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Abstract
Aim: We compare the performance of habitat suitability models using climate data 
only or climate data together with water chemistry, land cover and predation pres-
sure data to model the distribution of European grayling (Thymallus thymallus). From 
these models, we (a) investigate the relationship between habitat suitability and ge-
netic diversity; (b) project the distribution of grayling under future climate change; 
and (c) model the effects of habitat mitigation on future distributions.
Location: United Kingdom.
Methods: Maxent species distribution modelling was implemented using a Simple 
model (only climate parameters) or a Full model (climate, water chemistry, land use 
and predation pressure parameters). Areas of high and low habitat suitability were 
designated. Associations between habitat suitability and genetic diversity for both 
neutral and adaptive markers were examined. Distribution under minimal and maxi-
mal future climate change scenarios was modelled for 2050, incorporating projec-
tions of future flow scenarios obtained from the Centre for Ecology and Hydrology. 
To examine potential mitigation effects within habitats, models were run with ma-
nipulation of orthophosphate, nitrite and copper concentrations.
Results: We mapped suitable habitat for grayling in the present and the future. The 
Full model achieved substantially higher discriminative power than the Simple model. 
For low suitability habitat, higher levels of inbreeding were observed for adaptive, 
but not neutral, loci. Future projections predict a significant contraction of highly 
suitable areas. Under habitat mitigation, modelling suggests that recovery of suitable 
habitat of up to 10% is possible.
Main conclusions: Extending the climate-only model improves estimates of habitat 
suitability. Significantly higher inbreeding coefficients were found at immune genes, 
but not neutral markers in low suitability habitat, indicating a possible impact of en-
vironmental stress on evolutionary potential. The potential for habitat mitigation to 
alleviate distributional changes under future climate change is demonstrated, and 
specific recommendations are made for habitat recovery on a regional basis.
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1  | INTRODUC TION

Human ecosystem alteration, such as habitat loss and degradation, 
invasive species and overharvesting, can cause environmental stress 
(Brown, Saunders, Possingham, & Richardson, 2013; Crain, Kroeker, 
& Halpern, 2008), which can directly impair the adaptive potential of 
populations and increase vulnerability to extinction (Charmantier & 
Garant, 2005; Frankham, 2005; Hoffmann & Hercus, 2000). These 
stressors are thought to be impacting biodiversity in a way compa-
rable to historic mass extinction events (Ceballos et al., 2015) with 
unprecedented declines in global biodiversity now occurring.

These impacts on biodiversity are now exacerbated by climate 
change through cumulative or synergistic effects (Brook, Sodhi, & 
Bradshaw, 2008). Climate change is expected to become a major 
threat to biodiversity over the next decades (Bellard, Bertelsmeier, 
Leadley, Thuiller, & Courchamp, 2012; Thomas et al., 2004), and the 
integration of climate change predictions into current conservation 
and biodiversity planning is therefore essential (Araújo, Cabeza, 
Thuiller, Hannah, & Williams, 2004; Heller & Zavaleta, 2009). Such 
integration requires knowledge of the sensitivities of species to var-
ious climatic parameters in order to assess vulnerability to climate 
change (Hulme, 2005). A synergistic approach incorporating habi-
tat change and degradation with exposure and sensitivity to climate 
change and adaptive capacity will further improve vulnerability anal-
ysis (Dawson, Jackson, House, Prentice, & Mace, 2011; Williams, 
Shoo, Isaac, Hoffmann, & Langham, 2008). The investigation of dif-
ferences in habitat quality may serve as a predictive framework to 
assess evolutionary potential across the range of a species because 
there is a close relationship between environmental conditions and 
genetic diversity (Charmantier & Garant, 2005; Frankham, 2005; 
Hoffmann & Hercus, 2000).

Species distribution modelling (SDM) can be used to identify key 
environmental parameters that affect the distribution of a species, 
by combining species occurrence with environmental data (Elith & 
Leathwick, 2009). These models are powerful tools to assess spe-
cific sensitivity to environmental change and to predict the influ-
ence of climate on species distribution (Thomas et al., 2004). The 
implementation of SDMs has been successful in conservation and 
reserve planning (Rodríguez, Brotons, Bustamante, & Seoane, 2007), 
invasive species management (Jiménez-Valverde et al., 2011), epide-
miology research (Puschendorf et al., 2009) and predicting potential 
effects of climate change on biodiversity (Hijmans & Graham, 2006).

The classical approach of SDMs is to model “bioclimatic enve-
lopes” (Pearson & Dawson, 2003) because climate is usually the dom-
inant factor in determining species ranges (Araújo & Peterson, 2012) 
and climatic variables are therefore considered sufficient to describe 
changes in distribution (Bucklin et al., 2015). As a first approxima-
tion, this approach can describe or predict niche requirements and 

indicate where tolerance limits are exceeded under conditions of cli-
mate change (Pearson & Dawson, 2003). However, improvements in 
model performance can be made by the addition of non-climate pa-
rameters, particularly at small spatial scales, where other local factors 
can become dominant (Pearson & Dawson, 2003; Pearson, Dawson, 
& Liu, 2004; Stanton, Pearson, Horning, Ersts, & Reşit Akçakaya, 
2012). This approach allows development of climate change miti-
gation strategies through the identification of non-climate-related 
drivers of biodiversity change (Pereira et al., 2010). Sutton and Soto 
(2012) show that predictive performance is highest when there are 
interactions between climatic and other variables. These authors 
highlight the importance of including variables such as land cover to 
study their effect in combination with climate (Stanton et al., 2012).

European grayling (Salmonidae, Thymallus thymallus) is a pro-
tected species (listed in appendix III of the Bern convention) of 
conservation and economic importance (Swatdipong, Primmer, & 
Vasemägi, 2010), that, even in comparison with other salmonids, 
shows high sensitivity to high temperature (Ibbotson et al., 2001; 
Jonsson & Jonsson, 2009) and exhibits narrow water quality require-
ments (Oberdorff, Pont, Hugueny, & Porcher, 2002; Uiblein, Jagsch, 
Honsig-Erlenburg, & Weiss, 2001). As such, grayling make an ideal 
indicator species of habitat quality and climate change. We aim to 
investigate the influence of climate and other habitat quality param-
eters on the distribution of this species. Specifically, we (a) compare 
a Simple climate-only model with one that incorporates the sensi-
tivity of grayling to habitat quality parameters (i.e. current velocity, 
land use, water chemistry and predator density); (b) test associations 
of habitat quality and neutral and adaptive genetic diversity; (c) fore-
cast grayling distributions under future climate change scenarios; 
and (d) investigate the effects of habitat improvement on future dis-
tributions. The results are discussed in the context of conservation 
management.

2  | METHODS

2.1 | “Simple” versus “Full” model

For our climate-only model, data across the latitudinal range of gray-
ling were used to identify relevant bioclimatic parameters (Figure 1, 
right panel; see Results Table 1). The eastern part of the longitudi-
nal range of European grayling (adjacent to the Ural Mountains) was 
omitted to avoid bias due to low numbers of records available in that 
area. Subsequently, we focussed on a subset study area (Figure 1, left 
panel), representing the distribution of European grayling in England 
and Wales. This area was chosen because it is represented by multi-
ple, extensive data sets on water quality parameters obtained from 
long-term surveys conducted by the UK Environment Agency and 
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direct measurements of river surface water temperature (Orr et al., 
2010). These data sets were used in the Full model with the aim to 
assess the sensitivity of grayling to non-climatic parameters that 
impact on habitat suitability. The same subset study area was used 
in the Simple model to allow for comparison of model performance 
when using only climate data.

2.2 | Development of the Full model

Unique occurrence points (2,846) recorded since 1990 for European 
grayling were obtained from the GBIF database in 2014 (www.gbif.
org) (Figure 1). This time frame was selected as there is a lack of re-
cently updated records in GBIF, so that only using records made after 
2000 would significantly underestimate the current distribution. To 
account for uneven sampling effort and to reduce spatial clustering, 
subsampling of occurrence records was done using the SDM toolbox 
(Brown, 2014) for ArcGIS 10.3 (ESRI). Records were spatially rarefied 
at a scale of 30 km2 across the latitudinal range, which minimized a 
biased distribution of records, due to differences in sampling efforts 
across different countries, leaving 292 records in total (Figure 1, 
right panel). For the final subset study area, records were rarefied 

at a scale of 1 km2, leaving 441 records in total (Figure 1, left panel). 
The scale is the same as the resolution of environmental layers and 
was chosen due to the generally high site fidelity of grayling, aiming 
for a maximal resolution of small-scale differences in habitat prefer-
ence (Nykänen, Huusko, & Lahti, 2004). Only occurrence points that 
had records for all environmental parameters were used for model 
tuning and evaluation. There were 441 occurrence points for the 
Simple model and 283 for the Full model.

A number of predictive variables were selected based on the 
biology of European grayling and data availability. Bioclimatic pa-
rameters were selected (Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005) based on their relative importance in explaining the en-
tire latitudinal distribution of grayling from a preliminary model 
(Figure 1, right panel; Table 1). Land cover data for the year 2000 
were retrieved from the European Environmental Agency at a res-
olution of 100 m. Predation by the great cormorant (Phalacrocorax 
carbo, hereafter cormorant) on inland fish populations has in-
creased significantly over the past thirty years (Callaghan, Kirby, 
Bell, & Spray, 1998), having severe local impact in some cases 
(Vetemaa et al., 2010). To investigate the impact of this preda-
tor, GBIF records of cormorant since 1990 were used to estimate 
spatial patterns of abundance using a Gaussian kernel density 

F I G U R E  1   Right: Study area used for the selection of bioclimatic variables; Left: Subset study area; unique occurrence records of 
Thymallus thymallus are shown in red; these were spatially rarefied at a scale of 30 km2 for the entire European distribution (right) and at a 
scale of 1 km2 for the subset study area (left); populations genotyped at microsatellite and MH loci are shown in black, river lines are shown 
in grey
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function, which smooths individual occurrence counts per grid cell 
(Silverman, 2018), which was 10 km2 here, using the SDM toolbox 
(Brown, 2014) for ArcGIS 10.3 (ESRI). As this estimate of density 
may be biased and confounded by sampling intensity, we addition-
ally generated a categorical presence/absence layer based on the 
observation of occurrence records within a 10-km2 grid cell and 
compared model predictions. Measurement of biochemical oxygen 
demand (BOD), concentration of calcium, chloride, copper, nitrate, 
nitrite and orthophosphates, pH, suspended solids and total am-
monium were obtained from long-term surveys conducted by the 
UK Environment Agency. As it is necessary to acquire data from a 
large number of occurrence and background points, a good spatial 
coverage of measurements was ensured (minimum of 6,000 sites) 
after filtering using the following approach. To remove outliers for 
each site, all records since the year 2000 were averaged for the 
variables above and sites were removed if either the mean or the 
standard deviation exceeded a modified z-score of 3.5 (Iglewicz & 
Hoaglin, 1993). Water temperature measurements were derived 
from the River Surface Water temperature database as described 
in Orr et al. (2010). For each region, all records since 1985 were 
extracted and were again filtered if measurements exceeded a 
modified z-score of 3.5. Of the remaining records, averages were 
calculated per site, separately for each season. The time period 
was chosen to maximize the records per site in order to resolve 
local differences despite strong fluctuations. River flow data were 
obtained from the Future Flows and Groundwater Levels data set 
(Prudhomme et al., 2013, Haxton et al.,2012), specifically the na-
tional maps of changes in river flow statistics (Prudhomme, 2012). 
Current flow data were based on observed rainfall and poten-
tial evapotranspiration input from 1961 to 1990 (more details in 
Prudhomme, 2012). Mean annual flow rate and the 5th (Q95) and 

90th (Q10) percentile of the annual flow rate were used, which 
are commonly chosen to represent flow regimes (Dunbar et al., 
2010). The Q95 flow value is exceeded 95% of the time and rep-
resents low flow, while the Q10 flow value is exceeded 10% of the 
time and reflects high flow. We investigated the effect of extreme 
levels of flow here apart from the annual average, as these have 
been suggested to be of particular importance for the survival of 
juvenile salmonids (Riley, Maxwell, Pawson, & Ives, 2009; Warren, 
Dunbar, & Smith, 2015). For all point measurements, a buffer of 
2km was created and raster layers were created at a resolution of 
30’’ (0.93 × 0.93 = 0.86 km2 at the equator), assigning the value 
closest to the centre of the cell using ArcGIS 10.3 (ESRI). All layers 
were projected in ETRS 1989. Table 1 lists variables tested for rel-
ative impact on habitat suitability for grayling.

2.3 | Variable selection, model 
calibration and evaluation

We used model selection to avoid overfitting the data. Briefly, we 
used a stepwise variable selection process including species-spe-
cific tuning of regularization and AICc as an evaluation metric (see 
Warren, Wright, Seifert, & Shaffer, 2014; Zeng, Low, & Yeo, 2016). 
During the variable selection process, all considered parameters 
were iteratively added to the model in order of their contribution to 
an initial evaluation model and only retained if their addition resulted 
in a reduced AICc compared to their omission. While this method 
does not directly control for collinearity among predictor variables, 
AICc penalizes model complexity and therefore avoids overfitting 
(Zeng et al., 2016). Only hinge features, combining linear and step 
functions, were used (Elith, Kearney, & Phillips, 2010). To test the 

TA B L E  1   Initial variable set used in the variable selection process of the Full model; Bioclimatic variables considered are those that were 
selected across the European distribution of grayling

Climate Human habitat modification Biotic interactions

Bioclimatic variables (WorldClim) Water 
temperature

Flow Land use Water chemistry Predation

Isothermality (Bio 2/ Bio 7) (* 100) (Bio 3) Autumn Mean Flow 
average

Land cover 
2000

Biological Oxygen 
Demand (BOD)

Phalacrocorax 
carbo density

Temperature seasonality (standard deviation 
*100) (Bio 4)

Spring Mean Flow Q10   Calcium  

Max temperature of warmest month (Bio 5) Summer Mean Flow Q95   Chloride  

Min temperature of coldest month (Bio 6) Winter Mean     Copper  

Mean temperature of wettest quarter (Bio 8)       Nitrate  

Mean temperature of driest quarter (Bio 9)       Nitrite  

Mean temperature of coldest quarter (Bio 11)       Orthophosphates  

Precipitation of driest month (Bio 14)       Ph  

Precipitation seasonality (coefficient of variation) 
(Bio 15)

      Suspended solids  

Precipitation of wettest quarter (Bio 16)       Total ammonium  

Precipitation of warmest quarter (Bio 18)          

Note: Parameters retained in the Full model are shown in bold.
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transferability of the model, we used a “masked geographically 
structured” evaluation approach, where the study area was divided 
into k geographic blocks and evaluation was done on each block in 
turn (Radosavljevic & Anderson, 2014). Background sampling was 
performed on all areas apart from the test block to enhance inde-
pendency of the test data. This was done in R using the ENMeval 
package (Muscarella et al., 2014), with k = 4. For comparison, evalu-
ation results using a less stringent, but commonly applied, approach 
of bootstrapping over a test percentage of 25% of randomly selected 
occurrence points are reported. To facilitate model interpretation 
and the comparison of areas of high, low and no suitability, continu-
ous model outputs were classified using two different thresholds. As 
a conservative approach, the minimum training presence threshold 
(MTP) was selected (omission error = zero) in order to identify areas 
of minimal suitability (Pearson, Raxworthy, Nakamura, & Townsend 
Peterson, 2007). Additionally, we used the equal sensitivity and 
specificity (ESS) threshold, where specificity equals sensitivity (the 
probability of false positives is the same as for false negatives, which 
is commonly applied to classify habitat suitability (Jiménez-Valverde 
& Lobo, 2007)) to further classify between low/medium and high 
suitability habitat. From the Full model, we tested the importance of 
each of the 30 parameters in predicting grayling distribution, includ-
ing climate, water chemistry, land cover and predator density data.

2.4 | Testing association of habitat suitability and 
population inbreeding

To examine associations between habitat suitability and genetic 
diversity, averages of suitability estimates were taken for all rivers 
with coverage of at least 40% of the tributary area and where both 
neutral and adaptive genetic data were available (Rivers Aire, Dee, 
Derbyshire Derwent, Dove, Eden, Hampshire Avon, Itchen, Severn, 
Wye and Wylye; Figure 1). Neutral genetic data of ten microsatellite 
loci were derived from Dawnay, Dawnay, Hughes, Cove, and Taylor 
(2011), and adaptive genetic data for the same populations were 
derived for the α and β chain of the major histocompatibility (MH) 
class II from Huml, Taylor, Harris, Sen, and Ellis (2018). Populations 
were classified according to the mean estimated suitability of the 
tributary in which they were sampled. Where the mean estimated 
suitability of the tributary was above the ESS threshold, sites were 
classified as high suitability habitats. Low suitability habitat was 
assigned to sites where mean estimated suitability estimates were 
below the ESS. A Mann–Whitney U test was done to test for sig-
nificant difference in observed and expected heterozygosity, allelic 
richness and inbreeding coefficient FIS for both adaptive and neutral 
markers between high and low suitability habitats (Dawnay et al., 
2011). A clustered Mann–Whitney–Wilcoxon test implemented in 
the R package “clusrank,” using 1,000 bootstrap cycles (Jiang, He, 
Lee, Rosner, & Yan, 2017), was used to account for the dependency 
of measurements derived from the linked DAA and DAB genes, 
respectively. The Benjamini–Hochberg method was used to ac-
count for multiple testing (Hochberg & Benjamini, 1990). When a 

significant relationship between habitat suitability and genetic di-
versity was identified (see RESULTS ), we further tested the relative 
importance of effective population size (from Dawnay et al., 2011) 
and management background (native non-stocked, native stocked or 
introduced) on genetic diversity using a Random Forest analysis in 
the R package randomForest (Liaw & Wiener, 2002).

2.5 | Future distribution under differing climate 
change scenarios

Data for future climate scenarios were downloaded from the 
WorldClim database (Hijmans et al., 2005) for the General 
Circulation Model HadGEM2-AO (UK Meteorological Office, 
United Kingdom) for each of the representative concentration 
pathways (RCP) assuming minimal change (RCP 2.6) and maximal 
change (RCP 8.5) for 2050. Future mean water temperatures in 
summer were estimated by calculating the percentage degree of 
change for mean air temperatures in the warmest quarter (Bio 10) 
under each scenario and applying the same percentage degree of 
change to current mean water temperatures in summer. It has to 
be noted that this represents a simplification, as depending on ge-
ology (e.g. groundwater influx) and flow regime, water bodies will 
not always increase linearly with air temperature. Eleven future 
flow scenarios were obtained from simulations carried out by the 
Centre for Ecology and Hydrology (CEH) for 2050 (Prudhomme et 
al., 2013; Prudhomme, Young, et al., 2012). The 11-member en-
semble future simulations were generated using the delta change 
method by running the semi-distributed hydrological model CERF 
set-up for Great Britain with future scenarios representative of 
the 2050s based on the UK Met Office Regional Climate Model 
HadRM3-PPE and compared with a baseline simulation based on 
observed input from 1961 to 1990 (more details in Prudhomme, 
Dadson, et al., 2012). The simulations cover a range of differ-
ent geological river types such as clay, sandstone, limestone and 
chalk streams, where grayling occur. Uncertainty for future flow 
simulations was assessed in relation to baseline flow regime (see 
Prudhomme, Young, et al., 2012). Model inputs and parameters 
were set as described for the fine-tuned subset model described 
above. Future projections were made using 100 replicates for 
each of the eleven future flow scenarios. Standard deviations 
between flow scenarios were low (see RESULTS), and therefore, 
predictions were averaged across scenarios. A multivariate envi-
ronmental similarity matrix (MESS) was created in Maxent (Phillips 
& Dudík, 2008), as described in Elith et al. (2010), and the vari-
able that is subject to the greatest change in future scenarios was 
identified.

2.6 | Evaluating the effects of habitat improvement

To evaluate the effect of habitat improvement as a mitigation strat-
egy under climate change conditions, future projections were also 
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done under scenarios where either orthophosphate, nitrite or copper 
concentration was artificially manipulated independently or target-
ing all three parameters in combination. Here, concentrations were 
capped at the maximum values that had been shown not to impact 
on habitat suitability estimates for grayling (0.15 mg/L, 0.02 mg/L 
and 2 μg/L for orthophosphate, nitrite or copper concentration re-
spectively; see RESULTS). These variables were selected, because 
they were shown to affect habitat suitability for grayling in the Full 
model (see RESULTS) and could be targeted through management 
within a habitat improvement context.

3  | RESULTS

3.1 | Comparison of Full and Simple model

The Full model (including non-climatic parameters) showed a better 
relative performance than the Simple model (which was restricted to 
just the bioclimatic variables; delta AICc = 4,374). The habitat suit-
ability predicted by the Simple and Full model, respectively, across 
the study area is shown in Figure 2. The classified predictions of 
the two models agree in 66% of the study area (Figure 2). In 20% 
of the study area, the Simple model predicts higher suitability than 
the Full model, and in 14% of the area, the Simple model predicts 
lower suitability than the Full model (Figure 2). Tuning of regulariza-
tion resulted in an optimal random multiplier of 2.2, which repre-
sents an increased penalization on model complexity compared to 
the default value of 1. The Simple model did not show a high per-
formance (mean test AUC across evaluation blocks of 0.71 ± 0.05 
(compared to 0.77 ± 0.02 using a bootstrap approach), an average 
minimum test omission rate of 0.02 ± 0.00007, and an average 10th 
percentile omission rate was 0.26 ± 0.04). Twelve out of thirty pa-
rameters were retained in the Full model after the variable selection 
process. This Full model performed better than the Simple model 
(the average test AUC of the Full model across evaluation blocks was 
0.76 ± 0.002 (compared to 0.78 ± 0.02 using a bootstrap approach), 
which is indicative of a useful model (AUC > 0.75; Elith et al., 2006), 
an average minimum test omission rate was 0.004 ± 0.00005, and an 
average 10th percentile omission rate was 0.12 ± 0.002).

3.2 | Full model

When using the Full model, 11% of the area was classified as un-
suitable (below MTP), 61% as low/medium suitability (below ESS) 
and 28% as high suitability (above ESS; Figure 2). Climatic environ-
mental parameters contributed 51% of the final set of variables 
used to build the model. These were precipitation of the wettest 
quarter (Bio 16), isothermality (Bio 3), described as the ratio of 
the mean diurnal range (Bio 2) to the mean annual range (Bio 7), 
maximum temperature in the warmest month (Bio 5) and mean 
water temperature in summer and the 90th (Q10) percentile and 
5th (Q95) of annual flow, representing highest and lowest flow 

rates, respectively. Water chemistry parameters had a total con-
tribution of 37% to the final model (Table 2). These parameters 
were the concentrations of calcium, dissolved copper, nitrite and 
orthophosphates. Further, land cover had a contribution of 12% 
and cormorant density had a contribution of less than 1% (Table 2). 
This was also the case using a presence/absence layer of cormo-
rant occurrence observations within 10 km2 as an alternative mod-
elling input, which showed minor differences in model predictions 
(average per cell standard deviation was 0.007).

As a main model output, the sensitivity of grayling to different 
environmental parameters was quantified. A probability of grayling 
presence above 50% was observed for (a) maximum temperatures 
in the warmest month (Bio 5) between 19 and 20.8°C, (b) isother-
mality values above 36, low flow (Q95) between 1 and just over 
5 m3/s, (c) calcium concentrations between ~ 60 and ~ 105 mg/L, 
(d) orthophosphate concentration between 0.02 and 0.2 mg/L, (e) 
copper concentrations between 0 and 2.6  μg/L, (f) mean water 
temperature in summer between 8 and 16°C, (g) precipitation in 
the wettest quarter between 182 and 306 mm, (h) nitrite concen-
trations between ~ 0.01 and ~ 0.04 mg/L, (i) high flow (Q10) be-
tween 10 and 70 m3/s and (j) no Phalacrocorax carbo count within 
10 km2 (Figure S1). Highest suitability in regard to land use was 
observed for fruit trees and berry plantations, inland marshes 
and broadleaf forest. Land use classifications with a probability of 
presence below 50% were observed for urban fabric and industrial 
or commercial areas, natural grasslands and moors and heathlands 
(Figure S1).

3.3 | Association of habitat suitability and 
population inbreeding

No differences were observed between high and low suitability hab-
itats for observed or expected heterozygosity and allelic richness. 
Inbreeding coefficients (FIS) were significantly higher in low suitabil-
ity habitats, defined by the Full model than in high suitability habi-
tats for MH class II markers (clustered Mann–Whitney–Wilcoxon 
test, p < .001) but not for neutral markers (Figure 3). Random Forest 
analysis also showed high relative importance of habitat suitability 
estimates compared to effective population size and management 
background in explaining variation in MH II FIS values (Table 3). 
Habitat suitability was the parameter that mostly decreased the 
mean square error (MSE) (Table 3). When using the mean decrease in 
Gini index as measure of variable importance, both habitat suitability 
and effective population size were ranked most important (Table 3). 
No significant differences in genetic diversity were observed be-
tween areas of low and high suitability defined by the Simple model.

3.4 | Future projections

Under conditions of climate change, the projections for 2050 
predict predominantly a significant loss of high suitability habitat 
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(Figure 4; Table 4). This was estimated as a reduction in highly suit-
able areas of 21% for the RCP 2.6 and the RCP 8.5 scenario of 
change (Table 4). Projections for different future flow scenarios 
were similar, with a maximum per cell standard deviation of 0.033 
for the RCP 2.6 and 0.032 for the RCP 8.5 scenario of change. An 
increase in the area that becomes unsuitable is more pronounced 
in the RCP 2.6 projection of change, where isothermality (Bio 2/
Bio 7) decreases more, particularly in the South West, due to a 

greater increase in the annual temperature range (Bio7) in rela-
tion to the diurnal range (Bio2). For the RCP 8.5 projections, the 
diurnal range increases more proportionally, so that the decrease 
in isothermality is less pronounced (Figure 4). Large parts of the 
study area exhibit environmental conditions under climate change 
scenarios not included in training (Figure S2), which was mainly 
driven by the increase in maximum temperature of the warmest 
month (Bio 5).

F I G U R E  2   Maxent estimates of habitat suitability for Thymallus thymallus; Left: Full model; Middle: Simple model; Right: comparison of 
estimates of the Full and Simple model

Classified predicted suitability
no suitability (below MTP)
low/medium suitability (below ESS)
high suitability (above ESS)

Full model Simple (climate-only) model

Comparison of classified predictions
Simple model equals Full model
Simple model higher than Full model
Simple model lower than Full model

0 80 Miles

Comparison of models

Parameter description Contribution Permutation importance

Maximum temperature of the warmest 
month (Bio 5)

8.02 24.31

Isothermality (Bio 2/ Bio 7) (* 100) (Bio 3) 10.54 15.27

Land cover 12.06 12.83

Low flow (95th quantile of annual flow) 10.35 10.45

Calcium concentration 20.67 9.67

Orthophosphate concentration 12.15 7.95

Dissolved copper concentration 2.18 5.36

Summer mean water temperature 6.55 4.89

Precipitation of the wettest quarter (Bio 
16)

9.10 4.14

Nitrite concentration 2.26 2.88

High flow (10th quantile of annual flow) 5.94 1.21

Phalacrocorax carbo density 0.17 1.05

Note: Parameters are ranked by permutation importance.

TA B L E  2   Relative contribution and 
permutation importance for all variables 
included in the Full model
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3.5 | Evaluating the effects of habitat improvement

Decreasing orthophosphate, nitrite or copper concentration 
in areas where they exceed the estimated tolerance of grayling 
showed recovery of suitable habitat is possible under current and 
future conditions (Table 5, Figures 5 and 6). An overall recovery of 
suitable habitat of up to 7%, 6% and 4% relative to the total study 
area is predicted to be possible by making locally optimal improve-
ments in either orthophosphate, nitrite or copper concentration 
under current conditions and predictions for 2050 for the RCP 2.6 
and 8.5 scenarios, respectively (Table 5). If the target parameters 
are optimized in combination, the total improvements of suitability 
classifications are further increased and estimated 14%, 10% and 
6% in total for current and future scenarios (RCP 2.6 and 8.5), re-
spectively (Table 5). Possible improvements would greatly affect 
areas in which grayling is currently present (Figures 5 and 6). The 
highest net total gain in estimated suitability that can be achieved 
reveals locally optimal strategies for improvement, targeting ei-
ther orthophosphate, nitrite or copper concentration (Figure 6). 
Highest local increases in habitat suitability of 26% were observed 
for reductions in orthophosphate concentrations under current 
conditions (Figure 6). For other locations, a reduction in nitrite or 
metal pollution had higher effects on suitability achieving relative 

maximum improvements of 20% and 17% under current condi-
tions (Figure 6 ).

4  | DISCUSSION

Here, we modelled habitat suitability for grayling across the UK and 
we (a) show that distribution models incorporating climate and other 
habitat parameters outperform climate-only models; (b) present evi-
dence for increased inbreeding coefficients at immune but not neu-
tral markers in areas of low habitat suitability; (c) illustrate significant 
alterations in range under future climate models; and (d) demonstrate 
the potential alleviation of range contraction by habitat mitigation.

4.1 | Simple versus Full model

In this study, the Full model including climate and other habitat 
quality data was much more accurate than the climate-only model 
(the Simple (climate-only model) showed a 10th percentile omission 
rate almost twice as high as the Full model). This finding highlights 
the importance of considering habitat quality parameters that are 
not explicitly climate related to inform conservation management 
at local scales. That the inclusion of additional parameters improves 
models is not surprising as flow has been identified as a critical 
driver of habitat suitability for freshwater fish (VanCompernolle, 
Knouft, & Ficklin, 2019) and land use change and pollution have 
also been implicated in habitat loss or degradation of freshwater 
habitats (Alabaster & Lloyd, 2013; Foley et al., 2005).

4.2 | Habitat suitability and immune 
genetic diversity

We found that inbreeding coefficients (FIS) were significantly 
higher in areas identified as low suitability habitats for adaptive, 

F I G U R E  3   Relationship between 
inbreeding measured for neutral and 
immune genetic markers and habitat 
classification: the equal specificity 
and sensitivity threshold (ESS) is used 
to classify low and high suitability, 
respectively
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TA B L E  3   Random Forest analysis with the MH II inbreeding 
coefficient FIS as a response variable and habitat suitability (Hs), 
effective population size (Ne) and management class (class) as 
predictor variables

  %IncMSE IncNodePurity

Hs 13.32 0.16

Ne 8.63 0.16

class 2.93 0.12

Note: Mean Decrease Accuracy (%IncMSE) and Mean Decrease Gini 
(IncNodePurity) representing relative variable importance
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immune system markers. This was not the case for neutral mark-
ers. Biased sampling of kin or the Wahlund effect (Wahlund, 1928) 
is unlikely to explain this result, as both types of markers would be 
equally affected. Inbreeding caused by a recent population decline 
or higher variation in family size as a consequence of the reduced 
habitat quality would also be expected to be reflected by neutral 
markers. A technical artefact, such as a higher probability for the 
presence of null alleles at the MH II in samples from low suitability 
habitats, seems unlikely, as samples were prepared in duplicates 

and random order (see Huml et al., 2018). Taking other potential 
drivers, such as effective population size and management back-
ground into account in the Random Forest analysis, habitat quality 
best explains the observed patterns of FIS at immune genes. There 
is evidence that the prevalence of infectious disease and the sus-
ceptibility of hosts can be increased under unfavourable environ-
mental conditions (Austin, 2007; Schmidt-Posthaus & Wahli, 2015). 
This includes metal pollution and eutrophication (Shirakashi & El-
Matbouli, 2010; Wedekind, Gessner, Vazquez, Maerki, & Steiner, 
2010), which were also identified to be among the main factors 
impacting on habitat suitability for grayling in this study. While our 
small sample size (N = 10) demands cautious interpretation of our 
results, we suggest directional selection pressure on MH II genes 
as a plausible explanation. This could be due to a higher prevalence 
of opportunistic pathogens under conditions of reduced habitat 
quality or environmental stress (Austin, 2007; Boutin, Bernatchez, 
Audet, & Derôme, 2013; Schmidt-Posthaus & Wahli, 2015), result-
ing in significantly higher FIS observed at the MH II for low-quality 
habitats, but with no observed effect of habitat quality for mi-
crosatellites. This is of high conservation relevance as periods of 
increased pressures of disease-mediated directional selection can 
lead to significant losses of immune genetic diversity and the fu-
ture potential to face pathogens (Coughlan et al., 2006). However, 
a direct measure of selection pressures, for example through the 
assessment of shifts in the microbiome composition in grayling in 

F I G U R E  4   Projections of habitat suitability estimates for 2050 for RCP 2.6 (left) and 8.5 (right): Averages across 100 replicates are shown 
(the mean standard deviation was 0.06 for both the 2.6 scenario and the 8.5 scenario of change across the study area), with warmer colours 
indicating higher suitability; habitat classifications were done using the minimum training presence threshold (MTP) and equal training 
sensitivity and specificity (ESS) threshold

Classified predicted
suitability

no suitability (below MTP)

low/medium suitability
(below ESS)

high suitability (above
ESS)

RCP 2.6 RCP 8.5 0 80 Miles

TA B L E  4   Relative percentage change in habitat classification for 
2050

  current 2050 RCP 2.6 2050 RCP 8.5

No suitability 
(below MTP)

11 35 21

Low/medium 
suitability (below 
ESS)

61 57 73

High suitability 
(above ESS)

28 7 7

Note: Relative area in percentage under the following classification: 
no suitability (below MTP), low/medium suitability (below ESS) or high 
suitability (above ESS) for the current habitat suitability estimate and as 
projected for 2050 under the RCP 2.6 and 8.5, respectively
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Orthophosphate 
(0.15 mg/L)

Nitrite 
(0.02 mg/L) Copper (2 μg/L) All combined

Current

Increase 
above MTP

2 2 2 3

Increase 
above ESS

3 3 5 11

RCP 2.6

Increase 
above MTP

4 4 5 9

Increase 
above ESS

0.5 1 1 1

RCP 8.5

Increase 
above MTP

3 2 3 5

Increase 
above ESS

1 1 1 1

Note: Relative increase in suitable area in percentage under the following classification: no 
suitability (below MTP), low/medium suitability (below ESS) or high suitability (above ESS) as 
projected for current conditions and for 2050 under the RCP 2.6 and 8.5, respectively, when 
either orthophosphate, nitrite or copper concentration is reduced independently or when all three 
parameters are reduced in combination.

TA B L E  5   Relative percentage change 
in habitat classification for 2050, when 
orthophosphate, nitrite or copper 
concentration is reduced to the maximum 
estimated as tolerable

F I G U R E  5   Classified predictions of habitat suitability estimates for current conditions and 2050 for RCP 2.6 and 8.5 when locally 
orthophosphate, nitrite and copper are reduced to maximum values estimated not to affect habitat suitability for grayling: top panels: 
increase in classified suitability observed across the study area; bottom panels: sites with current occurrences of grayling that are positively 
affected by reducing either orthophosphate, nitrite or copper concentrations

RCP 8.5RCP 2.6

Classified optimized
suitability

improvement to
low/medium suitability
(below ESS)
improvement to high
suitability (above ESS)

0 100 Miles

current

grayling records in
areas of recoverd
medium suitability

grayling records in
areas of recoverd high
suitability
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relation to their MH genotype within low-quality habitats, would 
be required to confirm this hypothesis.

4.3 | Future climate predictions

Significant reductions in suitable range for grayling under future 
climate predictions were also demonstrated. As climate change oc-
curs, species will need to respond either adaptively or by tracking 
range changes (Hoffmann & Sgro, 2011). That there is a scope for 
adaptive responses to climate change in salmonids has been shown 
by several studies. Eliason et al. (2011) showed that populations of 
sockeye salmon (Onchorhynchus nerka) exhibit different tolerance 
limits to temperatures, reflecting historic temperature ranges of 
their habitat. An adaptive population divergence in response to 
temperature has been shown by Kavanagh, Haugen, Gregersen, 
Jernvall, and Vøllestad (2010) arising quickly and under constrain-
ing conditions of continued gene flow and previous bottlenecks 
in grayling. Jensen et al. (2008) showed significant differences in 

the amount of heritable variation in phenotypic plasticity between 
populations in response to temperature regimes in brown trout 
(Salmo trutta). Increasing flexibility is thought to be particularly 
important in response to climate change as environmental condi-
tions are predicted to fluctuate more. The high importance of iso-
thermality in the habitat suitability model for grayling within the 
UK might indicate that there are selection pressures on increased 
flexibility present.

Maximum summer temperature was the parameter subject to 
most change under future projections (Figure S2). While air tem-
peratures generally show a linear relationship to water tempera-
tures, the latter are also affected by flow, water volume, shading 
and wind shelters and deviations from linearity have been par-
ticularly shown, when maximum air temperatures exceed 25°C 
(Erickson & Stefan, 2000; Webb, Clack, & Walling, 2003). This was 
also evident from the river surface water temperature data set 
used here (Orr et al., 2010). Differences in the effect of maximum 
air temperatures on mean water temperatures may reflect local 
differences in buffering capacity of the water body. Local thermal 

F I G U R E  6   Projections of change in habitat suitability estimates for (a) current conditions or 2050 for (b) RCP 2.6 and (c) RCP 8.5 when 
reducing orthophosphate, nitrite or copper concentrations to maximum values estimated not to affect habitat suitability for grayling: top 
panels: increase in suitability observed across the study area; bottom panels: sites with current occurrences of grayling that are positively 
affected by reducing either orthophosphate, nitrite or copper concentrations

Orthophosphate optimal (0.15 mg/L) Nitrite optimal (0.02 mg/L) Copper optimal (2 ug/L)

0 80 Miles

Value
High : 0.26

Low : 0

Value
High : 0.2

Low : 0

Value
High : 0.17

Low : 0

current
grayling records in
areas of recovered
high suitability

grayling records in
areas of recovered
medium suitability

(a)
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Orthophosphate optimal (0.15 mg/L) Nitrite optimal (0.02 mg/L) Copper optimal (2 ug/L)

0 80 Miles

Value
High : 0.24

Low : 0

Value
High : 0.17

Low : 0

Value
High : 0.14

Low : 0

RCP 2.6
grayling records in
areas of recovered
high suitability

grayling records in
areas of recovered
mediumsuitability

(b)

Orthophosphate optimal (0.15 mg/L) Nitrite optimal (0.02 mg/L) Copper optimal (2 ug/L)

0 80 Miles

Value
High : 0.23

Low : 0

Value
High : 0.15

Low : 0

Value
High : 0.14

Low : 0

RCP 8.5
grayling records in
areas of recovered
high suitability

grayling records in
areas of recovered
medium suitability

(c)

F I G U R E  6  Continued
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refugia have been shown to be actively used by juvenile salmo-
nids and are potentially important for their survival in a warm-
ing climate (Sutton & Soto, 2012). Further investigations on local 
thermal refugia within grayling rivers that are expected to suffer 
from temperature increases, such as those in the South East, and 
management actions, such as the creation of riparian woodland 
zones are recommended (Malcolm et al., 2008). Also, the effect of 
groundwater abstraction should be evaluated in this context and 
in regard to increasing the risk of low summer flows, which can be 
critical for grayling (Riley et al., 2009).

4.4 | Mitigation of climate change impacts

One of the most important messages of this study is that the mod-
els demonstrate that adjustments in environmental parameters 
maintain habitat suitability under climate change. It is therefore 
clear that modelling of future distributions should take both cli-
mate and non-climate-related parameters into account. Particular 
environmental parameters of importance (for mitigating range 
changes) included orthophosphates, nitrites and metal pollution. 
Organic pollution and eutrophication associated with high con-
centrations of phosphate and nitrate are one of the major anthro-
pogenic impacts on freshwater systems (Birk et al., 2012; Blabolil 
et al., 2016). Harmful effects for fish are caused by oxygen de-
pletion, resulting from increased phytoplankton growth (Elshout, 
Dionisio Pires, Leuven, Wendelaar Bonga, & Hendriks, 2013). 
Because of temperature dependencies, the impact of eutrophica-
tion is expected to further increase under climate change condi-
tions (Moss et al., 2011). Metals have toxic effects on fish, mainly 
caused by a disruption of mechanisms important for ion regula-
tion (Alsop & Wood, 2011). Metal pollution is considered a serious 
threat to freshwater ecosystems (Förstner & Wittmann, 2012) and 
is associated with historic mining activities within the UK (Macklin, 
Hudson-Edwards, & Dawson, 1997).

5  | CONCLUSIONS

Reducing non-climate-related environmental stress has been high-
lighted to be among the most important management action in the 
face of climate change (Heller & Zavaleta, 2009). This is stressed by 
the findings on low habitat suitability impacting on adaptive genetic 
variation and likely evolutionary potential, which is thought to be 
capable to promote climate change adaptation in salmonids (Eliason 
et al., 2011).

While this study does not try to give accurate predictions of the 
future distribution of grayling, its main goal was to show the poten-
tial of different habitat improvement strategies to increase habitat 
suitability for grayling under conditions of climate change and to 
give specific suggestions on local priority actions. One caveat of our 
study is that we used Maxent as a single modelling approach. While 
Maxent generally performs well in comparison with other techniques 

(Aguirre-Gutiérrez et al., 2013), the choice of modelling technique has 
been identified as a major source of uncertainty in SDMs (Thuiller, 
Guéguen, Renaud, Karger, & Zimmermann, 2019). Therefore, an en-
semble SDM approach, which combines several techniques, may be a 
better alternative to comprehensively quantify uncertainty of predic-
tions (Thuiller et al., 2019). Further, while in this study we successfully 
identify a number of non-climatic parameters that can be targeted 
to mitigate negative effects of climate change, we did not exhaus-
tively evaluate all variables that may impact on habitat suitability of 
grayling. For example, here we focussed on extreme conditions of 
river flow (Q10 and Q95), given their particular relevance for the sur-
vival of juvenile salmonids (Riley et al., 2009; Warren et al., 2015). 
However, seasonal patterns and variation in the flow regime, as well 
as the relevance of groundwater influxes, may be another import-
ant aspect to consider in future studies. Also, habitat fragmentation 
through hydropower development and dam construction has been 
shown to adversely affect grayling populations and maintenance of 
population connectivity is considered another important conserva-
tion priority (Junge, Museth, Hindar, Kraabøl, & Vøllestad, 2014).

Effective conservation of grayling across the higher latitudinal 
range of the species distribution, such as the UK and Scandinavia, is 
particularly warranted to safeguard the species, as the effects of cli-
mate change are expected to be less drastic than across its lower lat-
itudinal range. The importance of evaluating priorities and invoking 
management actions on habitat improvement within the continental 
distribution of grayling is clear, given an expected stronger effect of 
climate change on habitat suitability for grayling at lower latitudes. 
In summary, in the UK rivers should be managed to reduce levels of 
orthophosphates, copper and nitrate to ensure the best prospects 
for grayling under a changing climate. Evaluation of non-climate pa-
rameters should become routine in species distribution modelling 
for conservation management in a climate change context.
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