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Summary statement 

Blitzschnell is a novel gene family that controls cell number during planarian regeneration and 

nutrient-dependent growth/degrowth. Its expression depends on food ingestion and mTOR 

signalling. 
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Abstract 

Control of cell number is crucial to define body size during animal development and to restrict tumoral 

transformation. The cell number is determined by the balance between cell proliferation and cell 

death. Although many genes are known to regulate those processes, the molecular mechanisms 

underlying the relationship between cell number and body size remain poorly understood. This 

relationship can be better understood by studying planarians, flatworms that continuously change 

their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), 

which consists of de novo and taxonomically restricted genes that control cell proliferation:cell death 

ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. 

Importantly, this increase in cell number only leads to an increase in body size in a nutrient-rich 

environment; in starved planarians silencing results in a decrease in cell size and cell accumulation 

that ultimately produces overgrowths. bls expression is down-regulated after feeding and related with 

the Insulin/Akt/mTOR network activity, suggesting that the bls family evolved in planarians as an 

additional mechanism by which to restrict cell number in nutrient-fluctuating environments. 
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Introduction 

During embryonic development all species undergo dramatic increases in size until reaching a 

definitive body size, which is strikingly similar across species. The definitive body size of an organism 

is reached by increasing either cell number or cell size. Changes in cell size have been described in 

specific organs, e.g. imaginal discs in Drosophila (Miyaoka et al., 2012; Hariharan, 2015). However, 

regulation of cell number, achieved by modulating the balance between cell death and cell 

proliferation, is the main mechanism by which animals reach their definitive body size (Guertin and 

Sabatini, 2006). Although conceptually simple, the developmental mechanisms that control cell 

number constitute one of the more intriguing questions in biology. In general, the main signalling 

pathways thought to control growth regulate cell proliferation and cell death in response to the 

nutritional environment. Studies in multiple species have identified the same key signalling pathways 

that appear to regulate body size: the JNK pathway, the Hippo pathway, and the insulin/Akt/mTOR 

signalling network. The JNK signalling pathway controls cell death and proliferation, mainly in 

response to cellular stress (Dhanasekaran and Reddy, 2017). The Hippo signalling pathway regulates 

proliferation, apoptosis, and cell differentiation in response to mechanical stimuli (Udan et al., 2003; 

Zeng and Hong, 2008). Genetic perturbation of JNK or Hippo signalling leads to overgrowths or organ 

size changes but does not affect overall body size (Tumaneng et al., 2012; Willsey et al., 2016). In 

contrast, activation of the insulin/Akt/mTOR signalling network leads to increases in body size in 

animals as distant as Drosophila and mice (Saxton and Sabatini, 2017). The insulin/Akt/mTOR signalling 

is the most conserved molecular mechanism that relates nutrient intake and cell proliferation 

(Gokhale and Shingleton, 2015), and it is the main regulator of cell size in response to cellular amino 

acid levels (González and Hall, 2017; Wolfson and Sabatini, 2017).  

The study of planarians, flatworms that display amazing cell plasticity, can help further our 

understanding of the molecular mechanisms that control body size during development. In most 

animals adult body size is determined by growth during embryonic and juvenile stages, while the adult 

stage consists of tissue renewal. However, long-living species such as planarians change their body 

size according to nutrient availability during their entire lives. These alterations in planarian body size 

are mediated by changes in cell number (Bagunyà and Romero, 1981; Thommen et al., 2019) resulting 

from modulation of the balance between cell proliferation and apoptosis. Thus, the ratio of 

proliferation to apoptosis decreases in starvation conditions and increases in times of nutritional 

abundance (Baguñà, 1976; Pellettieri et al., 2010). Planarian plasticity is sustained by a population of 

pluripotent adult stem cells (neoblasts) that can differentiate into any planarian cell type. 

Furthermore, the balance between the stem cell population and all types of differentiated cells relies 
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on robust signalling mechanisms that allow continuous adjustment of cell proliferation, cell death, and 

cell differentiation. The signalling pathways that determine cell fate and tissue patterning in 

planarians, including the Wnt and BMP pathways, have been extensively studied (Molina et al., 2011; 

Sureda-Gómez, Martín-Durán and Adell, 2016). However, the mechanisms that control planarian body 

size and growth remain to be fully elucidated. The insulin/mTOR pathway is the only pathway 

demonstrated to control planarian body size. Inhibition of insulin-like peptides or TOR attenuates cell 

proliferation, prevents planarian growth after feeding, and accelerates shrinking during starvation 

(Miller and Newmark, 2012; Tu, Pearson and Sánchez Alvarado, 2012). Hyper-activation of mTOR using 

PTEN or smg-1 RNA interference (RNAi) does not give rise to larger organisms but does promote over-

proliferation and outgrowth formation (Oviedo et al., 2008; González-Estévez, D. A. Felix, et al., 2012). 

In planarians, JNK is required for organ remodelling through the induction of apoptotic cell death 

(Almuedo-Castillo et al., 2014). Moreover, hippo inhibition increases mitosis, inhibits apoptosis, and 

promotes dedifferentiation, leading to the formation of overgrowths but not to changes in body size 

or cell number (de Sousa et al., 2018). Planarian plasticity not only facilitates adaptation to the 

environment but also enables reproduction: most species reproduce asexually through fissioning the 

tail, producing 2 segments from which two complete organisms regenerate. Amputation in planarians 

triggers tightly controlled apoptotic and mitotic responses (Baguñá and Salo, 1984; Pellettieri et al., 

2010; Wenemoser and Reddien, 2010). Silencing of several signalling pathways, such as the JNK or 

TOR pathways, results in the formation of smaller blastemas in which cell proliferation, apoptosis, 

and/or differentiation is impaired (Peiris et al., 2012; Tu, Pearson and Sánchez Alvarado, 2012; 

Almuedo-Castillo et al., 2014). Interestingly, TOR hyper-activation gives rise to larger blastemas, 

although they remain undifferentiated (González-Estévez, D. A. Felix, et al., 2012), and Hippo hyper-

activation enhances the wound response, promoting the expansion of cell populations (Lin and 

Pearson, 2017). 

Here, we describe the identification of a novel gene family that we have named blitzschnell (bls), which 

controls cell proliferation and cell death in intact and regenerating planarians. The bls family consists 

of 11 genes and 4 pseudogenes that can be classified into 5 subfamilies (bls1-5). The family is 

composed of de novo genes, which appear to be taxonomically restricted to the order Tricladida 

(commonly known as planarians). Silencing of bls2/3/5 promotes faster regeneration and increases 

cell number during homeostasis. However, this increase in cell number leads to an increase in body 

size only in nutrient-rich environments: during starvation cells are unable to maintain their normal 

size and become smaller than those of control animals. Importantly, expression of bls2, bls3, and bls5 

is down-regulated after nutrient intake, and it was found to be related with the Insulin/Akt/mTOR 
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network, suggesting that in planarians the bls family may have evolved as an additional mechanism to 

restrict cell number in nutrient-fluctuating environments. 

Results 

Blitzschnell is a new gene family organized in 2 clusters of tandem repeats in Schmidtea 

mediterranea 

We performed an RNAi screen to find candidate genes involved in planarian eye regeneration, and 

identified an unknown gene whose inhibition resulted in faster regeneration of the eyes after head 

amputation. We named this gene Blitzschnell (bls), which means “quick as a flash” in German. 

Surprisingly, upon attempting to identify the genomic locus of this gene in Schmidtea mediterranea, 

we found that bls belongs to a gene family composed of 15 members distributed on 2 distinct genomic 

scaffolds (Fig. 1A, Table S1).  

Although all bls sequences shared more than 70% identity (Table S2), a phylogenetic analysis using the 

nucleotide sequence allowed us to classify bls genes into 5 subfamilies (Fig. S1A). Four of these 

subfamilies (bls1, bls2, bls4 and bls5) contained 2 putative genes each (named a and b) apparently 

derived from duplications. Subfamily bls3 contained 7 bls sequences (named bls3a-g). These were also 

apparently derived from recent successive tandem duplications, as suggested by their genomic 

organization (Fig. 1A) and near identical DNA sequences (Table S1; Table S2). One band of the expected 

size was successfully amplified using primers spanning the junction between bls3a and bls3b, 

confirming the existence of at least 2 repeats (Fig. 1A, Fig. S1B, Table S3). Interestingly, in the repeated 

block harbouring bls3 members and in the vicinity of other bls genes we identified complete or 

fragmentary transposon-related genes, including the genes encoding for Reverse transcriptase, RNAse 

H, and Integrase (Fig. 1A). 

By mapping reads from the transcriptome of intact planarians (de Sousa et al., 2018) against the 

genome of S. mediterranea (Grohme et al., 2018), we detected transcripts for subfamilies bls2, bls3, 

and bls5, but not for subfamilies bls1 or bls4 (Fig. S1C). Furthermore, the predicted open reading frame 

(ORF) for bls2, bls3, and bls5 encoded peptides containing an N-terminal signal peptide (SP), 

suggesting that they could be secreted, and a highly conserved C-terminal coiled-coil (CC) domain (Fig. 

1B, Table S4). Non-detectable transcription, together with a much shorter ORF, strongly suggests that 

subfamilies bls1 and bls4 are made up of pseudogenes (Ψ). 

Taken together these data demonstrate that bls is a new gene family consisting of 11 genes and 4 

pseudogenes. The genes encode very similar peptides that may be released into the extracellular 

space, as suggested by the presence of a signal peptide. 
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The bls family is taxonomically restricted to Tricladida 

A BLAST search using S. mediterranea bls sequences against non-redundant transcriptomic and 

proteomic databases of all species (NCBI) produced no significant results. More specific BLAST 

searches against genomic and transcriptomic datasets for Platyhelminth species (Egger et al., 2015) 

(NCBI and Planmine) indicated that homologs of the bls family are only found in species of the order 

Tricladida (planarians) (Fig. S1D; Table S5): Schmidtea polychroa (Spol), Dugesia japonica (Djap), and 

the sexual S. mediterranea strain (Smes). Although genomic databases are only available for a few 

Lophotrochozoa species, this result suggests that the bls family is taxonomically restricted to order 

Tricladida. Interestingly, a BLAST search of the available transcriptomic databases for Tricladida 

species returned more than one hit for those species (Fig. 1C), with a high degree of similarity at the 

nucleotide level (Table S6). Phylogenetic analysis performed with amino acid sequences (Table S7) 

revealed that the bls5 subfamily was present in all Tricladida species studied, the bls3 subfamily was 

present in Smed, Spol, and Djap, and the bls2 subfamily was present only in Smed (Fig. 1C, Fig. S1E). 

However, it should be borne in mind that transcriptomic databases for Tricladida species other than 

Smed are incomplete.  

These findings suggest that the bls family is taxonomically restricted to Tricladida. 

Subfamilies bls2, bls3, and bls5 are expressed in secretory cells  

Although the 3 transcribed bls subfamilies (bls2, bls3, and bls5) shared a high percentage of sequence 

identity at nucleotide level (Table S2), we designed riboprobes spanning different gene regions (Table 

S3; Table S8) to specifically detect genes from each subfamily. Whole-mount in situ hybridization 

(WISH) with each riboprobe revealed the same pattern of expression and labelled specific dorsal-

prepharyngeal cells (Fig. 2A, Fig. S2A). Double fluorescence in situ hybridization (FISH) revealed 

coexpression of genes from the 3 families in the same cells although showing not identical subcellular 

localization (Fig. S2B), confirming riboprobe specificity.  

The bls3 riboprobe revealed that bls+ cells were located dorsally and in the marginal cells throughout 

the body (Fig. 2A). These bls+ cells were differentiated, since they were insensitive to irradiation (Fig. 

S2C), and corresponded to secretory cells, since they co-expressed dd4277, a secretory and 

parenchymal cell marker (Fincher et al., 2018; Plass et al., 2018) (Fig. 2B). bls3 was not expressed in 

blastemas during regeneration, but re-established its expression pattern according to the remodelling 

of the fragment in question (Fig. S2D). Interestingly, WISH in sexual S. mediterranea (Smes) and S. 

polychroa (Spol) revealed the same expression pattern as observed for Smed (Fig. S2E), supporting a 

conserved function among Tricladida species (Fig. 1C).  
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Taken together, our data indicate that genes from subfamilies bls2, bls3, and bls5 are expressed in a 

specific subpopulation of secretory prepharyngeal cells in planarians.  

bls inhibition promotes faster regeneration 

Because bls2, bls3, and bls5 genes share a high percentage of identity (Table S2), specific inhibition of 

any of these genes using RNAi was technically impossible. Furthermore, the high level of shared 

identity and cellular colocalization (Fig. S2B) suggested that at least some paralogs may perform 

similar functions. For this reason we designed double-stranded RNAs (dsRNAs) corresponding to a 

highly conserved region in order to inhibit genes of each of the 3 subfamilies (Fig. S3B; Table S8). qPCR 

analysis using primers specific to each subfamily (Fig. S3B) showed that expression levels of each of 

the 3 subfamilies were down-regulated after RNAi (Fig. S3A, S3C). Sequencing of the fragments 

amplified by each qPCR corroborated inhibition of the genes of each of the 3 subfamilies (see Materials 

and Methods; Fig. S3C). These animals are referred to henceforth as bls2/3/5(RNAi) animals. 

RNAi of bls2/3/5 confirmed our initial observation of faster regeneration after head amputation in 

planarians. We observed earlier differentiation of the eye spots (Fig. S3D), and earlier differentiation 

of photoreceptor cells (identified by anti-arrestin immunostaining): after 3 days of regeneration (3dR) 

the optic chiasm was visible in most bls2/3/5(RNAi) animals but not in control animals (Fig. 3). In 

addition to the visual system, other anterior structures such as the brain branches and 

chemoreceptors regenerated faster than controls (Fig. 3), as evidenced by quantification of gpas+ 

(Cebrià et al., 2002) and cintillo+ (Oviedo, Newmark and Sánchez Alvarado, 2003) cells, respectively. 

Quantification of pitx+ cells (Currie and Pearson, 2013; März, Seebeck and Bartscherer, 2013) revealed 

an increase the number of differentiated neural cells in the blastema of bls2/3/5(RNAi) planarians as 

early as 18 hours of regeneration (hR) (Fig. S3E). These results demonstrate that inhibition of Smed-

bls2/3/5 promotes faster regeneration.  

bls attenuates cell proliferation and promotes cell death after injury 

To understand the mechanism by which Smed-bls2/3/5(RNAi) promotes faster regeneration, we 

analysed the proliferative and apoptotic responses triggered by amputation. In planarians, 

amputation triggers a general proliferative response, which peaks at 6 hR, and a local response that 

peaks at 48 hR. Quantification of mitotic cells using an anti-phospho-histone 3 (PH3) antibody 

(Wenemoser and Reddien, 2010) revealed an increase in the mitotic response at both 6 hR and 48 hR 

in bls2/3/5(RNAi) versus control animals (Fig. 4A). The apoptotic response after amputation consists 

of 2 apoptotic peaks: one at 4 hR, which occurs close to the wound, and a second at 3 days of 

regeneration (dR), which is generalized (Pellettieri et al., 2010). Using a TUNEL assay (Fig. 4B) and by 
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quantifying caspase-3 enzymatic activity (Fig. 4C) we demonstrated lower rates of apoptosis in 

bls2/3/5(RNAi) versus control planarians at both time points.  

Distinct molecular and cellular responses are induced during healing of amputated tissue, notches 

(which imply tissue loss), and incisions (in which no tissue is removed). While control of cell 

proliferation and cell death is required in all scenarios, incision gives rise to just the first proliferative 

and apoptotic peaks. To examine how general was the role of bls2/3/5 in attenuating cell proliferation 

and promoting cell death, we analysed the response to notching and incision in bls2/3/5(RNAi) 

animals. In both situations, compared with controls RNAi animals showed an increase in the number 

of mitotic cells (Fig. S4A, S4C) and a decrease in apoptosis (Fig. S4B, S4D), indicating that bls2/3/5 

attenuates proliferation and promotes cell death.  

These findings indicate that Smed-bls2/3/5 attenuates cell proliferation and promotes cell death after 

any injury type, regardless of whether tissue is removed. 

Cells are more numerous but smaller in starved bls(RNAi) planarians, resulting in no overall change 

in body size 

The pattern of bls2, bls3, and bls5 expression in secretory cells in the prepharyngeal region and along 

the planarian margin suggests that these peptides may play a role in controlling cell proliferation and 

cell death, not only after injury but also during homeostasis, since planarians undergo continuous 

growth and degrowth according to nutrient availability. These changes in size are thought to be 

primarily due to modulation of cell number (Bagunyà and Romero, 1981; Thommen et al., 2019) 

through regulation of the balance between proliferation and apoptosis (Pellettieri et al., 2010; 

González-Estévez, D. a. Felix, et al., 2012). In nutrient-poor environments planarians shrink by 

decreasing mitosis and increasing cell death. To determine whether bls2/3/5 participates in regulating 

the proliferation/apoptosis equilibrium and body size during degrowth, we injected starved animals 

with bls2/3/5 dsRNA for 3 weeks (Fig. 5A, S5A). The number of PH3+ nuclei found in starved bls2/3/5 

RNAi animals versus control was only increased after the third week (Fig. 5B, S5C). Importantly, 

starved bls2/3/5(RNAi) planarians showed decreased apoptosis since the first week of inhibition 

compared with controls (Fig. 5C, S5D).  

While this alteration in the proliferation/apoptosis equilibrium did not give rise to larger animals (Fig. 

5D), total cell number was higher in RNAi-injected animals versus controls (Fig. 5E). The fact that total 

cell number but not body size was increased in bls2/3/5(RNAi) animals implies a decrease in cell size. 

To examine changes in cell size we focused our analysis on the epidermis, since epidermal cells form 

a monolayer that can be easily imaged in 3 dimensions. Nuclear staining revealed a higher density of 
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epithelial cells in bls2/3/5(RNAi) animals (Fig. 5F, S5E), and quantification of mean epidermal cell area 

confirmed that this parameter was reduced in bls2/3/5(RNAi) animals as compared with controls (Fig. 

5F’). A decrease in mean epidermal cell area could be due not to a reduction in the total cell volume 

but to narrowing of the cells in bls2/3/5(RNAi) animals. To quantify epidermal cell volume we 

measured epidermal cell height (i.e., the mean distance from the apical to the basal margin of the cell) 

in animals immunostained with 6G10 antibody. We observed no differences in apical-basal distance 

in bls2/3/5(RNAi) animals with respect to controls (Fig. 5G, 5G’). Multiplication of mean cell area by 

mean cell height confirmed a decrease in epidermal cell volume in bls2/3/5(RNAi) animals versus 

controls (Fig. 5H, 5I). Changes in specific neural populations were evaluated by confocal imaging (Fig. 

5J, S5F) and qPCR (Fig. S5G). The density of serotoninergic (pitx+) (Currie and Pearson, 2013; März, 

Seebeck and Bartscherer, 2013), octapaminergic (tbh+) (Eisenhoffer, Kang and Alvarado, 2008), 

dopaminergic (th+) (Fraguas, Barberán and Cebrià, 2011) neurons and of chemoreceptors (cintillo+) 

(Oviedo, Newmark and Sánchez Alvarado, 2003) was increased in bls2/3/5(RNAi) animals. Given the 

increase in cell density found in bls2/3/5(RNAi) animals after 3 weeks of inhibition, it could be that the 

increase in PH3+ cells found at this time point results from the cell accumulation rather than from an 

effect of bls2/3/5(RNAi) on mitotic activity. This hypothesis is supported by the finding that the 

number of PH3+ cells/area normalized by epidermal cell density of bls2/3/5(RNAi) is not significantly 

different from controls after 2 and 3 weeks of inhibition (Fig. S5H). 

Importantly, continuous inhibition of bls2/3/5(RNAi) for 4 weeks resulted in the formation of 

overgrowths that were all located in the posterior part of the animal, mainly in the dorso-ventral 

margin (Fig. 5K). The molecular analysis of those overgrowths demonstrates the accumulation of 

postmitotic cells (PIWI+, h2b-) (Solana et al., 2012), which express epidermal progenitor cell markers 

(nb21+, agat1+) (Eisenhoffer, Kang and Alvarado, 2008)(Fig. 5K, SF 5I).  

These data indicate that bls2/3/5 promotes cell death during periods of shrinkage. bls2/3/5 inhibition 

in starved planarians prevents the necessary reduction in cell number. Because cell size is reduced in 

bls2/3/5(RNAi) versus control animals, the increase in cell number observed in the former does not 

translate to larger body size. However, the accumulation of cells following long term inhibition does 

lead to overgrowths. 
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bls RNAi in fed planarians results in increases in cell number and body size 

Planarians grow in size in nutrient-rich environments. This growth is due to an increase in cell number 

resulting from an increase in the mitosis:apoptosis ratio (Pellettieri et al., 2010; González-Estévez, D. 

a. Felix, et al., 2012). Our previous findings suggest that bls2/3/5 inhibition in continuously fed 

planarians may lead to an increase in cell number and possibly also in body size. To test this hypothesis, 

planarians fed twice per week were injected with bls2/3/5 dsRNA for 3 weeks (Fig. 6A, S6A, S6B). 

Compared with controls, these animals showed an increase in the rate of mitosis from the first week 

of inhibition (Fig. S6C, 6B, S6C), together with a decrease in the rate of apoptosis (Fig. 6C, S6E). 

Furthermore, during this 3-week period RNAi animals grew faster and reached a larger size (Fig. 6D) 

than controls (Fig. 6E). Quantification of dissociated cells revealed an increase in total cell number in 

bls2/3/5(RNAi) animals after 3 weeks of RNAi (Fig. 6F). In contrast to the results obtained for starved 

planarians, no differences in epidermal cell area or volume were observed in fed animals with respect 

to controls (Fig. 6G-J, S6F). Furthermore, quantification of neural and chemoreceptor cells revealed 

no differences in cell density between RNAi and control planarians (Fig. 6K, S6G). 

These data indicate that Smed-bls2/3/5 also promotes cell death and attenuates the rate of mitosis 

during growth periods, resulting in an increase in cell number. Remarkably, in fed animals this increase 

in cell number translates to an increase of body size, since cell size is maintained in this nutrient rich 

context.  

bls transcription depends on nutrient intake and mTOR signalling 

Our results demonstrate that bls2/3/5 subfamilies control the balance of cell proliferation and cell 

death in planarians not only after injury but also during normal homeostasis. We hypothesize that 

bls2/3/5-mediated signalling may constitute a general mechanism required to balance cell 

proliferation:cell death ratio in response to nutrient availability in planarians. According to our 

hypothesis, bls2/3/5 activity would be required in nutrient-poor environments but not when food is 

readily available. As previously mentioned, planarian growth is sustained by increasing mitosis and 

decreasing cell death. After feeding, apoptosis remains very low and changes little (Fig. S7A), but 

proliferation increases and mitosis peaks at 3 hours post-feeding (hpf) (Baguñà, 1974; Newmark and 

Sánchez Alvarado, 2000) (Fig. S7B). Thus, according to our hypothesis, bls expression should be 

actively down-regulated a few hours after food ingestion to enable subsequent growth. Quantification 

of mRNA levels of bls2, bls3, and bls5 by qPCR at 3 hpf and 24 hpf revealed down-regulation of all 3 

bls mRNAs (Fig. 7A). This down-regulation was also confirmed by FISH expression analysis: after 
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feeding (24 hpf) expression of all 3 genes had decreased and/or the expression pattern had expanded 

and delocalized with respect to starved conditions (Fig. 7B, S7C, S7D).  

To further understand the mechanism by which bls2/3/5 balances cell proliferation:cell death ratio in 

response to nutrient intake, we analyzed its possible functional interaction with the mTOR pathway, 

a central regulator of cell metabolism  (Saxton and Sabatini, 2017). In planarians mTOR is up-regulated 

in response to food intake, and its inhibition decreases proliferation and increases cell death, impeding 

growth (Peiris et al., 2012; Tu, Pearson and Sánchez Alvarado, 2012). Quantification of bls2, bls3, and 

bls5 expression levels in growing mTOR (RNAi) planarians shows a significant increase of bls2, bls3, 

and bls5 mRNA expression levels (Fig. 7C). Furthermore, quantification of mTOR expression levels in 

growing bls2/3/5 (RNAi) animals shows up-regulation of mTOR mRNA levels (Fig. 7D). Akt is a serine 

threonine protein kinase downstream of Insulin and upstream of mTOR pathway (Yoon, 2017), which 

inhibition in planarians increases cell death, decreases proliferation and impedes planarian growth 

(Peiris et al., 2016). qPCR quantification of Akt levels also demonstrates its up-regulation in bls2/3/5 

RNAi planarians (Fig.7D).  

Overall, these suggest that expression of bls2/3/5 subfamilies are constantly regulated in planarians 

to balance the cell proliferation:cell death ratio, being down-regulated by nutrient intake to allow 

planarian growth. bls2/3/5 is a novel gene that regulates cell number in response to nutrient intake, 

but it interacts with the evolutionary conserved Insulin/Akt/mTOR metabolic network. 

 

Discussion 

 

bls is a de novo gene family taxonomically restricted to the order Tricladida (planarians) 

 

In this study we have identified a new gene family, blitzschnell (bls), which appears to be an 

evolutionary novelty of Triclads (planarians), and is essential for the control of cell number in response 

to nutrient intake. In S. mediterranea, bls family is composed by 15 members, grouped in 5 subfamilies 

(bls1- 5). Members of bls1 and bls4 subfamilies are pseudogenes, while members of bls2, bls3 and bls5 

subfamilies encode for short peptides that contain a signal peptide (SP) and a coiled coil domain (CC). 

FISH analysis with specific riboprobes, demonstrates that bls2, 3 and 5 are all expressed in a subset of 

secretory cells, seeming tissue specific. Furthermore, we have only been able to find homologs of bls 

in species of the Tricladida order. Although the genomic databases of Platyhelminthes are incomplete, 

bls family appears to be Taxonomically restricted (Wilson et al., 2005). All described features: gene 

duplication and presence of pseudogenes (Tautz and Domazet-Lošo, 2011), short open reading frame 
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with a signal peptide and a ISD (Neme and Tautz, 2013; Palmieri, Kosiol and Schlötterer, 2014; Wilson 

et al., 2017; Werner et al., 2018), being expressed in specific cell types (Toll-Riera et al., 2009; Carvunis 

et al., 2012; Zhao et al., 2014), and being Taxonomically restricted (Van Oss and Carvunis, 2019), are 

shared by genes that originated de novo during evolution. de novo genes, previously known as orphan 

genes (Schlötterer, 2015), could originate from an existing gene in the genome (Long et al., 2003), 

from non codifying genomic regions (Schlötterer, 2015), or from transposon domestication 

(McLysaght and Hurst, 2016). Although further phylogenetic studies are required to understand the 

origin of bls family, our data favours the last two possibilities, since we could not find any homolog in 

species outside Tricladida, and we found transposable elements in the same genomic region where 

bls family is found. 

 

The appearance of bls in Tricladida may be linked to the requirement for continuous and rapid 

modulation of cell number in response to nutrient availability. 

 

Our results demonstrate that bls2/3/5 regulates the mitotis:apoptosis ratio in all scenarios analysed. 

In homeostatic animals, the imbalance in this ratio led to an increase in cell number. Strikingly, this 

increase in cell number resulted in normal body size but smaller cell size in starved planarians, and in 

larger body size and normal cell size in fed animals (Fig. 8), suggesting an energy-dependent role of 

this gene. In other organisms de novo genes have been shown to play an important role in the 

response to biotic and/or abiotic stresses (Colbourne et al., 2011; Donoghue et al., 2011; Zhao et al., 

2014). The observation that bls2, bls3, and bls5 are down-regulated few hours after food ingestion 

suggests that those genes can function as sensors of cell energy status. According to this hypothesis, 

bls expression is required to restrict cell number (and maintain cell size) in starvation conditions, but 

is down-regulated after nutrient intake to allow for increases in cell number and body size (Fig. 8). The 

appearance of bls in Tricladida during evolution may be linked to the requirement for continuous 

modulation of cell number in response to nutrient availability in these organisms. The increase in the 

number of copies of bls family members and their tandem disposition suggest that they may be 

regulated by the same promoter, facilitating rapid regulation of their protein levels according to cell 

energy status.  

Because bls genes share 70–100% of identity at the nucleotide level, we were unable to inhibit specific 

copies using RNAi, and were therefore unable to determine which gene copies perform the described 

function. For this reason, in this study we have ascribed this function to “bls2/3/5”. However, because 

all bls genes appear to follow the same expression dynamics and share almost identical amino acid 

sequences, we hypothesize that the gene copies encoding the SP and CC domains may perform the 
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same function. This is in agreement with the aforementioned hypothesis of simultaneous regulation 

enabling rapid changes in expression. Nonetheless, we cannot rule out the possibility that copies that 

do not encode the CC domain may act as inhibitors.  

 

bls could control the mitosis:apoptosis ratio and the cell size through interacting with the 

insulin/Akt/mTOR network. 

 

It has been described that de novo and TRG lack catalytic domains and normally interact with proteins 

in conserved networks (Arendsee, Li and Wurtele, 2014). The presence of a SP suggests that bls2, bls3, 

and bls5 may be secreted and interact with components of those conserved pathways. Our results 

suggest that bls2/3/5 may interact with members of the insulin/Akt/mTOR pathways, a universal 

mechanism that is activated by the extracellular nutrients and activates the signals required for 

growth. In planarians TORC-1 is down-regulated during starvation and its inhibition decreases 

proliferation without affecting cell death. mTOR is up-regulated in response to food intake in 

planarians, and its inhibition decreases proliferation and increases cell death, impeding growth (Peiris 

et al., 2012; Tu, Pearson and Sánchez Alvarado, 2012). mTOR hyper-activation, through PTEN or smg-

1 RNAi, promotes over-proliferation and outgrowths (Oviedo, Newmark and Sánchez Alvarado, 2003; 

González-Estévez, D. a. Felix, et al., 2012). Since bls2/3/5 is expressed in nutrient-deprived conditions, 

it could be acting as an inhibitor of the insulin/Akt/mTOR network, which is in fact what our results 

suggest; mTOR and Akt are up-regulated when bls2/3/5 is inhibited, and vice versa.   

An important result in this study is the finding that cellular responses are different according to the 

energetic status of the animals. bls2/3/5 inhibition during starvation results in an early decrease in 

apoptosis and, with our methods, we could not detect an increase in mitotic index. In contrast, in 

growing animals both parameters seem to be affected. This could be also true when modulating the 

mTOR pathway, and the reason why different studies show opposite results regarding the mitotic 

rates mTOR silencing during homeostasis (Peiris et al., 2012; Tu, Pearson and Sánchez Alvarado, 2012). 

Cell death and proliferation analysis from specific nutritional context are required to understand the 

metabolic role of those signals.  

Similarly, only in fed animals cells are able to maintain the size after bls2/3/5 inhibition. One possible 

explanation for the inability of starved animals to maintain cell size is that bls2/3/5 silencing in these 

conditions may promote entry into M phase before cells reach their proper size. It is possible that in 

wild-type planarians cell cycle length varies according to nutritional status. Recent data suggest the 

existence of crosstalk between cell division and mitochondrial dynamics and metabolic pathways 

(Salazar-Roa and Malumbres, 2017). For example, yeast grown in nutrient-poor conditions adjust their 
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cell-cycle duration to accommodate slower growth, so that the size at which cells divide is similar to 

that observed in nutrient-rich environments (Lloyd, 2013). It is possible that the duration of the cell 

cycle is longer in starved than fed animals, thereby ensuring that daughter cells reach the appropriate 

size. Promoting entry into M phase after bls2/3/5 silencing could give rise to smaller cells in starved 

but not in fed animals. Since a mechanism through which mTOR signals regulate cell size is by 

controlling cell cycle (Fingar et al., 2002), and as described above planarian mTOR activity is regulated 

by food intake, interaction of bls2/3/5 with this pathway could account for the smaller size of cells in 

starved animals. Analysis of the cell cycle in each of these different conditions will be required to test 

this hypothesis. 

 

bls is a tumour suppressor, inhibition of which favours regeneration 

 

The appearance of overgrowths in starved bls2/3/5 RNAi animals could be a consequence of the 

increase in cell density promoted after sustained inhibition cell death, as observed in tumoral 

processes (Lowe and Lin, 2000). bls thus acts as a tumour suppressor during planarian degrowth. This 

observation presents us with a paradox: although caloric restriction extends lifespan (Pifferi and 

Aujard, 2019), in bls2/3/5(RNAi) planarians food deprivation promotes hyperplasia and the formation 

of overgrowths, while fed bls2/3/5(RNAi) animals only increase body size with no apparent changes 

in patterning. A second key observation is that while bls2/3/5 inhibition in starved animals promotes 

overgrowths, it favours regeneration after any kind of injury. This is consistent with the view that 

tumour suppressors evolved not to suppress tumour growth but to control cellular processes such as 

proliferation, cell death, and cell differentiation, which are essential during embryogenesis and are 

activated during regeneration of complex tissues (Nacu and Tanaka, 2011). Perturbation of tumour 

suppressor function can enhance the regeneration of somatic stem cells in the hematopoietic system 

or endocrine cells (Pomerantz and Blau, 2013). Furthermore, inhibition of the Hippo pathway and 

consequent YAP/TAZ activation results in increases in organ size and promotes tumour formation in 

adult mice, but also promotes regeneration of the liver, gut, muscle, and heart in mouse models (Moya 

and Halder, 2019). 

Silencing of several known vertebrate tumour suppressors including mTOR, p53, and Hippo, also 

induces the formation of overgrowths in planarians, but despite increasing proliferation does not 

promote proper regeneration. While TOR hyper-activation results in larger blastemas, these remain 

undifferentiated (González-Estévez, D. a. Felix, et al., 2012). Hippo hyper-activation also enhances the 

wound response and promotes expansion of the epidermal and muscle cell populations and 

regeneration of larger structures such as the eyes (Lin and Pearson, 2017). However, this new tissue 
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is not properly patterned (de Sousa et al., 2018). bls is the first gene described whose inhibition 

promotes faster but apparently normal regeneration. One possible explanation is that bls specifically 

controls cell number (through regulation of the cell proliferation:cell death ratio) but not cell 

differentiation, as described for other signalling pathways such as Hippo (de Sousa et al., 2018). In this 

scenario, an increase in the number of cells during early stages of regeneration could accelerate the 

expression of wound-induced genes (Wenemoser et al., 2012), as we observed for pitx, and thereby 

promote more rapid appearance of regenerated structures. 

Conclusion 

In most animal species the adult stage is distinguished from the embryonic stage by the maintenance 

of body size, cell number, and proportions. However, long-lived animals such as planarians 

continuously regulate body size in adulthood by controlling cell number according to nutrient 

availability. Thus, the mechanisms described for other organisms, such as Drosophila, in which tissues 

“know” their final size, may not apply to planarians (Nowak et al., 2013). Given that nutrient 

availability always fluctuates in nature, the bls family may represent an example of de novo genes that 

evolved in planarians to fulfil the requirement for continuous regulation of cell number according to 

nutrient availability. Other de novo genes have been implicated in increasing the fitness of the 

organism (Reinhardt et al., 2013; Schlötterer, 2015). Examples are described in cnidarians, in which 

Hym301 regulates tentacle number (Khalturin et al., 2008), and in molluscs, in which each species 

expresses a unique set of secreted proteins that drives shell diversity (Aguilera et al., 2017). De novo 

genes are usually integrated into existing pathways, adding additional levels of regulation. bls genes 

may interact with members of the insulin/Akt/mTOR signalling pathways, which regulate growth in 

response to nutrient intake in planarians and in vertebrates. RNAi of components of these pathways 

does not fully phenocopy bls2/3/5 RNAi. However, this signalling pathway should be thought of as a 

network in which each of these signals functions in a complex and dynamic manner, as opposed to a 

linear pathway. Future studies will need to determine whether the primary function of bls is to control 

proliferation, apoptosis, or both, and to elucidate the molecular integration of bls within the 

insulin/Akt/mTOR network. Given that the molecular signals controlling body and organ growth are 

also key players in most human cancers, understanding the mechanism by which bls genes act as 

tumour suppressors would help identify novel targets for the design of therapeutic strategies to 

modulate tissue growth. 
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Materials and methods 

Planarian culture 

The planarians used in this study are the asexual clonal strain of S. mediterranea BCN-10 biotype and 

were maintained as previously described (Fernandéz-Taboada et al., 2010) in PAM water (Cebrià and 

Newmark, 2005). Animals were fed twice per week with liver, and those used in starvation 

experiments were starved for 1 week. 

RNAi screening  

To identify genes involved in eye regeneration we performed a high density DNA microarray. We ran 

a gene expression profile of planarian tissues with control animals (control RNAi) and planarians 

without eyes (Smed-sine oculis RNAi) during early stages of head regeneration using the “array star” 

software from Nymbelgene. 61 candidate genes differentially expressed in those conditions were 

analyzed by RNAi (Eckelt, 2011). Among them we isolated Smed-bls3, which inhibition produced a 

faster eye regeneration. 

Sequence and phylogenetic analyses 

A fragment of Smed-bls3 was identified from (Eckelt, 2011). Other members of the families were 

identified from the genome (Grohme et al., 2018) and amplified using specific primers (Table S3). The 

signal peptide was identified with SigalP v5.0 (Almagro Armenteros et al., 2019) and the coiled-coil 

domain was characterized using the tool available online from PRABI  (Pole Rhone-Alpes de 

Bioinformatique; https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_lupas.html (Lupas, 

Van Dyke and Stock, 1991). Sequence identity comparison was carried out using the pairwise 

alignment tool in Jalview suite v2.11 (Waterhouse et al., 2009).  

To determine which members of each family were expressed, we mapped the RNAseq paired reads 

from adult wild-type animals (de Sousa et al., 2018) against assembly 2 of the S. mediterranea genome 

(Grohme et al., 2018) using Bowtie2 (Langmead et al., 2009) v2.3.4, selecting the -end-to-end option. 

After alignment, we extracted the reads mapping the scaffolds of interest using samtools view (Li et 

al., 2009) v1.9. The final assessment was performed manually using the Integrative Genomics Viewer 

(Robinson et al., 2011) (IGV v2.4.4) to verify the families with mapped reads. 

Sequence comparison against the GenBank database was performed using the NCBI BLAST network 

server (http://www.ncbi.nlm.nih.gov/Structure/cdd/ wrpsb.cgi). Potential orthologs were searched 

for using tBLASTx where possible to allow a certain level of tolerance in case of a high degree of 
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divergence. The search for orthologs was performed against transcriptomes and genomes from 

several Platyhelminthes species (Table 4) (Egger et al., 2015).  

The IQ-tree web server (Trifinopoulos et al., 2016) was used to reconstruct the phylogenetic 

relationships between Smed-bls families. The nucleotide or protein sequences were first aligned using 

the alignment servers in JalView suite (MUSCLE for nucleotides and MAFFT for amino acids). 

Substitution model selection was performed automatically by the software, the number of bootstrap 

iterations was set to 1500 and default options were selected for the remaining parameters. The trees 

were visualized using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) with the default 

parameters. 

Whole-mount in situ hybridization (WISH) 

Probes were synthesised in vitro using SP6 or T7 polymerase and DIG- or FITC- modified (Roche). RNA 

probes were purified by ethanol precipitation and the addition of 7.5 M ammonium acetate. For 

colorimetric whole-mount in situ hybridization (WISH) animals were sacrificed with 5% N-acetyl-L-

cysteine (NAC), fixed with 4% formaldehyde (FA), and permeabilized with Reduction Solution. The 

fixative and WISH protocol used has been previously described (Currie et al., 2016). For whole-mount 

fluorescent in situ hybridization (FISH) animals were sacrificed with 7.5% NAC and fixed with 4% FA. 

FISH was carried out as described previously (King and Newmark, 2013). For double FISH (dFISH) an 

azide step (150 mM sodium azide for 45 min at room temperature [RT]) was added. Nuclei were 

stained with DAPI (1:5000; Sigma). For FISH of paraffin sections animals were sacrificed with 2% HCl 

and fixed with 4% PFA. Paraffin embedding and sectioning were carried out as previously described 

(Cardona et al., 2005) and slides were de-waxed, re-hydratated; and antigen retrival step was 

performed  as previously described (Sureda-Gómez, Martín-Durán and Adell, 2016). Sections were 

hybridized with the corresponding probes for 16 hours and incubated with antibody diluted 1%BSA, 

for 16 hours. Both steps were carried out in a humidified chamber (Cardona et al., 2005). 

Immunohistochemistry  

Whole-mount immunohistochemistry was performed as previously described (Ross et al., 2015). 

Animals were killed with 2% HCl and fixed with 4% FA. The following antibodies used in these 

experiments: mouse anti-synapsin (anti-SYNORF1, 1:50; Developmental Studies Hybridoma Bank, 

Iowa City, IA, USA), mouse anti-VC1 (anti-arrestin, 1:15000, kindly provided by Professor K. 

Watanabe), rabbit anti-phospho-histone H3 (Ser10) (D2C8) (PH3) (1:500; Cell Signaling Technology) 

and anti-SMEDWI-1 antibody (1:1000, kindly provided by Professor Kerstin Bartscherer, Hubrecht 

Institute, Utrecht, Nederland). The secondary antibodies used were Alexa 488-conjugated goat anti-
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mouse (1:400; Molecular Probes, Waltham, MA, USA) and Alexa 568-conjugated goat anti-rabbit 

(1:1000; Molecular Probes). Nuclei were stained with DAPI (1:5000). For immunohistochemistry of 

paraffin sections animals were killed and treated as described above. Sections were blocked in 1% 

bovine serum albumin (BSA) in 1X PBS for 1 h at RT and then incubated with primary antibodies diluted 

in blocking solution (mouse anti-muscle fibre antibody, 6G10, 1:400; Developmental Studies 

Hybridoma Bank) for 16 h at 4ºC in a humidified chamber. Subsequently, sections were washed in 1X 

PBS and incubated with secondary antibodies (anti-mouse Alexa 488-conjugated antibody, 1:400; 

Molecular Probes) in blocking solution for 3 h at RT in a humidified chamber. Nuclei were stained with 

DAPI (1:5000; Sigma).  

TUNEL assay 

For the whole-mount TUNEL assay animals were sacrificed with 10% NAC, fixed with 4% FA, and 

permeabilized with 1% sodium dodecyl sulfate (SDS) solution. TUNEL assay was carried out as 

described previously (Pellettieri et al., 2010) using the ApopTag Red In situ Apoptosis Detection Kit 

(CHEMICON, S7165). Nuclei were stained with DAPI (1:5000; Sigma). For TUNEL assay on paraffin 

sections animals were killed and treated as described above. Sections were treated as described 

previously (Pellettieri et al., 2010) and after the dewaxing step a proteinase K step was added for 

permeabilization. Next, we used the ApopTag Red In situ Apoptosis Detection Kit (CHEMICON, S7165). 

Positive cells were counted in at least 9 representative sagittal sections per animal and the overall 

mean value was determined. Six animals were analyzed per condition. 

RNA interference analysis  

Double strand RNA (dsRNA) was synthesised by in vitro transcription (Roche) as previously described 

(Sanchez Alvarado and Newmark, 1999). dsRNA (3 × 32.2 nl) was injected into the digestive system of 

each animal on 3 consecutive days (1 round). The experiments in which regeneration was studied 

consisted of 2 consecutive rounds of injections and an amputation at the end of each round. In 

experiments in which planarians were starved animals underwent 3 or 4 consecutive rounds of 

injection, without amputation. In experiments involving fed animals, planarians received dsRNA 

injections on 3 non-consecutive days per week and were fed on the 2 intervening days. This process 

was repeated for 3 weeks in total. All control animals were injected with dsRNA of green fluorescent 

protein (GFP). RNAi of subfamilies bls2, bls3, and bls5 was carried out using 2 different RNA sequences, 

both of which produced the same phenotype when injected in regenerating planarians (Table S3; 

Table S8). The sequences corresponded to the full bls3 sequence and to a smaller region showing the 

greatest similarity between the bls2, bls3, and bls5 subfamilies. In the case of the second RNA 
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sequence, inhibition of all members of the transcribed families was demonstrated by qPCR analysis 

(Fig. S3B-C, S5B, S6B)  

Feeding experiments 

In long term growth experiments involving RNAi, animals were fed twice per week: food was provided 

in the morning and removed at the end of the day (Fig. 5A, S5A). PAM water (planarian artificial 

medium) was replenished three times per week. In RNAi experiments, after 2 weeks of injections in 

starvation conditions animals were fed for 30 minutes (Fig. 7C). Next, food was removed and PAM 

water replenished. To study gene expression after feeding we analysed planarians that had been 

starved for 1 week and then fed for 30 minutes. Next, we removed the food and replenished the PAM 

water (Fig. 7A). Hours post feeding (hpf) were counted from the moment of removal of the last piece 

of food. 

Quantitative real-time PCR 

Total RNA was extracted from a pool of 5 planarians per condition using TRIzol reagent (Invitrogen). 

cDNA was synthesized as previously described in (Almuedo-Castillo et al., 2014). Expression levels 

were normalized to that of the housekeeping gene ura4. All experiments were performed using 3 

biological and 3 technical replicates for each condition. The design of specific primers corresponding 

to the 5’ region for subfamilies bls2, bls3, and bls5 allowed verification of the inhibition of the 3 gene 

families after RNAi. All primers used in this study are shown in Table S3. 

Caspase-3 activity assay 

For each condition protein extraction was performed in 5 planarians. The protein concentration of the 

cell lysates was measured using BioRad protein reagent. Fluorometric analysis of caspase-3 activity 

was performed as described previously (González-Estévez et al., 2007) using 20 mg of protein extract, 

which was incubated for 2 hours at 37ºC with 20 µM caspase-3 substrate Ac-DEVD-AMC or 2 ml from 

a stock of 1 mg/ml for a final volume of 150 µl. Using a Fluostar Optima microplate fluorescence reader 

(BMG Labtech) fluorescence was measured in a luminescence spectrophotometer (Perkin- Elmer LS-

50), applying the following settings: excitation, 380 nm;  emission, 440 nm. Three technical replicates 

were analysed per condition. 

Cell number and cell volume analyses 

To quantify total cell number planarian cells were dissociated with trypsin and the nuclei stained with 

DAPI (Moritz et al., 2012). The cell suspension was transferred to a Neubauer chamber, cells were 

manually counted 3 occasions, and the mean value calculated. Five planarians were analysed per 
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biological replicate, and 3 replicates were analysed per condition. Mean cell volume (V) was calculated 

by multiplying mean epidermal cell area (A) by epidermal cell height (H). To quantify the mean 

epidermal cell area, the prepharyngeal epidermal area was imaged and the number of nuclei per area 

was quantified. To determine mean epidermal cell height, the distance between the apical to the basal 

part of the cell was measured. Measurements were taken in 3 different regions of the same section 

and the mean value obtained.  

Imaging and quantification 

Whole-mount WISH, FISH, and immunohistochemistry images were captured with a ProgRes C3 

camera from Jenoptik (Jena, TH, Germany). A Leica MZ16F microscope (Leica Microsystems, 

Mannhiem, BW, Germany) was used to observe the samples and obtain FISH, immunostaining, and 

TUNEL images. A Leica TCS SPE confocal microscope (Leica Microsystems, Mannhiem, BW, Germany) 

was used to obtain confocal images of whole-mount FISH, immunostaining, and TUNEL assays. 

Representative confocal stacks for each experimental condition are shown. Cell counting of PH3+, 

TUNEL+ and specific cell types was carried out by eye quantification in a previous defined area of each 

animal. Areas are schematically indicated in each figure. The total number of positive cells was divided 

by these areas. Images were blind analyzed and later grouped according to each genotype. To 

calculate the ratio PH3+cells:epidermal cell density, the number of PH3+ cells/mm2 counted per 

animal was divided by the epidermal cell density quantified in a predetermined prepharyngeal region. 

Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6. Two-sided Student’s t-tests (α = 0.05) 

were performed to compare the means of 2 populations. Two-sided Fisher’s exact tests were used to 

compare 2 phenotypic variants between 2 populations. fisher.test from the R package was used to 

compare more than 2 phenotypic variants between 2 populations.  

Statistical data presentation 

Results were plotted using GraphPad Prism 6. To compare 2 populations, we used box plots depicting 

the median, the 25th and 75th percentiles (box), and all included data points (black dots). Whiskers 

extend to the largest data point within the 1.5 interquartile range of the upper quartile and to the 

smallest data point within the 1.5 interquartile lower range of the quartile. To plot data points over 

time we used XY plots, in which each dot represents the mean and bars represent the standard error. 

Each dot is connected with the next in an arbitrary manner. To visualize the percentage phenotype in 

each population we used the Stacked Bars plot in R. Each phenotype is assigned a distinct colour. 
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Figures 

 

 

Figure 1. The bls family is composed of 11 genes and 4 pseudogenes. (A) Cartoon illustrating the 

genomic organization of Bls family members. Subfamilies bls1, bls2, and bls3 are found in scaffold 54 

and subfamilies bls4 and bls5 in scaffold 49. Primers used to amplify the junction of the first bls3 

repeats are indicated in blue. bls genes are represented with orange triangles. bls pseudogenes (Ψ) 

are represented with white and orange triangles. Transposon elements are indicated with squares. 

Scale bar indicates base pairs. (B) Bls protein domains: red, signal peptide (SP); blue, coiled coil (CC). 

(C) bls homologs found in the available genomic (Gen) and transcriptomic (Transc) datasets for 

planarian species. Expression as detected by ISH is indicated. Green check indicates presence of bls 

homolg; blue line indicates no available data. ISH, in situ hybridization; Smed, Schmidtea mediterranea 

(asexual strain); Smes, Schmidtea mediterranea (sexual strain); Spol, Schmidtea polychroa; Djap, 

Dugesia japonica.  
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Figure 2. bls expression pattern. (A) bls3 expression in a transverse section as detected by WISH (blue) 

and FISH (green). Nuclei are stained with DAPI. (B) bls2, bls3 and bls5 co-expression with dd4277. Scale 

bars: 200 µm in A and B.  
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Figure 3. Regeneration is accelerated in bls2/3/5 RNAi planarians. Immunohistochemistry with anti-

arrestin antibody (VC1), labelling the visual system; WISH showing cintillo (chemoreceptors) and gpas 

(brain branches) expression. Illustration indicates areas of gpas and cintillo expression and positive 

arrestin (VC1) staining; dashed red line represents the level at which amputation was performed. 

Images show quantification of the appearance of the optic chiasm (controls, n=23; RNAi, n=23; 

***P<0.001), cintillo+ cells/mm2 (the area quantified is indicated with a yellow dashed line) (controls, 

n=8; RNAi, n=17, **P<0.01), and gpas+ area/body area (gpas+ area is indicated with a green dashed 

line) (controls, n=3; RNAi, n=9 ;*P<0.05) in gfp(RNAi) and bls2/3/5(RNAi) animals at 3 days of 

regeneration (3 dR). Scale bars: 100 µm. 
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Figure 4. After bls2/3/5 RNAi planarians exhibit increased proliferation and decreased apoptosis 

during anterior regeneration. (A) Quantification of PH3+ cells at different stages of regeneration 

(controls, n>5; RNAi, n>5; *P<0.05). Lower panel shows anti-PH3 immunostaining of gfp(RNAi) and 

bls2/3/5(RNAi) animals. (B) Quantification of TUNEL+ cells in bls2/3/5(RNAi) and control animals 

(controls, n>7; RNAi, n>7; *P<0.05). Lower panel shows TUNEL images. Images correspond to Z 

projections. (C) Quantification of caspase-3 activity in bls2/3/5(RNAi) animals and controls (controls, 

n=4; RNAi, n=4; ***P<0.001). In the schematic drawing red dashed line represents the amputation 

plane and the square indicates the region analyzed. In the images the red dashed line limits the area 

quantified. Scale bars: 500 µm (A) and 200 µm (B). 
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Figure 5. In starving conditions, bls2/3/5(RNAi) animals show decreased cell death and cell 

accumulation but not an increase in body size. (A) Schematic depicting RNAi procedure. (B) 

Quantification of PH3+ cells after one week of RNAi treatment (controls, n=5; RNAi, n=6; n.s.); two 

weeks of RNAi treatment (controls, n=7; RNAi, n=6; n.s.); and 3 weeks of RNAi treatment (controls, 

n=7; RNAi, n=9; ***P<0.001). Quantification is based in the number of PH3+ cells per body area (C)  

Quantification of caspase-3 after one week of RNAi treatment (controls, n=9; RNAi, n=9; *P<0.05); two 
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weeks of treatment (controls, n=6; RNAi, n=9; **P<0.01); and 3 weeks of treatment (controls, n=10; 

RNAi, n=8; ***P<0.001). (D) Quantification of body area in vivo animals (controls, n=25; RNAi, n=30; 

n.s.). (E) Quantification of cell number (controls, n=3; RNAi, n=3; *P<0.05). Each biological replicate 

represents 5 animals. (F) DAPI staining of epithelial cells of the prepharyngeal region. (F’) 

Quantification of the mean epidermal cell area (A) (controls, n=8; RNAi, n=7; **P<0.01). (G) Transverse 

sections of planarian epidermis immunostained with anti-6G10. The distance from the basal to the 

apical part of the cells (epidermal cell height, H) is indicated with a pink line. (G’) Height quantification 

(controls, n=18, RNAi, n=17, n.s.). (H) Quantification of epidermal cell volume (V) (controls, n=8; RNAi, 

n=7; *P<0.05). (I) Schematic illustration of the measurements performed to quantify V. (J) Illustration 

depicts the expression of cintillo, pitx, and tbh. The square indicates the area quantified. 

Quantification of cintillo+ cells/head area (controls, n=5; RNAi, n=5; ***P<0.001), pitx+ cells/head area 

(controls, n=8; RNAi, n=4; ***P<0.001), tbh+ cells/head area (controls, n=3; RNAi, n=3; *P<0.05). (K) 

50% of animals developed overgrowths after 4 weeks of bls2/3/5 inhibition in starved conditions. FISH 

of h2b riboprobe combined with anti-SMEDWI-1 immunostaining, and FISH with agat+ and nb.21 

riboprobes (controls, n=60; RNAi, n=58). White arrows indicate overgrowths. Images from F and K 

correspond to Z projections. Scale bars: one side of a square = to 1 mm (D), 20 µm (F and G), or 500 

µm (K). 
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Figure 6. In fed conditions, bls2/3/5(RNAi) animals show an increase in proliferation and a decrease 

in cell death, which results in larger animals. (A) Schematic depicting the RNAi procedure (B) 

Quantification of PH3+ cells after 3 weeks of RNAi treatment (controls, n=6; RNAi, n=7; *P<0.05). 

Quantification is based in the number of PH3+ cells per body area (C) Quantification of TUNEL+ cells 

after 3 weeks of RNAi treatment (controls, n=6; RNAi, n=6; *P<0.05) (see materials and methods and 

Fig. S6E for details of quantification). (D) Length of control and RNAi animals (controls, n >35; RNAi, n 

>35; *P<0.05, **P<0.01). (E) Quantification of body area in live animals (controls, n=35; RNAi, n=36; 

**P<0.01). (F) Quantification of cell number (controls, n=3; RNAi, n=3; **P<0.01). Each biological 

replicate represents 5 animals. (G) DAPI staining of epithelial cells of the prepharyngeal region. (G’) 
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Quantification of mean epidermal cell area (A) (controls, n=6; RNAi, n=7; n.s.). (H) Transverse sections 

of planarian epidermis immunostained with anti-6G10. The distance from the basal to the apical part 

of the cell (epidermal cell height, H) is indicated with a pink line. (H’) Quantification of H (controls, 

n=26; RNAi, n=23; n.s.). (I) Quantification of epidermal cell volume (V) (controls, n=6; RNAi, n=7; n.s.). 

(J) Illustration showing measurements used to quantify V. (K) Quantification of th+ cells/head area 

(controls, n=9; RNAi, n=6; n.s.) and cintillo+ cells/head area (controls, n=7; RNAi, n=8; n.s.). Illustration 

depicts the expression of th and cintillo, and the square indicates the area quantified. Images from G’ 

correspond to Z projections. Scale bars: one side of a square = 1 mm (D’) or 20 µm (G and H). 
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Figure 7. bls2, bls3, and bls5 levels are regulated by food ingestion and by mTOR signalling (A) 

Schematic depicting the experimental procedure. Animals were starved for more than 1 week and 

then fed for 30 minutes and fixed at different time points thereafter. Bar charts represent qRT-PCR 

quantification of bls2, bls3, and bls5 expression in starved animals (S) and in fed animals 3 and 24 

hours post-feeding (hpf). (B) Representative FISH images of bls3 before feeding and at different time 

points after feeding, demonstrating its reduced expression at 3 hpf and 24 hpf, and its recovery at 7 

dpf. (C) qRT-PCR quantification of bls2, bls3, and bls5 expression in fed mTOR (RNAi) animals. Scheme 

depicts the RNAi procedure. (D)  qRT-PCR quantification of mTOR and Akt expression in fed bls2/3/5 

(RNAi) animals. Scheme depicts the RNAi procedure. In all the panel, relative expression is plotted as 

2-ΔΔCT values. Data represent the mean and s.d. (bars). *P<0.05; **P<0.01, ***P<0.001 
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Figure 8. Model representing bls-mediated control of cell number. In starving conditions bls is 

expressed and limits cell number and body size by promoting apoptosis without significantly affecting 

mitotic index. After feeding bls is down-regulated, allowing an increase in mitotic cells and a decrease 

in cell death, which results in an increase in cell number. In starved bls RNAi animals the 

mitosis:apoptosis ratio increases, as does total cell number. However, cells cannot maintain their size 

and body size does not increase. In fed bls RNAi animals, the mitosis:apoptosis ratio is even higher 

than in controls and cell number increases. This is accompanied by an increase in body size, since cells 

maintain their normal size.  
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Figure S1. Genomic and evolutionary features of bls subfamilies. (A) Phylogenetic 

analysis of all members of Smed Bls family using nucleotide sequences. They group 

into 5 subfamilies. Scale indicates expected nucleotide substitution per site. (B) PCR 

analysis using primers flanking the junction of the first bls3 repeat (between bls3a and 

b) showing the expected 1 Kb band. (C) Transcriptomic reads mapping in the three

non-consecutive parts of the two scaffolds where bls genes are located. Peaks 

represent reads accumulation. The absence of peaks is considered a lack of 

expression. Lateral number represents the higher summit in each track. (D) Presence 

of bls homologs in the transcriptomic (Transc) and genomic (Gen) available databases 

from different Platyhelminth species. Green check means that presence of some 

homolog, red cross indicates that no homologs have been identified and blue line 

indicates no available data. (E) Phylogenetic tree of the bls homologs in the Tricladida 

Order using amino acidic sequences. bls5 subfamily is present in all species, bls3 was 

not found in Smes, and bls2 was only found in Smed. Scale indicates expected amino 

acidic substitution per site. 

Development: doi:10.1242/dev.184044: Supplementary information
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Figure S2. bls2/3/5 expression in intact and regenerating animals. (A) Scheme 

indicating the riboprobes designed for each gene family. WISH with the different 

riboprobes in intact animals showing the similar expression pattern. (B) Double FISH 

combining all specific riboprobes. Each panel represents each gene combination. A 

magnification is also shown. All riboprobes colocalize in most of the cells, and 

magnifications demonstrate that riboprobes present a different cellular distribution. (C) 

WISH of bls3 and piwi in non-irradiated and irradiated animals. After irradiation the 

neoblast marker (piwi) expression decreases but not bls3, corroborating that bls gene 

family are localized in differentiated cells. (D) WISH of bls3 during regeneration at 

different time points. From 3hR to 24hR no bls3 expression is observed in the 

blastemas. From 72hR to 14dR the new expression and redistribution of bls3 is 

observed. (E) WISH of bls3 in Schmidtea polychroa (Spol) and Schmidtea 
mediterranea sexual strain (Smes), showing the same expression pattern than in 

Smed. Scale bars: A, C, D and F are 500 µm. In B are 50 µm and 10 µm in 

magnifications. 

Development: doi:10.1242/dev.184044: Supplementary information
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Figure S3. bls2/3/5 inhibition after RNAi during regeneration, and faster 
regeneration of bls2/3/5 (RNAi) animals. (A) Cartoon illustrating the protocol of RNAi 

inhibition during planarians regeneration. One week starved planarians were injected 3 

consecutive days and amputated the following day. The following 3 days, planarians 

were let to regenerate. Planarians were amputated anterior and posteriorly, and a 

second week of inhibition was performed only with trunk fragments. The second week 

trunks were amputated just anteriorly. (B) Scheme indicating the fragments used for 

RNAi and qPCR analysis. (C) qRT-PCR analysis quantifying bls2, bls3 and bls5 

expression after bls3 inhibition at 3dR, demonstrating that all three subfamilies were 

down-regulated after injection of bls3 dsRNA. Relative expression is plotted as 2-ΔΔCT 

values. Data are plotted as mean and error bars represent s. d. (****P<0.0001). (D)  in 

vivo images of planarians showing that in bls2/3/5 (RNAi) animals regenerating eyes 

are more evident (yellow arrows) than in controls at 3 and 4dR (n of controls=23, n of 

RNAi=23, ***P<0.001). (E) Representation of pitx expression in wt animals. In the 

drawing, red dashed line represents amputation level. FISH of pitx shows an increase 

of pitx+ cells in the blastema at 18 hR. Quantification of pitx+ cells / mm2 is showed (n 

of controls=8, n of RNAi=5, **P<0.01). Yellow dashed line in the images indicates the 

area quantified. Scale bars: 250 µm in (D), 100 µm in (E). 

Development: doi:10.1242/dev.184044: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Figure S4. bls2/3/5 (RNAi) animals show an increase in proliferation and a 
decrease of apoptosis after any injury. (A) Quantification of PH3+ cells at different 

time points after incision shows an increment of mitotic cells/mm2 in bls2/3/5 (RNAi) 

animals. Time points were 6 hR (n of controls=5, n of RNAi=7, *P<0.05), 18 hR (n of 

controls=6, n of RNAi=7, **P<0.01), 24 hR (n of controls=6, n of RNAi=8, *P<0.05) and 

48 hR (n of controls=8, n of RNAi=8, ***P<0.001). anti-PH3 immunostaining images are 

shown below. (B) Quantification of TUNEL+ cells show a decrease of apoptotic cells in 

bls2/3/5 (RNAi) animals after incision at 4 hR (n of controls=7, n of RNAi=7, **P<0.01) 

and 72 hR (n of controls=6, n of RNAi=7, **P<0.01). TUNEL images are shown below. 

(C) Quantification of PH3+ cells at different time points after notching shows an 

Development: doi:10.1242/dev.184044: Supplementary information
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increment of mitotic cells/mm2 in bls2/3/5 (RNAi) animals at 6 hR (n of controls=8, n of 

RNAi=9, ***P<0.001), 18 hR (n of controls=8, n of RNAi=8, ****P<0.0001), 24 hR (n of 

controls=8, n of RNAi=9, ***P<0.001) and 48 hR (n of controls=8, n of RNAi=8, 

**P<0.01). anti-PH3 immunostaining images are shown below. D) Quantification of 

TUNEL+ cells show a decrease of apoptotic cells in bls2/3/5 (RNAi) animals after 

notching at 4 hR (n of controls=7, n of RNAi=7, *P<0.05) and 72 hR (n of controls=7, n 

of RNAi=9, **P<0.01). TUNEL images are shown below. All images correspond to Z 

projections. Illustrations show the amputation plane and the area analyzed (dashed red 

line and black square, respectively). Red dashed line in the images indicate the area 

analyzed. Scale bars: 200 µm in all panels. 

Development: doi:10.1242/dev.184044: Supplementary information
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Figure S5. In starved conditions, bls2/3/5 (RNAi) animals show a decrease in cell 
death, which leads to cell accumulation and overgrowth formation. (A) Scheme of 

the RNAi procedure to inhibit bls2/3/5 in starved planarians. Each week, animals were 

injected 3 consecutive days. At the end of the third week, animals were fixed and 

analyzed. (B) qRT-PCR analysis measuring bls2, bls3 and bls5 expression after 3 

weeks of bls3 p2 inhibition demonstrated that all three genes are down-regulated. 

Relative expression is plotted as 2-ΔΔCT values. Data is plotted as mean and error bars 

represent s.d. (*P<0.05; ***P<0.001). (C) anti-PH3 immunostaining images of bls2/3/5 

(RNAi) animals and controls (D) TUNEL assay images of bls2/3/5 RNAi animals and 

controls, corresponding to the posterior region of the animals, which was the area 

quantified (indicated with a square in the schematic drawing). Images correspond to Z 

projections after the second and the third week of treatment. Quantification of TUNEL+ 

Development: doi:10.1242/dev.184044: Supplementary information
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cells /area in bls2/3/5(RNAi) and control animals; after the second week of treatment 

(controls, n=7; RNAi, n=5, *P<0.05); and after the third week of treatment (controls, 

n=7; RNAi, n=7, **P<0.01). (E) Quantification of Nuclei of epidermal cells stained with 

DAPI per area (n of controls=15, n of RNAi=15, *P<0.05). The illustration indicates the 

area quantified with a black square. (F) Confocal images of the expression of neural 

(tbh and pitx) and chemoreceptor (cintillo) markers in bls2/3/5 (RNAi) animals and 

controls. The illustration shows the expression of tbh, pitx and cintillo. Cintillo and tbh+ 

cells were quantified with respect to the head area (indicated with a square in the 

schematic drawing). pitx+ cells were quantified in a region of the head (green square in 

the images). (G) qRT-PCR quantification of the expression of neural markers (pitx and 

th). Relative expression is plotted as 2-ΔΔCT values. Data is plotted as mean and error 

bars represent s.d. (*P<0.05). (H) Normalization of PH3+cells/area by epidermal cell 

density (quantified as showed in E) in bls2/3/5(RNAi) and control animals. After 2 

weeks of RNAi treatment (controls, n=7; RNAi, n=6; n.s.) and 3 weeks of RNAi 

treatment (controls, n=7; RNAi, n=8; n.s.). (I) Overgrowths of bls2/3/5(RNAi) stained 

with anti-SMEDWI and h2b riboprobe. Nuclei are in blue. White arrows indicate 

overgrowths. Images from D, G and I correspond to Z projections. Scale bars: 500 µm 

in (C), 100 µm in (D), 200 µm in (G) and 500 µm in (I). 

Development: doi:10.1242/dev.184044: Supplementary information
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Figure S6. Bls inhibition during growth conditions decreases cell proliferation 
and increases cell death, but does not promote cell accumulation. (A) Scheme of 

the RNAi procedure to inhibit bls2/3/5 in fed planarians. Each week, animals were 

injected 3 non consecutive days, being feed the other two days. At the end of the third 

week, animals were fixed (three days after the last injection) and analyzed. (B) qRT-

PCR quantifying bls2, bls3 and bls5 expression after 3 rounds of bls3 inhibition, 

demonstrating that all three genes are downregulated. Relative expression is plotted as 

2-ΔΔCT values. Data is plotted as mean and error bars represent s.d. (*P<0.05; 

***P<0.001). (C) Quantification of PH3+ cells/body area after 1 week of bls2/3/5 RNAi 

treatment (n of controls=5, n of RNAi=9, *P<0.05), and the corresponding anti-PH3 

immunostaining images showing the increment of the mitotic cells. (D) Anti-PH3 

immunostaining images of bls2/3/5 RNAi animals and controls showing the increment 

of the mitotic cells after 3 weeks of the treatment. (E) TUNEL assay images of bls2/3/5 

Development: doi:10.1242/dev.184044: Supplementary information
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RNAi animals and controls, corresponding to transversal sections of the animals. 

TUNEL+ cells/section area was quantified. At least 9 sections per animal and at least 5 

animals per condition were analyzed (F) Quantification of nuclei of epidermal cells 

stained with DAPI per area (n of controls=15, n of RNAi=15, ***P<0.001). The 

illustration indicates the area quantified with a black square. (G) Confocal images of the 

expression of neural (th) and chemoreceptor (cintillo) markers in bls2/3/5 RNAi animals 

and controls. The illustration shows the expression of th and cintillo, and the square 

indicates the area analyzed. Images from C and F correspond to Z projections. Scale 

bars: 200 µm in the entire panel.  

Development: doi:10.1242/dev.184044: Supplementary information
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Figure S7. bls2, bls3 and bls5 are down-regulated by food ingestion. (A) TUNEL 

assay at different time points after feeding reveals no changes in wild type planarians 

(n of starved=7, n of 2hpf=6, n.s.). (B) PH3+ cells/body area quantification at different 

time points after feeding reveals a proliferative peak at 3hpf (n of starved=6, n of 

3hpf=6, ****P<0.0001). (C) Representative FISH images of bls2 and bls5 before 

feeding and after feeding, demonstrating its reduced expression at 24 hpf. (D) 

Representative FISH images showing the downregulation and delocalization of bls2, 

bls3, and bls5 expression observed after feeding. Four patterns of bls2, bls3, and bls5 

expression could be observed: high intensity and localized; high intensity and 

Development: doi:10.1242/dev.184044: Supplementary information
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delocalized; low intensity and localized; low intensity and delocalized. (The brightness 

and contrast of the images is not equivalent, since in the low density ones it had to be 

adjusted to show the expression). The percentages corresponding to each category 

are shown in D’ (starvation conditions, n >7; 24 hpf, n >10; *P<0.05, **P<0.01, **** 

P<0.0001). 

Development: doi:10.1242/dev.184044: Supplementary information
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