-

cusing on prostate cancer biomarkers in urine, plasma, serum, and

extracellular vesicles. The prime aim of the GAP1 initiative was to

develop a multimodal urine biomarker panel for the discrimination of

disease state. The authors have previously published analyses from

two of the GAP1 studies that measured differing molecular aspects

within urine; epiCaPture assayed hypermethylation of urinary cell

DNA,22 and PUR assessed transcript levels in cell‐free extracellular

vesicle messenger RNA (cf‐RNA) using NanoString.23 Both of these

tests were able to discriminate some level of clinically significant

disease and exhibited differing characteristics; where epiCaPture

was well suited to detecting the highest grade disease (Gs ≥8), PUR

was better matched to the deconvolution of lower‐risk and indolent

disease, as detailed by its prognostic ability in active surveillance use.

With a suitable overlap in the numbers of patient samples analyzed

by both methods, we hypothesized that these two methods could be

complementary, and the integration of both data sets could result in

a more holistic model with predictive ability greater than the sum of

its parts, able to encapsulate the clinical heterogeneity of prostate

cancer and reach the levels of accuracy and utility required for

widespread adoption. In this study, we report the diagnostic accuracy

of such an integrated model, determined by the ability to predict the
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presence of Gs ≥7 and Gs ≥4 + 3 disease on biopsy, both are critical

distinctions, where patients with Gs ≥7 are recommended radical

therapy,4 while patients with Gs 4 + 3 have significantly worse out-

comes than Gs 3 + 4 patients.24 Mindful that many cancer biomarkers

fail to translate to the clinic, the development of the presented model

has been carried out adhering to the transparent reporting of

a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) guidelines.25

2 | MATERIALS AND METHODS

2.1 | Patient population and characteristics

The full Movember GAP1 urine cohort comprises of 1 257 first‐catch
post‐DRE, pre‐TRUS biopsy urine samples collected between 2009

and 2015 from urology clinics at multiple sites. Samples within

the Movember cohort that were analyzed for both methylation

and cf‐RNA were eligible for selection for model development

in the current study (n = 207).

Exclusion criteria for model development included a recent

prostate biopsy or transurethral resection of the prostate

(<6 weeks) and metastatic disease (confirmed by a positive

bone scan or PSA >100 ng/mL), resulting in a cohort of 197 samples,

deemed the ExoMeth cohort. The samples analyzed in the ExoMeth

cohort were collected from the Norfolk and Norwich University

Hospital (NNUH, Norwich, UK, n = 181) and St James's Hospital (SJH;

Dublin, Republic of Ireland, n = 16).

2.2 | Sample processing and analysis

Urine samples were processed according to the Movember

GAP1 standard operating procedure (Supporting Information

Methods). Hypermethylation at the 5′‐regulatory regions of

six genes (GSTP1, SFRP2, IGFBP3, IGFBP7, APC, and PTSG2) in

urinary cell‐pellet DNA was assessed using a quantitative

methylation‐specific polymerase chain reaction (qPCR) as de-

scribed by O'Reilly et al.22 cf‐RNA was isolated and quantified

from urinary extracellular vesicles using NanoString technology,

with 167 gene‐probes (Table S1), as described in Connell et al,23

with the modification that NanoString data were normalized

according to NanoString guidelines using NanoString internal

positive controls, and log2 transformed. Clinical variables con-

sidered were serum PSA, age at sample collection, DRE

impression, and urine volume collected.

2.3 | Statistical analysis

All analyses, model construction and data preparation were under-

taken in R version 3.5.3,26 and unless otherwise stated, utilized base

R and default parameters.

2.4 | Feature selection

In total, 177 variables were available for prediction (cf‐RNA [n = 167],

methylation [n = 6], and clinical variables [n = 4]; for full list see

Supporting Information Data), making feature selection a key task

for minimizing model overfitting and increasing the robustness of

trained models. To avoid dataset‐specific features being positively

selected,27 we implemented a robust feature selection workflow

utilizing the Boruta algorithm28 and bootstrap resampling. Boruta is a

random forest‐based algorithm that iteratively compares feature

importance against random predictors, deemed “shadow features”.

Features that perform significantly worse compared to the maximally

performing shadow features, at each permutation (P ≤ .01, calculated

by Z‐score difference in mean accuracy decrease), are consecutively

dropped until only confirmed, stable features remain.

Boruta was applied on 1000 data sets generated by resampling

with replacement. Features were only positively selected for model

construction when confirmed as stable features in 90% of resampled

Boruta runs or over.

Additional methylation information from four genes (HOXD3,

TGFβ2, KLK10, and TBX15) was available for a subset of the Exo-

Meth cohort from previous analyses by Zhao et al (n = 144)14;

however, these genes did not add additional information in

preliminary analysis and were not included in further analyses

(data not shown).

2.5 | Comparator models

To evaluate potential clinical utility, additional models were trained

as comparators using subsets of the available variables across the

patient population: a clinical standard of care (SoC) model was

trained by incorporating age, PSA, T‐staging, and clinician DRE

impression; a model using only the available DNA methylation probes

(methylation, n = 6); and a model only using NanoString gene probe

information (ExoRNA, n = 167). The fully integrated ExoMeth model

was trained by incorporating information from all of the above

variables (n = 177). Each set of variables for comparator models were

independently selected via the bootstrapped Boruta feature selec-

tion process described above to select the most optimal subset of

variables possible for each predictive model.

2.6 | Model construction

All models were trained via the random forest algorithm,29 using the

randomForest package30 with default parameters except for resampling

without replacement and 401 trees being grown per model. Risk scores

from trained models are presented as the out‐of‐bag predictions; the

aggregated outputs from decision trees within the forest where the

sample in question has not been included within the resampled data

set.29 Bootstrap resamples were identical for feature selection and

model training for all models and used the same random seed.
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Models were trained on a modified continuous label, based by

binning samples on biopsy outcome and constructed as follows:

samples were scored on a continuous scale (range, 0‐1) according
to Gs: where no evidence of cancer on biopsy are scored 0,

patients with predominantly Gleason pattern 3 disease are as-

signed 0.5, and predominantly Gleason 4 (or 5) are assigned to 1.

Further, treating this label as a continuous variable, recognizes

that two patients with the same Gleason pattern TRUS biopsy‐
detected cancer may not share the exact same proportions of tu-

mor pattern, or overall disease burden within their prostate. This

scale is solely used for model training and is not represented in any

clinical endpoint measurements, or for determining predictive

ability and clinical utility.

2.7 | Statistical evaluation of model predictivity

Area under the receiver‐operator characteristic curve (AUC) metrics

were produced using the pROC package,31 with confidence intervals

calculated via 1000 stratified bootstrap resamples. Density plots of

model risk scores and all other plots were created using the ggplot2

package.32 Cumming estimation plots and calculations were produced

using the dabestr package33 and 1000 bootstrap resamples were used to

visualize robust effect size estimates of model predictions.

Decision curve analysis (DCA)34 examined the potential net

benefit of using the developed comparator models in the clinic.

Standardized net benefit (sNB) was calculated with the rmda

package35 and presented throughout our DCAs as it is a more

directly interpretable metric compared to a net benefit.36 To ensure

DCA was representative of a more general population, the

prevalence of Gs within the ExoMeth cohort were adjusted via

stratified bootstrap resampling to match those observed in a popu-

lation of 219 439 men that were in the control arm of the CAP Trial,5

as described in Connell et al.23 Briefly, of the biopsied men within this

CAP cohort, 23.6% were Gs 6, 8.7% Gs 7, and 7.1% Gs ≥8, with 60.6%

of biopsies showing no evidence of cancer. These ratios were used

to perform stratified bootstrap sampling with replacement of the

Movember cohort to produce a “new” data set of 197 samples with

risk scores from each comparator model. sNB was then calculated

for this resampled data set, and the process repeated for a total of

1000 resamples with replacement. The mean sNB for each risk score

and the “treat‐all” options over all iterations were used to produce

the presented figures to account for variance in resampling. The net

reduction in biopsies, based on the adoption of models vs the default

TABLE 2 Boruta‐derived features positively selected for each
model

Models

SoC Methylation ExoRNA ExoMeth

Clinical

parameters

Serum

PSA

⋯ ⋯ Serum PSA

Age ⋯ ⋯ ⋯

Methylation

targets

⋯ GSTP1 ⋯ GSTP1

⋯ APC ⋯ APC

⋯ SFRP2 ⋯ SFRP2

⋯ IGFBP3 ⋯ IGFBP3

⋯ IGFBP7 ⋯ IGFBP7

⋯ PTGS2 ⋯ PTGS2

Transcript

targets

⋯ ⋯ AMACR ⋯

⋯ ⋯ ERG exons 4‐5 ERG exons 4‐5

⋯ ⋯ ERG exons 6‐7 ERG exons 6‐7

⋯ ⋯ GJB1 GJB1

⋯ ⋯ HOXC6 HOXC6

⋯ ⋯ HPN HPN

⋯ ⋯ PCA3 PCA3

⋯ ⋯ PPFIA2 ⋯

⋯ ⋯ RPS10 ⋯

⋯ ⋯ SNORA20 SNORA20

⋯ ⋯ TIMP4 TIMP4

⋯ ⋯ TMPRSS2/ERG

fusion

TMPRSS2/

ERG fusion

Note: Features are selected for each model by being confirmed as

important for predicting biopsy outcome, categorized as a modified

ordinal variable (see Section 2) by Boruta in ≥90% of bootstrap resamples.

Variables selected for the fully integrated model (ExoMeth) are in the

highlighted column; for example, age is selected within the standard of

care (SoC) model, but not in ExoMeth.

TABLE 1 Characteristics of the ExoMeth development cohort

Biopsy negative Biopsy positive

Collection center, n (%)

NNUH 68 (88) 113 (94)

SJH 9 (12) 7 (6)

Age, years

Minimum 42.00 53.00

Median (IQR) 66.00 (59.00, 71.00) 69.50 (65.00, 76.00)

Mean (SD) 65.70 ± 8.53 69.97 ± 7.44

Maximum 82.00 86.00

Serum PSA, ng/mL

Minimum 0.20 3.60

Median (IQR) 6.70 (4.20, 8.80) 10.05 (6.90, 18.20)

Mean (SD) 7.44 ± 5.59 17.50 ± 18.82

Maximum 30.30 95.90

Prostate size (DRE

Estimate), n (%)

Small 14 (18) 12 (10)

Medium 29 (38) 56 (47)

Large 22 (29) 37 (31)

Unknown 12 (16) 15 (12)

Gleason score, n (%)

0 77 (100) N/A

6 N/A 24 (20)

3 + 4 N/A 42 (35)

4 + 3 N/A 23 (19)

≥8 N/A 31 (26)

Abbreviations: IQR, interquartile range; NNUH, Norfolk and Norwich

University Hospital; PSA, prostate‐specific antigen; SJH, St James's

Hospital.
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treatment option of undertaking biopsy in all men with PSA 4 ng/mL

or above was calculated as:

= ( − ) ×
−

Biopsy NB NB
1 Threshold

Threshold
,NetReduction Model All

where the decision threshold (Threshold) is determined by

accepted patient/clinician risk.34 For example, a clinician may

accept up to a 25% perceived risk of cancer before recommending

biopsy to a patient, equating to a decision threshold

of 0.25.

F IGURE 1 Boruta analysis of variables available for the training of the ExoMeth model. Variable importance was determined over 1000

bootstrap resamples of the available data and the decision reached recorded at each resample. Color indicates the proportion of the 1000
resamples a variable was confirmed to be important in. Variables confirmed in at least 90% of resamples were selected for predictive modeling.
Those variables rejected in every single resample are not shown here, but the full list of inputs for all models can be seen in Table S1 [Color

figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

3.1 | The ExoMeth development cohort

Linked methylation and transcriptomic data were available for

197 patients within the Movember GAP1 cohort, with the majority

originating from the NNUH and forming the ExoMeth development

cohort (Table 1). The proportion of Gleason ≥7 disease in the

ExoMeth cohort was 49%.

3.2 | Feature selection and model development

Using a robust feature selection framework four models were

produced in total; a clinical standard of care model using only

clinical information (SoC, age and PSA), a model using only me-

thylation data (Methylation, six genes), a model using only cf‐RNA

information (ExoRNA, 12 gene probes) and the integrated model,

deemed ExoMeth (16 variables) (Table 2). The ExoMeth model is a

multivariable risk prediction model incorporating clinical, methy-

lation and cf‐RNA variables. When the resampling strategy was

applied for feature reduction using Boruta, 16 variables were se-

lected for the ExoMeth model. Each of the retained variables was

positively selected in every resample and notably included in-

formation from clinical, methylation, and cf‐RNA variables

(Figure 1). Full resample‐derived Boruta variable importances for

the SoC, Methylation, and ExoRNA comparator models can be

seen in Figures S1 to S3, respectively.

In the SoC comparator model, only PSA and age were selected

as important predictors. All methylation probes were selected as

important in both the independent Methylation model and the

ExoMeth models (Table 2). Twelve NanoString gene‐probes were

selected for the NanoString model, notably containing both variants

of the ERG gene probe and TMPRSS2/ERG fusion gene probe, along-

side PCA3. All features within the ExoMeth model were also selected

in one of the comparator models.

3.3 | ExoMeth predictive ability

As ExoMeth Risk Score (range, 0‐1) increased, the likelihood of the

high‐grade disease being detected on biopsy was significantly

greater (proportional odds ratio = 2.04 per 0.1 ExoMeth increase,

95% CI: 1.78‐2.35; ordinal logistic regression; Figure 2). The

median ExoMeth risk score was 0.83 for metastatic patients

(n = 10). These were excluded from model training and can be

considered as a positive control. One metastatic sample had a

lower than expected ExoMeth score of 0.55: where no methylation

was quantified for this sample, which may reflect a technical

failure of the sample.

ExoMeth was superior to all other models, returning an AUC

of 0.89 (95% CI: 0.84‐0.93) for Gleason ≥3 + 4 and 0.81 (95% CI:

0.75‐0.87) for Gleason≥4 + 3 (Table 3). As revealed by the dis-

tributions of risk scores and AUC, ExoMeth achieved better

discrimination of Gleason ≥3 + 4 disease from other outcomes

when compared to any of the other models (ExoMeth all P < .01

bootstrap test, 1000 resamples; Figure 3). The SoC model, while

returning respectable AUCs, would misclassify more men with

the indolent disease as warranting further investigation than all

other models (Figure 3A), for example, to classify 90% of Gleason

7 men correctly, an SoC risk score of 0.237 would also misclassify

65% of men with less significant disease. The Methylation com-

parator model improves upon SoC, by drawing the risk score

distribution of Gs <7 men into a more pronounced peak but

featured a bimodal risk score distribution extending to higher‐risk
men; almost 50% of men with Gs ≥3 + 4 have risk scores equal to

F IGURE 2 Waterfall plot of the ExoMeth
risk score for each patient. Each colored bar
represents an individual patient's calculated

risk score and their true biopsy outcome,
colored according to Gleason score (Gs).
Green: No evidence of cancer, Blue: Gs 6,

Orange: Gs 3 + 4, and Red: Gs ≥4 + 3 [Color
figure can be viewed at
wileyonlinelibrary.com]
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benign patients (Figure 3B). The opposite occurred in the

NanoString comparator model exhibited a broad bimodal dis-

tribution for lower‐risk men (Figure 3C). This discriminatory

ability of the ExoMeth model over all comparators was improved

when biopsy outcomes are considered as biopsy negative,

Gleason 6 or 3 + 4, or Gleason ≥4 + 3 (Figure S4).

Resampling of ExoMeth predictions via estimation plots

allowed for comparisons of mean ExoMeth signatures between

groups (1000 bias‐corrected and accelerated bootstrap

resamples; Figure 4). The mean ExoMeth differences between

patients with no evidence of cancer were: Gleason 6 = 0.22

(95% CI: 0.14‐0.30), Gleason 3 + 4 = 0.36 (95% CI: 0.28‐0.42),
and Gleason ≥4 + 3 = 0.44 (95% CI: 0.37‐0.51). Notably, there

were no differences in ExoMeth risk signatures of patients with

a raised PSA but negative for cancer on biopsy and men with no

evidence of cancer (mean difference = 0.03, 95% CI: 0.05‐0.10;
Figures 4 and S5).

Decision curve analysis examined the net benefit of adopting

ExoMeth in a population of patients suspected with prostate

cancer and to have a PSA level suitable to trigger biopsy

(≥4 ng/mL). The biopsy of men based upon their ExoMeth risk

score consistently provided a net benefit over current standards

F IGURE 3 Density plots detailing risk score distributions generated from four trained models. Models A to D were trained with different

input variables; A, SoC clinical risk model, including age and PSA; B, Methylation model; C, ExoRNA model; D, ExoMeth model, combining
the predictors from all three previous models. The full list of variables in each model is available in Table 2. Fill color shows the risk score
distribution of patients with a significant biopsy outcome of Gleason score (Gs) ≥3 + 4 (Orange) or Gs ≤ 6 (Blue). AUC, area under the

receiver‐operator characteristic curve; PSA, prostate‐specific antigen; SoC, standard of care [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 AUC of all trained models for detecting outcomes of an initial biopsy for varying clinically significant thresholds

Initial biopsy outcome SoC Methylation ExoRNA ExoMeth

Gleason ≥4+3 0.75 (0.67‐0.82) 0.77 (0.68‐0.85) 0.74 (0.66‐0.81) 0.81 (0.75‐0.87)

Gleason ≥3+4 0.73 (0.65‐0.79) 0.78 (0.71‐0.84) 0.81 (0.75‐0.87) 0.89 (0.84‐0.93)

Any cancer 0.70 (0.62‐0.77) 0.73 (0.66‐0.79) 0.86 (0.81‐0.91) 0.91 (0.87‐0.95)

Note: Brackets show 95% confidence intervals of the AUC, calculated from 1000 stratified bootstrap resamples. Input variables for each model are

detailed in Supporting information Table S1. The full list of variables in each model is available in Table 2. Bold values are the AUC.

Abbreviations: AUC, Area under the receiver‐operator characteristic curve; SoC, standard of care.
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of care across all decision thresholds examined and was the most

consistent amongst all comparator models across a range of

clinically relevant endpoints for biopsy (Figure 5). Of the patients

with Gs ≥7 disease, 95% had an ExoMeth risk score of 0.283 or

higher. At a decision threshold of 0.25, ExoMeth could result in

up to 66% fewer unnecessary biopsies of men presenting with a

suspicion of prostate cancer, without missing substantial numbers

of men with aggressive disease, while if Gleason ≥4 + 3 were

considered the threshold of clinical significance, the same decision

threshold of 0.25 could save 79% of men from receiving an un-

necessary biopsy (Figure 6).

4 | DISCUSSION

The accurate discrimination of disease state in men before a con-

firmatory initial biopsy would mark a significant development and

impact large numbers of men suspected of harboring prostate

cancer. Up to 75% of men with a raised PSA (≥4 ng/mL) are negative

for prostate cancer on biopsy.4,5,37 This has resulted in concentrated

research efforts to address this problem noninvasively and

the development of several biomarker panels capable of detecting

Gleason ≥3 + 4 disease with superior accuracy to current clinically

implemented methods.11‐13,23 However, in each of these examples,

only a single quantification method or biological process is

assayed and with the molecular heterogeneity of prostate cancer

considered,38 a more holistic approach is necessary.

It is becoming apparent from published data that urine can

contain a wealth of useful cancer biomarkers within RNA, DNA, cell‐
free DNA, DNA methylation, and proteins.14,22,23,39,40 However, the

analyses presented here are, to the author's knowledge, the first

attempt to integrate such biomarker information within the same

samples for the detection of prostate cancer before biopsy. There has

recently been reported that a combination of miRNA and methyla-

tion markers can be used to predict outcome following radical

prostatectomy.41 Our results show an improved diagnostic marker

can be produced from the synergistic relationship of information

derived from different urine fractions in men suspected to have

prostate cancer. The methylation of six previously identified genes22

was quantified via methylation‐specific qPCR, while the transcript

levels of 167 cf‐RNAs were quantified using NanoString technology.

The final model integrating this information with serum PSA levels

was deemed ExoMeth. Markers selected for the model include well‐
known genes associated with prostate cancer and proven in other

diagnostic tests, such as HOXC6,12 PCA3,11 and the TMPRSS2/ERG

gene fusion.42 ExoMeth additionally incorporated GJB1 as the most

important variable for predicting biopsy outcome. While GJB1 is

known to be a prognostic marker for a favorable outcome in renal

F IGURE 4 Cumming estimation plot of the ExoMeth risk signature. The top row details individual patients as points, separated according to
the Gleason score on the x‐axis and risk score on the y‐axis. Points are colored according to D'Amico clinical risk category. Gapped vertical lines
detail the mean and standard deviation of each group's risk scores. The lower panel shows the mean differences in risk score of each group, as

compared to the NEC samples. Mean differences and 95% confidence interval are displayed as a point estimate and vertical bar respectively,
using the sample density distributions calculated from a bias‐corrected and accelerated bootstrap analysis from 1000 resamples. H, D'Amico
high risk; I, D'Amico intermediate‐risk; L, D'Amico low risk; NEC, no evidence of cancer; PSA, prostate‐specific antigen; raised PSA, raised PSA

with negative biopsy [Color figure can be viewed at wileyonlinelibrary.com]
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cancers, there is no current evidence of its use as a diagnostic bio-

marker in prostate cancer.43,44

ExoMeth was able to correctly predict the presence of sig-

nificant prostate cancer on biopsy with an AUC of 0.89, re-

presenting a significant uplift when compared to other published

tests (AUCs for Gs ≥ 7: PUR = 0.77,23 ProCUrE = 0.73,14 ExoDX

Prostate IntelliScore = 0.77,13 SelectMDX = 0.78,12 epiCaPture

AUC = 0.73 [Gs ≥4 + 3]22). Furthermore, ExoMeth resulted in ac-

curate predictions even when serum PSA levels alone were in-

accurate; where patients with a raised PSA but negative biopsy

result possessed similar ExoMeth scores as clinically benign men,

while still able to discriminate between Gleason grades

(Figure 4). These are men that would be unnecessarily subjected

to biopsy by current guidelines. Of the three patients with no

evidence of cancer on biopsy with an ExoMeth risk score greater

than 0.55, two were positive for the TMPRSS2/ERG fusion

transcript in NanoString analyses (data not shown), implying that

PCa may have been missed and re‐biopsy may be necessary.45

Future prospective studies plan to utilize template biopsy and more

detailed information about each biopsy core to account for the

ambiguity in TRUS biopsy estimation of Gs.

While every step has been taken to robustly develop ExoMeth to

minimize potential overfitting and bias through extensive bootstrap

resampling and the use of out‐of‐bag predictions, ExoMeth none-

theless was developed on a small data set and requires validation in

an independent cohort before its use a clinical marker can be con-

sidered. Additionally, as MP‐MRI can misrepresent disease state

in patients, even when rigorous protocols are implemented7 the

clinical utility of supplementing MP‐MRI with ExoMeth needs to

be assessed. For many men harboring indolent prostate cancer,

ExoMeth could greatly impact their experience of prostate cancer

care when compared to current clinical pathways.

F IGURE 5 Decision curve analysis (DCA) plots detailing the standardized net benefit (sNB) of adopting different risk models for aiding the

decision to biopsy patients who present with a PSA 4 ng/mL or more. The x‐axis details the range of risk a clinician or patient may accept before
deciding to biopsy. Panels show the sNB based upon the detection of varying levels of disease severity: A, detection of Gleason ≥4 + 3;
B, detection of Gleason ≥3 + 4; C, any cancer; Blue: biopsy all patients with a PSA greater than 4 ng/mL; Orange: biopsy patients according to

the SoC model; Green: biopsy patients based on the Methylation model; Purple: biopsy patients based on the ExoRNA model; Red: biopsy
patients based on a the ExoMeth model. To assess the benefit of adopting these risk models in a non‐PSA screened population we used data
available from the control arm of the Cluster‐Randomised Trial of PSA Testing for Prostate Cancer (CAP) study.5 DCA curves were calculated

from 1000 bootstrap resamples of the available data to match the distribution of disease reported in the CAP trial population. Mean sNB from
these resampled DCA results are plotted here. See Section 2 for full details [Color figure can be viewed at wileyonlinelibrary.com]
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