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Abstract 13 

Urban areas consume more than 66% of the world’s energy and generate more than 70% 14 

of global greenhouse gas (GHG) emissions. With the world’s population expected to reach 15 

10 billion by 2100, and with nearly 90% of people living in urban areas, a critical question 16 

for planetary sustainability is how the size of cities affects energy use and carbon dioxide 17 

(CO2) emissions. Are urban agglomerations more energy and emissions efficient than 18 

smaller cities? Does urban agglomeration exhibit gains from economies of scale 19 

concerning emissions? Here, we examine the relationship between urban agglomeration 20 

and CO2 emissions for urban agglomeration in the Yangtze River Delta in China using a 21 

STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) 22 

model considering the spatial effects. Also, it examines the influence of economic 23 

development, industrial structure, opening-up level, and technology on carbon emissions 24 

by exploring the spatial agglomeration and spillover effects. Our major finding is that urban 25 

size has had a negative correlation to carbon emissions, demonstrating that urban 26 

agglomeration is more emissions efficient. In addition, our results showed that carbon 27 

emission driving factors, such as technology progress, opening-up, population, have spatial 28 

dependence and spatial agglomeration effects. Technology progress, opening-up level, and 29 

population have a spatial spillover effect on carbon emissions. It means a city’s carbon 30 

emissions are not only influenced by its own factors but also have an impact on neighboring 31 

cities. Therefore,  cross-city or urban agglomeration policy, and actions of reducing 32 

carbon emissions, are necessary, whilst also developing a low-carbon economy by 33 

increasing the proportion of high-tech industry through technological progress and 34 

developing vigorous resource-saving and an environmentally friendly tertiary industry. 35 
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1 Introduction 40 

Urbanization is a symbol of the modern world, characterized by the unprecedented growth 41 

of urban centers and substantial demographic changes(Kuriqi et al., 2019). By 2014, nearly 42 

1000 urban agglomerations captured populations of 500,000 or greater. By 2050, the urban 43 

population is expected to increase by 2.5~3 billion, roughly equivalent to 64%~69% of the 44 

world population (IPCC, 2014). The positive effect of the growing urban size on 45 

prosperous economic growth has proved to be the central characteristic of modern urban 46 

economies (Glaeser and G. Resseger, 2010). Therefore, urban agglomerations have 47 

attracted wide attention among economists and urbanists, and have been promoted at the 48 

levels of theoretical research, experimenting, and policymaking. Inevitably, the process of 49 

urban agglomerations faces challenges, especially the impacts on environmental and 50 

climate change. Currently, urban areas are responsible for 71%~76% of CO2 emissions 51 

from global final energy use and for 67%~76% of global energy use. In the future, the 52 

anticipated growth in urban populations will require further development of urban 53 

infrastructure, a major contributor to carbon emissions as urbanization advances (IPCC, 54 

2014). Therefore, the process of urbanization that balances the growth of population and 55 

environmental conservation is a complicated issue and should be examined carefully. 56 

China has experienced both industrialization and urbanization at a greater speed and on a 57 

greater scale than any other country in the world, during which process many new cities 58 

have arisen and grown (Zheng et al., 2019a, Zheng et al., 2019b). In China, the rate of 59 

urbanization increased from 19.72% in 1978 to 59.58% in 2018. Similar to any country 60 

with rapid urban growth, China has experienced environmental and climate pressure, and 61 

thus, has been actively seeking and implementing innovative practices to balance economic 62 

growth and sustainable development (Yang, 2013). The government has committed to 63 

reducing its carbon intensity—carbon dioxide emissions per unit of gross domestic product 64 

(GDP)—by 60%~65% of 2005 levels by 2020. Moreover, the government has also agreed 65 

to increase the country’s proportion of non-fossil fuel use in the energy consumption mix 66 

to approximately 20% by 2020 and proposed a peak in carbon emissions no later than 2030 67 

(NDRC, 2015). For China to achieve its goal of tackling climate change and realizing 68 

national climate goals, it must achieve urban emission reduction targets and explore paths 69 

for emission reduction (Chen et al., 2016, Lee and Jung, 2018, Shan et al., 2017a). 70 

It is not sufficient to simply consider reducing emissions at the national, provincial or city 71 

levels; it is also necessary to consider the urban environment as organically aggregated 72 

units. Extensive literature and data support the claim that large urban agglomerations are 73 

more conducive to productivity and innovation (Kuriqi et al., 2017). Yet some fear that a 74 

larger population will lead to higher CO2 emissions. 75 

Debate on the relationship between urbanization and CO2 emissions has been under way 76 

for time. Some research suggest that urbanization would increase energy demand and 77 

boosts carbon emissions. Shahbaz et al. (2016) found that urbanization would initially 78 

reduce CO2 emissions before it levels off in a later stage. Glaeser and Kahn (2010) showed 79 

that cities with larger populations are superior in terms of energy efficiency and CO2 80 

emissions. Martinez-Zarzoso and Maruotti (2011) analyzed the impact of urbanization on 81 

CO2 emissions in developing countries from 1975 to 2003, and Shan et al. (2018) used data 82 

from China, to reach similar conclusions. Meanwhile, some studies drew opposite 83 

conclusions. For example, Poumanyvong and Kaneko (2010) suggest a positive impact of 84 
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urbanization on CO2 emissions via cross-country analysis. Fragkias et al. (2013) discovered 85 

that CO2 emissions proportionally scale with population size in metropolitan areas of the 86 

United States. Shi et al. (2018) found significant positive correlations between urban CO2 87 

emissions and urban population in China at multiple scales: from national scale, down to 88 

regional and urban agglomeration scales. 89 

In light of the controversial standpoints towards this issue, this paper aims to answer the 90 

following research questions: are large agglomerations of cities more emission efficient 91 

than individual ones? How important is population size to carbon emission compared to 92 

other influencing factors? To answer these questions, it is essential to understand how the 93 

scale of an urban area correlates with CO2 emissions and to distinguish the influence of 94 

population size from other factors on CO2 emissions. Because one of the most prominent 95 

descriptors of urban size is urban population (Fragkias et al., 2013), population data are 96 

used in this paper to characterize urban size. 97 

We also found that existing literature mostly focused on how urbanization rate and 98 

socioeconomic variables correlate to CO2 emissions, while rarely considering the spatial 99 

factor, which is found to be critical in some studies. Liu et al. (2018) applied the KAYA 100 

model to analyze carbon emissions efficiency of 10 typical urban agglomerations from 101 

2008 to 2015 in China. The results showed that the carbon emissions efficiency of China’s 102 

urban agglomeration was generally not high and differed greatly from the efficiency of its 103 

counterparts at other spatial scales. Wang et al. (2016) examined the impact of urbanization 104 

quality on CO2 emissions of 30 provinces in China and revealed significant temporal and 105 

spatial differences in the effects of urbanization quality on CO2 emissions. Makido et al. 106 

(2012) examined the relationship between urban form and CO2 emissions considering 50 107 

cities in Japan, and uncovered correlations between the spatial indices of urban form and 108 

sectoral CO2 emissions for the residential and passenger transport sectors. 109 

The Yangtze River Delta urban agglomeration, located at the lower reach of the Yangtze 110 

River in the eastern coastal part of China, covers approximately 211,700 km2, or 2% of the 111 

country’s territory. However, the 26 cities in this urban agglomeration, including Shanghai 112 

and the majority of the cities in Jiangsu, Zhejiang and Anhui Provinces, account for almost 113 

20% of China’s GDP (Ye and Ou, 2019). It is one of the most densely populated areas in 114 

China, exhibits the most rapidly-growing urbanization nationwide as well as a robust 115 

economy that is unequalled in China. This region is now the largest urban agglomeration 116 

in China, as well as the heart of China’s economic development. Being the ‘bellwether’ of 117 

both urbanization and modernization within China, this region has garnered substantial 118 

attention about the role of urbanization as well as the subsequent effects of the urban areas 119 

on the environment. Throughout the globalized world, it is a common, even ubiquitous, 120 

practice for regional collaboration to support the growth and vitality of the world economy. 121 

Within China, a central source propelling the economy upwards and forwards is city 122 

agglomerations. In this paper, we conduct a comprehensive examination of the relationship 123 

between urban population size and urban CO2 emissions, considering industrial structure, 124 

technology progress, and opening-up from the perspective of spatial interaction. 125 
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2 Material and Methods 126 

2.1 Estimation of CO2 emissions 127 

Following the Intergovernmental Panel on Climate Change (IPCC) national GHG 128 

inventory guidelines, CO2 emissions are estimated by fossil fuel consumption in physical 129 

units multiplied by an emission factor (IPCC 2006; Shan et al. 2018; Zheng et al. 2018): 130 

,2i j ij ijCO AD EF                            (1) 131 

in which ,2i jCO represents carbon emissions for energy type i  used by sector j . ijAD132 

refers to the fossil fuels combusted measured in physical units, and ijEF  denotes the 133 

emission factors for fossil fuel i  used in sector j . ijEF  could be further disaggregated 134 

into three components: net heating value of each fuel type i  (TJ per t fuel); carbon content 135 

c of each fuel type i  (tC per TJ); and oxidization rate o (percentage). Thus equation (1) 136 

can be rephrased as follows: 137 

2CO ij i i ijAD n c o                          (2) 138 

Emissions factors in this paper are derived from Liu et al. (2015), which significantly 139 

enhanced the accuracy of the emissions factors for China, based on previous work. 140 

Generally, fossil fuel data can be derived from an Energy Balance Table (EBT) in a city’s 141 

yearbook. However, EBTs are not always available from some cities’ yearbooks, in which 142 

case fossil fuel data need to be estimated. We take the city-level emissions accounting 143 

methodology developed (Shan et al., 2017b) to estimate fossil fuel data by sector for all 25 144 

cities. Different methods are adopted to construct cities’ carbon inventory considering their 145 

data availability. Specifically, there are three ways trailed for different types of data sources, 146 

shown in Table 1. 147 

Table 1 types of cities in terms of data availability   148 

City Type Description 

Type 1 cities with EBT, for which all required 

data are directly provided in the 

yearbooks; 

Type 2 cities without EBT but with energy 

transformation data 

Type 3 cities without EBT and energy 

transformation data 

 149 

By using the city-level carbon emissions accounting method, the carbon emissions for 25 150 

cities in the studied urban agglomeration over the period 2005-2016 are calculated (Figure 151 

1). It suggests that Ningbo, Suzhou, Shanghai, Nanjing, Hefei, Ma’anshan, and Wuxi were 152 

the top emitters and accounted for 60% of the total emissions of this urban agglomeration. 153 

The total carbon emissions in the studied area peaked in 2013. Investigating each city, we 154 

found that the top 16 cities of carbon emissions (defined as “peak city” in Figure 1) saw 155 

their carbon emissions peak during the study period, while the carbon emissions of the nine 156 

cities defined as “no-peak city” in Figure 1 are still increasing. 157 
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 158 

 159 
Figure 1. Carbon emission for 25 cities in the Yangtze River Delta urban agglomeration 160 

during 2005-2016 161 

 162 

Using the calculated carbon emissions for each city, carbon intensity (I) can be calculated 163 

applying the equation proposed by (Zheng et al., 2018): 164 

2CO
I

GDP
                                  (3) 165 

A map of carbon intensity change (%) for each city in the Yangtze River Delta urban 166 

agglomeration is shown in Figure 2 (a). The percentage of change from 2005 to 2016 is 167 

divided into five groups based on quantiles: -70%~-64.98%, -63.47%~54.98%, -168 

53.49%~41.99%, -30.05%~-24.18%, and a sole positive percentage value 21.19%. Across 169 

all 25 cities, only Zhoushan showed increased carbon intensity from 2005 to 2016, and 170 

Hangzhou, Huzhou, Shaoxing, Changzhou and Yangzhou were the leading cities with the 171 

most significant carbon intensity declines. The yearly carbon intensity is illustrated in 172 

Figure 2 (b), showing the yearly change of carbon intensity for each city during this period. 173 

For all cities with decreased carbon intensity from 2005 to 2016, they generally 174 

experienced continuous decline each year, except for some cases such as Ma’anshan during 175 

2008-2009 with a slight rise. 176 
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 177 
Figure 2. (a) Carbon intensity change during 2005-2016; and (b) yearly carbon intensity 178 

of each city for the Yangtze River Delta urban agglomeration. 179 

2.2 The spatial STIRPAT model 180 

The Stochastic Impacts by Regression on Population, Affluence, and Technology 181 

(STIRPAT) model has been widely employed in social science research to evaluate the 182 

impact of the human activities on the environment, such as climate change or 183 

environmental pollution. In this study, we are interested in explaining the complex 184 

relationship between CO2 emissions and social and economic factors, therefore, we 185 

adopted the STIRPAT model. Generally, the STIRPAT model is derived from the IPAT 186 

model, which has been widely applied in literature to analyze the influence of human 187 

impact on the environment. Environment has been an independent variable, the influencing 188 

factors have been the wealth, technology and population.  189 

31 2I P A T e
                            （4） 190 

In the IPAT model, where I  is urban carbon emissions;   is a constant term; P  is 191 

population size; A is per capita wealth; T  is the technical level of energy utilization; and 192 

e  is a random error term. According to Dietz and Rosa, theoretically, 193 

1 2 30, 0, 0     , that is, growth in population and per capita wealth contributes to 194 

carbon emissions while improving energy utilization technology reduces carbon emissions. 195 

Based on the IPAT model, Dietz and Rosa (1994) developed the STIRPAT model as 196 

follows: 197 

Compared to the IPAT model, the STIRPAT model is extended to incorporate more factors, 198 

which can be more flexible and can better capture the impact factors on the environment 199 

with specific needs. In this study, we modified the original STIRPAT model by 200 

incorporating new variables derived from the collected data. In our established STIRPAT 201 
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model, technological progress ( TECH ), represented by the proportion of science and 202 

technology expenditure in local financial budget expenditure; industrial structure ( INDU ), 203 

represented by the proportion of secondary industry added value to GDP; and opening-up 204 

level ( OPEN ), represented by the proportion of total import and export trade to GDP, are 205 

introduced as explanatory variables to explore their influence on carbon emissions. As in 206 

equation (4), coefficients are used to reflect the proportional relationship between the 207 

explanatory variables and carbon emissions. Taking logs, the linearized STIRPAT model 208 

is as follows: 209 

1 2 3 4 5ln ln ln ln ln + ln +it it it it it it itCI POP GDP TECH INDU OPEN           （5） 210 

Where CI is carbon intensity, POP is the population, representing the urban size,  is a 211 

constant term and 1 5~  are the elastic coefficients of variables. 212 

From the above data analysis of each cities’ carbon emissions in the Yangtze River Delta 213 

urban agglomeration, it exhibits a difference in the carbon intensity. Considering the CO2 214 

emissions are driven by different regional dynamics, it is necessary to investigate the 215 

emission pattern from a spatial perspective, and thus spatial correlation is conducted. A 216 

primary advantage of exploring spatial correlation is that it highlights the spatial 217 

dependence and neighborhood relativity of predefined variables (Anselin, 1988). Here, we 218 

apply the widely-adopted Moran’s I (Moran’s Index; (Moran, 1950) to measure the spatial 219 

relationship between a variable and its geographical neighbors. 220 

Following Elhorst (2014), there are primarily three types of spatial econometrics models: 221 

Spatial Lag panel Model (SLM), Spatial Error panel Model (SEM), and Spatial Durbin 222 

panel Model (SDM). For a certain location, considering the hypothesized influence of CO2 223 

emissions from its neighboring regions due to spillover effects, the value of the dependent 224 

variable observed at this location is partially determined by the spatially weighted average 225 

of the dependent variables of its neighbors. Anselin (1988) first built an econometric model 226 

based on the aforementioned hypothesis and was followed by several other studies in 227 

diverse research fields such as environmental studies. Therefore, in this study, we chose 228 

the spatial STIRPAT model to estimate the impact of carbon emissions. The equation of 229 

the used spatial STIRPAT model is as follows: 230 

1, 1

ln ln ln
N N

it ij jt it ij ijt i t it

j j i j

CI I X X        
  

              （6） 231 

1,

N

it ij jt itj j i
    

 
                             （7） 232 

Where itCI is the carbon intensity of a spatial unit i at time t ,  is a constant term,  is 233 

the spatial lag factor of carbon intensity, ij is the spatial weight matrix,   is the carbon 234 

emission efficient factor, itX represents the explanatory variables,   is the spatial 235 

autocorrelation coefficients of the explanatory variables, i  and t are the regional and 236 

temporal effects, respectively, and it is the error term. The error term is further explained 237 

in equation (7), where   is the spatial autocorrelation coefficients of the error term. When238 

0, 0, 0     , the model is simplified to SLM; when 0, 0, 0     , the model 239 
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is simplified to SEM; when 0, 0, 0     , the model is an SDM; when 𝜌 = 0,  𝜃 ≠240 

0,  𝛾 ≠ 0, the model is a SDEM. To comprehensively analyze the correlation among the 241 

explained variable, explanatory variables, and residual terms, this paper applied the SDM 242 

to estimate the impact of urban size along with other influencing factors on CO2 emissions. 243 

2.3 Data source 244 

The sample comprises the yearly data of the 25 cities in the Yangtze River Delta urban 245 

agglomeration from 2005 to 2016, excluding Chizhou city due to data unavailability. The 246 

data are mainly sourced from China's urban statistics yearbooks: Jiangsu Province 247 

Statistical Yearbook, Zhejiang Province Statistical Yearbook, Anhui Province Statistical 248 

Yearbook and the statistical yearbooks of the studied cities from 2004 to 2017. The price 249 

index of each province used for base period adjustment is derived from the China 250 

Statistical Yearbook since 2005. Data are prepared yearly because of the way they were 251 

collected, and also because the yearly frequency better reflects the relationship between 252 

city size, industrial structure, and carbon emission, compared to quarterly or monthly. 253 

Urban scale, indicated by population size in this paper, is the core explanatory variable in 254 

this study. The primary purpose of this study is to investigate whether the degree of 255 

agglomeration and economic activities in the Yangtze River Delta urban agglomeration is 256 

conducive to reducing the CO2 emission intensity. As many counties in rural areas are 257 

under the jurisdiction of prefecture-level cities in China, the prefecture-level municipal 258 

district can properly reflect the economic scope of the city, so this paper takes the total 259 

population of prefecture-level municipal districts at the end of the year as the basis to 260 

represent the size of each city. The descriptive statistics of the variables used in the 261 

regression model are shown in Table 2. 262 

Table 2. Descriptive statistics of variables 263 

Variables Mean STD. 

DEV 

Min Max 

CI （tonnes/104 yuan） 0.0227 0.0176 0.0062 0.1212 

POP （104） 491.7967 269.4067 72.2200 1450.0000 

GDP（104 yuan） 6.0647 3.2243 0.7331 14.5556 

INDU （%） 52.3261 7.6512 27.4689 74.7346 

TECH （%） 3.3124 1.8199 0.4039 17.8454 

OPEN （%） 52.0323 44.6959 2.7360 288.1898 

 264 

A flowchart summarizing the methodological design is shown in Figure 3. Besides the 265 

abovementioned influencing factors and data sources, Figure 3 also demonstrates the 266 

logical flow in regression analysis. Before estimating the parameters of all spatial panel 267 

data, we first estimate the general STRIPT models without regard to spatial effect, and use 268 

the Lagrange Multiplier method (LM) to test whether SEM or SLM should be used. If the 269 

LM-lag test is more significant than LM-err, the SLM or SDM model should be chosen; 270 

whereas if LM-err is more significant, SEM or SDEM should be used (Anselin and Rey, 271 

1991). When the results of the two tests are both significant, robust LM-lag and robust LM-272 
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err tests are performed. If the robust LM-lag test is passed instead of robust LM-err, the 273 

SLM or SDM model should be chosen, whereas if robust LM-err is more significant, SEM 274 

or SDEM should be applied. 275 

 276 

 277 

Figure 3. Methodological framework. 278 

3 Results and Discussion 279 

3.1 Unit Root Test 280 

To reduce pseudo-regression, the first step in empirically testing the CO2 intensity and the 281 

influencing factors is to find out whether the panel dataset has a unit root. The LLC test 282 

(Levin et al., 2002) and the IPS test (Im et al., 2003) are applied to examine the unit root 283 

of each variable. The test results show that the dataset used in this paper is stable, since 284 

significant values are presented for all variables in Table 3. 285 

 286 
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Table 3 Results of the panel unit root tests. 287 

Variables IPS LLC 

time trend no time trend time trend no time trend 

ln CARBON  -3.20718** -6.02023** -9.8534** -9.43684** 

ln POP  -6.46164** -8.42846** -12.9861** -12.5995** 

ln GDP   -4.42713** -6.06201** -8.80465** -7.71470** 

ln INDU  -1.52144* -4.13955** -7.19593** -6.99959** 

ln OPEN  -4.21683* -5.03705** -9.48284** -8.45349** 

lnTECH  -8.62312** -11.2941** -24.9292** -22.8306** 

Note: * and ** represent significance at the 5% and 1% levels, respectively. 288 

3.2 The STIRPAT model 289 

As stated above, before estimating the parameters of all spatial panel data, we first use the 290 

Lagrange Multiplier method (LM) to test whether SEM or SLM should be used in the 291 

STRIPT model, following the processing steps described in Figure 3. According to the 292 

Lagrange multiplier test results, SDM seems appropriate. Also, SLM is performed for 293 

comparison. Table 4 gives the results of the OLS (ordinary least square) and LSDV (least 294 

square dummy variables) methods for estimating the traditional mixed regression model 295 

and fixed-effect panel model. 296 
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Table 4 Estimation results of the nonspatial STRIPT model. 297 

 298 

Variable 
Pooled OLS Fixed Effects LSDV 

coefficient t-value p-value coefficient t-value p-value 

ln POP  -0.3153 -7.7138 0.0000 -0.2638 -2.7096 0.0071 

ln GDP  -0.3593 -7.5372 0.0000 -0.4863 -15.6080 0.0000 

ln INDU  1.1018 7.0136 0.0000 0.5929 5.9402 0.0000 

ln OPEN  0.1934 5.8002 0.0000 0.0688   1.8033 0.0724 

lnTECH  0.0280 1.2930 0.1970 -0.0357 -1.2022 0.2303 

R-squared 0.4421   0.6924   

Rbar-

squared 

0.4326   0.6882   

LIK -156.9839    125.3791   

Spatial correlation 

Lagrange Multiplier 

(LAG)-LMLAG 

5.8174 0.016  9.1324 0.003 

Robust LM (LAG)-R-

LMLAG 

35.5546 0.000  13.8295 0.000 

Lagrange Multiplier 

(ERROR)-LMERR 

0.5466 0.460  2.5786 0.108 

Robust LM (Error)-R-

LMERR 

30.2838 0.000  7.2756 0.007 

 299 

With the presence of spatial correlation in a regression model, LeSage and Pace (2009) 300 

stated that the coefficients of the independent variables cannot accurately reflect the 301 

marginal effect. For example, when spatial lags of the variables occur in a model, the actual 302 

total effect on the dependent variable of a unit change in an independent variable – that is, 303 

the true partial derivative of the expected value of ln( )CI  against ln( )pop - is not the same 304 

as the regression coefficient 1  in equation (5). The spatial correlation also captures spatial 305 

linkages and generates real-time feedback in the regression system, which can be separated 306 

into a direct (own-region) effect and an indirect (spatial spillover) effect (LeSage and Pace, 307 

2009). The proper representation of the marginal effect is fused in the SDM in terms of 308 

individual cross-sections. 309 

According to the Hausman test (Hsiao, 2003), we can further judge whether the SDM is 310 

based on a fixed-effect or random-effect estimation method. The result shows that the p-311 

value of the Hausman test is 0.073. We cannot reject the original hypothesis that individual 312 

effects are related to the explanatory variables observed in the model, so an SDM with a 313 

random effect model is suitable. In the following, the estimation results of the SDM based 314 

on random effects are analyzed. 315 
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Table 5 Results of Spatial Durbin Model (SDM), numbers in parentheses denote 316 

significance 317 

 318 

Variable 
Fixed effect Radom effect 

SLM SDM SLM SDM 

ln POP  -0.2063* 

(-2.0851) 

-0.1249 

(-1.1141) 

-0.2610** 

(-3.2763) 

-0.2214** 

(-2.7167) 

ln GDP  -0.3661** 

(-8.9324) 

-0.1729* 

(-2.1709) 

-0.3722** 

(-9.2480) 

-0.1526* 

(-2.0769) 

ln INDU  0.4982** 

(4.8362) 

0.3482** 

(3.0110) 

0.5166** 

(5.1055) 

0.3810** 

(3.4239) 

ln OPEN  0.0451 

(1.1725) 

0.0352 

(0.9117) 

0.0702* 

(1.9643) 

0.0477 

(1.3100) 

lnTECH  -0.0321 

(-1.0693) 

-0.0056 

(-0.1620) 

-0.0185 

(-0.6578) 

0.0147 

(0.4791) 
   0.2260** 

(3.8719) 

0.1399* 

(2.1686) 

0.2080** 

(3.5882) 

0.0970** 

(3.4824) 

     0.1229** 

(5.0314) 

*lnW POP   -0.1243 

(-0.8839) 

 -0.1848 

(-1.5998) 

*lnW GDP   -0.2269** 

(-2.6540) 

 -0.2742** 

(-3.4225) 

*lnW INDU   0.0826 

(0.6071) 

 0.1084 

(0.8196) 

*lnW OPEN   0.1464** 

(2.9320) 

 0.1442** 

(3.1123) 

*lnW TECH   -0.0213 

(-0.5078) 

 -0.0161 

(-0.4012) 

Log-lik 130.5306 137.6636 -61703.6350 -121225.2400 

R2 0.9196 0.9225 0.9115 0.9144 

Note: * and ** reflect significance at the 5% and 1% levels, respectively. 319 

Results for the SDM are reported in Table 5. Notably, that the spatial autocorrelation 320 

parameter   is statistically significant at the 1% level, indicating the existence of spatial 321 

dependence in the data. In other words, this result suggests that an increase in the CO2 322 

emissions of neighboring cities would drive an increase in CO2 emissions in the focal city.  323 

The spatial autoregressive coefficients (  ) and spatial autocorrelation ( ) of each model 324 

are significantly positive at the 5% level. Further comparisons show that the estimated 325 

value of the spatial autoregressive coefficients (  ) of the SDM model is significantly 326 

smaller than that of the SLM model. Taking fixed effects as an example, the estimated 327 

value of   in SDM is 0.0969, while that in SLM is 0.1399. It indicates that neglecting the 328 

spatial lag term of explanatory variables will lead to overestimation of the endogenous 329 

spatial interaction between the explained variables. In any case, the estimation results of 330 

the SLM and SDM models show that there are endogenous spatial interaction effects and 331 

random spatial interaction effects in the carbon emissions of cities in the Yangtze River 332 
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Delta urban agglomeration, i.e. significant spatial spillover effects in urban carbon 333 

emissions. This result suggests that for the Yangtze River Delta urban agglomeration to 334 

achieve energy conservation and emission reduction goals, it must promote the formation 335 

of a synergistic mechanism between regional policies of energy conservation and emission 336 

reduction. 337 

From Table 5, we can see that population size ( POP ) and GDP per capita ( GDP ), which 338 

represents the proxy of economic growth, presents a negative and significant effect on 339 

emissions. The driving factors of industrial structure ( INDU ), technology (TECH ) and 340 

opening degree ( OPEN ) are positive. 341 

A percentage change in the driving force produces an identical percentage change in impact. 342 

Coefficients >1.0 suggest an elastic relationship, indicating that the impact increases more 343 

rapidly than the driving force. The intensity of carbon emissions will be reduced by 0.22% 344 

for every 1% increase in the population size of the Yangtze River Delta urban 345 

agglomeration; that is, with the expansion of the urban scale, the carbon intensity will be 346 

reduced, yet there is less elasticity.  347 

The carbon intensity will be reduced by 0.22% for every 1% increase in the population size. 348 

The coefficient of population size indicates that all else being equal, more populated cities 349 

produce lower emissions. 350 

The coefficient of GDP per capita is negative. For every 1% increase in per capita GDP, 351 

the carbon intensity will be reduced by 0.15%. Meanwhile, the coefficient of *lnW GDP352 

is negative at the 1% significance level, which indicates that the carbon intensity in 353 

neighboring cities will be decreased by 0.27% for every 1% increase in GDP per capita. 354 

This demonstrates that the economic growth of the focal cities will reduce the carbon 355 

intensity of the neighboring cities. The improvement of the economic development level is 356 

of great benefit to reduce the carbon intensity of the region and the surrounding areas.   357 

At the 1% significance level, the coefficients of the industrial structure indicate that a 358 

higher share of secondary industry to GDP contributes to higher CO2 emissions. This 359 

broadly aligns with our anticipation since it is commonly acknowledged that the 360 

development of the industry is closely related to energy consumption. For every 1% 361 

increase in the proportion of secondary production in the Yangtze River Delta urban 362 

agglomeration, the carbon intensity will rise by 0.38%, the highest increasing rate among 363 

all independent variables. Thus, the industrial structure is the most important factor 364 

affecting carbon emissions reduction in the Yangtze River Delta urban agglomeration. 365 

Industrial structure plays a significant role in controlling carbon emissions. To some extent, 366 

the evolution of economic industrial structure to a higher level helps to restrain carbon 367 

emissions and enhance carbon productivity, because the secondary industry is dominated 368 

by industry with high energy consumption, while the tertiary industry has higher added 369 

value and less energy consumption, which helps to improve carbon productivity. 370 

The coefficient of opening-up level ( ln OPEN ) is positive. The SLM model of the 371 

stochastic effect estimates that the intensity of carbon emissions will increase by 0.07% for 372 

every 1% increase in the degree of opening up of the Yangtze River Delta urban 373 

agglomeration. At the same time, the coefficient of *lnW OPEN is significantly positive 374 

at the 1% level, which indicates that in the sampled period, an increase in the opening-up 375 
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level of a focal city will stimulate an increase in the carbon emission intensity of the 376 

surrounding cities; that is, the foreign trade of the focal city has a negative impact on the 377 

carbon emissions of the surrounding cities. Although some studies have shown that foreign 378 

direct investment (FDI) may bring advanced technology and management and enhance 379 

carbon productivity through technology spillovers (Zhu et al., 2016), results of this study 380 

show that the foreign trade of the Yangtze River Delta urban agglomeration has harmed 381 

CO2 emission control. The improvement of carbon productivity caused by FDI has been 382 

weakened by the inflow of energy-consuming and high polluting industries from abroad. 383 

In the future, we should further optimize the structure of foreign trade, reduce the embodied 384 

carbon emissions, strengthening environmental regulations, and push enterprises for green 385 

technology innovation. 386 

The coefficient of technological progress ( lnTECH ) is positive but not significant, 387 

indicating that the technological progress of the Yangtze River Delta urban agglomeration 388 

has not played a significant role in CO2 emissions in the sampled period. Previous studies 389 

have shown that if technological progress has a "green bias" feature, it will be conducive 390 

to energy conservation and emission reduction, but if it aims at improving productivity, it 391 

will be unfavorable to energy conservation and emission reduction by causing the 392 

expansion of production scale (Yang et al., 2011). Figure 4 illustrates the relationships 393 

between the influencing factors and carbon emission within each region, as well as the 394 

interactions of carbon emissions among different regions. 395 

 396 
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Figure 4. Interactions between the influencing factors and carbon emission within and 397 

across regions. 398 

 399 

4 Conclusion and Policy Implications 400 

Taking the Yangtze River Delta urban agglomeration as a case study, this paper adopts 401 

spatial econometric methods to explore the driving force of urban size, industrial structure, 402 

economic growth, technological progress and the opening-up on CO2 emissions, taking 403 

into account the spatial interaction among cities in urban agglomeration.  404 

We can conclude that the expansion of the urban scale contributes to reducing CO2 405 

emissions. As indicated in the results, a 1% increase of urban population would result in 406 

0.22% reduction of carbon emission. Intuitively, this conclusion seems perplexing, due to 407 

the common belief that more population would directly or indirectly incur more energy 408 

consumption, and hence more CO2 per capita. One possible explanation is that the 409 

aggregation of the population usually brings forth some agglomeration force that could 410 

improve production efficiency, leading to a reduction in CO2 emissions per capita. The 411 

Yangtze River Delta region has one of the highest populations, the largest economic scale 412 

and the highest economic density in China. Its population, economic agglomeration effects, 413 

and scale and spillover effects are far higher than the national average level. In this 414 

agglomeration of a large number of high-quality populations, the sharing and spillover of 415 

knowledge, skills, and technology have significantly facilitated the carbon emission 416 

reduction.  417 

The effects of a city’s actions of CO2 mitigation are not limited to its own, but also have 418 

an impact on the neighboring cities. The empirical results have demonstrated that economic 419 

growth and opening-up level play important roles in the change of carbon 420 

emission intensity, not only for the local but also for neighboring cities. More specifically, 421 

with a 1% increase of GDP of a city, the carbon emission of its neighboring cities would 422 

drop by 0.27%; when a city’s opening-up level increases by 1%, the carbon emission of its 423 

neighboring cities would rise by 0.14%. However, against our expectation, technology 424 

progress and industry structure did not reduce the CO2 for the focal or neighboring cities. 425 

The conclusion of this study is of great significance to the carbon emission reduction 426 

policies of urban agglomerations. Considering the Yangtze River Delta urban 427 

agglomeration, cities of larger sizes are more emissions efficient. Thus, a national urban 428 

policy could encourage the development of large cities ceteris paribus. Meanwhile, there 429 

is a significant spatial interaction in terms of carbon emissions in the Yangtze River Delta 430 

urban agglomeration. It implies that city planning to reduce GHG should not only consider 431 

its own city, but also neighboring cities as well. Nowadays, with cities highly integrated 432 

within an urban agglomeration, it is important to develop a coordinated policy at the urban 433 

agglomeration level for addressing climate change. Although our study shows that 434 

technology has a limited impact on reducing CO2 emissions, the government should 435 

promote a low-carbon economy by increasing the proportion of high-tech industry. 436 

Suggested approaches to the government include encouraging technological innovation, 437 

promoting cleaner production technology, and developing a vigorous resource-saving and 438 

environmentally-friendly tertiary industry. 439 
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Limited to the sampled data in this study, an optimal city size for energy efficiency 440 

maximization is hard to achieve. However, we are interested in approaching this goal 441 

through simulations using empirical knowledge. More specifically, we intend to examine 442 

the change of coefficients in the regression model by adjusting the “radius” that defines 443 

“neighboring region”. In this way, different spatial scales can be simulated. Further, 444 

adopting our empirical knowledge, these different scales are incorporated into the spatial 445 

parameters used in the equations defining the spatial STIRPAT model. Then in the 446 

regression results, the change of a coefficient reflects the sensitivity of the corresponding 447 

explanatory variable as to CO2 emissions. In addition, another improvement based on this 448 

study is to examine other urban agglomerations, to generalize universally applicable 449 

conclusions. Therefore, based on the further exploration of spatial scales, as well as 450 

extensive tests on other urban agglomerations, new and more thorough inferences are 451 

expected. 452 

  453 
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