1 Inhibition of ammonia monooxygenase from ammonia oxidising archaea by linear and

2 aromatic alkynes

3

- 4 Chloë L. Wright^a, Arne Schatteman^a, Andrew T. Crombie^a, J. Colin Murrell^b, Laura E.
- 5 Lehtovirta-Morley^a#

6

- 7 ^aSchool of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- 8 ^bSchool of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

9

10 Running title: Inhibition of the ammonia monooxygenase by alkynes

11

12 #Address correspondence to: Laura E. Lehtovirta-Morley, <u>l.lehtovirta-morley@uea.ac.uk</u>

13

- 14 Keywords: Ammonia monooxygenase; ammonia oxidisers; methanotroph; inhibition; linear 1-
- 15 alkynes; phenylacetylene
- 16
- 17
- 18
- 19
- 20
- 21

AEM

22 Abstract

23	Ammonia monooxygenase (AMO) is a key nitrogen transforming enzyme belonging to
24	the same copper-dependent membrane monooxygenase family (CuMMO) as the particulate
25	methane monooxygenase (pMMO). The AMO from ammonia oxidising archaea (AOA) is very
26	divergent from both the AMO of ammonia oxidising bacteria (AOB) and the pMMO from
27	methanotrophs and little is known about the structure or substrate range of the archaeal AMO.
28	This study compares inhibition by C2-C8 linear 1-alkynes of AMO from two phylogenetically
29	distinct strains of AOA, "Candidatus Nitrosocosmicus franklandus" C13 and "Candidatus
30	Nitrosotalea sinensis" Nd2, with AMO from Nitrosomonas europaea and pMMO from
31	Methylococcus capsulatus (Bath). An increased sensitivity of the archaeal AMO to short-chain-
32	length alkynes ($\leq C_5$) appeared to be conserved across AOA lineages. Similarities in C ₂ -C ₈ alkyne
33	inhibition profiles between AMO from AOA and pMMO from <i>M. capsulatus</i> suggested that the
34	archaeal AMO has a narrower substrate range compared to that of N. europaea AMO. Inhibition
35	of AMO from "Ca. Nitrosocosmicus franklandus" and N. europaea by the aromatic alkyne
36	phenylacetylene was also investigated. Kinetic data revealed that the mechanism by which
37	phenylacetylene inhibits "Ca. Nitrosocosmicus franklandus" and N. europaea is different,
38	indicating differences in the AMO active site between AOA and AOB. Phenylacetylene was
39	found to be a specific and irreversible inhibitor of AMO from "Ca. Nitrosocosmicus
40	franklandus" which does not compete with NH ₃ for binding at the active site.
41	

42

- 43
- 44

46	Archaeal and bacterial ammonia oxidisers (AOA and AOB) initiate nitrification by
47	oxidising ammonia to hydroxylamine, a reaction catalysed by ammonia monooxygenase (AMO).
48	AMO enzyme is difficult to purify in active form and its structure and biochemistry remain
49	largely unexplored. The bacterial AMO and the closely related particulate methane
50	monooxygenase (pMMO) have a broad range of hydrocarbon co-oxidation substrates. This study
51	provides insights into the AMO of previously unstudied archaeal genera, by comparing the
52	response of the archaeal AMO, a bacterial AMO and pMMO to inhibition by linear 1-alkynes
53	and the aromatic alkyne, phenylacetylene. Reduced sensitivity to inhibition by larger alkynes
54	suggests that the archaeal AMO has a narrower hydrocarbon substrate range compared to the
55	bacterial AMO, as previously reported for other genera of AOA. Phenylacetylene inhibited the
56	archaeal and bacterial AMO at different thresholds and by different mechanisms of inhibition,
57	highlighting structural differences between the two forms of monooxygenase.
58	
50	
22	
60	
61	
62	
63	
64	
65	

67	Nitrification is a key microbial process in the global nitrogen cycle. Autotrophic archaeal
68	and bacterial ammonia oxidisers (AOA and AOB, respectively) and comammox bacteria, which
69	carry out the complete oxidation of ammonia to nitrate (1, 2), initiate nitrification through the
70	oxidation of ammonia (NH ₃) to hydroxylamine (NH ₂ OH), a reaction catalysed by ammonia
71	monooxygenase (AMO). The AMO is the only enzyme of the ammonia oxidation pathway
72	which is shared by all three major groups of ammonia oxidisers (3). Quantitative assessments
73	based on the amoA gene, which encodes the AmoA subunit of the AMO, have revealed that
74	AOA are ubiquitous in the environment and are among the most numerous living organisms on
75	Earth, often outnumbering AOB in many environments where nitrification occurs (4-7).
76	Environmental surveys using <i>amoA</i> as a marker gene have been crucial for our understanding of
77	the distribution and diversity of AOA; however, little is known about the structure or
78	biochemistry of the archaeal AMO and how this differs from that of AOB.
78 79	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the
78 79 80	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9).
78 79 80 81	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that
78 79 80 81 82	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that subsequent metabolic steps define the functional role of microbes containing CuMMO (10, 11).
78 79 80 81 82 83	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that subsequent metabolic steps define the functional role of microbes containing CuMMO (10, 11). For example, the AOB <i>Nitrosomonas europaea</i> and <i>Nitrosococcus oceani</i> can oxidise methane
78 79 80 81 82 83 84	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that subsequent metabolic steps define the functional role of microbes containing CuMMO (10, 11). For example, the AOB <i>Nitrosomonas europaea</i> and <i>Nitrosococcus oceani</i> can oxidise methane but lack necessary downstream enzymes to gain reducing power from methane oxidation (12,
78 79 80 81 82 83 84 85	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that subsequent metabolic steps define the functional role of microbes containing CuMMO (10, 11). For example, the AOB <i>Nitrosomonas europaea</i> and <i>Nitrosococcus oceani</i> can oxidise methane but lack necessary downstream enzymes to gain reducing power from methane oxidation (12, 13). Likewise, the particulate methane monooxygenase (pMMO) of methanotrophs can co-
78 79 80 81 82 83 84 85 86	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that subsequent metabolic steps define the functional role of microbes containing CuMMO (10, 11). For example, the AOB <i>Nitrosomonas europaea</i> and <i>Nitrosococcus oceani</i> can oxidise methane but lack necessary downstream enzymes to gain reducing power from methane oxidation (12, 13). Likewise, the particulate methane monooxygenase (pMMO) of methanotrophs can co- oxidise NH ₃ , (14-16) as well as various hydrocarbons, for instance linear 1-alkanes (C ₂ -C ₅) and
78 79 80 81 82 83 84 85 86 86	biochemistry of the archaeal AMO and how this differs from that of AOB. The AMO is a copper-dependent multimeric transmembrane enzyme belonging to the CuMMO superfamily which comprises ammonia, methane and alkane monooxygenases (7-9). Members of the CuMMO family have a broad substrate range and it has been suggested that subsequent metabolic steps define the functional role of microbes containing CuMMO (10, 11). For example, the AOB <i>Nitrosomonas europaea</i> and <i>Nitrosococcus oceani</i> can oxidise methane but lack necessary downstream enzymes to gain reducing power from methane oxidation (12, 13). Likewise, the particulate methane monooxygenase (pMMO) of methanotrophs can co- oxidise NH ₃ , (14-16) as well as various hydrocarbons, for instance linear 1-alkanes (C ₂ -C ₅) and alkenes (C ₂ -C ₄) (17-19), and halogenated hydrocarbons (20), but none of these oxidation

89	and is capable of co-oxidising 1-alkanes (C_2 - C_8) and alkenes (C_2 - C_5) (21), halogenated
90	hydrocarbons (22, 23), aromatic compounds (24) and sulfides (25, 26) to yield hydroxylated
91	products. Difficulties in purifying active AMO limit the amount of structural data available and
92	many predictions about the structure of AMO are based on homology to the pMMO (8, 10, 27,
93	and 28). However, the pMMO itself has proven challenging to fully characterise, and the nature
94	and location of the site of O_2 activation and methane oxidation remains uncertain. To date, a
95	diiron site located on the PmoC subunit (29), and multiple copper sites of different nuclearities
96	located on separate subunits (PmoA, PmoB and PmoC) have all been suggested as potential
97	active sites (27, 30-34).
98	Insights regarding the structure and function of the AMO have largely come from whole
99	cell studies investigating its interaction with both reversible and irreversible inhibitors. For
100	example, the bacterial AMO is inhibited by the copper chelator allylthiourea (ATU) which
101	strongly indicates that it is a copper-dependent enzyme (18, 35-38). Acetylene is a well
102	characterised inhibitor of both the AMO and pMMO (39-41). With N. europaea, acetylene acts

as a suicide substrate and cells require *de novo* protein synthesis of new AMO to re-establish

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

104 NH₃ oxidising activity (42). Incubations with 14 [C]-acetylene resulted in the covalent

105 radiolabelling of *N. europaea* AMO, enabling identification of the genes coding for AMO (41,

43). A subsequent study found that the ketene product of acetylene activation bound covalently
to a histidine residue (H191) in the AmoA subunit of *N. europaea*, a residue thought to be in the

proximity of the AMO active site (44). While acetylene is also an irreversible inhibitor of the

archaeal AMO, the AMO from archaea lack the histidine residue responsible for binding in *N*.

110 *europaea*, suggesting that the product of acetylene oxidation must bind at a different position on

111 the enzyme. AMO from *N. europaea* is also irreversibly inhibited by other terminal and sub-

112	terminal alkynes including C ₃ -C ₁₀ 1-alkynes (21), 3-hexyne (45) and 1,7-octadiyne (46).
113	Interestingly, in N. europaea, the degree of inhibition by 1-alkynes, as a function of chain length,
114	inversely mirrors the activity with the corresponding 1-alkanes (21).
115	Virtually nothing is known about the substrate range of the archaeal AMO. Previously,
116	Taylor <i>et al.</i> , (47, 48) showed that, in whole cell studies, aliphatic <i>n</i> -alkynes (C_2 - C_9)
117	differentially inhibited bacterial and archaeal AMOs, with the AOA being less sensitive to $\geq C_5$ 1-
118	alkynes. Inhibition of AMO by 1-octyne (C_8) has since been used in environmental and
119	mesocosm studies to discriminate between the contributions of AOA and AOB to soil
120	nitrification (49-52). A field study by Im et al., (53) showed that the abundance of archaeal amoA
121	genes decreased when the soil was treated with the aromatic alkyne phenylacetylene, although
122	the effects of phenylacetylene on pure cultures of AOA were not investigated. Phenylacetylene
123	was shown to be a strong inhibitor of the AMO from N. europaea (41), with complete inhibition
124	at <1 μ M (54) and the AMO from <i>N. europaea</i> is capable of oxidising aromatic compounds
125	including the alkane analogue of phenylacetylene, ethylbenzene (24, 55). Interestingly, the
126	oxidation of aromatic hydrocarbons has not been observed for the pMMO (17, 21, 40, and 56).
127	The initial aim of this study was to undertake a comprehensive assessment of the
128	inhibition of archaeal AMO activity by C2-C8 linear 1-alkynes using two terrestrial AOA strains
129	from distinct thaumarchaeal lineages, "Candidatus Nitrosocosmicus franklandus" C13 and
130	"Candidatus Nitrosotalea sinensis" Nd2. 1-alkyne inhibition profiles of N. europaea AMO and
131	the pMMO from Methylococcus capsulatus (Bath) were also investigated for comparison. For
132	consistency and to provide a direct comparison with the AMO, the inhibition of NH ₃ -oxidising
133	activity by the pMMO from <i>M. capsulatus</i> (Bath) was investigated. NH ₃ is a co-metabolic

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

Applied and Environmental

Microbioloav

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

substrate of the pMMO from *M. capsulatus* (Bath) and is oxidised to hydroxylamine, which is further oxidised to produce NO_2^- (14, 57).

Next, phenylacetylene inhibition profiles of NH₃ oxidation by "Ca. Nitrosocosmicus 136 franklandus" and N. europaea cells were compared. The kinetic mechanism of inhibition of 137 138 intact cells of "Ca. Nitrosocosmicus franklandus" and N. europaea by phenylacetylene was investigated to explore differences in the biochemistry of the archaeal and bacterial AMO. 139 140 Evidence from previous studies suggests that NH_3 , rather than ammonium (NH_4^+), is the growth substrate oxidised by the bacterial AMO (58), but the preferred substrate (NH_3/NH_4^+) oxidised by 141 142 the archaeal AMO has not been determined. However, it is highly likely to also be NH_3 based on 143 archaeal and bacterial AMO sequence comparisons (59). At the pH of the systems used here, the 144 majority of the NH_3 (pK_a of 9.25) would be protonated. Therefore, calculations of kinetic 145 parameters presented in this study are based on total reduced inorganic nitrogen ($NH_3 + NH_4^+$) as 146 the substrate.

147

148 Materials and Methods

Materials. Phenylacetylene (98%), propyne, 1-pentyne, 1-hexyne, 1-heptyne and 1octyne (C₃, C₅, C₆, C₇ and C₈ linear 1-alkynes, ≥97%) were obtained from Sigma-Aldrich (now
Merck). 1-Butyne was supplied by Apollo Gases Ltd. Acetylene was obtained from BOC, a
member of the Linde Group. Protein concentrations were determined using a Pierce BCA protein
assay kit (Thermo Scientific) as described by the manufacturer.

154 Growth of cultures. "Candidatus Nitrosotalea sinensis" Nd2 and "Candidatus

155 Nitrosocosmicus franklandus" C13 (60, 61) were grown as follows: "Ca. Nitrosocosmicus

156	franklandus" was cultivated in freshwater medium (FWM) buffered with 10 mM HEPES (pH
157	7.5) and supplemented with 4 mM NH_4Cl as previously described (61). The acidophilic AOA
158	"Ca. Nitrosotalea sinensis" was cultivated in FWM buffered with 2.5 mM MES (pH 5.3) and
159	supplemented with 400 μ M NH ₄ Cl as previously described (60). Both " <i>Ca.</i> Nitrosocosmicus
160	franklandus" and "Ca. Nitrosotalea sinensis" were grown in 800 mL volumes in 1 L Duran
161	bottles incubated statically in the dark at 37°C. Nitrosomonas europaea ATCC19718 was
162	obtained from the University of Aberdeen culture collection and cultivated in 200 mL volumes,
163	in 500 mL conical flasks, shaking (160 rpm) at 30°C in modified Skinner and Walker (62)
164	medium (pH~7.5) containing (NH ₄) ₂ SO ₄ , 0.235 g L ⁻¹ ; KH ₂ PO ₄ , 0.2 g L ⁻¹ ; CaCl ₂ .2H ₂ O, 0.04 g L
165	¹ ; MgSO .7H ₂ O, 0.04 g L ⁻¹ , FeNaEDTA, 0.3 mg L ⁻¹ , buffered with 10 mM HEPES (pH 7.5) and
166	5% (w/v) Na ₂ CO ₃ . Methylococcus capsulatus (Bath) was grown in 50 mL volumes in 250 mL
167	Quickfit conical flasks, shaking (180 rpm) at 37°C in nitrate mineral salts (NMS) supplemented
168	with 20 μM copper to promote pMMO expression and under a CH_4 atmosphere of 40%. To
169	confirm that <i>M. capsulatus</i> cells were only expressing pMMO and not sMMO, the naphthalene
170	assay, which is specific for sMMO activity, was used (63) with sMMO-expressing Methylocella
171	silvestris cells as positive controls.

172 Nitrite assay. NO₂⁻ concentrations were determined colorimetrically in a 96-well format using Griess reagent as previously described (60). Absorbance measurements were performed at 173 540 nm wavelength using a VersaMax Microplate Reader (Molecular Devices). 174

- 175 Inhibition of whole cells by alkynes. "Ca. Nitrosocosmicus franklandus" and "Ca.
- Nitrosotalea sinensis" were cultivated to mid-exponential phase ($\sim 600 700 \ \mu M$ and $\sim 80 90$ 176 $\mu M \ NO_2^{-}$ accumulated, respectively) and 1600 mL harvested by filtration onto nucleopore 0.2 177 µm membrane filters (PALL). "Ca. Nitrosocosmicus franklandus" cells were washed and 178

179	resuspended in 200 mL 10 mM HEPES (pH 7) buffered FWM salts to $\sim 2 \times 10^7$ cells/mL. "Ca.
180	Nitrosotalea sinensis" cells were washed and resuspended in 100 mL 2.5 mM MES (pH 5.3)
181	buffered FWM salts to $\sim 3 \times 10^7$ cells/mL. <i>N. europaea</i> was grown to mid-exponential phase and
182	400 mL culture was harvested by filtration, washed and resuspended to $\sim 3 \times 10^7$ cells/mL in 200
183	mL 50 mM sodium phosphate buffer (pH 7.7), containing 2 mM MgCl ₂ (12). <i>M. capsulatus</i> were
184	grown to an OD ₅₄₀ of 0.8 and 100 mL was harvested by centrifugation (14, 000 \times g, 10 min).
185	Cells were washed and resuspended in 50 mL 10 mM PIPES buffer (pH 7) to $\sim 2 \times 10^8$ cells/mL.
186	Cells were rested for 1 hour at their respective growth temperatures to achieve a baseline for
187	enzyme activity assays. Aliquots of 5 mL "Ca. Nitrosocosmicus franklandus", N. europaea and
188	M. capsulatus and 4 mL "Ca. Nitrosotalea sinensis" cell suspension were added to acid-washed
189	23 mL glass vials which were then sealed with grey butyl rubber stoppers, which had been
190	autoclaved two times to remove contaminating substances. C2-C8 linear 1-alkynes were added to
191	the headspace as vapour to achieve 10 μ M aqueous concentration (C_{aq}), calculated using the
192	Henry's Law coefficients obtained from Sander (64). Phenylacetylene was dissolved in 100 %
193	dimethyl sulfoxide (DMSO) to achieve various stock solutions. A final volume of 5 μ L stock
194	solution was added to cell suspensions resulting in 0.1% (v/v) DMSO plus the desired
195	concentration of phenylacetylene. Preliminary experiments determined the addition of 0.1% (v/v)
196	DMSO did not affect NH_4^+ oxidising activity (data not shown) and control treatments containing
197	0.1% (v/v) DMSO without phenylacetylene or acetylene were included. Cells were pre-incubated
198	with inhibitors for 30 minutes, to allow for the gas-liquid phase partitioning of the alkynes, at
199	37°C for "Ca. Nitrosocosmicus franklandus", "Ca. Nitrosotalea sinensis" and M. capsulatus and
200	at 30°C for <i>N. europaea</i> . Total inorganic ammonium ($NH_3 + NH_4^+$), referred to as NH_4^+ , was
201	then added as NH_4Cl or $(NH_4)_2SO_4$ (reflecting the growth medium) to initiate NH_3 oxidising
202	activity and vials were incubated at the respective growth temperatures of the microorganisms.
	Q

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

Applied and Environmental

Microbiology

203

by assaying NO₂⁻ production from NH₃ oxidation in whole cells. NO₂⁻ production was measured
and quantified as described above by withdrawing a sample of culture through the septum every
15 minutes for 2 hours unless otherwise stated. All treatments were carried out in triplicate and
experiments were performed at least three times with similar results.
Sensitivity of isolates to C₂ to C₈ 1-alkynes. C₂-C₈ linear 1-alkynes were added to vials
using a gas tight syringe. To initiate NH₃ oxidation by "*Ca.* Nitrosocosmicus franklandus", *N.*

M. capsulatus was incubated with shaking (150 rpm). AMO and pMMO activity was determined

europaea and "*Ca*. Nitrosotalea sinensis", NH_4^+ was added to a concentration of 1 mM by

211 injection through the septum. For *M. capsulatus* (Bath), sodium formate was added first, as a

source of reductant, immediately followed by NH_4^+ , both at a final concentration of 20 mM.

213 Sensitivity of "Ca. Nitrosocosmicus franklandus" and N. europaea to

phenylacetylene. Phenylacetylene was added to achieve concentrations ranging from 2.5 - 20

215 μ M for "*Ca*. Nitrosocosmicus franklandus" and 0.5 – 10 μ M for *N. europaea*. To initiate

ammonia oxidation, NH_4^+ was added to a final concentration of 0.5 mM and 5 mM to "*Ca*.

Nitrosocosmicus franklandus" and *N. europaea*, respectively. NO₂⁻ production was measured for
60 minutes.

219

Kinetic relationship between NH4⁺ and phenylacetylene inhibition of "*Ca*.

220 Nitrosocosmicus franklandus" and N. europaea. To determine NH₃ oxidation kinetics in the

- 221 presence of phenylacetylene, "Ca. Nitrosocosmicus franklandus" and N. europaea cells were
- harvested and resuspended as described above, but to a final concentration of 1×10^7 and 8×10^6
- 223 cells/mL, respectively. "Ca. Nitrosocosmicus franklandus" cell suspensions were pre-incubated
- with phenylacetylene (0, 4 or 8 μ M) or acetylene (0 or 3 μ M) for 30 minutes before the addition
- 225 of various concentrations of NH_4^+ (0.005 1 mM). N. europaea cell suspensions were pre-

234

incubated with phenylacetylene (0, 0.2 or 0.4 μ M) before the addition of 0.05 - 10 mM NH₄⁺. Additional experiments were carried out to test the effect of 0.1% (v/v) DMSO on NH₃ oxidation kinetics by "*Ca*. Nitrosocosmicus franklandus" and *N. europaea* (Supplementary information Table S1).

Phenylacetylene inhibition of hydroxylamine oxidation by "*Ca.* Nitrosocosmicus
franklandus". "*Ca.* Nitrosocosmicus franklandus" cell suspensions were incubated with 0 or
100 μM phenylacetylene. Hydroxylamine was added at a concentration of 200 μM and
hydroxylamine-dependent NO₂⁻ production was measured over 60 minutes as described above.

Recovery of AMO activity from "*Ca***. Nitrosocosmicus franklandus" following**

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

phenylacetylene inhibition. "Ca. Nitrosocosmicus franklandus" cells were grown to mid-235 236 exponential phase and 3200 mL was harvested by filtration as described above and concentrated into 70 mL FWM containing 10 mM HEPES (pH 7.5). Aliquots of 5 mL cell suspension were 237 238 added to glass vials and sealed with butyl rubber seals. Phenylacetylene (100 μ M) and 1-octyne 239 (200 μ M) were added from DMSO stock solutions (as described above) and acetylene (20 μ M) was added from a 1% (v/v in air) gaseous stock. Both control and acetylene treatments also 240 241 contained 0.1% (v/v) DMSO. The addition of NH₄⁺ (1 mM) initiated NH₃-oxidising activity and vials were incubated at 37°C overnight (16 hours). NO₂ production was monitored for 1 hour to 242 243 assess baseline activity. To remove inhibitors and test AMO recovery, samples were pooled into 244 50 mL Falcon tubes and the cells were washed three times in FWM containing 10 mM HEPES 245 (pH 7.5) by centrifugation (12, 000× g for 10 minutes at 5°C). The pellet was resuspended in 700 µL FWM containing 10 mM HEPES (pH 7.5). Aliquots (200 µL) of cell suspension were added 246 to 4.8 mL FWM containing 10 mM HEPES (pH 7.5) + 1 mM NH_4^+ , resulting in a final cell 247

concentration of $\sim 1.3 \times 10^7$ cells/mL. Vials were incubated in a water-bath (37°C) and NO₂⁻¹ production was monitored over 24 h.

250 Statistics. Linear 1-alkyne data were plotted as average activity as a fraction of the control treatments (no inhibitor). To analyse phenylacetylene inhibition kinetics, the initial rates 251 252 of NO₂⁻ production were plotted against NH_4^+ concentration. A nonlinear regression was used to estimate the $K_{m(app)}$ and $V_{max(app)}$ for NH_4^+ using the Hyper32 kinetics package. Significant 253 254 differences between treatments were identified by one-way ANOVA with Dunnett (2-sided) post-hoc test (IBM SPSS version 25). 255 256 **Data Availability.** The authors declare that the data supporting the findings of this study are available within the article [and its supplementary information file]. The AOA strains "Ca. 257 258 Nitrosocosmicus franklandus" and "Ca. Nitrosotalea sinensis" are available from the 259 corresponding author upon request. 260 261 Results Sensitivity of "Ca. Nitrosocosmicus franklandus", "Ca. Nitrosotalea sinensis", N. europaea 262 263 and pMMO-expressing *M. capsulatus* (Bath) to C₂ to C₈ 1-alkynes 264 The sensitivity of intact "Ca. Nitrosocosmicus franklandus" and "Ca. Nitrosotalea sinensis" cells to 10 μ M $C_{(aq)}$ C₂-C₈ 1-alkynes was compared with the *N. europaea* and the 265

- 266 pMMO-expressing methanotroph, *M. capsulatus* (Fig. 1). NH₃-dependent NO₂⁻ production by
- 267 both "Ca. Nitrosocosmicus franklandus" and "Ca. Nitrosotalea sinensis" was inhibited by C₂-C₅
- 1-alkynes (p < 0.001) but not by C₇ and C₈ (Fig. 1 A and B). "*Ca*. Nitrosotalea sinensis" was
- strongly inhibited by C₄ and C₅ alkynes (degree of inhibition $54\% \pm 5\%$ and $70\% \pm 1\%$,

270	respectively, compared with controls), however, these alkynes effected only partial inhibition of
271	NH ₃ oxidation by " <i>Ca</i> . Nitrosocosmicus franklandus" (24% \pm 2% and 14% \pm 1%, respectively),
272	indicating differences in the alkyne sensitivities of different AOA strains. Additionally, C_6 had a
273	significant inhibitory effect on " <i>Ca</i> . Nitrosotalea sinensis" ($p = 0.004$) but not on " <i>Ca</i> .
274	Nitrosocosmicus franklandus" ($p = 0.47$). NO ₂ ⁻ production by <i>N. europaea</i> was strongly
275	inhibited by all 1-alkynes tested (C ₂ -C ₈). 1-pentyne resulted in 98% \pm 1% inhibition and AMO
276	activity was completely inhibited by C_6 - C_8 1-alkynes (Fig. 1C). In the presence of C_3 and C_4 1-
277	alkynes, inhibition decreased to 78% \pm 1% and 54% \pm 1%, respectively. pMMO-expressing <i>M</i> .
278	<i>capsulatus</i> cells oxidised NH_4^+ to NO_2^- and NO_2^- production was significantly inhibited by C_2 - C_7
279	1-alkynes ($p \le 0.001$), but C ₆ and C ₇ 1-alkynes resulted in only approximately 10% inhibition
280	compared with the control (Fig. 1D). NO_2^- production from NH_3 by the pMMO from <i>M</i> .
281	capsulatus is shown in the supplementary information (Supplementary information Fig. S1).
282	The rate of NO_2^- production decreased after 1 hour of incubation, likely due to the toxic build-up
283	of NO_2^- and hydroxylamine in the culture.
284	Notably, "Ca. Nitrosotalea sinensis", N. europaea and M. capsulatus (Bath) were very
285	sensitive to 10 μ M acetylene (C ₂) with NO ₂ ⁻ production inhibited by >95 %, however, "Ca.
286	Nitrosocosmicus franklandus" appeared less sensitive to acetylene (degree of inhibition, 82% \pm
287	3%).
288	Inhibition of NO ^{$-$ production by "<i>Ca</i> Nitrosocosmicus franklandus" and <i>N</i> europage in}
200	response to phenylacetylene
209	
290	Given the contrasting responses of ammonia oxidising archaea and bacteria to linear
291	alkynes, AMO activity in the presence of the aromatic alkyne phenylacetylene was examined in
292	"Ca. Nitrosocosmicus franklandus" and N. europaea cells (Fig. 2). After 1-hour of incubation,

293

294	by 55.4% \pm 1.4% in the presence of 5 μM phenylacetylene compared to the DMSO control.
295	Incubations in the presence of 10 and 20 μM phenylacetylene increased the inhibition to 74.7% \pm
296	0.5% and 86.0% \pm 0.4%, respectively (Fig. 2A). NO ₂ ⁻ production by <i>N. europaea</i> was inhibited
297	by 52.5% \pm 1.7% in the presence of 0.5 μM phenylacetylene and, unlike the results from Lontoh
298	et al., (54), who showed full inhibition at 0.6 μ M, there was still partial NH ₃ -oxidising activity in
299	the presence of 1 μM phenylacetylene (75.1% \pm 1.6% inhibition on the rate of NO_2^- production)
300	(Fig. 2B). Together, the results show that "Ca. Nitrosocosmicus franklandus" is approximately
301	$10 \times$ more resistant to phenylacetylene inhibition compared to <i>N. europaea</i> . Both " <i>Ca</i> .
302	Nitrosocosmicus franklandus" and N. europaea cells treated with 0.1 % DMSO produced NO ₂ ⁻ at
303	a similar rate to untreated controls.
304	Kinetic analysis of phenylacetylene inhibition of NH_4^+ -dependent NO_2^- production by "Ca.
504	
305	Nitrosocosmicus franklandus" and <i>N. europaea</i>
304 305 306	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction
305 306 307	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> were
305 306 307 308	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> were determined over a range of substrate (total NH_4^+) concentrations. The concentrations of
305 306 307 308 309	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> were determined over a range of substrate (total NH_4^+) concentrations. The concentrations of phenylacetylene used in the kinetic analysis were selected to achieve partial inhibition of NO_2^-
305 306 307 308 309 310	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> were determined over a range of substrate (total NH_4^+) concentrations. The concentrations of phenylacetylene used in the kinetic analysis were selected to achieve partial inhibition of NO_2^- production (Fig. 2). NH ₃ -dependent kinetics of initial NO_2^- production followed Michaelis-
305 306 307 308 309 310 311	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> were determined over a range of substrate (total NH_4^+) concentrations. The concentrations of phenylacetylene used in the kinetic analysis were selected to achieve partial inhibition of NO_2^- production (Fig. 2). NH ₃ -dependent kinetics of initial NO_2^- production followed Michaelis- Menten-type saturation kinetics for both " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i>
305 306 307 308 309 310 311 312	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca</i> . Nitrosocosmicus franklandus" and <i>N. europaea</i> were determined over a range of substrate (total NH_4^+) concentrations. The concentrations of phenylacetylene used in the kinetic analysis were selected to achieve partial inhibition of NO_2^- production (Fig. 2). NH ₃ -dependent kinetics of initial NO_2^- production followed Michaelis- Menten-type saturation kinetics for both " <i>Ca</i> . Nitrosocosmicus franklandus" and <i>N. europaea</i> (Fig. 3A & B), where the velocity (v) of the AMO-catalysed reactions was hyperbolically related
305 306 307 308 309 310 311 312 313	Nitrosocosmicus franklandus" and <i>N. europaea</i> To investigate the mode of inhibition of phenylacetylene on AMO, the initial reaction velocity of NO_2^- production by " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> were determined over a range of substrate (total NH_4^+) concentrations. The concentrations of phenylacetylene used in the kinetic analysis were selected to achieve partial inhibition of NO_2^- production (Fig. 2). NH ₃ -dependent kinetics of initial NO_2^- production followed Michaelis- Menten-type saturation kinetics for both " <i>Ca.</i> Nitrosocosmicus franklandus" and <i>N. europaea</i> (Fig. 3A & B), where the velocity (v) of the AMO-catalysed reactions was hyperbolically related to total NH_4^+ concentration ([S]) (Eq. 1):

the rate of NH3-dependent NO2⁻ production by "Ca. Nitrosocosmicus franklandus" was inhibited

314

11 -	V_{max} . [S]
ν –	$\overline{(K_m + [S])}$

315	Apparent half-saturation constants for total NH_4^+ ($K_{m(app)}$) and maximum velocities ($V_{max(app)}$) in
316	the presence/absence of phenylacetylene were calculated using hyperbolic regression analysis.
317	The hyperbolic plots show that increasing the $\mathrm{NH_4^+}$ concentration did not alleviate the inhibitory
318	effect of phenylacetylene on NO_2^- production in " <i>Ca</i> . Nitrosocosmicus franklandus" or <i>N</i> .
319	europaea (Fig. 3A & B). This suggests that phenylacetylene is not a simple competitive inhibitor
320	of either the archaeal or the bacterial AMO with respect to NH ₃ oxidation. Interestingly, the
321	mechanism of inhibition by phenylacetylene appears to be different between "Ca.
322	Nitrosocosmicus franklandus" and N. europaea. With "Ca. Nitrosocosmicus franklandus", the
323	presence of 4 and 8 μM phenylacetylene decreased the $V_{max(app)}$ of NO_2^- production from 64.1 \pm
324	2.6 nmol mg prot ⁻¹ min ⁻¹ to 33.8 ± 2.2 and 20.1 ± 0.5 nmol mg prot ⁻¹ min ⁻¹ , respectively (Table
325	1). There was no significant change in the $K_{m(app)}$ for cells inhibited by phenylacetylene
326	compared to the control ($p = 0.503$ and $p = 0.526$, for 4 and 8 μ M phenylacetylene, respectively),
327	indicating that phenylacetylene and NH ₃ do not compete for the same binding site. Inhibition of
328	N. europaea by 0.2 and 0.4 μM phenylacetylene reduced both the $K_{m(app)}$ and the $V_{max(app)}$ by
329	approximately 30 and 40%, respectively (Table 1). This is indicative of uncompetitive inhibition
330	and suggests that phenylacetylene binds to the AMO subsequent to NH ₃ binding and at a
331	different binding site.
332	Previously, acetylene was shown to be a competitive inhibitor of the archaeal AMO from
333	Nitrososphaera viennensis (48). To examine if acetylene interacts competitively with "Ca.
334	Nitrosocosmicus franklandus" AMO, the kinetic response of NH ₃ -dependent NO ₂ ⁻ production by
335	"Ca. Nitrosocosmicus franklandus" to 3 μ M acetylene was tested using the same experimental

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

Applied and Environmental

Microbiology

336

337 the total NH_4^+ availability reduced acetylene inhibition, demonstrating that acetylene and NH_3 compete for the same AMO binding site (Supplementary information Fig. S2). Additionally, the 338 339 $K_{m(app)}$ increased dramatically from 18.5 ± 2.9 μ M to 691.3 ± 158.1 μ M NH₄⁺ in the presence of 3 μ M acetylene, but there was no change in the V_{max(app)} (Supplementary information Table S2), 340 341 also demonstrating that acetylene interacts with the NH₃-binding site and decreases the affinity 342 of the AMO for NH₃. 343 Phenylacetylene was dissolved in 100% DMSO and all cell suspensions used in both the 344 phenylacetylene and acetylene experiments contained 0. 1% (v/v) DMSO. Therefore the addition 345 of 0.1% (v/v) DMSO on NH_3 oxidation kinetics was tested separately. DMSO had no effect on 346 kinetics parameters for NH₃ oxidation by "Ca. Nitrosocosmicus franklandus". For N. europaea, 347 the presence of 0.1% (v/v) DMSO reduced the K_{m(app)} and V_{max(app)} by approximately 10% (Supplementary information Table S1). 348 349 The effect of phenylacetylene on hydroxylamine oxidation by "Ca. Nitrosocosmicus franklandus" 350 351 Hydroxylamine is the product of NH₃ oxidation by both the archaeal and bacterial AMO and is subsequently oxidised to other intermediates in the NO_2 production pathway (65, 66). In 352 353 order to verify that the reduction in the rate of NO_2^- production by "*Ca*. Nitrosocosmicus 354 franklandus" was due to inhibition of NH3 oxidation, rather than the effects of downstream 355 enzymatic reactions, we investigated hydroxylamine oxidation by "Ca. Nitrosocosmicus 356 franklandus" in the presence of phenylacetylene. NO₂ production by "*Ca.* Nitrosocosmicus 357 franklandus" was unaffected by 100 µM phenylacetylene relative to the DMSO control 358 treatment, demonstrating that phenylacetylene is likely a specific inhibitor of the AMO from 16

design used to investigate phenylacetylene inhibition. In contrast to phenylacetylene, increasing

"*Ca.* Nitrosocosmicus franklandus" (Fig. 4). Hydroxylamine-dependent NO₂⁻ production
proceeded rapidly but ceased after 30 minutes when approximately 27 µM NO₂⁻ had
accumulated. A similar response was previously observed for the marine AOA *Nitrosopumilus*

362 *maritimus* SCM1 (65).

Recovery of AMO activity in "*Ca.* Nitrosocosmicus franklandus" following phenylacetylene inhibition

In order to establish whether phenylacetylene is a reversible or irreversible inhibitor of 365 AMO of "Ca. Nitrosocosmicus franklandus", the recovery of NH₃-oxidising activity after 366 367 exposure to phenylacetylene was investigated. Previous work has shown that in order to restore AMO activity following inhibition by an irreversible inhibitor, for example acetylene, cells need 368 369 to synthesize new AMO enzyme which results in a lag phase before activity resumes (42). "Ca. 370 Nitrosocosmicus franklandus" cells were inhibited overnight by 100 µM phenylacetylene in the 371 presence of 1 mM NH_4^+ . Since it was previously shown that inhibition by 1-octyne was 372 reversible in the AOA N. viennensis, in contrast to the irreversible action of acetylene (48), treatments with both 1-octyne and acetylene were included as controls. To ensure that the 373 374 inability of cells to respond to substrate addition (NH_4^+) was not due to the effects of starvation, controls incubated for a similar amount of time without either inhibitor or NH_4^+ were included 375 376 (starved cells). After the removal of the inhibitors by washing, cells were resuspended in NH_4^+ -377 replete medium. NO₂ production, the proxy for NH₃ oxidation, by "*Ca.* Nitrosocosmicus 378 franklandus" recovered immediately following removal of 1-octyne. Cells inhibited by either 379 acetylene or phenylacetylene had a 3 to 5-hour lag time before NO₂⁻ production began, 380 suggesting that cells required *de novo* synthesis of new AMO in order to oxidise NH₃ (Fig. 5). 381 The starved cells recovered at the same rate as the controls (data not shown).

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

Applied and Environmental

Microbioloav

38	Cycloheximide is a potent inhibitor of protein synthesis in eukaryotes (67) and might be
38	pected to have a similar effect in archaea. Previously, Vajrala et al., (68) demonstrated that it
38	hibited protein synthesis in the marine AOA, N. maritimus SCM1, preventing the recovery of
38	H ₃ -oxidising activity following inactivation of the AMO by acetylene. However, the same
38	ncentration range of cycloheximide did not prevent the recovery of NH ₃ -oxidising activity in
38	viennensis following AMO inactivation with acetylene (48). Here, we observed that after
38	mplete inhibition by 20 μ M acetylene, cycloheximide slowed, although it did not completely
38	event, recovery of NH ₃ -oxidising activity by "Ca. Nitrosocosmicus franklandus"
39	applementary information Fig. S3).

391 Discussion

392 The inhibition of AMO and pMMO by linear alkynes

393 Linear terminal alkynes have previously been shown to differentially inhibit archaeal and bacterial AMO activity (47, 48). In agreement with this, NH₃-dependent NO₂⁻ production by the 394 395 AOA strains "Ca. Nitrosocosmicus franklandus" and "Ca. Nitrosotalea sinensis" was considerably less sensitive to inhibition by longer-chain-length 1-alkynes ($\geq C_6$) compared to N. 396 397 europaea (Fig. 1). The linear 1-alkyne inhibition profile appears to be conserved across AOA 398 lineages with the overall trend of increased sensitivity to short-chain alkynes and reduced 399 sensitivity to longer-chain-length alkynes. This could indicate that, unlike the AMO from N. 400 europaea, the binding cavity of the archaeal AMO cannot orientate and activate larger linear 401 hydrocarbons such as 1-octyne, potentially due to steric hindrance caused by the bulkiness of 402 these substrates or inhibitors. Interestingly, inhibition of the AMO from "Ca. Nitrosocosmicus franklandus" by 1-octyne, when used at 200 µM, was reversible and recovery of NH₃-oxidising 403

scr	404	activity began immediately after removal of the inhibitor (Fig. 5). Similarly, Taylor et al., (48)
anu	405	showed the inhibition of AMO from <i>N. viennensis</i> by 1-octyne was also reversible.
Х Р	406	In contrast with AOA, NH ₃ oxidation by <i>N. europaea</i> was fully or partially inhibited by
pte	407	all C ₂ -C ₈ 1-alkynes, with full inhibition occurring in the presence of longer-chain-length alkyn
	408	$(\geq C_6)$. This is consistent with previous results published by Hyman <i>et al.</i> , (21) and Taylor <i>et al</i>
₹	409	(47) who found that long-chain-length 1-alkynes inhibited AMO of N. europaea more effective
	410	than short-chain 1-alkynes. Additionally, it was observed by Hyman et al., (21) that the
	411	effectiveness of <i>n</i> -alkynes as inhibitors of AMO from <i>N. europaea</i> inversely reflects the
	412	oxidation rate of <i>n</i> -alkanes of increasing chain length. For example, 1-octyne inactivates <i>N</i> .
ą	413	europaea AMO more rapidly and effectively than shorter-chain-length 1-alkynes, however, the
nmeni Y	414	corresponding alkane, 1-octane, is oxidised more slowly and yields less product compared to
Envirc biolog	415	short-chain alkanes (21).
lied and Microl	416	The pMMO has a narrower hydrocarbon substrate range compared to the AMO of N.
<u>o</u>		

406	In contrast with AOA, NH ₃ oxidation by <i>N. europaea</i> was fully or partially inhibited by
407	all C ₂ -C ₈ 1-alkynes, with full inhibition occurring in the presence of longer-chain-length alkynes
408	$(\geq C_6)$. This is consistent with previous results published by Hyman <i>et al.</i> , (21) and Taylor <i>et al.</i> ,
409	(47) who found that long-chain-length 1-alkynes inhibited AMO of <i>N. europaea</i> more effectively
410	than short-chain 1-alkynes. Additionally, it was observed by Hyman et al., (21) that the
411	effectiveness of <i>n</i> -alkynes as inhibitors of AMO from <i>N. europaea</i> inversely reflects the
412	oxidation rate of <i>n</i> -alkanes of increasing chain length. For example, 1-octyne inactivates <i>N</i> .
413	europaea AMO more rapidly and effectively than shorter-chain-length 1-alkynes, however, the
414	corresponding alkane, 1-octane, is oxidised more slowly and yields less product compared to
415	short-chain alkanes (21).
416	The pMMO has a narrower hydrocarbon substrate range compared to the AMO of N.
417	<i>europaea</i> but is capable of oxidising short-chain <i>n</i> -alkanes ($\leq C_5$) and alkenes ($\leq C_3$) to their
418	respective alcohols and epoxides (17). The specific site where hydrocarbon oxidation takes place
419	within the pMMO is unclear. Intriguingly, a hydrophobic cavity identified in proximity to the
420	predicted tricopper site in the PmoA from <i>M. capsulatus</i> (Bath) was shown to be of sufficient

421 size to accommodate hydrocarbons of up to five carbons in length (30, 69, 70). Correspondingly,

here we found that C_2 - C_5 alkynes inhibited the NH₃-oxidising activity of pMMO from M. 422

423 capsulatus (Bath) by more than 20%, reflecting the predicted size of this pMMO binding cavity (Fig. 1D). The inhibition of the pMMO by longer-chain alkynes (C₆-C₈) has not previously been 424 tested and we found that NH_3 oxidation by *M. capsulatus* (Bath) was marginally inhibited by C_6 425

19

AEM

Applied and Environmental Microbioloay 426 and C₇ alkynes, indicating that the pMMO can interact with longer-chain-length hydrocarbons
427 than those already known to be substrates.

The effectiveness of C_2 - C_8 linear 1-alkynes as inhibitors of NH₃ oxidation by the AOA strains used in this study and in previous studies (47, 48) indicates that the archaeal AMO has a narrower hydrocarbon substrate range compared to the AMO of *N. europaea*. Furthermore, in terms of the 1-alkyne inhibition profile, the AMO of "*Ca*. Nitrosocosmicus franklandus" and "*Ca*. Nitrosotalea sinensis" more closely resembles the pMMO from *M. capsulatus* (Bath) than the AMO of *N. europaea*. It could therefore be anticipated that the archaeal AMO oxidises a similar range of linear *n*-alkanes and alkenes to that oxidised by the pMMO (Fig. 1).

435 Based on the diversity of archaeal AMO sequences (7), it is very likely that variation 436 exists between the structure and stereoselectivity of the AMO active site from different AOA strains. Previously, Taylor et al., (47, 48) observed differences in the sensitivity of N. maritimus, 437 438 N. viennensis and Nitrososphaera gargensis to inhibition by 1-hexyne (C_6) and 1-heptyne (C_7). 439 In this study, we did not observe significant inhibition of archaeal AMO activity by 1-heptyne, although the AMO from "Ca. Nitrosotalea sinensis" was notably more sensitive to inhibition by 440 C2-C5 1-alkynes compared to AMO from "Ca. Nitrosocosmicus franklandus". Additionally, 1-441 hexyne had a significant inhibitory effect on NO_2^- production by "Ca. Nitrosotalea sinensis" but 442 443 not by "Ca. Nitrosocosmicus franklandus" (Fig. 1A and B).

A considerable amount of research has focused on determining the environmental drivers influencing AOA and AOB ecology and their relative contribution to nitrification. Environmental factors, including substrate availability, pH, O₂ availability and temperature, have been suggested to influence the ecological niche differentiation of ammonia oxidisers and to control ammonia oxidation rates in distinct ecosystems. The resistance of "*Ca*. Nitrosocosmicus Applied and Environmental

franklandus" and "*Ca*. Nitrosotalea sinensis" to inhibition by 1-octyne (C_8) further justifies the use of 1-octyne to distinguish between AOA and AOB nitrifying activity in soils and to reveal the environmental factors influencing niche differentiation (49-51). Determining patterns in the distribution of AOA and AOB in the environment could improve land and water management to mitigate negative impacts associated with nitrification.

454

455 The inhibition of AMO by phenylacetylene

456 Evidence from field studies indicated that phenylacetylene inhibited nitrification activity

457 by AOA (53). Here, we examined phenylacetylene inhibition in pure culture with the terrestrial

458 AOA strain "Ca. Nitrosocosmicus franklandus". Our data show that in "Ca. Nitrosocosmicus

459 franklandus", phenylacetylene is a specific inhibitor of AMO, as it had no effect on

460 hydroxylamine-dependent NO₂⁻ production (Fig. 4). Kinetic analysis suggested that

461 phenylacetylene does not compete with NH₃ for the same AMO binding site, since increasing the

462 native substrate (NH_4^+) concentration did not protect against inhibition (Fig. 3A). In contrast,

463 higher concentrations of NH_4^+ did provide a protective effect when "*Ca*. Nitrosocosmicus

464 franklandus" was incubated with acetylene, indicating acetylene and NH₃ compete for the same

- 465 binding site (Supplementary information Fig. S2). The recovery of AMO activity following
- 466 complete inhibition by phenylacetylene incorporated a significant lag phase, similar to that
- 467 observed for acetylene, suggesting that inhibition by these alkynes was irreversible, and that cells
- 468 required *de novo* protein synthesis of new AMO to re-establish NH_4^+ -oxidising activity (Fig. 5).
- 469 Irreversible inhibition could indicate that the binding cavity of the AMO from "Ca.
- 470 Nitrosocosmicus franklandus" is large enough to enable the orientation and subsequent activation
- 471 of phenylacetylene, and that phenylacetylene and acetylene essentially both act as suicide

Applied and Environ<u>mental</u>

Microbioloav

472 substrates. Curiously though, our data suggest that phenylacetylene does not interact with the 473 same binding site on the AMO as NH₃ and acetylene.

474 Phenylacetylene is an irreversible inhibitor of AMO from N. europaea (41, 46). Here we demonstrate that phenylacetylene does not compete with NH₃ for the same binding site (Fig. 3B). 475 476 It has been proposed that the AMO from *N. europaea* may contain two distinct binding sites, one that specifically binds NH₃ and hydrocarbons $\leq C_3$ and a second that binds larger hydrocarbons, 477 478 with oxidation occurring at either site (23, 45). Alternatively, different hydrocarbons might be able to access the active site of the AMO from two different directions (45). pMMO-expressing 479 480 methanotrophs also exhibit complicated inhibition patterns when exposed to multiple 481 hydrocarbon substrates. For example, dichloromethane acted as a competitive inhibitor of 482 methane oxidation by Methylosinus trichosporium OB3b, but trichloromethane was best 483 described as a noncompetitive inhibitor, suggesting the existence of at least two substrate binding sites (20). Although the location and nuclearity of the active site for methane oxidation is still 484 485 under debate, it is generally accepted that the pMMO contains multiple metal-binding sites, or 486 potential active sites, and therefore it is possible that different hydrocarbons are oxidised at 487 distinct sites on the pMMO. The non-competitive nature of phenylacetylene inhibition, with respect to NH₃, of the AMO from "Ca. Nitrosocosmicus franklandus" provides early indications 488 489 that distinct binding sites may be present on the archaeal AMO, or that there are two separate 490 routes by which substrates can access the archaeal AMO active site. 491 Kinetic analysis of phenylacetylene inhibition of AMO of "Ca. Nitrosocosmicus

- 492 franklandus" and N. europaea revealed that phenylacetylene most likely interacts with the AMOs
- 493 via distinct mechanisms. Specifically, phenylacetylene inhibition of AMO from N. europaea had
- 494 characteristics of uncompetitive inhibition, where both the $K_{m(app)}$ and $V_{max(app)}$ decreased with

Microbiology

increasing concentrations of phenylacetylene, indicating that the inhibitor only has affinity for
the enzyme-substrate complex. Potentially, the binding of NH₃ induces a structural change in the
AMO binding cavity, enabling phenylacetylene to bind at a putative secondary (non-NH₃) site.
Phenylacetylene inhibition of the AMO from "*Ca*. Nitrosocosmicus franklandus" did not show
the same characteristics as in *N. europaea* (Table 1), demonstrating that the interaction between
phenylacetylene and the active site differed between the distinct AMO types.

501 Both AMO- and pMMO-expressing microorganisms have received interest for their 502 potential use in bioremediation due to their capability to co-oxidize persistent organic pollutants 503 such as halogenated alkanes and alkenes and chlorinated hydrocarbons (71, 72). Unlike the 504 bacterial AMO, the oxidation of aromatic compounds has not been observed by the pMMO (17, 505 21, 45, and 56). Lontoh et al., (54) showed that pMMO from M. capsulatus (Bath) and several 506 other strains of methanotrophs were relatively resistant to phenylacetylene inhibition, with whole-cell pMMO activity still present at 1 mM phenylacetylene. It is possible that aromatic 507 508 compounds are simply too bulky to gain access to or be orientated at the pMMO active site (69). 509 Although N. europaea appears to lack the ability to completely mineralise aromatic pollutants, it 510 may initiate degradation of aromatic compounds and provide oxidation products that can be transformed by other microorganisms (24). There is evidence that the archaeal AMO, unlike the 511 512 pMMO, is capable of transforming aromatic compounds. Recently, Men et al., (73) demonstrated 513 that the AOA strain N. gargensis was capable of co-metabolising two tertiary amines, mianserin 514 and ranitidine, with the initial oxidative reaction most likely carried out by the AMO. Given that 515 AOA have a significantly higher substrate affinity than AOB (74), AOA might be more effective 516 in the biotransformation of some organic pollutants.

AEM

Applied and Environmental Microbiology

517	This research offers new insights into the structure and substrate range of AMO from
518	archaea using alkyne inhibitors, in comparison with other members of the CuMMO family.
519	Future studies should investigate the inhibition and subsequent co-oxidation of potential archaeal
520	AMO substrates. Examining alternative substrate reactions and products could provide
521	information about archaeal AMO stereoselectivity, advance our understanding of the enzyme
522	structure and improve predicted structural models for archaeal AMO.
523	
524	Acknowledgements
525	L.E.L-M is funded by a Royal Society Dorothy Hodgkin Research Fellowship (DH150187).
526	C.L.W is funded by a University of East Anglia funded PhD studentship. A.S is funded by a
527	Royal Society Dorothy Hodgkin Fellowship Enhancement Award (RGF\EA\180300). A.T.C is
528	funded by a Leverhulme Trust Early Career Fellowship (ECF-2016-626).
529	We thank Dr Tom Clarke for valuable discussion on the analysis of the kinetics data.
530	
531	References
532	1. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N,
533	Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T,
534	Bendinger B, Nielsen PH, Wagner M. 2015. Complete nitrification by Nitrospira
535	bacteria. Nature 528:504-509.
536	2. Van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten
537	MS, Lücker S. 2015. Complete nitrification by a single microorganism. Nature 528:555-
538	559.
	24

539	3.	Lehtovirta-Morley LE. 2018. Ammonia oxidation: Ecology, physiology, biochemistry
540		and why they must all come together. FEMS Microbiol Lett 365:fny058.
541	4.	Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC,
542		Schleper C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils.
543		Nature 442:806-809.
544	5.	Wuchter C, Abbas B, Coolen MJ, Herfort L, van Bleijswijk J, Timmers P, Strous M,
545		Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damsté JS. 2006. Archaeal
546		nitrification in the ocean. Proc Natl Acad Sci USA 103:12317-12322.
547	6.	Francis CA, Beman JM, Kuypers MM. 2007. New processes and players in the nitrogen
548		cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19-
549		27.
550	7.	Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. 2018. Unifying the global
551		phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA
552		genes. Nat Commu 9:1517.
553	8.	Lawton TJ, Ham J, Sun T, Rosenzweig AC. 2014. Structural conservation of the B
554		subunit in the ammonia monooxygenase/particulate methane monooxygenase
555		superfamily. Proteins 82:2263-2267.
556	9.	Lancaster KM, Caranto JD, Majer SH, Smith MA. 2018. Alternative bioenergy: updates
557		to and challenges in nitrification metalloenzymology. Joule 2:421-441.
558	10.	Holmes AJ, Costello A, Lidstrom ME, Murrell JC. 1995. Evidence that participate
559		methane monooxygenase and ammonia monooxygenase may be evolutionarily related.
560		FEMS Microbiol Lett 132:203-208.
561	11.	Pester M, Schleper C, Wagner M. 2011. The Thaumarchaeota: an emerging view of their
562		phylogeny and ecophysiology. Curr Opin Microbiol 14:300-306.
		25

AEM

563

564	4 212:31-37.
56	5 13. Ward BB. 1987. Kinetic studies on ammonia and methane oxidation by <i>Nitrosococcus</i>
56	6 oceanus. Arch Microbiol 147:126-133.
56	14. Dalton H. 1977. Ammonia oxidation by the methane oxidising bacterium <i>Methylococcus</i>
56	8 <i>capsulatus</i> strain Bath. <i>Arch Microbiol</i> 114:273-279.
56	9 15. O'neill JG, Wilkinson JF. 1977. Oxidation of ammonia by methane-oxidizing bacteria
57	and the effects of ammonia on methane oxidation. <i>J Gen Microbiol</i> 100:407-412.
57	1 16. Nyerges G, Stein LY. 2009. Ammonia cometabolism and product inhibition vary
572	2 considerably among species of methanotrophic bacteria. <i>FEMS Microbiol Lett</i> 297:131-
573	3 136.
574	4 17. Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble
57	5 and particulate methane mono-oxygenases of <i>Methylosinus trichosporium</i> OB3b. <i>J Gen</i>
57	6 <i>Microbiol</i> 130:3327-3333.
57	18. Bédard C, Knowles R. 1989. Physiology, biochemistry, and specific inhibitors of CH ₄ ,
578	NH_4^+ , and CO oxidation by methanotrophs and nitrifiers. <i>Microbiol Mol Biol Rev</i> 53:68-
579	9 84.
58	0 19. Miyaji A, Miyoshi T, Motokura K, Baba T. 2011. The substrate binding cavity of
58	1 particulate methane monooxygenase from <i>Methylosinus trichosporium</i> OB3b expresses
58	2 high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol. <i>Biotechnol Let</i>
58	3 33:2241.
584	4 20. Lontoh S, DiSpirito AA, Semrau JD. (1999). Dichloromethane and trichloroethylene
58	5 inhibition of methane oxidation by the membrane-associated methane monooxygenase of
58	6 <i>Methylosinus trichosporium</i> OB3b. <i>Arch Microbiol</i> 171:301-308.
	26

12. Hyman MR, Wood PM. 1983. Methane oxidation by Nitrosomonas europaea. Biochem J

587	21. Hyman MR, Murton IB, Arp DJ. 1988. Interaction of ammonia monooxygenase from
588	Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl Environ Microbiol
589	54:3187-3190.
590	22. Rasche ME, Hyman MR, Arp DJ. 1991. Factors limiting aliphatic chlorocarbon
591	degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia
592	monooxygenase and substrate specificity. Appl Environ Microbiol 57:2986-2994.
593	23. Keener WK, Arp DJ. 1993. Kinetic studies of ammonia monooxygenase inhibition in
594	Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized
595	whole-cell assay. Appl Environ Microbiol 59:2501-2510.
596	24. Keener WK, Arp DJ. 1994. Transformations of aromatic compounds by Nitrosomonas
597	europaea. Appl Environ Microbiol 60:1914-1920.
598	25. Hyman MR, Kim CY, Arp DJ. 1990. Inhibition of ammonia monooxygenase in
599	Nitrosomonas europaea by carbon disulfide. J Bacteriol 172:4775-4782.
600	26. Juliette LY, Hyman MR, Arp DJ. 1993. Inhibition of ammonia oxidation in
601	Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by
602	ammonia monooxygenase. Appl Environ Microbiol 59:3718-3727.
603	27. Lieberman RL, Rosenzweig AC. 2005. Crystal structure of a membrane-bound
604	metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177-182.
605	28. Walker CB, De La Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet
606	C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hügler M, Karr EA, Könneke M, Shin M,
607	Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM,
608	Rosenzweig AC, Manning G, Stahl DA. 2010. Nitrosopumilus maritimus genome reveals
609	unique mechanisms for nitrification and autotrophy in globally distributed marine
610	crenarchaea. Proc Natl Acad Sci 107:8818-8823.
	27

611	29. Martinho M, Choi DW, DiSpirito AA, Antholine WE, Semrau JD, Münck E. 2007.
612	Mössbauer studies of the membrane-associated methane monooxygenase from
613	Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc 129:15783-
614	15785.
615	30. Chan SI, Yu SSF. 2008. Controlled oxidation of hydrocarbons by the membrane-bound
616	methane monooxygenase: The case for a tricopper cluster. Acc Chem Res 41:969-979.
617	31. Cao L, Caldararu O, Rosenzweig AC, Ryde U. 2018. Quantum refinement does not
618	support dinuclear copper sites in crystal structures of particulate methane
619	monooxygenase. Angew Chem Int Ed Engl 57:162-166.
620	32. Lu YJ, Hung MC, Chang BTA, Lee TL, Lin ZH, Tsai IK, Chen YS, Chang CS, Tsai YF,
621	Chen KHC, Chan SI. 2019. The PmoB subunit of particulate methane monooxygenase
622	(pMMO) in Methylococcus capsulatus (Bath): The CuI sponge and its function. J Inorg
623	Biochem 196:110691.
624	33. Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, Mayo SL,
625	Rosenzweig AC, Hoffman BM. 2019. Particulate methane monooxygenase contains only
626	mononuclear copper centers. Science 364:566-570.
627	34. Ro SY, Schachner LF, Koo CW, Purohit R, Remis JP, Kenney GE, Liauw BW, Thomas
628	PM, Patrie SM, Kelleher NL, Rosenzweig AC. 2019. Native top-down mass spectrometry
629	provides insights into the copper centers of membrane-bound methane
630	monooxygenase. Nature Commun 10:2675
631	35. Hooper AB, Terry KR. 1973. Specific inhibitors of ammonia oxidation in Nitrosomonas.
632	J Bacteriol 115:480-485.

633	36. Taylor AE, Zeglin LH, Dooley S, Myrold DD, Bottomley PJ. 2010. Evidence for
634	different contributions of archaea and bacteria to the ammonia-oxidizing potential of
635	diverse Oregon soils. Appl Environ Microbiol 76:7691-7698.
636	37. Lehtovirta-Morley LE, Verhamme DT, Nicol GW, Prosser JI. 2013. Effect of nitrification
637	inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil
638	Biol and Biochem 62:129-133.
639	38. Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. 2013. Responses of the terrestrial
640	ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing
641	bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett
642	344:121-129.
643	39. Hynes RK, Knowles R. 1982. Effect of acetylene on autotrophic and heterotrophic
644	nitrification. Can J Microbiol 28:334-340.
645	40. Prior SD, Dalton H. 1985. Acetylene as a suicide substrate and active site probe for
646	methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol Lett
647	29:105-109.
648	41. Hyman MR, Wood PM. 1985. Suicidal inactivation and labelling of ammonia mono-
649	oxygenase by acetylene. Biochem J 227:719-725.
650	42. Hyman MR, Arp DJ. 1992. ¹⁴ C ₂ H ₂ -and ¹⁴ CO ₂ -labeling studies of the <i>de novo</i> synthesis of
651	polypeptides by Nitrosomonas europaea during recovery from acetylene and light
652	inactivation of ammonia monooxygenase. J Biol Chem 267:1534-1545.
653	43. McTavish HJ, Fuchs JA, Hooper AB. 1993. Sequence of the gene coding for ammonia
654	monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436-2444.

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

655	44. Gilch S, Vogel M, Lorenz MW, Meyer O, Schmidt I. 2009. Interaction of the
656	mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas
657	europaea. Microbiol 155:279-284.
658	45. Keener WK, Russell SA, Arp DJ. 1998. Kinetic characterization of the inactivation of
659	ammonia monooxygenase in Nitrosomonas europaea by alkyne, aniline and
660	cyclopropane derivatives. Biochim Biophys Acta 1388:373-385.
661	46. Bennett K, Sadler NC, Wright AT, Yeager C, Hyman MR. 2016 Activity-based protein
662	profiling of ammonia monooxygenase in Nitrosomonas europaea. Appl Environ
663	Microbiol 82:2270–2279.
664	47. Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ, Myrold DD, Sayavedra-Soto
665	L, Bottomley PJ. 2013. Use of aliphatic n-alkynes to discriminate soil nitrification
666	activities of ammonia-oxidizing thaumarchaea and bacteria. Appl Environ Microbiol
667	79:6544-6551.
668	48. Taylor AE, Taylor K, Tennigkeit B, Palatinszky M, Stieglmeier M, Myrold DD, Schleper
669	C, Wagner M, Bottomley PJ. 2015. Inhibitory effects of C2 to C10 1-alkynes on
670	ammonia oxidation in two Nitrososphaera species. Appl Environ Microbiol 81:1942-
671	1948.
672	49. Lu X, Bottomley PJ, Myrold DD. 2015. Contributions of ammonia-oxidizing archaea and
673	bacteria to nitrification in Oregon forest soils. Soil Biol Biochem 85:54-62.
674	50. Taylor AE, Giguere AT, Zoebelein CM, Myrold DD, Bottomley PJ. 2017. Modeling of
675	soil nitrification responses to temperature reveals thermodynamic differences between
676	ammonia-oxidizing activity of archaea and bacteria. ISME J 11:896-908.

AEM

677

678	ammonia oxidation from nitrite oxidation: impact upon nitrous oxide production in non-
679	cropped Oregon soils. Soil Biol Biochem 104:30-38.
680	52. Hink L, Nicol GW, Prosser JI. 2017. Archaea produce lower yields of N ₂ O than bacteria
681	during aerobic ammonia oxidation in soil. Environ Microbiol 19:4829-4837.
682	53. Im J, Lee SW, Bodrossy L, Barcelona MJ, Semrau JD. 2011. Field application of
683	nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover
684	soils: effects on microbial community structure. Appl Microbiol Biotechnol 89:189-200.
685	54. Lontoh S, DiSpirito AA, Krema CL, Whittaker MR, Hooper AB, Semrau JD. 2000.
686	Differential inhibition in vivo of ammonia monooxygenase, soluble methane
687	monooxygenase and membrane-associated methane monooxygenase by phenylacetylene
688	Environ Microbiol 2:485-494.
689	55. Vannelli T, Hooper AB. 1995. NIH shift in the hydroxylation of aromatic compounds by
690	the ammonia-oxidizing bacterium Nitrosomonas europaea. Evidence against an arene
691	oxide intermediate. Biochem 34:11743-11749.
692	56. Colby J, Stirling DI, Dalton, H. 1977. The soluble methane mono-oxygenase of
693	Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers,
694	and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395-402.
695	57. Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG.
696	2011. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide
697	production in methanotrophic bacteria. FEMS Microbiol Lett 322:82-89.
698	58. Suzuki I, Dular U, Kwok SC. 1974. Ammonia or ammonium ion as substrate for
699	oxidation by Nitrosomonas europaea cells and extracts. J Bacteriol 120:556-558.

51. Giguere AT, Taylor AE, Suwa Y, Myrold DD, Bottomley PJ. 2017. Uncoupling of

AEM

700

701	Nicol GW. 2016. Identifying potential mechanisms enabling acidophily in the ammonia-
702	oxidizing archaeon "Candidatus Nitrosotalea devanaterra". Appl Environ Microbiol
703	82:2608-2619.
704	60. Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW, Prosser JI. 2014.
705	Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition
706	and stimulation by organic compounds. FEMS Microbiol Ecol 89:542-552.
707	61. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI,
708	Nicol GW. 2016. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel
709	ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration.
710	FEMS Microbiol Ecol 92: fiw057.
711	62. Skinner FA, Walker N. 1961. Growth of Nitrosomonas europaea in batch and continuous
712	culture. Arch Mikrobiol 38:339-349.
713	63. Brusseau GA, Tsien HC, Hanson RS, Wackett LP. 1990. Optimization of
714	trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to
715	detect soluble methane monooxygenase activity. Biodegrad 1:19-29.
716	64. Sander R. 2015. Compilation of Henry's law constants (version 4.0) for water as solvent.
717	Atmos Chem Phys 15:4399-4981.
718	65. Vajrala N, Martens-Habbena W, Sayavedra-Soto LA, Schauer A, Bottomley PJ, Stahl
719	DA, Arp DJ. 2013. Hydroxylamine as an intermediate in ammonia oxidation by globally
720	abundant marine archaea. Proc Natl Acad Sci 110:1006-1011.
721	66. Caranto JD, Lancaster KM. 2017. Nitric oxide is an obligate bacterial nitrification
722	intermediate produced by hydroxylamine oxidoreductase. Proc Natl Acad Sci 114:8217-
723	8222.

59. Lehtovirta-Morley LE, Sayavedra-Soto LA, Gallois N, Schouten S, Stein LY, Prosser JI,

AEM

724

725	<i>Nature</i> 200:675.
726	68. Vajrala N, Bottomley PJ, Stahl DA, Arp DJ, Sayavedra-Soto LA. 2014. Cycloheximide
727	prevents the <i>de novo</i> polypeptide synthesis required to recover from acetylene inhibition
728	in Nitrosopumilus maritimus. FEMS Microbiol Ecol 88:495-502.
729	69. Ng KY, Tu LC, Wang YS, Chan SI, Yu SSF. 2008. Probing the hydrophobic pocket of
730	the active site in the particulate methane monooxygenase (pMMO) from Methylococcus
731	capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin
732	epoxidation. ChemBioChem 9:1116-1123.
733	70. Culpepper MA, Rosenzweig AC. 2012. Architecture and active site of particulate
734	methane monooxygenase. Crit Rev Biochem Mol Biol 47:483-492.
735	71. Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME. 2010. Nitrification
736	and degradation of halogenated hydrocarbons-a tenuous balance for ammonia-oxidizing
737	bacteria. Appl Microbiology and Biotechnol 86:435-444.
738	72. Semrau J. 2011. Bioremediation via methanotrophy: overview of recent findings and
739	suggestions for future research. Front Microbiol 2:209.
740	73. Men Y, Han P, Helbling DE, Jehmlich N, Herbold C, Gulde R, Onnis-Hayden A, Gu AZ,
741	Johnson DR, Wagner M, Fenner K. 2016. Biotransformation of two pharmaceuticals by
742	the ammonia-oxidizing archaeon Nitrososphaera gargensis. Environ Sci Technol
743	50:4682-4692.
744	74. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. 2009. Ammonia
745	oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature
746	461:976-979.
747	

67. Siegel MR, Sisler HD. 1963. Inhibition of protein synthesis in vitro by cycloheximide.

- 748 **Table 1.** Kinetics of NH₃-dependent NO₂⁻ production by "*Ca.* Nitrosocosmicus franklandus" and
- *N. europaea* in the presence of phenylacetylene. SE of three replicates are in parentheses (n=3).
- For $0 \mu M$ phenylacetylene, SE is from two independent experiments (n=6).

Strain	Phenylacetylene (µM)	K _{m(app)} (μΜ)	V _{max(app)} (nmol mg prot ⁻¹ min ⁻¹)
"Ca. Nitrosocosmicus franklandus"	0	26.7 (4.7)	64.1 (2.6)
	4	30.3 (8.3)	33.8 (2.2)
	8	22.9 (3.2)	20.1 (0.5)
N. europaea	0	520.3 (19.6)	324.4 (3.7)
	0.2	375.3 (17.4)	240.7 (2.7)
	0.4	318.4 (13.8)	188.7 (2.0)

752

753

754

755

756

757

758

759

Applied and Environmental Microbiology

760	FIG 1 Inhibition of NO_2^- production by " <i>Ca</i> . Nitrosocosmicus franklandus" (A), " <i>Ca</i> .
761	Nitrosotalea sinensis" (B), N. europaea (C) and M. capsulatus (Bath) (D) in response to $10 \ \mu M$
762	(C_{aq}) C ₂ - C ₈ 1-alkynes. <i>N. europaea, "Ca.</i> Nitrosocosmicus franklandus" and "Ca. Nitrosotalea
763	sinensis" were incubated with 1 mM NH_4^+ and <i>M. capsulatus</i> (Bath) with 20 mM NH_4^+ . Error
764	bars represent standard error (SE) of the mean ($n = 3$). * Indicates 1-alkyne treatments that
765	significantly inhibited NO ₂ ⁻ production relative to the control treatment ($p < 0.01$).
766	FIG 2 NO_2^- production by " <i>Ca</i> . Nitrosocosmicus franklandus" (A) and <i>N. europaea</i> (B) in
767	response to different concentrations of phenylacetylene (PA) dissolved in DMSO. Error bars
768	representing SE are included but usually smaller than markers $(n = 3)$.
769	FIG 3 Michaelis-Menten hyperbolic plot showing the initial rate of NO_2^- production by " <i>Ca</i> .
770	Nitrosocosmicus franklandus" (A) and N. europaea (B) to phenylacetylene (PA) dissolved in
771	DMSO as a function of NH_4^+ concentration. The x-axis is the substrate (NH_4^+) concentration and
772	the y-axis is the initial rate of NO_2^- production. Inhibition was not overcome by increasing
773	concentration of NH_4^+ , indicating that phenylacetylene and NH_3 do not compete for the same
774	binding site. Error bars represent SE $(n = 3)$.
775	FIG 4 NO_2^- production from hydroxylamine oxidation by " <i>Ca</i> . Nitrosocosmicus franklandus" in
776	the presence or absence of 100 μ M phenylacetylene (PA) dissolved in DMSO. Error bars
777	represent SE $(n = 3)$.
778	FIG 5 Time course recovery of NO_2^- production by " <i>Ca</i> . Nitrosocosmicus franklandus"
779	following overnight inhibition of NH_3 oxidation by phenylacetylene (100 μ M), acetylene (20
780	μ M) and 1-octyne (200 μ M). Error bars represent SE (n = 3).

Downloaded from http://aem.asm.org/ on March 2, 2020 at University of East Anglia

Linear 1-alkyne

Figure 2

Figure 3

Applied and Environmental Microbiology

Figure 5

