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In random-effects meta-analysis the between-study variance (τ2) has a key role

in assessing heterogeneity of study-level estimates and combining them to esti-

mate an overall effect. For odds ratios the most common methods suffer from

bias in estimating τ2 and the overall effect and produce confidence intervals

with below-nominal coverage. An improved approximation to the moments of

Cochran's Q statistic, suggested by Kulinskaya and Dollinger (KD), yields new

point and interval estimators of τ2 and of the overall log-odds-ratio. Another,

simpler approach (SSW) uses weights based only on study-level sample sizes to

estimate the overall effect. In extensive simulations we compare our proposed

estimators with established point and interval estimators for τ2 and point and

interval estimators for the overall log-odds-ratio (including the Hartung-

Knapp-Sidik-Jonkman interval). Additional simulations included three estima-

tors based on generalized linear mixed models and the Mantel-Haenszel fixed-

effect estimator. Results of our simulations show that no single point estimator

of τ2 can be recommended exclusively, but Mandel-Paule and KD provide bet-

ter choices for small and large numbers of studies, respectively. The KD esti-

mator provides reliable coverage of τ2. Inverse-variance-weighted estimators of

the overall effect are substantially biased, as are the Mantel-Haenszel odds

ratio and the estimators from the generalized linear mixed models. The SSW

estimator of the overall effect and a related confidence interval provide reliable

point and interval estimation of the overall log-odds-ratio.
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1 | INTRODUCTION

Meta-analysis is broadly used for combining estimates of
a measure of effect from a set of studies in order to esti-
mate an overall (pooled) effect. In studies with binary
individual-level outcomes, the most common measure of
treatment effect is the odds ratio.1 Our primary interest

lies in meta-analysis of odds ratios. The actual measure of
effect is the logarithm of the odds ratio (LOR), and the
summary data are the numbers of subjects and the num-
bers of events in the two arms of each study, from which
the usual analysis calculates the logarithm of each study's
sample odds ratio and the large-sample estimate of its
variance. A fixed-effect (or common-effect) model (FEM)
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assumes that the studies share a single true effect. It is usu-
ally more likely that the true study-level effects differ. A
random-effects model (REM) describes that variation via a
distribution, whose mean serves as the overall effect and
whose variance summarizes the heterogeneity of the true
study-level effects. Higgins et al2 point out, “This variance
explicitly describes the extent of the heterogeneity and has
a crucial role in assessing the degree of consistency of
effects across studies, which is an element of random-effects
meta-analysis that often receives too little attention.”

We focus mainly on two-stage approaches, which first
calculate the studies' log-odds-ratios (and their estimated
variances) and then combine those estimates; but we
include, for limited comparisons, some one-stage
approaches, which use the studies' numbers of events and
subjects (eg, in a binomial likelihood) and avoid calculat-
ing the sample log-odds-ratios. To estimate the overall
effect, the most common methods use a weighted average
of the study-level estimates in which the weight for a
study's estimate is the reciprocal of an estimate of its vari-
ance. Under the REM such inverse-variance weights com-
bine the variance of the study-level estimate and the
variance of the distribution of true study-level effects (τ2).
Thus, they require an estimate of the between-study vari-
ance. Most of the common inverse-variance-weighted
methods estimate τ2 by using the theoretical moments of
Cochran's Q or its generalization. However, Kulinskaya
and Dollinger3 and van Aert et al4 have shown that, for
log-odds-ratio, the distributions assumed for those theoret-
ical moments are incorrect. As a result, the moment-based
point estimators of τ2 are biased, and the interval estima-
tors have coverage below the intended 95% level. Also, in
combination with inverse-variance weighting, the depar-
tures from assumptions lead to biased point estimation of
the overall effect and undercoverage of the associated con-
fidence intervals (CIs). Therefore, for estimating between-
study variance, we propose new point and interval estima-
tors based on an improved approximation to the moments
of Cochran's Q statistic, suggested by Kulinskaya and Doll-
inger.3 For the overall effect, we propose a weighted aver-
age in which the weights depend only on the effective
sample sizes.

We use simulation to compare bias of our proposed
point estimator of τ2 with that of three previous moment-
based estimators (the popular estimators of DerSimonian
and Laird5 and Mandel and Paule6 and the less-familiar
estimator of Jackson7) and the restricted-maximum-
likelihood estimator, and also to compare coverage of our
proposed interval estimator of τ2 with that of four previous
estimators (profile likelihood,8 the Q-profile [QP] interval,9

and the generalized QP intervals of Biggerstaff and
Jackson10 and Jackson7). We also compare bias and cover-
age of our proposed point estimator of the overall effect

Highlights

What is already known?

In combining estimates from studies that had a
binary individual-level outcome, the most com-
mon methods of meta-analysis use a weighted
average of the studies' odds ratios (on the logarith-
mic scale), under a random-effects model; but their
required estimators of the between-study or het-
erogeneity variance suffer from bias and below-
nominal coverage, and produce bias and under-
coverage in estimates of the overall log-odds-ratio.

What is new?

Our extensive simulations confirm that the usual
methods of meta-analysis produce biased esti-
mates of the overall effect and confidence inter-
vals whose coverage is too low. Estimates of
heterogeneity variance have similar shortcom-
ings. Small sample sizes are rather problematic,
and meta-analyses that involve numerous small
studies are especially challenging.

• For estimating between-study variance, a new
method (KD), based on an improved approxi-
mation to the null distribution of Cochran's Q,
provides reliable interval estimates. The KD
point estimator is inferior to another estimator
(Mandel-Paule) when the number of studies is
small, but is better otherwise.

• A new, pragmatic point estimator of the overall
effect (SSW) uses a weighted average in which a
study's weight is proportional to its effective sam-
ple size. It has less bias than the popular inverse-
variance-weighted estimators and three estimators
obtained from generalized linear mixed models.

• The best interval estimator of the overall log-
odds-ratio is centered on SSW and bases its
endpoints on a t distribution and the KD point
estimator of the between-study variance.

Potential impact for RSM readers outside
the authors' field

• The methods in common use for random-
effects meta-analysis of odds ratios can advan-
tageously be replaced by the new estimators,
which have better performance.

• Meta-analysis software should include the new
estimators.
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and a companion interval estimator with those of the
related inverse-variance-based estimators. We extend the
comparisons by including point estimators of τ2 and point
and interval estimators of the overall effect obtained from
logistic linear mixed-effects models, and also the Mantel-
Haenszel estimator of the odds ratio.

Section 2 reviews estimation of study-level log-odds-
ratio and Section 3 briefly reviews REMs. Section 4
discusses previous point and interval estimators of
between-study variance and introduces the proposed
Kulinskaya-Dollinger method. Section 5 describes the
corresponding point and interval estimators of the overall
effect. Section 6 presents our simulation study and sum-
marizes its results. In Section 7, we apply the various
methods to data on the effect of diuretics on pre-eclamp-
sia. Section 8 offers a concluding summary.

The Supporting Information (Data S1) reviews the
logistic linear mixed-effects models, tabulates the
methods studied in our simulations, discusses the proper-
ties of the M-H estimator under the REM, presents the
results of the additional simulations that included the
logistic linear mixed-effects estimators and the M-H esti-
mator, and lists our R programs for calculating the pro-
posed estimators.

2 | ESTIMATION OF STUDY-
LEVEL LOG-ODDS-RATIO

Consider K studies that used a particular individual-level
binary outcome. Each study i reports a pair of indepen-
dent binomial variables, XiT and XiC, the numbers of
events in niT subjects in the Treatment arm ( j = T) and
niC subjects in the Control arm ( j = C); for i = 1, …, K:

XiT �Binom niT ,piTð Þ and XiC �Binom niC,piCð Þ: ð2:1Þ

The log-odds-ratio for Study i is:

θi = loge
piT 1−piCð Þ
piC 1−piTð Þ

� �
estimated by θ̂i = loge

p̂iT 1− p̂iCð Þ
p̂iC 1− p̂iTð Þ

� �
:

ð2:2Þ

The large-sample estimate of the variance of θ̂i , derived
by the delta method, is:

σ̂2i =dVar θ̂i
� �

=
1

niTp̂iT 1− p̂iTð Þ +
1

niCp̂iC 1− p̂iCð Þ ð2:3Þ

(in finite samples Var θ̂i
� �

is not finite). Evaluation of θ̂i
and σ̂2i requires the estimates p̂ij . The usual (and
maximum-likelihood) estimate of pij is p̂ij = xij=nij , but an
adjustment is necessary when either of the observed

counts xij is 0 or nij (ie, when the 2× 2 table for Study
i contains a 0 cell). The standard approach adds 1/2 to
xiT, niT− xiT, xiC, and niC− xiC when the 2× 2 table con-
tains exactly one 0 cell, and it omits Study i when the
2× 2 table contains two 0 cells. An alternative approach
always adds a (>0) to all four cells of the 2× 2 table for
each of the K studies; that is, it estimates pij by
p̂ij að Þ= xij + a

� �
= nij +2a
� �

. The most common choice,
a = 1/2, removes bias of order n−1 in θ̂i.

11 It is convenient
to denote the resulting estimate of θi by θ̂i að Þ.

Using p̂ij að Þ with a = 1/2 in Equation (2.3) yields an
estimator of Var θ̂i að Þ

� �
that is unbiased except for terms of

order n−3. When nijpij<3, however, that estimator sub-
stantially overestimates Var θ̂i að Þ

� �
:12 As far as we are aware,

the corresponding small-sample bias of the standard
approach has not been calculated. However, using unbiased
estimators of the θi and Var θ̂i

� �
does not make the inverse-

variance estimator of the combined LOR unbiased,
because 1=dVar θ̂i

� �
is a biased estimator of 1=Var θ̂i

� �
and

the θ̂i and their estimated variances are not
independent.13,14

2.1 | Double-zero studies

Meta-analysis of binary data is challenging when the event
rates are low. Such situations may involve so-called double-
zero studies (ie, studies with zero events in both arms or, at
the other extreme, xiT = niT and xiC = niC). Actual practice
varies, but often meta-analyses omit these studies. A popu-
lar argument is that such studies provide no information on
the direction or magnitude of the effect.15

Simulations that retain double-zero studies are rather
scarce. Kuss16 considers only methods that include
double-zero studies without adjustment. Bhaumik et al13

refer to their extensive simulation study comparing inclu-
sion (with a = 1/2) and exclusion of double-zero studies
and claim that inclusion results in less bias in estimation
of the overall effect, but negatively affects estimation of τ2.
Cheng et al17 provide a review and some limited simula-
tions for p ≤ .01 and K = 5. They argue that including
double-zero studies is beneficial when θ is 0, but detrimen-
tal when a true treatment effect exists. We believe that this
issue has no major practical consequences for our simula-
tions (Section 6) because we use θ ≥ 0 and piC ≥ .1.

3 | RANDOM-EFFECTS MODELS

3.1 | Standard random-effects model

The standard REM assumes that each estimated study-
level effect, θ̂i , has an approximately normal distribution
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and that the true study-level effects, θi, follow a normal
distribution:

θ̂i �N θi,σ2i
� �

and θi �N θ,τ2
� �

: ð3:1Þ

Thus, the marginal distribution of θ̂i is N θ,σ2i + τ2
� �

.
Although the σ2i are generally unknown, they are rou-
tinely replaced by their estimates, σ̂2i . A key step involves
estimating the between-study variance, τ2; the most pop-
ular random-effects method uses the DerSimonian-Laird
(DL) estimate.5 The estimate of the overall effect is then

θ̂RE =

PK
i=1ŵiθ̂iPK
i=1ŵi

, ð3:2Þ

where ŵi = ŵi τ̂
2� �

= σ̂2i + τ̂2
� �−1

is the inverse-variance
weight for Study i. If the σ2i and τ2 were known, the vari-
ance of θ̂RE would be [

P
wi]

−1 with wi = σ2i + τ2
� �−1

. In
practice, the variance of θ̂RE is traditionally estimated byP

ŵi τ̂
2� �� �−1

, and a CI for θ uses critical values from the
normal distribution.

The assumptions in this model (eg, within-study nor-
mality, between-study normality, and known σ2i ) have
become familiar and seldom attract attention. Jackson
and White,14 however, advocate careful examination;
they conclude that methods that make fewer normality
assumptions should be considered more often in practice.

3.2 | Logistic linear mixed-effects
models

One alternative approach uses a binomial-normal likeli-
hood; the resulting logistic linear mixed-effects model
belongs to the class of generalized linear mixed models
(GLMMs).18,19 Kuss,16 Jackson et al,20 and Bakbergenuly
and Kulinskaya21 review these GLMM methods. We
include a fixed-intercept model (FIM) and a random-
intercept model (RIM), equivalent to Models 4 and
5, respectively, of Jackson et al20 and to models FIM2 and
RIM2 of Bakbergenuly and Kulinskaya.21 Briefly, the
FIM includes fixed control-group effects (log-odds for the
control-group probabilities), and the RIM replaces these
fixed effects with random effects. Section A.1 in the
Supporting Information gives more details.

3.3 | Noncentral-hypergeometric-normal
model (NCHGN)

When one conditions on the total number of events for
Study i, XiT + XiC = Xi, only the number of events in the

treatment group XiT is random. Then, given the study-
specific log-odds-ratio θi, XiT has a noncentral hyper-
geometric distribution. If the θi are normally distributed,
θi�N(θ, τ2), the exact hypergeometric-normal likelihood
function for Study i can be written as19,22:

lHGN xiT ;θ,τ
2

� �
=

ð∞
−∞

niT
xiT

� �
niC
xiC

� �
exp xiTθið Þ

P θið Þ ϕ θijθ,τ2
� �

dθi,

ð3:3Þ

where the normalizing constant is defined as:

P θið Þ=
Xmin niT ,Xið Þ

u=max 0,Xi−niCð Þ

niT
u

� �
niC

Xi−u

� �
exp uθið Þ

and ϕ(�| θ, τ2) is the probability density function of the
normal distribution with mean θ and variance τ2. Inte-
grating out the unobserved study-specific effects produces
the marginal distribution of XiT. Section A.1 in the
Supporting Information gives more details.

4 | METHODS OF ESTIMATING
BETWEEN-STUDY VARIANCE

A number of methods provide point and interval esti-
mates of between-study variance. In a comprehensive
review of existing simulation and empirical studies, Ver-
oniki et al23 focus on general-purpose estimators.
Langan et al24 systematically review simulation studies
that compared estimators of heterogeneity variance.
They summarize performance in estimating heterogene-
ity and also in estimating the overall effect. The studies
used a variety of effect measures, including the odds
ratio. Langan et al25 use simulated data on standardized
mean difference and odds ratio to compare nine estima-
tors. We considered the recommendations of those three
reports in choosing estimators to study. This
section briefly reviews them; for reference, Section A.2
in the Supporting Information contains a list. More-
detailed descriptions appear in Veroniki et al,23 Langan
et al,24 and Langan et al25 and in Sections A.1 and A.3
in the Supporting Information.

4.1 | Point estimators

In applications, the DerSimonian-Laird5 method remains
the most popular; its relative simplicity facilitated its
early implementation in software. Accumulating evi-
dence of its inferior performance has done little to

4 BAKBERGENULY ET AL.



dislodge it. Recommended alternative point estimators
include restricted maximum likelihood (REML), the
method of Mandel and Paule,6 and the method of Jack-
son.7 These and other methods have been studied by
many authors, including Viechtbauer26 and Kosmidis
et al.27 This section briefly reviews these four methods
and describes the Kulinskaya-Dollinger method. Infor-
mation on the logistic linear mixed-effects models (FIM,
RIM, and NCHGN) appears in Section A.1 in the
Supporting Information. All these methods replace nega-
tive values of τ̂2 with zero.

4.1.1 | DerSimonian-Laird method

When τ2 = 0, the statistic Q=
P

ŵi θ̂i− θ̂
� �2

, with ŵi =
ŵi 0ð Þ=1=σ̂2i and θ̂=

P
ŵiθ̂i=

P
ŵi , is customarily

assumed to have approximately the χ2 distribution on
K − 1 degrees of freedom. DerSimonian and Laird5 sub-
stitute wi =1=σ2i for ŵi, derive the corresponding expected
value of Q when Var θ̂i

� �
= σ2i + τ2, and estimate τ2 by the

method of moments. The resulting closed-form expres-
sion has made the DL estimator attractive.

4.1.2 | Restricted-maximum-likelihood
method

Assuming that the θ̂i are distributed as N θ, σ̂2i + τ2
� �

,
the REML estimator τ̂2REML maximizes the restricted
(or residual) log-likelihood function lR(θ, τ

2), which
differs from the ordinary likelihood function by the addi-
tion of − 1

2 ln
P

ŵi τ2ð Þð Þ. It is obtained iteratively, using
θ= θ̂REML from Equation (3.2) with weights ŵi τ̂

2
REML

� �
.

REML is superior to DL because of its balance between
unbiasedness and efficiency.26 However, like DL, using
the σ̂2i as if they were the σ2i may undermine its
performance.

One can also obtain the REML estimator of τ2 by
maximizing the penalized log-likelihood developed by
Kosmidis et al27 to reduce the bias of maximum-
likelihood estimation.

4.1.3 | Mandel-Paule method

The Mandel-Paule (MP) estimator, τ̂2MP , is another itera-
tive moment-based estimator of the between-study
variance.6,28

As in Section 3.1, let the random-effects weights and
θ̂RE depend on τ2; denote the resulting Q by Q(τ2). The
MP estimator τ̂2MP is obtained by iteratively solving the
equation:

Q τ2
� �

=
XK
i=1

ŵi τ
2

� �
θ̂i− θ̂RE
� �2

=K−1 ð4:1Þ

and requiring τ̂2MP > 0.
This method is equivalent to the empirical Bayes

methods of Carter and Rolph29 and Morris,30 as noted by
Rukhin and Vangel31 and Rukhin et al.32

4.1.4 | Jackson method

DerSimonian and Kacker33 generalize Q, replacing the ŵi

by arbitrary fixed positive constants, ai, to obtain
Qa =

P
ai θ̂i− θ̂a
� �2

, from which they derive a general
method-of-moments estimator of τ2. They discuss several
special cases, including DL (with ai =1=σ̂2i , treating the
σ̂2i as fixed).

As an option when some heterogeneity is anticipated
but there is little prior knowledge about its extent, Jack-
son7 uses Qa with ai = 1/σi. Although that choice yields a
point estimator of τ2, he focuses on the interval estimator.
However, the R function inference in the supplementary
materials of Jackson7 returns the point estimate. (His
computational procedure avoids negative τ̂2.) We abbrevi-
ate the point and interval estimators as J. In practice,
meta-analyses would use σ̂i, so the ai in Qa are not fixed.

4.1.5 | Kulinskaya-Dollinger method

The chi-squared approximation for Q is inaccurate, and
the actual distribution depends on the effect measure.
Under the null hypothesis of homogeneity of the log-
odds-ratio, Kulinskaya and Dollinger3 obtain corrected
approximations for the mean and variance of Q and
match those corrected moments to obtain a gamma dis-
tribution that (as their simulations confirm) closely fits
the null distribution of Q. These approximations blend
theoretical derivations with simulation results. Let
EKD(Q) denote the corrected expected value of Q under
the null hypothesis τ2 = 0. This corrected first moment
has the form EKD(Q) = K − 1 − 0.687[K − 1 − Eth(Q)],
where Eth(Q) is a theoretical moment obtained from their
general expansion for the mean of Q for arbitrary effect
measures.34 The corrected variance of Q is a quadratic
function of the corrected mean EKD(Q). The expression
for Eth(Q) involved in specifying the corrected distribu-
tion of Q is not simple; Kulinskaya and Dollinger3 give
the details. For large sample sizes, Eth(Q) ! K − 1.

We propose a new estimator of τ2 based on this
improved approximation. One obtains the KD estimate
τ̂2KD by iteratively solving

BAKBERGENULY ET AL. 5



Q τ2
� �

=
XK
i=1

θi− θ̂RE
� �2
σ̂2i + τ2

=EKD Qð Þ: ð4:2Þ

This estimator closely resembles the MP estimator; both
assume that adding τ2 to σ̂2i in the IV weights makes the
non-null distribution of Q (or at least, its mean) close to
its null distribution. This assumption needs to be verified
by simulation.

4.2 | Interval estimators

Viechtbauer9 and Jackson and Bowden35 compare CI
estimators of the between-study variance. Interval esti-
mators recommended by Veroniki et al23 include profile
likelihood,8 the QP interval,9 and the generalized QP
intervals of Biggerstaff and Jackson10 and Jackson.7 Qual-
ity of estimation varies with the effect measure; for odds
ratio van Aert et al4 found that coverage of the last three
methods can deviate substantially from the nominal 95%
level. If the lower confidence limit is not defined or is
negative, all these methods set it to zero. The logistic lin-
ear mixed-effects methods (FIM, RIM, and NCHGN) as
implemented in the rma.glmm function in metafor,36

used in our simulations, do not produce CIs for τ2.

4.2.1 | Profile-likelihood interval

The 95% profile-likelihood (PL) CI for τ2 consists of the
values that are not rejected by the likelihood-ratio test
with τ2 as the null hypothesis.8 Here the other parameter
in the likelihood, θ̂ , is a function of τ2, as in Equa-
tion (3.2). The values of τ2 in the CI satisfy

τ2 : lR θ̂ τ2
� �

,τ2
� �

> lR θ̂REML, τ̂
2
REML

� �
−
1
2
χ21;0:95

� 	
, ð4:3Þ

where χ21;0:95 = 3:841 is the 0.95 quantile of the χ21 distri-
bution, and lR θ̂ τ2ð Þ,τ2� �

is the restricted log-likelihood
function evaluated at θ̂ τ2ð Þ,τ2� �

.

4.2.2 | Q-profile confidence interval

If the weight for Study i is 1= σ2i + τ2
� �

, the generalized
Q-statistic

Q τ2
� �

=
XK
i=1

θ̂i− θ̂ τ2ð Þ� �2
σ2i + τ2

ð4:4Þ

follows the chi-squared distribution with K − 1 degrees of
freedom. To obtain the QP CI, Viechtbauer9 finds the

lower and upper confidence limits by iteratively solving
Q ~τ2L
� �

= χ2K−1;0:975 and Q ~τ2U
� �

= χ2K−1;0:025 . In practice, it is
necessary to use the σ̂2i instead of the σ2i , and then the
generalized Q-statistic no longer follows the assumed chi-
squared distribution.

4.2.3 | Biggerstaff and Jackson interval

For a generic effect measure, Biggerstaff and Jackson10

derive the exact distribution of the statistic

Q=
XK
i=1

wi θ̂i− θ̂
� �2

, ð4:5Þ

where wi =1=σ2i and θ̂=
P

wiθ̂i
� �

=
P

wið Þ . They show
that the distribution is that of a linear combination of
mutually independent chi-squared random variables,
each with 1 degree of freedom, and they take advantage
of available software for evaluating the cumulative distri-
bution function FQ of such a distribution.

That distribution yields a generalized QP CI, whose
lower and upper limits are the solutions to the equations:

Q ~τ2L
� �

=FQ;0:975, Q ~τ2U
� �

=FQ;0:025, ð4:6Þ

in which FQ; 0.025 and FQ; 0.975 are, respectively, the 0.025
and 0.975 quantiles. If the equation for ~τ2L has no solu-
tion, they set ~τ2L =0. We refer to this interval as the BJ CI.

Despite the title of Biggerstaff and Jackson,10 Q in
(4.5) is not Cochran's heterogeneity statistic. In the defi-
nition of Q, Cochran37 used wi =1=σ̂2i .

4.2.4 | Jackson interval

As mentioned in Section 4.1.4, Jackson7 proposes another
generalized QP CI for τ2. The approach is the same as for
the BJ interval, but with ai = 1/σi in Qa.

4.2.5 | Kulinskaya-Dollinger interval

For the log-odds-ratio, we propose a new CI for the
between-study variance. The KD CI for τ2 combines
the QP approach and the improved approximation by
Kulinskaya and Dollinger.3 This corrected QP CI can
be estimated from the lower and upper quantiles
of FQ, the cumulative distribution function for the
corrected distribution of Q, as in Equation (4.6). The
upper and lower confidence limits for τ2 can be calcu-
lated iteratively.

6 BAKBERGENULY ET AL.



5 | METHODS OF ESTIMATING
OVERALL EFFECT

Most of the point estimators of the overall effect have
corresponding interval estimators, but some do not.
Therefore, we describe point estimators and interval esti-
mators in separate sections.

5.1 | Point estimators

A random-effects method that estimates θ by a weighted
mean with inverse-variance weights, as in Equation (3.2),
is determined by the particular τ̂2 that it uses in ŵi τ̂

2
� �

.
The best-known and most widely used estimator, θ̂DL ,
was introduced by DerSimonian and Laird5; it uses τ̂2DL .
Its shortcomings, in particular bias and below-nominal
coverage of the companion CI, have led numerous
authors to propose alternative estimators of τ2. Some of
those shortcomings arise from the derivation underlying
τ̂2DL, which uses the σ2i and τ2 and then substitutes the σ̂2i
and τ̂2. Unfortunately, the alternative methods (REML, J,
and MP) generally rely on that same unsupported
substitution. In our simulations, we add one more
inverse-variance-weighted estimator, KD, to this list.

In an attempt to avoid the bias in the inverse-
variance-weighted estimators, we include a point estimator
whose weights depend only on the studies' effective
sample sizes.38,39 For this estimator (SSW) θ̂i uses p̂ij að Þ
with a = 1/2 (as discussed in Section 2), and
wi = ~ni = niTniC= niT +niCð Þ; ~ni is the effective sample size
in Study i. These weights would be equivalent to the
inverse-variance weights if all the probabilities across
studies were equal (ie, piT = piC≡ p for i = 1, …, K).

As we mentioned in Section 1, we also include esti-
mators obtained from logistic linear mixed-effects
models, namely FIM, RIM, and NCHGN.

A reviewer pointed out that the weights in SSW are
the same as those in the MH estimator of a common risk
difference,40 and suggested that we include the MH esti-
mator of a common odds ratio. That fixed-effect estimator
applies the weight (niT − xiT)xiC/(niT + niC) to the sample
odds ratio for Study i. As we discuss in Section A.3 in the
Supporting Information, we expect MH to be biased
under the REM.

In summary, the point estimators that we study
are DL, REML, J, MP, KD, SSW, FIM, RIM, NCHGN,
and MH.

5.2 | Interval estimators

The point estimators DL, REML, J, MP, and KD have
companion interval estimators of θ. The customary

approach estimates the variance of θ̂RE by
P

ŵi τ̂
2� �� �−1

and bases the width of the interval on the normal distri-
bution. That expression for the variance of θ̂RE would be
correct if it were based on wi = σ2i + τ2

� �−1
. In practice,

however, using ŵi τ̂
2

� �
may not yield a satisfactory

approximation. Also, we have not seen empirical evi-
dence that the sampling distributions of θ̂RE for the vari-
ous choices of estimator for τ2 are adequately
approximated by a normal distribution.

Hartung and Knapp41 and, independently, Sidik and
Jonkman42 developed an estimator for the variance of θ̂DL
that takes into account the variability of the σ̂2i and τ̂2.
The Hartung-Knapp-Sidik-Jonkman (HKSJ) CI uses the
estimator:

dVarHKSJ θ̂DL
� �

=

PK
i=1

ŵi τ̂
2
DL

� �
θ̂i− θ̂DL
� �2

K−1ð ÞPK
i=1

ŵi τ̂
2
DL

� �
 � , ð5:1Þ

together with critical values from the t distribution on
K − 1 degrees of freedom. A potential weakness is that
the derivation of the variance estimator and the
t distribution uses the σ2i and τ2 and then substitutes the
σ̂2i and τ̂2DL . Also, the HKSJ interval uses θ̂DL as its mid-
point, so it will have any bias that is present in θ̂DL . We
study a modification of HKSJ (HKSJ KD) that uses the
KD estimator of τ2 and uses θ̂KD as the midpoint.

The interval estimator corresponding to SSW (SSW
KD) uses the SSW point estimator as its center, and its
width equals the estimated standard deviation of SSW
under the REM times twice the critical value from the
t distribution on K − 1 degrees of freedom. The estimator
of the variance of SSW is

dVar θ̂SSW
� �

=

P
~n2i v2i + τ̂2
� �
P

~nið Þ2 , ð5:2Þ

in which v2i comes from Equation (2.3) and τ̂2 = τ̂2KD.
In summary, the interval estimators that we study are

DL, REML, J, MP, KD, HKSJ, HKSJ KD, SSW KD, FIM,
RIM, and NCHGN.

6 | SIMULATION STUDY

In a simulation study with log-odds-ratio as the effect
measure, we varied six parameters: the number of studies
K, the total sample size of each study n, the proportion of
observations in the Control arm q, the overall true LOR
θ, the between-study variance τ2, and the probability of
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an event in the Control arm pC. The number of studies
K ∈ {5, 10, 30}. We included sample sizes that were equal
for all K studies and sample sizes that varied among stud-
ies. The total sample sizes were n ∈ {40, 100, 250, 1000}
for equal sample sizes, and the average total sample sizes
were �n∈ 30,60,100,160f g for unequal sample sizes. In
choosing sample sizes that varied among studies, we
followed a suggestion of Sánchez-Meca and Marín-
Martínez,43 who selected study sizes having skewness
1.464, which they considered typical in behavioral and
health sciences. For K = 5, Table 1 lists the sets of five
sample sizes, which have the chosen skewness and aver-
age equal to 30, 60, 100, and 160. The simulations for
K = 10 and K = 30 used each set of unequal sample sizes
twice and six times, respectively. The values of q were .5
and .75. The sample sizes of the Treatment and Control
arms were niT = d(1− q)nie and niC = ni − niT, i = 1, …,
K. The values of the overall true LOR were θ = 0(0.5)2
(ie, from 0 to 2 in steps of 0.5). The probability in the
Control arm was piC = .1, .2, .4. The values of the
between-study variance were τ2 = 0(0.1)1, corresponding
to small to moderate heterogeneity. This interval of τ2

values is similar to or, for smaller sample sizes, somewhat
shorter than that for the meta-analyses of LOR in the
Cochrane database (Appendix 2 of Langan et al)25.

Altogether, the simulations comprised 7920 combina-
tions of the six parameters. We generated 10 000 meta-
analyses for each combination. The true values of LOR
(θi) were generated from a normal distribution with
mean θ and variance τ2. For a given piC, the number of
events in the control group, XiC, was generated from the
Binomial(niC, piC) distribution. The number of events in
the treatment group, XiT, was generated from the Bino-
mial(niT, piT) distribution with piT = piC exp(θi)/(1
− piC + piC exp(θi)). The estimate θ̂i was calculated as in
Equation (2.2), and its sampling variance was estimated
by substituting p̂iT and p̂iC in Equation (2.3). The
methods differed however, in the way they obtained p̂ij
from xij and nij. In all standard methods, we added 1/2 to
each cell of the 2× 2 table only when the table had at
least one cell equal to 0. This approach corresponds to
the default values of the arguments add, to, and drop00
of the escalc procedure in metafor.36 In the KD methods,
and for estimation of θi in SSW, we corrected for bias by
adding 1/2 to each cell of all K tables. We also tried

always adding 1/2 in the standard methods, but that
made the biases for τ̂2 worse.

In expanding our comparative study, we included the
MH estimator of θ and the estimators from the FIM, RIM,
and NCHGN models in simulations for selected values of
the parameters: pC = .1, q = .5 and equal sample sizes with
n = 40 and n = 100. The three logistic linear mixed-effects
methods provide point but not interval estimators of τ2

and both point and interval estimators of θ. For the MH
point estimator of θ, we studied two versions: the usual
version (MH), which does not modify the cell counts, and
a version that always adds 1/2 to each cell (MH with 1/2).
The results of these additional simulations are plotted in
Section A.4 in the Supporting Information.

6.1 | Results of simulation studies

Our full simulation results are available as an arXiv e-
print.44 They comprise 300 figures, each presenting a plot
of bias or coverage vs τ2 for the four values of n or �n and
the three values of K. A detailed summary is given below
and illustrated by Figures 1–3.

6.1.1 | Bias in estimation of τ2

All the estimators have bias that varies with τ2, often
roughly linearly. The sign and magnitude of the bias and
the slope of that relation depend on piC, θ, n, K, and q.
For example, when piC = .1, θ = 0, q = .5, n = 40, and
K = 5, the bias of KD goes from +0.32 when τ2 = 0 to
−0.08 when τ2 = 1, and the traces for the other estima-
tors, close together, go from around +0.12 to around
−0.47. Among these, MP appears to be the least biased.
As K increases, the pattern shifts down; and as
n increases, the traces tend to flatten (when n = 1000,
most of the estimators are unbiased, but the bias when
τ2 = 1 is −0.08 for J and −0.17 for DL). As θ increases,
the patterns shift down. When all studies are unbalanced
(in favor of the Control arm), q = .75, the patterns often
shift down, and the slopes become steeper.

Figure 1 shows these patterns for KD and MP in the
balanced case (q = .5). Both estimators have positive bias
at zero, but for larger values of τ2, the bias of MP is
mostly negative, whereas for KD it may be positive for
larger values of θ. MP is considerably worse than KD
(apart from τ2 = 0) for K = 30. For K = 5 and 10, KD is
less biased than MP for large values of τ2, but it may be
worse for small values.

The effect of increasing piC is not simple. As piC
increases from .1 to .2 to .4, the (positive) bias of KD at
τ2 = 0 decreases, and its bias at τ2 = 1 approaches 0; at

TABLE 1 Unequal sample sizes for simulations with K = 5

�ni: 1 2 3 4 5

30 12 16 18 20 84

60 24 32 36 40 168

100 64 72 76 80 208

160 124 132 136 140 268
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τ2 = 0 the (positive) bias of the other estimators changes
little, but at τ2 = 1 the magnitude of the (negative) bias
decreases when θ = 0 but decreases and then increases
when θ = 2.

None of the point estimators of τ2 has bias consis-
tently close enough to 0 to be recommended; but among
the existing estimators, MP and KD provide better
choices for small and large K, respectively (Figure 2).

FIGURE 1 Bias of τ̂2KD and τ̂2MP in estimating the between-study variance τ2 for θ = 0(0.5)2, piC = .1, q = .5, n = 40, 100. The symbols

for the values of θ are θ = 0, black �; θ = 0.5, brown 4; θ = 1, green +; θ = 1.5, blue ×; and θ = 2, red ◇. Light grey line at 0
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6.1.2 | Bias in estimation of θ

In the results for bias of the point estimators of θ, a com-
mon pattern is that the bias is roughly linearly related to

τ2 with a positive slope. The varied positions of the estima-
tors' traces relative to the horizontal line of zero bias, how-
ever, complicate the process of summarizing. The
situation with piC = .1 and θ = 0 is straightforward: When

FIGURE 2 Bias and ratio of MSEs for estimators of the overall effect θ for θ = 0, piC = .1, q = .5, and equal sample sizes n = 40, 100.

Light grey line at 0 and 1, respectively
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n = 40 and K = 5, all estimators have no bias when τ2 = 0;
when τ2 = 1, SSW has bias 0.14, and the other estimators'
biases range from 0.23 to 0.26. Increasing K (to 10 and 30)

has little effect on the pattern, and increasing n (to 100,
250, and 1000) flattens the pattern until little bias remains.
(The plots for n = 100 show that the bias of SSW decreases

FIGURE 3 Coverage of between-studies variance τ2 (top two rows) and overall effect θ (bottom two rows) for θ = 0, piC = .1, q = .5,

and unequal sample sizes �n=30, 100. Light grey line at 0.95
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more rapidly.) When θ = 0.5, the pattern splits into three:
SSW has much smaller slope and flattens to essentially
zero bias; the bias of KD changes from negative to positive
around τ2 = 0.5; and the common trace for the other esti-
mators parallels that for KD and is about 0.06 units above
it. Again, by n = 1000 the traces have flattened and mer-
ged. As θ increases (to 1.0, 1.5, and 2.0), the traces for all
estimators except SSW shift down further, and the gap
between KD and the others widens. When piC = .2 and
θ > 0, slopes of the non-SSW traces decrease as θ increases
(the traces are flat when θ = 2). When piC = .4 and θ > 0,
the non-SSW traces go from flat to having negative slope
as θ increases. Also, increasing K tends to shift those traces
down slightly.

When all K studies are unbalanced (q = .75), piC = .1,
θ = 0, and n = 40, the estimators have larger positive
bias, even when τ2 = 0. This effect decreases as θ and piC
increase, consistent with the behavior when q = .5, and it
is absent when n ≥ 100.

As expected, in the vast majority of situations, SSW
avoids most, if not all, of the bias in the IV-weighted estima-
tors. The bias of the IV-weighted estimators affects their effi-
ciency, so SSW tends to have smaller mean squared error
than MP as τ2 and K increase, but larger MSE than KD
when K = 5 and K = 10 and when K = 30 and τ2 is small
(Figure 2).

6.1.3 | Coverage in estimation of τ2

Coverage of τ2 is generally good for K = 5, but is con-
siderably worse for larger numbers of studies, espe-
cially so for large values of θ. All methods are
somewhat conservative at τ2 = 0. When K = 5, PL is
very conservative, whereas KD provides close to nomi-
nal coverage for τ2 > 0, though it may become a bit
liberal for large θ. The other methods are between
these two, being somewhat conservative for small sam-
ple sizes n. For K = 10, PL is still mostly conservative,
though it may become somewhat liberal for larger τ2.
KD is almost perfect, though in one instance, for
unequal sample sizes with �n=30, pC = :4, and θ = 2, its
coverage drops to 90%. The other intervals are too liberal
for small n. The large number of studies K presents the
greatest challenge for the standard methods. PL is the
most affected, with considerable undercoverage up to
n = 100 for medium to large values of τ2. The other
methods also have low coverage for small n, but they
improve faster with increasing n. KD provides reliable cov-
erage except for small sample sizes combined with pC = .4
and θ≥ 1.5, where its undercoverage worsens with increas-
ing τ2, though it is still considerably better than all the
competitors (Figures 2 & 3).

6.1.4 | Coverage in estimation of θ

Interval estimators of θ respond in a variety of ways to
the variables in the simulations. No simple description
adequately summarizes the patterns. In one common pat-
tern, coverage decreases as τ2 increases, often falling sub-
stantially below the nominal 95% for the IV-weighted
estimators. For a given value of θ and K = 10 and K = 30,
undercoverage tends to decrease as n increases. For
K = 5, however, the undercoverage of the IV-weighted
estimators generally increases as n goes from 40 to 100 to
250 to 1000; when n = 1000, coverage is around 95%
when τ2 = 0 and roughly constant, at several percentage
points below 95%, for 0.1 ≤ τ2 ≤ 1 (the decrease is greater
for piC = .2 and piC = .4 than for piC = .1). Because HKSJ,
HKSJ KD, and SSW KD do not exhibit such under-
coverage in these situations, the explanation is likely to
lie in the use of the normal distribution as the basis for
the CI (Figure 3).

On the other hand, for given values of θ, n = 40 and
n = 100, and τ2 > 0, coverage tends to decrease as
K increases. This effect is small for SSW KD (which
moves from overcoverage to coverage close to 95%) and
larger (by varying amounts) for all the other estimators.
Thus, counterintuitively, when more than a small
amount of heterogeneity is present and n ≤ 100, increas-
ing the number of studies decreases coverage. A likely
contributor is bias in estimating θ, which (for n = 40 and
n = 100) is positive and increasing as τ2 increases, and
changes little with K.

A different pattern arises when θ ≥ 1, n = 40 and
n = 100 (and �n=30 and 100), and K = 30. Coverage of
HKSJ KD and KD is below 95% when τ2 = 0 and
increases toward 95% as τ2 increases. For KD the explana-
tion probably lies in its bias in estimating θ, which is neg-
ative and rises toward 0 (but remains <0) as τ2 increases.
For HKSJ KD (which has greater undercoverage), the
reason is less clear. Undercoverage of both KD and HKSJ
KD at τ2 = 0 increases as θ increases. This pattern arises
when piC = .1 and piC = .2. When piC = .4, however, it is
not evident when θ = 1. When θ≥ 1.5, coverage of KD
and HKSJ KD decreases as τ2 increases and then
stabilizes.

We do not recommend standard CIs based on IV-
weighted estimators of θ, because of their under-
coverage. HKSJ and HKSJ KD often have coverage
close to 95%, but they sometimes have serious under-
coverage. All problems are typically worse for the
unbalanced sample sizes. The SSW KD interval often
has coverage somewhat greater than 95%, but its
coverage is at least 93% (except for a few cases involv-
ing K = 30 and unequal sample sizes with �n=30)
(Figure 2).
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6.1.5 | Additional results: FIM, RIM,
NCHGN, and MH

In estimating τ2, FIM and RIM (Figure A4.1 in the
Supporting Information) often have bias that is
between those of τ̂2KD and τ̂2MP (Figure 1) and is generally
not small, going from positive near τ2 = 0 to negative at
larger τ2. The size of their bias tends to decrease as
K increases. As θ increases, the bias of RIM tends to
decrease, whereas the bias of FIM remains roughly con-
stant. The pattern of NCHGN is more complicated: posi-
tive and decreasing as K increases and θ increases when
n = 40; but roughly linear (+ to −) in τ2, increasing as θ
increases, and flattening as K increases when n = 100,
where NCHGN is almost unbiased for larger τ2 when
K = 30. However, convergence rates of NCHGN are
rather low, especially so for low values of τ2 and K; they
improve somewhat for larger values of n (Figure A4.4 in
the Supporting Information).

For point estimation of θ (Figure A4.2 in the
Supporting Information), the biases of FIM, RIM,
NCHGN, and MH follow patterns that resemble those of
KD and MP and are quite unlike the (generally more
favorable) patterns of SSW. The bias of MH increases
with τ2, starting at 0 when θ = 0 but at around −0.1 to
−0.05 when θ = 1. MH with 1/2 is less positively biased
than MH when θ = − 1 or 0, but more negatively biased
than MH for low values of τ2 when θ = 1 (Figures A3.1
and A3.2 in the Supporting Information).

For interval estimation of θ (Figure A4.3 in the
Supporting Information), FIM, RIM, and NCHGN
generally have lower coverage than the other estima-
tors, decreasing as θ increases. When n = 100, the
coverage of RIM decreases rapidly as τ2 increases,
and that pattern becomes more pronounced as
K increases.

In summary, we do not recommend MH or the
GLMMs for point or interval estimation of θ.

7 | EXAMPLE: EFFECTS OF
DIURETICS ON PRE-ECLAMPSIA

Data from nine trials that reported the effect of diuretics
on pre-eclampsia45 were studied by Hardy and
Thompson,8 Biggerstaff and Tweedie,46 Turner et al,18

Viechtbauer,9 Kulinskaya and Olkin,47 and Bakbergenuly
and Kulinskaya.48 The data are shown in Table 2 and are
re-analyzed here in order to compare the methods of
point and interval estimation of between-study variance
and the log-odds-ratio. For comparison we include
results from three GLMMs available in the metafor pack-
age36: the FIM, the RIM, and the exact method based on
the NCHGN. Bakbergenuly and Kulinskaya21 give more
details on those methods.

Table 3 provides the point estimates of the between-
study variance and the point estimates and CIs for the
overall log-odds-ratio and the overall odds ratio; and
Table 4 shows the point estimates and CIs for the
between-study variance. DL has the lowest estimate of τ2,
0.230, followed by the GLMM estimates at 0.254 to 0.264,
and KD gives the highest estimate, 0.392. MP is second
highest at 0.386. QP provides the longest CI for τ2, with
length 2.130, and KD the second longest at 1.875,
whereas BJ is considerably shorter at 1.384, and NCHGN
has a very short interval with a length of just 0.667.

In estimating θ, all inverse-variance-weighted methods
give similar values, ranging from −0.518 to −0.517 apart
from KD which is −0.507, and the GLMM methods also
give similar values ranging from −0.516 to −0.513. By con-
trast the FEM produces the highest estimate, −0.398, and
SSW produces the lowest, −0.558. All the standard
inverse-variance-weighted methods and the GLMMs show
a significant effect of diuretics on pre-eclampsia, whereas
all methods using t quantiles (HKSJ DL, HKSJ KD, and
SSW KD) do not find a significant effect.

It is rather difficult to decide, from our simulation
results, which method gives the best estimates, as the

TABLE 2 Data for meta-analysis

on effects of diuretics on pre-

eclampsia45

Study yiT yiC niT niC p̂iT p̂iC θ̂i ~ni

1 14 14 131 136 0.1068 0.1029 0.042 66.727

2 21 17 385 134 0.0545 0.1268 −0.924 99.403

3 14 24 57 48 0.2456 0.5000 −1.122 26.057

4 6 18 38 40 0.1579 0.4500 −1.473 19.487

5 12 35 1011 760 0.0118 0.0460 −1.391 433.857

6 138 175 1370 1336 0.1007 0.1310 −0.297 676.393

7 15 20 506 524 0.0296 0.0382 −0.262 257.421

8 6 2 108 103 0.0555 0.0194 1.089 52.720

9 65 40 153 102 0.4248 0.3921 0.135 61.200
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sample sizes, even though rather balanced, vary greatly,
from 38 to 1370 in the Treatment arm. Therefore, we ran
additional simulations, where we kept the sample sizes
and the prevalence in the Control arm as in the actual
nine trials, and varied the value of θ from −0.4 to −0.6
and the value of τ2 = 0.20(0.05)0.45 to cover the range of
possible values of these parameters. We used 10 000 repe-
titions at each combination of θ and τ2. Results of these
simulations are shown in Figure 4.

From these simulations, MP and KD are the least
biased estimates of τ2; the other methods have

considerable negative bias, especially DL and the
GLMMs, RIM being the most biased. KD provides the
best coverage of τ2, though the coverage of all methods
appears to be reasonable. All methods but SSW consider-
ably overestimate θ, though here NCHGN and FIM are
the least biased, with positive biases of 0.01 to 0.03. Cov-
erage of θ is best for SSW KD and somewhat too low for
the other methods based on t quantiles. The coverage of
the standard IV-weighted methods based on normal qua-
ntiles is clearly not acceptable, and the GLMMs provide
even worse coverage, probably because of their underesti-
mation of τ2.

8 | SUMMARY

Our extensive simulations demonstrate that the existing
methods of meta-analysis of (log) odds ratio often present
a biased view of both the heterogeneity and the overall
effect. In brief: small sample sizes are rather problematic,
and meta-analyses that involve numerous small studies
are especially challenging. Because the study-level effects
and their variances are related, estimates of the overall
effects are biased, and the coverage of CIs is too low, espe-
cially for small sample sizes and larger numbers of studies.

The between-study variance, τ2, is typically estimated
by generic methods which assume normality of the esti-
mated effects θ̂i. It is usually overestimated near zero, but
the standard methods are negatively biased for larger
values of τ2. Our findings agree with those by van Aert

TABLE 3 Meta-analysis of diuretics in pre-eclampsia

Model Method τ̂2 θ̂ L U Length OR L U

FEM −0.398 −0.573 −0.223 0.530 0.672 0.564 0.800

REM DL 0.230 −0.517 −0.916 −0.117 0.799 0.596 0.400 0.889

REM HKSJ DL −0.517 −1.061 0.028 1.089 0.596 0.346 1.028

REM REML 0.300 −0.518 −0.956 −0.080 0.876 0.596 0.384 0.923

REM J 0.329 −0.518 −0.971 −0.065 0.906 0.596 0.379 0.937

REM MP 0.386 −0.518 −0.998 −0.037 0.961 0.596 0.369 0.963

REM KD 0.392 −0.507 −0.987 −0.027 0.960 0.602 0.373 0.973

REM HKSJ KD 0.392 −0.507 −1.054 0.040 1.094 0.602 0.348 1.040

REM SSW KD 0.392 −0.558 −1.337 0.221 1.558 0.572 0.263 1.247

GLMM FIM 0.254 −0.513 −0.923 −0.104 0.819 0.599 0.398 0.901

GLMM RIM 0.264 −0.516 −0.930 −0.102 0.828 0.597 0.395 0.903

GLMM NCHGN 0.260 −0.513 −0.927 −0.100 0.827 0.599 0.396 0.905

Note: Point estimates of the between-study variance τ2 and point estimates and confidence intervals for the overall log-odds-ratio (θ) and the overall odds ratio
(OR). L and U are the lower and upper limits of the 95% confidence intervals.
Abbreviations: DL, DerSimonian-Laird; FEM, fixed-effect model; FIM, fixed-intercept model; GLMM, generalized linear mixed model; HKSJ DL, Hartung-

Knapp-Sidik-Jonkman DL; KD, Kulinskaya-Dollinger; MP, Mandel-Paule; NCHGN, Noncentral-hypergeometric-normal model; REM, random-effects model;
REML, restricted maximum likelihood; RIM, random-intercept model.

TABLE 4 Meta-analysis of diuretics in pre-eclampsia

Model Method τ̂2 L U Length

REM DL (QP) 0.230 0.072 2.202 2.130

REM DL (BJ) 0.230 0.047 1.431 1.384

REM J 0.329 0.074 1.678 1.604

REM MP (QP) 0.386 0.072 2.202 2.130

REM REML (PL) 0.300 0.043 1.475 1.432

REM KD 0.392 0.087 1.962 1.875

GLMM NCHGN 0.260

Note: Point estimates and confidence intervals for the between-study
variance τ2. The GLMM estimate using the NCHGN distribution is included

for comparison. L and U are the lower and upper limits of the 95%
confidence intervals. Methods are DL with QP and BJ confidence
intervals, J, MP with QP interval, REML with PL interval, and KD.
Abbreviations: DL, DerSimonian-Laird; GLMM, generalized linear mixed
model; KD, Kulinskaya-Dollinger; MP, Mandel-Paule; PL, profile-likelihood;

REM, random-effects model; REML, restricted maximum likelihood.
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et al4 that the standard interval estimators of τ2 are often
too liberal. The behavior of the PL method is especially
erratic.

Therefore, we proposed and studied a new method of
estimating τ2 based on the corrected approximation to
the null distribution of Cochran's Q for log-odds-ratio

FIGURE 4 Bias and coverage of estimators of the between-study variance τ2 and of the LOR θ for the sample sizes and the p̂iC in the

pre-eclampsia data of Collins et al,45 θ = − 0.6, − 0.5, − 0.4 and τ2 = 0.20(0.05)0.45
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developed by Kulinskaya and Dollinger.3 The KD method
provides reliable interval estimation of τ2 across all values
of τ2, n, and K. Point estimation of τ2 is more challenging;
even though KD is better for K = 30, for small values of
K it has positive bias and MP is better.

Arguably, the main purpose of a meta-analysis is to
provide point and interval estimates of an overall effect.

Usually, after estimating the between-study variance
τ2, inverse-variance weights are used in estimating the
overall effect and its variance. This approach relies on the
theoretical result that, for known variances, and given
unbiased estimates θ̂i , it yields a uniformly minimum-
variance unbiased estimate of θ.

In practice, however, the true within-study variances
are unknown, and use of the estimated variances makes
the inverse-variance-weighted estimate of the overall
effect biased. These biases (and even their sign) depend
on τ2 and the true value of θ, worsen for unbalanced
studies, and may be considerable, even for reasonably
large sample sizes such as n = 250. The coverage of the
overall effect follows the same patterns because the cen-
tering of the CIs is biased. Additionally, traditional inter-
vals using normal quantiles are too narrow; and the use
of t quantiles, as in the HKSJ method, brings noticeable
though not sufficient improvement.

Our additional simulations showed that the MH
method and the GLMMs also do not perform well for
point or interval estimation of θ.

A pragmatic approach to unbiased estimation of θ
uses weights that do not involve estimated variances of
study-level estimates, for example, weights proportional
to the study size ni. Hedges and Olkin,38 Hunter and
Schmidt,39 and Shuster,49 among others, have proposed
such weights. We use weights proportional to an effective
sample size, ~ni =niTniC=ni; these are equivalent to the opti-
mal inverse-variance weights for LOR when all the proba-
bilities are equal. Importantly, because inverse-variance-
weighted estimators have considerable biases, little, if any,
efficiency is lost by using the sample-size-based weights.

A reasonable estimator of τ2, such as MP or KD, can
be used as τ̂2. Further, CIs for θ centered at θ̂SSW with τ̂2KD
in Equation (5.2) can be used. In our simulations, this is
by far the best interval estimator of θ, providing near-
nominal coverage under all studied conditions.
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