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Abstract 

Arabidopsis thaliana, a winter annual, requires a period of prolonged cold to permit flowering, in a 

process known as vernalisation. Vernalisation results in the transcriptional shutdown and epigenetic 

silencing of a locus encoding the floral repressor, FLOWERING LOCUS C (FLC). Relatively little is 

known about the thermosensors involved in relaying a prolonged cold temperature signal into 

silencing of FLC, however it is known that COOLAIR, a set of antisense long non‐coding RNAs 

(lncRNAs), and VIN3 are both transcriptionally upregulated in response to weeks of cold.  

 

The aim of my work described in this thesis was two‐fold, to firstly identify the potential factors 

involved in COOLAIR induction and secondly to investigate the thermosensory inputs to COOLAIR 

induction, in an effort to identify how prolonged cold temperature is being sensed at COOLAIR.  

 

In summary, a non‐biased forward genetic screen mutant analysis identified candidate 

thermosensors required for the cold induction of COOLAIR, including ARP6, a core component of a 

histone remodelling complex. A complementary reverse genetic approach, formulated based on cis 

sequence conservation in the COOLAIR promotor, identified known cold affected redundant factors 

that may activate COOLAIR expression in response to cold temperature. I also carefully designed 

temperature regimes to more accurately represent fluctuating field temperatures, to ascertain the 

temperature inputs being detected at COOLAIR. Experiments tracking COOLAIR expression under 

different temperature regimes isolated likely distinct temperature inputs at COOLAIR contributing to 

a distributive view of thermosensing. This work has provided much scope for further investigations 

that could ultimately lead to the characterisation of thermosensing during vernalisation.  
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1 

 

1 Introduction 

 
The goal of my research was to elucidate the thermosensory inputs and identify candidate factors 

that are involved in the induction of a set of lncRNAs, collectively named COOLAIR, in response to 

cold temperature in Arabidopsis thaliana. COOLAIR is transcribed antisense to FLC, a pivotal floral 

repressor. Induction of COOLAIR in response to prolonged cold temperature influences 

downregulation of FLC, alongside other factors resulting in a process termed vernalisation. 

Vernalisation is the induction of flowering in response to exposure to prolonged cold temperature 

or, in other words, winter.  At the beginning of the project it was not known how COOLAIR 

expression is induced by cold temperature or even what temperature inputs affect COOLAIR 

expression.  

  

1.1 Temperature affects everything  

 
World‐renowned physicist Richard Feynman described temperature as ‘the jiggling of atoms’. 

Temperature affects the structure of molecules, the rate of chemical and enzymatic reactions, and 

the probability a reaction happens at all (Gibb’s free energy). Cells are biochemical engines driven by 

highly structured molecules, so cells and whole organisms need to sense and respond to 

temperature or risk loss of cell homeostasis.  

 

Moreover, some organisms rely on temperature to inform their developmental decisions. 

Arabidopsis plants exposed to high temperature have an elongated hypocotyl and flower early (Gray 

& Estelle, 1998; Kumar & Wigge, 2010). Additionally, some plants will not flower until experiencing a 

prolonged period of cold, a process called vernalisation (Simpson & Dean, 2002).   

 

Temperature responses often result in clear phenotypes such as the length of a hypocotyl, the 

timing of flowering or the RNA expression profiles of cold‐acclimatised plants (Jia et al., 2016; Zhao 

et al., 2016). On the other hand, temperature sensors, which can detect a temperature signal and 

relay this to cause a response, have proven somewhat more difficult to elucidate (Knight & Knight, 

2012). Given temperature broadly affects biochemistry, finding the causative change in a factor 

required for a temperature response is akin to finding a needle in a haystack. Additionally, recent 

research modelling temperature inputs to vernalisation has revealed the need for multiple 

thermosensors, akin to finding multiple needles in a haystack (Antoniou‐Kourounioti et al., 2018).    
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1.2 Known Thermosensing Pathways in Arabidopsis 
 
Temperature responsive phenotypes and pathways downstream of the temperature sensing event 

are well documented in Arabidopsis however the initial thermosensing events are less understood. 

Below two temperature responsive events; altered plant development including early flowering and 

elongated hypocotyl growth in response to high temperature and cold acclimation of plants in 

response to low temperatures will be examined. 

 

In response to 27°C growth temperature compared to 22°C, Arabidopsis plants transition between 

developmental stages more rapidly resulting in plants that have extended hypocotyls and flower 

early (Kumar & Wigge, 2010). Mutant analysis has revealed the role of transcription factors and 

histone remodellers in causing these developmental changes.  

 

Phytochrome Interacting Factor 4 (PIF4), a basic helix turn helix transcription factor, is required for 

hypocotyl elongation and is required and sufficient for early flowering in response to high 

temperature (Koini et al., 2009; Kumar et al., 2012). PIF4 expression at 22°C peaks just before dawn 

and this peak is increased two‐fold in response to 27°C. Modelling experiments supported by 

expression data have implicated the temperature responsive binding of Early Flowering 3 (ELF3), a 

transcriptional repressor, to the promotor of PIF4 in this phenomenon (Box et al., 2015). PIF4 activity 

is known to be repressed by phytochromes through protein degradation (Lorrain & Fankhauser, 

2008). High temperature has recently been shown to increase the rate phytochromes are 

transformed back to their inactive state meaning that thermosensing by phytochromes directly 

impacts PIF4 activity (Jung et al., 2016; Legris et al., 2016).  

 

arp6‐10 Arabidopsis mutants phenotypically resemble plants grown at 27°C, with an elongated 

hypocotyl and early flowering, despite being grown at 12°C (Kumar & Wigge, 2010). Actin‐ related 

protein 6 (ARP6) is part of the Swi2/Snf2 – related 1 (SWR1) histone remodelling complex and is 

required for H2A.Z deposition throughout chromatin (Deal & Meagher, 2007). H2A.Z removal from 

gene promotors has been implicated expression of the ‘warm’ transcriptome, which is why in arp6‐

10 plants, where there is very little H2A.Z, the ‘warm’ transcriptome is expressed and plant resemble 

plants grown at 27°C. It is not yet clear if H2A.Z nucleosomes respond directly to increased 

temperature or if other factors respond and mediate H2A.Z removal.  
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Overall then, thermomorphogensis in Arabidopsis is controlled in part by the activity of PIF4 and the 

removal of H2A.Z that both lead to expression of a ‘warm’ transcriptome. Altered protein binding 

(ELF3 and phytochrome B) as a result of temperature mediated transitions between active and 

inactive states is a thermosensing mechanism used in this process. H2A.Z containing nucleosomes 

may also themselves directly respond to temperature, but this could happen through indirect 

means.  

 

Arabidopsis plants also respond to cooler temperatures. Arabidopsis plants exposed to low 

temperatures ~5°C and then to freezing conditions are more freezing tolerant than those plants 

exposed to freezing conditions without prior exposure to 5°C.  This cold acclimation process is 

associated with expression of cold‐regulated (COR) genes (Gilmour, Hajela, & Thomashow, 1988). 

Discovery of a cis‐acting regulatory sequence in the promotors of a group of COR genes (Yamaguchi‐

Shinozaki & Shinozaki, 1994) led to the isolation of three C – Repeat/ Dehydration response element 

binding factors (CBFs) (Gilmour et al., 1998; Stockinger, Gilmour, & Thomashow, 1997). CBF1, 2 and 

3 are transcriptionally induced in response to hours at 5°C and then in a partially redundant manner 

induce expression of a suite of COR genes initiating the cold acclimation transcriptome (Gilmour, 

Fowler, & Thomashow, 2004; Jia et al., 2016; Zhao et al., 2016).  

 

CBF1,2 and 3 are regulated by multiple transcription factors, including positive and negative 

regulators, that bind cis elements in the CBF gene promotors. Inducer of CBF expression (ICE1) is a 

positive regulator of the CBFs and in response to cold temperature ICE1 protein is stabilized as a 

result of sumolyation and repression of ubiquitination (Chinnusamy et al., 2003; C. H. Dong, Agarwal, 

Zhang, Xie, & Zhu, 2006). Other positive regulators of the CBFs include Calmodulin binding 

transcriptional activator 3 (CAMTA3) (Doherty, Van Buskirk, Myers, & Thomashow, 2009)  and 

circadian regulators Circadian clock associated 1 (CCA1) and Late Elongated Hypocotyl (LHY) (M. A. 

Dong, Farre, & Thomashow, 2011). Negative regulators include MYB domain protein 15 (MYB15) 

(Agarwal et al., 2006) and PIF4 (Jiang et al., 2017; Lee & Thomashow, 2012).  

 

Interestingly, expression of CBF1, 2 and 3 is not regulated in the same way. CBF2 is a known negative 

regulator of CBF1 and CBF3 and in cbf2 plants freezing tolerance after cold acclimation is increased 

coincident with higher and sustained expression of CBF1, CBF3 and COR genes (Novillo & Salinas, 

2004). Additionally, CAMTA3 and 5 are required for cold inducible expression of CBF1 and CBF2 in 

response to cold treatments in the day or night whilst other factors such as CCA1 and LHY are 
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required for cold induction of CBF2 and CBF3 in response to cold treatments during the day 

(Kidokoro et al., 2017).  

 

The actual temperature sensing events that occur in response to cold temperature resulting in cold 

acclimation are less well understood relative to the response itself. The positive and negative 

transcriptional regulators previously mentioned are somehow influenced by temperature to control 

CBF expression. PIF4 may be regulated as previously described by ELF3 and PHYB (Box et al., 2015; 

Jung et al., 2016; Legris et al., 2016) In this case in warm temperatures PIF4 is expressed more highly 

and the CBFs are repressed.  

 

Thermosensors responding to cold temperature have proved more elusive. Certain events are 

known to occur in response to cold temperature including increased cytosolic Ca2+ levels, altered 

membrane fluidity and cytoskeletal rearrangements.  

 

An increase in cytoplasmic Ca2+ is known to occur as one of the earliest steps in cold acclimation and 

is important for the cold acclimation response (H. Knight, Trewavas, & Knight, 1996; M. R. Knight, 

Campbell, Smith, & Trewavas, 1991; Monroy, Sarhan, & Dhindsa, 1993). The Ca2+ signature produced 

in response to cold temperature depends on the rate of cooling as opposed to the absolute 

temperature reached, though cooling 10°C over an hour does not produce a response (Plieth, 

Hansen, Knight, & Knight, 1999). At already low temperatures the system is more sensitive; further 

drops in temperature cause increased Ca2+ elevations. Repeated exposures to drops in temperature 

attenuate the response producing a Ca2+ signature linked to memory of cold (H. Knight et al., 1996). 

An increase in Ca2+ likely acts as a secondary messenger within the cell causing modification of 

positive regulators of CBF expression. CAMTA3 is a known calmodulin binding protein and its activity 

will therefore likely be impacted by the presence or absence of Ca2+.  

 

It has been hypothesised that these Ca2+ elevations could happen as a result of temperature induced 

changes in Ca2+ channels and recently two Ca2+ permeable mechanosensitive channels have been 

characterised (Mori et al., 2018). Membrane fluidity and the status of the cytoskeleton have also 

been linked to cold dependent elevation of Ca2+. When the membrane is fluidised, using chemicals, 

at low temperature, the expected Ca2+ influx and cold acclimation doesn’t occur and if the 

membrane is rigidified, using chemicals, at 25°C, Ca2+ increases and cold acclimation occurs despite 

the absence of cold temperature (Orvar & Dhindsa, 2000). Chemicals stabilising the cytoskeleton 
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lead to loss of cold‐dependent Ca 2+ elevation whereas chemicals that destabilise microfilaments 

lead to a Ca2+ influx regardless of temperature (Mazars et al., 1997).  

 
Overall, the positive and negative regulators of CBF induction, which is important for cold 

acclimation in Arabidopsis, are well studied, however the thermosensors involved in this process are 

not well understood. Ca2+ signatures that occur in response to drops in temperature are likely to be 

important for sensing cold temperatures though it is unclear how drops in temperature cause these 

Ca2+ elevations.  

 

1.3 Deciding to flower and the role of temperature 

 
Flowering is a critical developmental decision that ultimately results in the propagation of genetic 

information to the following generation. The decision to flower is determined by the expression of 

floral regulators particularly FLOWERING LOCUS T (FT). FT is expressed in the leaves and transported 

to the shoot apical meristem, via the phloem, to initiate floral organ development (Wigge, 2011). FT 

expression is intricately controlled by multiple inputs including day length, age, temperature and the 

level of FLC, a transcriptional repressor of FT. FLC itself is regulated by the activating FRIGIDA 

pathway and the repressive autonomous pathway whilst being specifically repressed in response to 

prolonged period of cold, a process known as vernalisation.  

 

 

Figure 1 – 1 Multiple Inputs influence FT expression  
FT, alongside other floral integrators, controls flowering time in Arabidopsis. FT expression 
is influenced by age, ambient temperature, photoperiod and the level of FLC which itself is 
influenced by the activating FRIGIDA pathway and repressive autonomous and cold‐specific 
vernalisation pathways.  



 
6 

 

Elevated temperatures have been shown to both activate (Sureshkumar, Dent, Seleznev, Tasset, & 

Balasubramanian, 2016) and repress flowering (Bouche, Detry, & Perilleux, 2015) in a context‐

dependent manner, whilst prolonged cold temperatures may be required to permit flowering, in a 

process termed vernalisation (Simpson & Dean, 2002). Requiring vernalisation ensures flowering 

occurs in spring rather than autumn to maximise reproductive success. The process of vernalisation 

will form the basis of this thesis and is explained further below.  

 

1.4 Vernalisation: The silencing of FLC in response to prolonged cold 

 
FLC, a MADS box transcription factor, is a repressor of FT and therefore a repressor of flowering. FT 

expression cannot reach critical levels to initiate flowering when FLC is expressed to a high level. 

 
Exposure of seedlings to prolonged cold, vernalisation, results in the silencing of FLC (Searle et al., 

2006) and the subsequent expression of FT and floral initiation. FLC levels are determined in the 

warm by the antagonistic actions of the activating FRIGIDA complex and the repressive autonomous 

pathway (Figure 1‐1). In response to vernalisation, FLC is quantitatively silenced; longer periods of 

cold lead to further downregulation of FLC. This is the result of digitally switching off more FLC loci 

over time spent in the cold (Angel et al., 2015; Berry, Hartley, Olsson, Dean, & Howard, 2015).  FLC 

silencing can be broadly split into two phases that happen during cold exposure (Figure 1‐2). The 

first phase is transcriptional shutdown of FLC and the second phase is nucleation of epigenetic 

silencing marks, at a region found in intron 1 of FLC, by the PRC2 complex. On return to warm, these 

silencing marks are spread from the nucleation region throughout the rest of the gene body (Angel, 

Song, Dean, & Howard, 2011; Bastow et al., 2004; Berry & Dean, 2015) resulting in the stable 

silencing of FLC and therefore a loss of repression at FT.   

 

Given this thesis focuses on the elucidation of thermosensors in vernalisation only the two phases 

that occur during prolonged cold, the transcriptional shutdown of FLC and the nucleation of silencing 

marks, will be detailed below.  
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1.5 Silencing of FLC in response to cold‐ Phase 1: Transcriptional Shutdown   

 
Transcriptional shutdown of FLC happens in the first two weeks of cold and although it is unclear 

how this occurs, a series of events are known to happen: increased binding of VP1/ABI3 – like 1 

(VAL1) to the nucleation region, the breakage of a gene loop and induction of a set of antisense long 

non‐coding RNAs (lncRNAs) termed COOLAIR (Crevillen, Sonmez, Wu, & Dean, 2013; Questa & Dean, 

2016; Swiezewski, Liu, Magusin, & Dean, 2009).  

 

VAL1, a DNA‐binding protein, recognises cis sequences found within the nucleation region of FLC 

(Figure 1‐2) and recruits a histone deacetylase HDA19, reducing FLC expression (Questa et al., 2016; 

Whittaker & Dean, 2017). VAL1 appears to function independently from the breakage of the gene 

loop and induction of COOLAIR.  

 

Prior to cold exposure, there is a gene loop between the promotor of FLC and a region 3’ of the FLC 

termination site, which is the promotor of a set of alternatively spliced, polyadenylated, antisense, 

Figure 1 ‐2 ‐ FLC is transcriptionally downregulated in response to cold to permit flowering 
FLC levels are relatively highly expressed in seedlings but this decreases if seedlings are moved 
into prolonged cold temperatures due to the transcriptional shutdown of FLC and the 
nucleation of epigenetic silencing marks. On return to warm, FLC levels remain low despite the 
loss of the cold temperature signal and plants are able to flower.  
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long non‐coding transcripts called COOLAIR (Figure 1‐3, Figure 1‐4B). In the warm, total COOLAIR (as 

measured by primers in the first exon common to all forms) and FLC expression levels correlate on a 

whole plant level, meaning that in a mutant background that increases FLC expression relative to 

WT, total COOLAIR expression also increases (Figure 1‐4A). FLC and distal COOLAIR are not however 

transcribed from the same locus at a given time (Rosa, Duncan, & Dean, 2016; Swiezewski et al., 

2009).  In response to two weeks of cold, there is breakage of the gene loop, downregulation of FLC 

and induction of all forms of COOLAIR, though predominantly proximal and unspliced forms 

(Crevillen et al., 2013). In response to cold then, FLC and total COOLAIR levels on a whole plant level 

anti‐correlate relative to WT in the warm (Figure 1‐4A). Once broken the gene loop does not reform 

even on return to warmer temperatures.  

 

Measuring the transcriptional downregulation of FLC in the early stages of prolonged cold can be 

difficult given the long half‐life of the spliced FLC transcript so unspliced FLC levels can be used as a 

transcriptional readout of the locus during this early phase of downregulation (Csorba et al., 2014).  

 

 

Figure 1‐3 – The FLC locus showing COOLAIR transcripts and the nucleation region. COOLAIR 
transcripts are transcribed downstream of the FLC 3’ termination site across the whole FLC locus. 
FLC is made up of seven exons separated by introns. Intron 1 is particularly large and includes the 
nucleation site, where VAL1 binds and epigenetic silencing marks are added. COOLAIR is a set of 
alternatively spliced polyadenylated transcripts that are categorised into proximal and distal 
forms.  
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1.6 How does COOLAIR induction downregulate FLC? 

 
In response to two weeks of prolonged cold, levels of unspliced and proximal COOLAIR increase. 

Analysis of transcription and decay rates in Arabidopsis seedlings grown over a range of ambient 

temperatures showed temperature effects were generally caused by transcriptional changes 

(Sidaway‐Lee, Costa, Rand, Finkenstadt, & Penfield, 2014). Thus, the increase in total COOLAIR 

steady state RNA levels, in response to cold temperature, is presumably through cold promotion of 

transcription. This is supported by the cold – dependent induction of antisense GFP transcripts in a 

COOLAIR promotor 3’ end GFP fusion. In these lines, sense GFP transcripts reduced in level in 

response to cold, hinting at a direct role of antisense transcripts in FLC transcriptional 

downregulation (Swiezewski et al., 2009).   

 

Figure 1‐4 – Correlation of FLC and COOLAIR transcripts and the gene loop at FLC 
A) Hypothetical expression data from multiple Arabidopsis seedling reveals that FLC and COOLAIR 
levels correlate on a whole plant level. In other words, in mutants where FLC is increased, COOLAIR 
is also increased. In response to cold, FLC and COOLAIR levels no longer correlate as COOLAIR is 
increased and FLC is decreased. This also happens in an NTL8 dominant mutant. B) A gene loop 
exists between the FLC and COOLAIR promotors. This is broken in response to vernalisation or in the 
NTL8 dominant mutant, the only two cases were FLC and COOLAIR levels do not correlate.  
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Complete knockdown of antisense transcripts has proven difficult to engineer without affecting 

stability of FLC sense transcripts (Csorba & Dean, 2014) or upregulating antisense lncRNAs with 

alternative start sites (Zhu, unpub), however lines with reduced levels of total COOLAIR lose active 

chromatin marks more slowly (Csorba et al., 2014). These active chromatin marks antagonise the 

nucleation of epigenetic silencing marks so reduced total COOLAIR induction increases the time of 

cold exposure required to fully silence FLC. Increased transcription of COOLAIR may recruit a, as yet 

unidentified, H3K36 demethylase or may transcriptionally shutdown FLC expression, resulting in the 

loss of active chromatin marks.   

 

Single‐molecule RNA Fluorescence In – Situ Hybridization (FISH), using probes within distal COOLAIR 

intron 2, revealed that after two weeks of cold exposure, unspliced COOLAIR ‘clouds’ form at FLC 

loci, as a result of transcriptional induction and increased retention at the locus (Rosa et al., 2016). 

This could lead to the formation of a nuclear compartment with high concentrations of recruited 

factors. Alternatively, COOLAIR could mediate nuclear architecture changes, ultimately resulting in 

the co‐localisation of silenced FLC loci (Rosa et al., 2013). 

 

Transcription of proximal and distal COOLAIR leads to the formation of co‐transcriptional R – loops. R 

– loops are structures made up of a stretch of ssDNA that has been displaced from dsDNA as a result 

of the formation of a DNA‐RNA hybrid (Drolet et al., 1995; Thomas, White, & Davis, 1976). Nodulin 

Homeobox (NDX), an ssDNA binding protein thought to stabilise R – loops, affects total COOLAIR and 

FLC expression when mutated (Sun & Dean, 2013). As yet, it is not known how R – loop dynamics 

alter in the cold.  

 

1.7 COOLAIR has a complex relationship with FLC 

 
Investigations into the role of COOLAIR transcripts, induced by prolonged cold, has further been 

complicated by the intimate link between COOLAIR and FLC prior to cold exposure. This link 

manifests itself in two ways: as a correlation between FLC and total COOLAIR expression on a whole 

plant level and as COOLAIR being directly required by the autonomous pathway to repress FLC 

expression in the warm.  

 

At a single locus, distal COOLAIR and FLC are transcribed mutually exclusively and yet on a whole 

plant level, in mutant backgrounds where FLC or total COOLAIR expression is altered, FLC and total 

COOLAIR levels generally correlate. This is to say that in a mutant where FLC levels are increased, 
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total COOLAIR levels are also increased and vice versa (Figure 1‐4). It is therefore very difficult to 

dissect whether a genotype or mutation primarily affects FLC or total COOLAIR expression, before 

this effect secondarily affects sense and antisense expression levels at the locus. COOLAIR reporter 

lines, such as COOLAIR: LUC described later in this thesis, that do not express FLC, and are therefore 

independent of FLC expression, can be used to dissect this problem (Marquardt et al., 2014; Sun et 

al., 2013).  

 

FLC and total COOLAIR levels have been found to anticorrelate on a whole plant level in just two 

cases: in response to prolonged cold and in a dominant NAC with transmembrane motif 1  – like 8 (C) 

mutant (Zhao, Nielsen and Dean, unpub) NTL8 is a membrane associated transcription factor that is 

influenced by salt stress (Kim, Kim, & Park, 2007; Kim,  & Park, 2008; Kim & Park, 2007) Interestingly, 

these two cases are also the only known cases of gene loop breakage between FLC and COOLAIR.  

 

COOLAIR is required for the autonomous pathway to repress FLC prior to cold exposure. The 

autonomous pathway is vital for setting up the correct FLC levels before vernalisation, which is in 

turn important for adaptation of different accessions to different environments (Duncan et al., 

2015). Proximal COOLAIR is promoted relative to distal COOLAIR in the warm by autonomous 

pathway components FCA, FY and FPA.  FCA, FY and FPA achieve this by promoting efficient 

termination of RNA Polymerase II transcription at the proximal site. This requires CstF64 and CstF77, 

for efficient polyadenylation and PRP8 for efficient splicing (Liu, Marquardt, Lister, Swiezewski, & 

Dean, 2010; Marquardt et al., 2014). Promotion of proximal COOLAIR leads to H3K4 demethylation 

by FLD, also an autonomous pathway component (Figure 1‐5) (Wu et al., 2016). In autonomous 

pathway mutants, distal COOLAIR is preferentially made over proximal, gene body H3K4me is high 

and FLC transcription initiation and elongation are faster and more efficient (Wu et al., 2016).  

COOLAIR transcripts are therefore directly involved in FLC repression, through the autonomous 

pathway.  

 

  

1.8 Silencing of FLC in response to cold‐ Phase 2: Nucleation of epigenetic 

silencing marks 

 
FLC is silenced in response to prolonged cold and remains silenced on return to warm despite the 

loss of the ‘cold’ environmental signal. This phenomenon implicated epigenetic memory in 
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vernalisation. Mutants identified from vernalisation screens identified the Polycomb Repressive 

Complex (PRC2) and accessory proteins as playing major roles in FLC silencing.  

 

FLC silencing requires PRC2 components including VRN2, SWN, VRN5 and VIN3 (Chandler, Wilson, & 

Dean, 1996). Before cold, PRC2 complexes consisting of the core proteins SWN, VRN2, FIE and MSI1 

bind dynamically over the entire FLC locus (Bond, Dennis, Pogson, & Finnegan, 2009; De Lucia, 

Crevillen, Jones, Greb, & Dean, 2008; Greb et al., 2007). During the cold, VIN3 is expressed and, with 

constitutively expressed VRN5, associates with the PRC2 complex, increasing H3K27 methylation 

activity at a specified nucleation region in intron 1 of FLC (Figure 1‐2). The H3K27me3 nucleation 

peak is maintained during the cold and spreads along the whole FLC locus on return to warm, 

maintaining FLC silencing despite loss of VIN3 expression.  

 

It is not fully clear why increased H3K27 methylation is targeted to the nucleation region, though 

VAL1, which binds to the B3 domains in this region, may recruit VIN3/VRN5 and PRC2 via the ASAP 

complex (Questa et al., 2016). H3K36 methylation at the nucleation region is lost concomitantly with 

increasing H3K27 methylation, however, the two processes can be uncoupled, when there is 

knockdown of antisense transcripts. (Csorba et al., 2014; Mylne et al., 2006).  

 

It is not clear whether FLC transcriptional shutdown permits nucleation of H3K27me3, or whether 

nucleation causes FLC transcriptional shutdown, or both. A recent model showed transcription 

directly antagonising PRC2 by histone exchange and association with demethylases, supporting the 

former (Berry, Dean, & Howard, 2017). Additionally, there is evidence that FLC transcriptional 

shutdown occurs before nucleation, independently of VIN3, indicating extensive feedback 

mechanisms (Swiezewski et al., 2009). 

 

1.9 Identifying thermosensors involved in vernalisation 
 

 
Despite an understanding of the events that coincide with and cause the silencing of FLC in response 

to vernalisation, relatively little is known about the thermosensors involved in relaying a prolonged 

cold temperature signal into the two processes. What is known is that, in response to prolonged 

cold, not only is FLC downregulated but components from both processes are transcriptionally 

induced. Total COOLAIR is induced in early prolonged cold peaking at three weeks whilst VIN3 is 

induced only after three weeks of cold (Zhu, Rosa, & Dean, 2015) (Figure 1‐5). 
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Increased expression of COOLAIR and VIN3 is not sufficient for FLC silencing, given that in a line 

expressing high levels of both COOLAIR and VIN3, FLC is not epigenetically silenced (Zhao and Dean, 

unpub). This increased expression can however be used as a phenotype to identify thermosensors 

involved in the induction of COOLAIR and VIN3 to fully understand how prolonged cold leads to 

silencing of FLC. So far thermosensors affecting FLC silencing have not been identified, although they 

have been modelled.  

  

 

1.10 Modelling temperature inputs to vernalisation 

 
In plants, various environmental signals are detected by specific proteins or families of proteins. 

Phytochromes detect wavelengths of light and specific resistance proteins detect the presence of 

specific pathogens (Richard, Gratias, Meyers, & Geffroy, 2018; Rockwell & Lagarias, 2010). 

Temperature has similarly been thought to be detected by a core group of thermosensors (Knight & 

Knight, 2012; Quint et al., 2016; Wigge, 2013). Recently, however, modelling of temperature inputs 

Figure 1‐5 ‐ FLC is transcriptionally downregulated whilst COOLAIR and VIN3 are 
transcriptionally upregulated by prolonged cold As FLC levels drop during prolonged cold 
COOLAIR levels are induced by early weeks of cold and FLC is transcriptionally shutdown and 
VIN3 is induced after three weeks of cold as nucleation of silencing marks happens at the FLC 
locus.  
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during vernalisation has revealed a distributive thermosensor model (Antoniou‐Kourounioti et al., 

2018).  

 

This model was created using vast experimental datasets of FLC and VIN3 expression, in lab and also 

field conditions in Norwich and North and South Sweden. This mathematical model was then used to 

successfully predict FLC and VIN3 expression levels in further field experiments in Norwich and North 

and South Sweden when provided with only temperature data for that year. The inputs to this 

model can therefore replicate FLC and VIN3 expression data implying that the thermosensors 

suggested by the model likely exist in nature. 

 

In this model, multiple thermosensors are required to replicate the vast experimental data available 

for VIN3 and FLC expression patterns in response to different temperature regimes. VIN3 slowly 

accumulates during prolonged cold but rapidly decreases in response to warm temperatures 

therefore a thermosensor measuring cold exposure over months (Long‐term) and a thermosensor 

measuring warm temperature over hours (Current) must exist (Figure 1‐6) (Antoniou‐Kourounioti et 

al., 2018; Sung & Amasino, 2004). Additionally, VIN3 levels decrease and remain low for the 

remainder of the day in response to a spike of warm temperature (Hepworth et al., 2018). VIN3 

levels recover the day after if the spike is not experienced again therefore a thermosensor 

measuring the occurrence of warm temperature across a day is required (Short‐term)(Antoniou‐

Kourounioti et al., 2018).  Given constitutive expression of VIN3 cannot cause epigenetic silencing of 

FLC, cold must also affect how VIN3 and the PRC2 complex nucleate silencing marks at FLC (VIN3‐

dependent). 

 

Overall then at least four thermosensors input into the nucleation of epigenetic silencing marks at 

FLC. Three of these are required to control the dynamics of VIN3 expression whilst one is required to 

affect the nucleation process itself. The suggested thermosensors are theoretical as no 

thermosensors affecting VIN3 expression have been identified in Arabidopsis.  

 

In addition to the four thermosensors required to control temperature‐dependent VIN3 expression 

and action, the VIN3‐independent process, which is interchangeable with the transcriptional 

silencing of FLC, requires another thermosensor, as evidenced by FLC expression dynamics in vin3 

mutants. 
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Based on FLC expression in constant, fluctuating and spike temperature experiments, the VIN3‐

independent pathway is likely to be activated by cold temperatures specifically at night (Antoniou‐

Kourounioti et al., 2018). Total COOLAIR expression did not correlate with this prediction but the 

VIN3‐independent thermosensor modelled here could act through VAL1 or breakage of the gene 

loop, other events that are also involved in FLC transcriptional shutdown.  

 

1.11 COOLAIR induction is likely controlled by multiple, unknown 

thermosensors 

 
COOLAIR was originally observed to be induced in response to two weeks of lab vernalisation 

conditions (constant 5°C, 8‐hr light/ 16‐hr dark). COOLAIR induction is concomitant with 

downregulation of FLC sense transcripts as identified using a high‐resolution array spanning the 

locus (Swiezewski et al., 2009). COOLAIR is also induced in the field in response to winter conditions, 

remaining high over a longer period of time, decreasing only when VIN3 levels accumulate and 

presumably the whole FLC locus is silenced (Hepworth et al., 2018).  

Figure 1‐6 – Multiple thermosensors are required to model FLC and VIN3 transcript 
behaviour The nucleation of epigenetic silencing marks at FLC theoretically requires four 
thermosensors. Thermosensors, measuring the ‘Current’, ‘Short‐term’ and ‘Long‐Term’ 
temperature, are required to reproduce VIN3 expression data under different temperature 
regimes whilst a further thermosensor is required to control how VIN3 causes nucleation 
(VIN3 – dependent). The VIN3 – independent pathway is regulated by at least one 
thermosensor. COOLAIR is part of the VIN3‐independent pathway but is not regulated by the 
same thermosensor.  It is likely upregulated in response to cold temperature by multiple 
unknown thermosensors.  Adapted from (Antoniou‐Kourounioti et al., 2018) 
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Surprisingly, from expression data of Arabidopsis grown in the field across a Swedish winter, total 

COOLAIR is upregulated more over hours in response to sub‐zero conditions relative to 5°C 

temperatures. This result has been repeated in cabinets programmed to replicate the week in 

Sweden (Hepworth, Antoniou‐Kourounioti, Doughty, Heckmann, Berggren, Selga, Tudor, Bloomer, 

Cox, Collier Harris, Yates, Wu, Irwin, Säll, Holm, Howard and Dean, in prep), in prep).  

 

VIN3 levels are affected on different timescales by different temperature regimes similarly to 

COOLAIR levels that respond to hours of freezing temperatures and days and weeks of cold 

temperatures. This likely highlights the role of multiple thermosensors in the control of COOLAIR 

expression (Figure 1‐4).  

 

1.12 My Project 

 

1) Identification of regulators of cold‐induced COOLAIR expression There are currently no 

known candidate regulators for cold‐induced COOLAIR expression, or even in fact general 

cold temperature thermosensors in Arabidopsis thaliana. Chapter 3 describes my attempts 

to identify some candidates by both a forward and reverse genetic approach.  

 

2) Dissection of COOLAIR induction in the identified mutants. Chapter 4 describes how the 

identified factors affect induction of COOLAIR in response to prolonged cold.  

 

3) Investigation of COOLAIR induction in response to different temperature regimes COOLAIR 

is known to increase in response to two weeks of prolonged cold and in response to short – 

term freezing conditions. Chapter 5 describes my investigations of COOLAIR induction in 

response to freezing conditions and fluctuating 5°C conditions. This chapter contains 

information and data that may form part of a publication (Hepworth, Antoniou‐Kourounioti, 

Doughty, Heckmann, Berggren, Selga, Tudor, Bloomer, Cox, Collier Harris, Yates, Wu, Irwin, 

Säll, Holm, Howard and Dean, in prep).   
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2 Materials and Methods  

 

2.1 Plant Materials 

 
All Arabidopsis thaliana lines are in the Col‐0 or the Col FRI (sf2) background (Lee & Amasino, 1995). 

Col‐0 plants do not require vernalisation to accelerate flowering whereas Col FRI lines carry an active 

FRIGIDA allele, which upregulates FLC in the warm to levels that repress flowering without 

vernalisation.    

 

A single copy, homozygous COOLAIR: LUC control line was selected after transformation of Col FRI. 

This line is referred to as CTL throughout. Seeds from this CTL line were EMS mutagenized and over 

6000 mutants were screened by imaging luciferase activity.  This work was carried out by Hongchun 

Yang and Congyao Xu of the Dean lab.  

 

cbf1,3 and cbfs mutants are loss of function CRISPR‐Cas9 generated lines in the Col‐0 background 

kindly gifted from Shuhua Yang (Jia et al., 2016).  

 

arp6 – 1 mutants are T‐DNA loss of function arp6 lines in the Col‐0 background (Deal, Kandasamy, 

McKinney, & Meagher, 2005).  

 

2.2 Plant Growth conditions 

 
For experiments presented in Chapter 3 and 4 

Seeds were stratified at 5°C for three days and grown on MS media plates without glucose for seven 

days at 22°C in a 16‐hr photoperiod (light intensity ~85umol/m2/s). Non‐vernalised plants remained 

in long days for an additional three days whilst vernalised plants were moved to 5°C with an 8‐hr 

photoperiod (light intensity ~18umol/m2/s) specified lengths of time.  

 

For the freezing experiment in Chapter 5 

Seeds were sown on netting over soil, to reduce soil transfer to samples, and stratified at 5°C for 

three days. Non‐vernalised plants were grown for 10 days in a 16‐hr light 22°C / 8‐hr dark 20°C 

growth chamber (light intensity ~220umol/ m2/s). Plants were then placed into 8‐hr light 5°C (light 

intensity ~18umol/m2/s) / 16‐hr dark 5°C conditions for four days to acclimatise to cold 
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temperatures. Plants then remained in these conditions for one further day or were transferred to 8‐

hr light ‐0.5°C (light intensity ~18mol/m2/s) /16‐hr dark ‐0.5°C freezing conditions.  

 

For the fluctuating temperature experiments in Chapter 5 

Seeds were sown onto soil and stratified at 5°C for three days. Non‐vernalised plants were grown for 

10 days in a 16‐hr light 22°C / 8‐hr dark 20°C growth chamber (light intensity 220umol//m2/s). Plants 

were then moved to 8‐hr photoperiod (light intensity ~18umol/m2/s) chambers with three different 

temperature regimes: constant 5°C, Norwich fluctuating 5°C (Range 3°C to 7°C) and Sweden 

fluctuating 5°C (Range ‐1°C to 12°C) as depicted in the Results section.  

 

2.3 Luciferase Imaging 

 
Arabidopsis were grown as above, and at the relevant time point, 1mM luciferin (potassium salt, 

Promega, Chilworth, UK) solution was sprayed onto the seedlings. Plates were placed in the dark for 

15 minutes before luciferase activity was monitored over a one‐minute exposure using a Night Owl 

light‐sensitive CCD camera (Berthold Technologies, Harpenden, UK) to capture the bioluminescence 

signal.   

 

2.4 Sequence Alignment 

 
Genome sequences were obtained from Ensemble plants. Sequences 1kb downstream from the FLC 

STOP codon site in each species were collected and multiple aligned using Geneious R7 

(https://www.geneious.com/).   

 

2.5 qPCR expression analysis 

 
cDNA was synthesised from 1500 – 2500ng of extracted total RNA using SuperScript™ III Reverse 

Transcriptase (Invitrogen, CA, US) using oligo dT (Sigma, Haverhill, UK) for CBF expression analysis or 

gene specific primers previously used by the lab (Hepworth et al., 2018), for FLC, total COOLAIR, 

proximal COOLAIR and LUCIFERASE expression analysis. In experiments where FLC and COOLAIR 

expression were both measured two separate RT reactions were set up, one with FLC RT primers and 

the other with COOLAIR RT primers to prevent amplification of sense and antisense transcripts at the 

same time. cDNA was amplified using a LightCycler® 480 (Roche Technologies, Basel, Switzerland) 
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and SYBR Green I Master mix (Roche) to detect product accumulation. Three technical replicates 

were carried out for each sample.  

 

Relative expression values were calculated by averaging the three technical replicates and 

normalising each of these values to the geometric mean of the two control genes, UBC and PP2A, 

whose expression does not change with cold exposure (Hepworth et al., 2018).  This was achieved 

using the Pfaffl method (Pfaffl, 2001) using primer efficiencies determined by LinRegPCR, a program 

that uses linear regression to determine the efficiency of primers in each well and calculates an 

overall primer efficiency by averaging the calculated efficiencies across all wells containing this 

primer set (Ruijter et al., 2009). 

(https://www.gene‐quantification.de/LinRegPCR_help_manual_v11.0.pdf , http://download.gene‐

quantification.info/)  

 

2.6 Data analysis  
 
In all experiments, values presented are the mean of 2‐3 biological replicates. These biological 

replicates were grown at the same time on different plates and harvested for expression analysis at 

the same time. Error bars shown are the standard error of the mean. Where applicable, student’s t – 

test and ANOVA have been used to determine the statistical significance of any findings. Tukey’s 

post hoc test has been used to determine which groups differ when an ANOVA test reveals 

significant differences.  

   



 
20 

 

3 Identification of regulators of cold‐induced COOLAIR 

expression  

 

3.1 Background 

 

COOLAIR, the set of lncRNAs antisense to FLC, are induced by weeks of cold: constant 5°C if grown in 

vernalisation lab conditions (Swiezewski et al., 2009). COOLAIR induction is coincident with 

downregulation of spliced and unspliced FLC and is likely required for this transcriptional shutdown 

of FLC (Csorba et al., 2014; Swiezewski et al., 2009). It is unknown how cold temperature induces 

COOLAIR and so, to identify the pathway and importantly the thermosensor responsible, a forward 

genetic mutant screen was undertaken.  

 

As COOLAIR transcripts are not translated in wild‐type plants, a modified gene fusion was created 

whereby the COOLAIR promotor, as defined as the region upstream of the neighbouring gene, 

COOLAIR exon 1, intron 1 and a small segment of exon 2 was fused to the cDNA of firefly luciferase 

and an internal ribosome entry site (Figure 3‐1A) (Sun et al., 2013). This COOLAIR: LUC reporter does 

not produce FLC sense transcripts meaning complex feedback between sense and antisense 

transcription is not present.  

 

Col FRI plants carrying wild‐type copies of FLC, and the associated endogenous COOLAIR transcripts, 

were transformed with the COOLAIR: LUC construct. Multiple lines displayed a COOLAIR: LUC 

phenotype that replicated the endogenous COOLAIR phenotype in response to prolonged cold. 

COOLAIR: LUC transcript level was increased by exposure to 18 days of vernalisation conditions 

(Figure 3‐1B). A single copy insertion line that, in addition to inducing COOLAIR: LUC in response to 

vernalisation conditions, displayed wild‐type like expression of endogenous FLC and COOLAIR 

expression was selected and EMS mutagenized. Mutants were screened by luciferase imaging in the 

M2 generation and screened again in the M3 generation before cold, (NV) and after 18 days of cold 

exposure (V) (Figure 3‐1C).   

 

Mutants were classified as dark (D) or bright (B) at two different time points after 10 days pre‐

growth (NV) or after 7 days pre‐growth and 18 days in vernalisation conditions (V). Mutants were 

classified as V mutants only if there was no NV phenotype. Mutants can therefore be classified into 

four groups; Non‐vernalisation dark (NVD), non‐vernalisation bright (NVB), vernalisation dark (VD) 

and vernalisation bright (VB) based on the altered COOLAIR: LUC dynamics displayed (Figure 3‐1D). 
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For example, in Figure 3‐1C, mutant A would be classified as an NVB mutant given the higher 

luciferase activity displayed under NV conditions relative to the CTL line. Mutant C would be classed 

as an NVD mutant given the highly reduced levels of luciferase activity under NV conditions.  Mutant 

D would  

 

 

be classified as an VD mutant given the similar luciferase activity under NV conditions but the 

reduced luciferase activity observed in response to vernalisation. Mutant B would not be classified 

as having a mutant phenotype.   

 

Figure 3‐1 – COOLAIR: LUC as a readout for COOLAIR expression A) The FLC locus shows the 
exons of FLC in the sense direction and the different COOLAIR forms in the antisense direction. 
COOLAIR: LUC was created by fusing luciferase cDNA to the promotor and initial sequence of 
COOLAIR. B) The CTL line contains COOLAIR: LUC which is induced by 18 days of vernalisation 
mimicking endogenous COOLAIR. C) CTL seeds were EMS mutagenized and over 6000 mutants 
screened for luciferase activity under non‐vernalisation (NV) and vernalisation (V) conditions. D) 
Mutants were categorised as Non‐vernalisation dark (NVD), non‐vernalisation bright (NVB), 
vernalisation dark (VD) or vernalisation bright (VB) based on the COOLAIR: LUC phenotype. Red 
lines represent the potential mutant phenotypes displayed in each type of mutant.  
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Given the work in this thesis aims to identify factors required for cold induction of COOLAIR, VD 

mutants were of interest as these mutants would correspond to plants that had lost function of a 

cold‐inducible COOLAIR activator (Figure 3‐1D, VD graph). Additionally, some NVD and NVB mutants 

could also be interesting to follow up as they may be impaired in COOLAIR: LUC induction in addition 

to possessing altered NV COOLAIR: LUC starting levels (Figure 3‐1D). For example, NVB mutants 

could represent plants that had lost function of a cold‐repressed COOLAIR repressor, a factor that 

usually represses COOLAIR induction except under vernalisation conditions.  

 

Forward genetic mutant screens are a genome‐wide, unbiased way to identify candidate factors 

important for a specific phenotype, in this case the cold induction of COOLAIR. Forward mutant 

screens however have various limitations including the low likelihood of identifying factors that are 

redundantly involved in the same process. Given the evidence that thermosensors may be 

distributive, COOLAIR induction could likely be controlled by multiple pathways and factors 

(Antoniou‐Kourounioti et al., 2018). To combat this, an alternative approach investigating cis 

elements present in the COOLAIR promotor was used to identify potential trans‐binding COOLAIR 

regulators that may have redundancy. This parallel approach identified known redundant cold‐

affected factors.  

 

Whilst the forward genetic mutant screen was originally set up and performed by Hongchun Yang 

and later Congyao Xu, I was responsible for confirming luciferase and gene expression phenotypes in 

a subset of the M3 generation, including mutants 6755 and 6722. Luciferase and gene expression 

phenotypes and characterisation of mutants 2265 and 2273 was completed by Hongchun Yang. I 

independently searched for cis elements in the COOLAIR promotor.  

 

3.2 Aim 

 
To Identify regulators of cold‐induced COOLAIR expression 

 

3.3 Results 

 

3.3.1 No VD mutants were identified from the screen 

 
Intuitively, one might expect that screening for cold‐specific inducers of COOLAIR: LUC expression 

would reveal mutations in cold‐induced activators of COOLAIR. These vernalisation dark (VD) 
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mutants would have CTL levels of luciferase activity in the warm but would be impaired in the 

increase in luciferase activity expected in the cold (Figure 3‐1D). Surprisingly, of over 6000 individual 

mutant lines screened, no VD mutants were found. Whilst some lines may have had a VD luciferase 

activity phenotype, qPCR analysis of COOLAIR: LUC levels identified them as NVD mutants (data not 

shown).   

 

3.3.2 NVD mutants were not investigated closely 

 
As mentioned some NVD mutants may also be impaired in COOLAIR: LUC induction in addition to 

having low starting COOLAIR: LUC levels. Multiple NVD mutants were identified as having mutations 

in the luciferase reporter whilst many mutants that showed no luciferase expression at all were 

shown to be lacking the reporter gene altogether, likely a result of seed contamination. Given the 

high prevalence of the NVD mutants they were not investigated further in order to direct time and 

resources to NVB mutants.  

 

3.3.3 Some NVB mutants show an altered induction of COOLAIR: LUC 

 
The majority of mutants identified from the screen form the NVB group. These mutants showed 

higher levels of COOLAIR: LUC before cold (Figure 3‐1D). Many of these mutants still showed 

induction of COOLAIR: LUC in response to cold and were not interesting to follow up given that this 

thesis aims to identify cold‐affected COOLAIR regulators. Some of the NVB mutants did however 

possess an impaired induction of COOLAIR in response to cold so were good candidate cold‐affected 

COOLAIR regulators.  

 

Figure 3‐2 shows the induction of COOLAIR: LUC in various NVB mutants.  All expression values have 

been normalised to the NV level of each genotype meaning that the blue vernalisation treatment 

bars represent the fold‐change in COOLAIR expression observed in response to cold temperature.  

 

 

Mutant 6755 is a representative NVB mutant that was not affected in COOLAIR: LUC induction. 

COOLAIR: LUC was induced just over two‐fold by vernalisation treatment in the CTL line and 6755.  

Mutants 6722, 2265 and 2273 showed a loss of COOLAIR: LUC induction in response to vernalisation. 

In 6722 COOLAIR: LUC was induced by 1.2 times compared to over a two‐fold change in the CTL line. 

In 2265 and 2273, COOLAIR: LUC was induced by less than 1.2 times compared to over a 2.8‐fold 

change in the CTL line. 
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3.3.4 NVB mutants with impaired COOLAIR: LUC induction, 6722 and 2265, had different FLC 

and proximal COOLAIR phenotypes   

 
6722 and 2265 were both NVB mutants (Figure 3‐3A, 4A) with impaired COOLAIR: LUC induction 

(Figure 3‐2). Compared to CTL plants, the NV level of COOLAIR: LUC RNA in both 6722 and 2265 was 

four‐fold higher and significantly different (Student’s t‐test, n=3, p<0.05) (Figure 3‐3B, 3‐4B). This is 

even higher than the level of COOLAIR: LUC after exposure to cold temperatures in the CTL line. In 

6722 and 2265, COOLAIR: LUC was only slightly induced by exposure to vernalisation.  

 

Given the similarity of the behaviour of 6722 and 2265 it was interesting to analyse other expression 

phenotypes of these two NVB mutants. In 6722, spliced FLC levels were remarkably similar to the Col 

FRI and CTL line at NV and V time points and not significantly different (Student’s t‐test, n=3, p >0.05 

at NV and V) (Figure 3‐3C). In contrast, spliced FLC was reduced three‐fold at NV in 2265 compared 

to the CTL line, a significant difference (Student’s t‐test, n=3, p<0.05) (Figure 3‐4C).  

 

Figure 3‐2 – COOLAIR: LUC induction is affected in some NVB mutants Expression values, as 
measured by qPCR, were normalised to the NV level of COOLAIR: LUC hence the COOLAIR: LUC 
NV levels are all represented as 1 (orange bars) in CTL and all mutants. The blue bar represents 
the COOLAIR: LUC V levels normalised to NV. All mutants shown are NVB. This graph includes 
two independent experiments, so CTL levels vary slightly across the graph. Error bars represent 
s.e.m. calculated by using the s.e.m. of the NV and V expression levels. Student’s t‐ test not 
performed due to the normalisation calculation.  
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Endogenous proximal COOLAIR was two‐fold higher NV in 6722 compared to the CTL line, a 

significant difference (Student’s t‐test, n=3, p<0.001). This trend supported the effect of the 6722 

mutation on COOLAIR: LUC levels NV. After vernalisation, proximal COOLAIR remained two‐fold 

higher in 6722 compared to the CTL line, again significantly different (Student’s t – test, n=3, p<0.01) 

(Figure 3‐3D). Therefore, despite higher starting levels of endogenous proximal COOLAIR, induction 

of proximal COOLAIR in response to cold was unimpaired in 6722. This was different to the COOLAIR: 

LUC phenotype whereby COOLAIR: LUC was induced less by cold in 6722.  

 

In 2265, endogenous proximal COOLAIR was reduced to just above 60% of the CTL line level at NV 

(Figure 3‐4D),  a significant difference (Student’s t‐test, n=3, p<0.05). This was opposite to the 

COOLAIR: LUC phenotype observed at NV. In 2265, COOLAIR: LUC was higher NV whereas 

endogenous proximal COOLAIR was reduced relative to the CTL line. Induction of proximal COOLAIR 

Figure 3‐3 – NVB mutant 6722 phenotypes A) Luciferase activity of COOLAIR: LUC compared to 
CTL under NV and V conditions. Expression level under NV and V conditions of B) COOLAIR: LUC, 
C) Spliced FLC and D) Endogenous proximal COOLAIR. Bars represent means of three biological 
replicates. Error bars represent s.e.m. Student’s t‐test comparing CTL and 6722 expression 
phenotypes at NV and V time points separately reveal significant differences in Luc expression 
NV (p<0.001) and V (p<0.005) and proximal COOLAIR expression NV (p<0.001) and V (p<0.01) but 
no significant differences in spliced FLC expression NV and V (p>0.05).  
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in response to cold was unimpaired in 2265, induced 4.5 times in 2265 and the CTL line. The 

resultant endogenous proximal COOLAIR level at V was therefore just above 60% of the CTL line.  

 

Overall, 2265 and 6722 had very similar COOLAIR: LUC phenotypes, NV and V, when compared to 

the CTL line however they had very different FLC and endogenous proximal COOLAIR expression 

Figure 3‐4 – NVB mutant 2265 identified as arp6 A) Luciferase activity of COOLAIR: LUC 
compared to CTL under NV and V conditions. Expression level under NV and V conditions of B) 
COOLAIR: LUC, C) Spliced FLC and D) Endogenous proximal COOLAIR. Bars represent means of 
three biological replicates. Error bars represent s.e.m. Student’s t‐test comparing CTL and 2265 
expression phenotypes at NV and V time points separately reveal significant differences in Luc 
expression NV (p<0.001) and V (p<0.05) and proximal COOLAIR expression NV (p<0.05) and V 
(p<0.05) and spliced FLC expression NV (p<0.05) and V (p>0.0001). E) Diagram depicting the 
causative mutation in ARP6 in NVB mutant 2265. F) Complementation crosses reveal arp6‐1 
cannot rescue the 2265 mutant phenotype relative to luciferase activity. All experimental work 
presented in this figure was carried out by Hongchun Yang.  
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phenotypes. Likely then 2265 and 6722 represent mutations in different targets providing two 

candidate cold‐affected COOLAIR regulators.  

 

3.3.5 An NVB mutant with impaired endogenous proximal COOLAIR induction, 2265, is a loss 

of function arp6 allele 

 
2265 was crossed back to the CTL line and the resulting F3 lines were screened for the NVB 

luciferase phenotype and the DNA sent for sequencing to map the EMS mutation responsible for the 

phenotype.  

 

A post doc in the lab, Hongchun Yang, identified NVB mutant 2265 as a loss of function arp6 mutant. 

A premature STOP codon had been introduced by a C to T mutation in exon 1 of ARP6 (Figure 3‐4E).  

 

Complementation crosses revealed that the observed NVB luciferase phenotype is very likely due to 

this mutation (Figure 3‐4F). Backcrossing 2265 with arp6‐1, a T‐DNA mutant, could not rescue to the 

luciferase phenotype compared to crossing arp6‐1 with the CTL line. 

 

 

3.3.6 Redundant factors bind conserved elements of the COOLAIR promotor in vitro 

 
Alongside the forward genetic mutant screen, a DNA Affinity Purification (DAP) ‐ seq database was 

investigated to identify potential factors that bind the COOLAIR promotor in vitro (O'Malley et al., 

2016) (http://neomorph.salk.edu/aj2/pages/hchen/dap_ath_pub_models.php). DAP‐seq identifies 

binding of immobilised transcription factors to genomic DNA (Bartlett et al., 2017). In this data set, 

529 Arabidopsis transcription factors were tested against the Arabidopsis genome. NTL8, CBF1 and 

CBF3 but not CBF2, and CAMTA1 but not CAMTA5 all bind the FLC 3’ region, the equivalent of the 

COOLAIR promotor, in vitro (Figure 3‐5A). 

 

The motifs of these transcription factors were identified within the COOLAIR promotor. Two 

CRT/DRE elements, with a CCGAC/GTCGG core sequence known to bind all three CBF factors, was 

found most downstream of the FLC stop codon. This core motif was fully conserved across five 

Brassicaceae species based on alignment of the 1kb sequence downstream of the FLC stop codon. A 

CAMTA1 binding site, with the core motif CGCGT, was also conserved across four of the five 

Brassicaceae species, diverging between Arabidopsis thaliana and Arabidopsis lyrata.  The NTL8 
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binding site (NTTNCTTCNNNNNNAAGNA/TNCTTNNNNNNGAAGNAAN) was also conserved across all 

five Brassicaceae species. Divergence was observed within the motifs at N positions highlighting 

perhaps that mutation is occurring in this region but important bases within the motif have been 

conserved.  

 

 

Figure 3‐5 – Trans factor binding sites in the COOLAIR promotor A) FLC/ COOLAIR locus labelled 
with binding sites of Arabidopsis thaliana transcription factors identified by DAP‐seq (Bartlett et 
al., 2017; O'Malley et al., 2016). The 1kb base sequence downstream of the FLC stop codon was 
aligned from five Brassicaceae species B) revealing conservation of these binding sites. The 
binding motifs are shown on the right. Yellow – CBF1,2,3 binding site, Orange – CAMTA1 binding 
site, Blue – NTL8 binding site.  
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3.4 Discussion 

 

3.4.1 Few mutants impaired in COOLAIR: LUC induction could be isolated 

 
No VD mutants could be recovered from the screen highlighting that a single cold‐inducible activator 

of COOLAIR expression does not exist. This could be due to several reasons.  

 

This may be because COOLAIR: LUC is induced through a different mechanism. For example, a 

repressor of COOLAIR: LUC may be inactivated in response to cold temperature. This is somewhat 

supported by the recovery of NVB mutants with impaired COOLAIR: LUC induction such as 6722, 

2265 (arp6) and 2273. In these mutants COOLAIR: LUC is elevated under NV conditions, above the 

level of COOLAIR: LUC induced by cold in the CTL line. COOLAIR: LUC is then not induced as much by 

exposure to vernalisation conditions.  

 

Additionally, cold‐inducible activators of COOLAIR: LUC may exist however there may be redundancy 

between a family of proteins. In this case, the likelihood of knocking out all family members is so low 

that the VD mutant would never be recovered. This is somewhat supported by the evidence of trans 

factor binding the COOLAIR promotor that are known to be part of known redundant families. 

CBF1,2 and 3 are redundant cold induced transcription factors whilst CAMTA1,2,3,4,5 and 6 have 

certain levels of redundancy that have not been fully elucidated. NTL8 is also part of a group of three 

NTL proteins, including NTL14 and NTL5 that may also show redundancy. In all these three cases, 

potential transcriptional activators are part of larger redundant families.  

 

Finally, there is a chance that the changes introduced by creating a translatable reporter of a lncRNA 

has changed the pathways important for induction. LncRNAs and protein coding genes have 

alternative associated expression control mechanisms linked to the different fates of the RNA 

(Schlackow, Nojima et al. 2016, Mele, Mattioli et al. 2017). The inclusion of exon 1 and intron 1 and 

segment of exon 2 of the COOLAIR lncRNA aimed to combat these differences and the behaviour of 

luciferase mRNA is consistent with endogenous COOLAIR behaviour in response to cold. 

 

3.4.2 ARP6 is implicated in COOLAIR: LUC induction 

 
2265, an NVB mutant with impaired COOLAIR: LUC induction was identified as a loss of function 

mutant in ARP6. ARP6 is an integral subunit of the C‐module of the Arabidopsis SWR1 complex 



 
30 

 

(Gerhold and Gasser 2014). This complex, conserved from yeast, deposits a histone variant, H2A.Z, in 

nucleosomes. 

 

ARP6 has already been implicated in the control of FLC expression, originally identified in a screen 

for early flowering in short days. In the various arp6 mutants, FLC transcripts are reduced and 

flowering gene transcripts such as FT are increased (Martin‐Trillo, Lazaro et al. 2006, Deal, Topp et 

al. 2007). arp6‐1 is a suppressor of fca, an autonomous pathway component, and partial suppressor 

of FRI implying that ARP6 is required for the high levels of FLC expression seen in these backgrounds 

(Martin‐Trillo, Lazaro et al. 2006). Mutants in other components of the SWR1 complex, including 

pie1, swc6 and sef2 have an early flowering phenotype due to downregulation of FLC (Choi, Park et 

al. 2007; Deal, Topp et al. 2007; Lazaro, Gomez‐Zambrano et al. 2008; Yun, Hyun et al. 2011).  

Although the pleiotropic phenotypes of the different mutants are similar, there are some differences 

highlighting functional differences between the components.  

 

COOLAIR expression has not been studied in the arp6 mutants described above so it is interesting 

that arp6 was isolated as an NVB COOLAIR: LUC mutant. Given the complex feedbacks between 

sense and antisense transcription at the FLC locus, this discovery could show that ARP6 is primarily 

important for impacting COOLAIR expression, which in turn affects FLC expression, or that ARP6 

directly regulates both FLC and COOLAIR.  

 

The latter may be more likely given that H2A.Z is present at the 5’ and 3’ ends of FLC and this is lost 

in the arp6‐1 mutant (Deal, Topp et al. 2007). At the 5’ end H2A.Z maps to the +1 nucleosome 

whereas at the 3’ end H2AZ maps to COOLAIR exon 2 near various splice sites of the different 

COOLAIR forms (Figure 3‐6). In arp6 (2265), whilst COOLAIR: LUC is elevated NV, both FLC and 

endogenous proximal COOLAIR are repressed NV, perhaps as a result of competing expression levels 

of FLC and COOLAIR that ultimately correlate on a whole plant level.  

 

In arp6 (2265), in response to vernalisation, COOLAIR: LUC is induced less. In other words, the arp6 

mutation is epistatic to cold temperature.  In genome‐wide studies, H2A.Z has been linked to 

antisense RNA repression, transcriptional activation, transcriptional repression and interestingly 

temperature sensing (March‐Diaz, Garcia‐Dominguez et al. 2008; Zofall, Fischer et al. 2009; Kumar 

and Wigge 2010; Coleman‐Derr and Zilberman 2012; Sura, Kabza et al. 2017). H2A.Z has shown to be 

lost from chromatin at high temperatures, negatively or positively affecting gene expression 

dependent on whether this accessibility allows binding of transcriptional repressors or activators 
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(Kumar and Wigge 2010). It is unknown how H2A.Z distribution changes in response to cool 

temperatures such as those experienced during vernalisation. H2A.Z at COOLAIR: LUC may therefore 

be repressive except in response to cold temperature where it may be redistributed or modified in a 

way that permits COOLAIR: LUC expression. In an arp6 mutant, loss of H2A.Z pre‐induces COOLAIR: 

LUC and vernalisation has no further effects. 

 

 

3.4.3 Mutant 6722 is a candidate cold‐associated regulator of COOLAIR: LUC 

 
Another NVB mutant with impaired COOLAIR: LUC induction, 6722, is a good candidate repressor of 

COOLAIR: LUC that is itself inactivated by vernalisation to permit COOLAIR: LUC expression. It is likely 

not another arp6 mutation given the lack of an FLC expression phenotype.  

 

In 6722, endogenous proximal COOLAIR is also elevated prior to cold, like COOLAIR: LUC however 

induction in response to cold is not impaired, unlike COOLAIR: LUC. This could be due to several 

reasons.  

 

COOLAIR: LUC may not be further induced as the 6722 mutation causes saturation of expression at 

NV. At the endogenous locus this may not happen given the FLC context of COOLAIR. FLC and 

COOLAIR antagonise the expression of each other and endogenous proximal COOLAIR expression 

may be restrained by FLC expression despite the loss of a COOLAIR repressor.   

 

Figure 3‐6 – H2A.Z distribution at the FLC locus H2A.Z is enriched at the 5’ end of FLC at the +1 
nucleosome and at the 3’ end of FLC over the FLC stop codon and exon 7. This is downstream in the 
antisense direction of the COOLAIR promotor and COOLAIR exon 1.   
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Alternatively, other distal COOLAIR forms or total COOLAIR may be impaired in induction at the 

endogenous locus. Proximal COOLAIR may not be affected in the same way as COOLAIR: LUC or the 

other endogenous COOLAIR forms. 

 

3.4.4 Known cold‐affected, redundant transcription factors bind the COOLAIR promotor in 
vitro 
 

 
Cold – inducible activators of COOLAIR expression may not have been isolated from the COOLAIR: 

LUC forward genetic screen due to redundancy between these factors. This idea is supported by the 

binding of three families of known redundant factors to the COOLAIR promotor in vitro, importantly 

binding to conserved sites. Of interest is the binding of the CBFs and CAMTAs to this promotor as 

both families are known to be influenced transcriptionally or post translationally by low 

temperatures.   

 

C – repeat binding factors (CBF1,2 and 3) also known as dehydration response element binding 

factors (DREB1B, 1C and 1A) are redundant transcriptional activators that recognise CRT/DRE 

elements with a core CCGAC motif. CBF1,2 and 3 are well characterised master regulators of the cold 

acclimation transcriptome (Gilmour et al., 2004; Gilmour et al., 1998; Jaglo‐Ottosen, Gilmour, Zarka, 

Schabenberger, & Thomashow, 1998; Stockinger et al., 1997); Knight and Knight 2012; Kim, Park et 

al. 2013; Kim, Lee et al. 2015; Jia, Ding et al. 2016; Zhao and Zhu 2016; Kidokoro, Yoneda et al. 2017). 

CBF1, 2 and 3 are transcriptionally induced by exposure to temperatures below 12°C and they 

activate expression of a suite of cold‐responsive (COR) genes required for increased freezing 

tolerance after cold acclimation. Given the known induction of CBF factors in response to cold 

temperature and the downstream activation of many gene targets, it is interesting to investigate 

whether the CBF factors they may also redundantly activate COOLAIR expression in response to 

prolonged cold.  

 

Historically, CBF expression or the expression of CBF‐regulated genes has been studied in response 

to short‐term cold temperatures usually between zero to twenty‐four hours (Vogel, Zarka et al. 

2005; Jia, Ding et al. 2016; Zhao, Zhang et al. 2016; Shi, Huang et al. 2017). The CBFs have been 

shown to be induced after as little as 15 minutes at 4°C (Shi, Ding, & Yang, 2018). It has been claimed 

that CBF expression is negatively regulated during prolonged cold exposure to combat the growth 

retardation associated with CBF expression however there is evidence that even after five weeks of 

cool temperature, CBF expression is higher than under warm conditions (Lee, Fleming et al. 2009; 

Liu, Jia et al. 2017). CBF2 expression was induced between 5 to 25‐fold in italian Arabidopsis 
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ecotypes transformed with Italian (5‐fold) or swedish (25‐fold) ecotype CBF2 constructs (Gehan et 

al., 2015). Other transcriptomic studies reveal that the CBFs are transcriptionally induced between 3 

to 6hr after exposure to cold temperature and on day 4 of cold exposure are expressed close to the 

level observed prior to cold exposure (Calixto et al., 2018). COOLAIR is induced maximally by three 

weeks of cold but close inspection of qPCR data reveals that COOLAIR is upregulated after four hours 

of cold and is upregulated to half the final level by 12 hours (Bloomer, unpub).  

 

CBF expression is regulated by many transcription factors; positively by CAMTA3, ICE1, BZR1 and 

negatively by some PIFs, EIN3 and MYB15 and is circadian clock gated by LHY and CCA1 

(Chinnusamy, Ohta et al. 2003; Dong, Agarwal et al. 2006; Jiang, Shi et al. 2017; Shi, Ding et al. 2018). 

These transcription factors themselves are closely regulated by the circadian clock, hormones 

including ethylene and brassinosteroids, light, calcium, protein kinases and developmental pathways 

such as flowering (Shi, Ding et al. 2018).  

 

The cold thermosensor involved in the transcriptional induction of the CBFs has so far not been 

elucidated. An increase in Ca2+ occurs very early in the cold response and this Ca2+ could act as an 

internal secondary messenger for cold temperature (Heather Knight & Knight, 2000). It is not clear 

how Ca2+ is induced by cold though membrane fluidity, Ca2+ channels and the cytoskeleton have 

been suggested to play a role (Knight & Knight, 2012).  

 

Interestingly, the CBFs have been associated with the flowering pathway before. Lines 

overexpressing CBF express FLC to higher levels and flowering is delayed in these plants (Seo, Lee et 

al. 2009). COOLAIR expression was never tested in these lines and it was not revealed how the CBF 

factors cause an increase in FLC expression. An attractive hypothesis could be the influence of the 

CBF factors on COOLAIR expression, which in turn feeds back onto FLC expression.  

 

Another flowering‐associated regulator, FVE that forms part of the autonomous pathway, has also 

been implicated in the cold acclimation pathway. In a fve mutant, COR genes are elevated without 

exposure of the plants to cold and without induction of CBF1,2 and 3. FVE is required at the FLC 

locus to repress FLC expression via the autonomous pathway (Kim, Hyun et al. 2004). Like at other 

CBF‐targeted COR genes, FVE may repress COOLAIR (and FLC) expression until this repression is lifted 

by expression of CBF1,2 and 3.  
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Calmodulin – binding transcriptional activators (CAMTAs) encompass a family of six proteins that 

have conserved protein domains including a CG‐1 sequence specific DNA binding domain, a TIG non 

– sequence specific DNA binding domain, three ankyrin repeats and five calmodulin binding domains 

(Pandey, Ranjan et al. 2013). The CAMTAs can be divided into three sub – types; CAMTA1,2,3, 

CAMTA4 and CAMTA5,6 (Kidokoro, Yoneda et al. 2017). CAMTA1, but not CAMTA5, has been 

implicated in binding the COOLAIR promotor in vitro.  

 

In response to weeks of cold SA biosynthesis genes are transcriptionally induced to prepare for 

infection as a result of increased damage due to cold temperature. Interestingly this induction is not 

observed in a camta1,2,3 triple mutant (Kim, Park et al. 2013). It is therefore claimed that CAMTA 

1,2 and 3 redundantly repress SA biosynthesis genes and that this repression is lifted by exposure to 

weeks of cold temperature (Kim, An et al. 2017). This pattern of expression is analogous to induction 

of COOLAIR in response to weeks of cold and coupled with the presence of conserved CAMTA1 

binding sites could implicate CAMTA1,2,3 in cold – specific induction of COOLAIR. It is also important 

to note that COOLAIR is not induced by SA (Yang, unpub).  

 

Of final note is the connection between CAMTAs and CBFs. CAMTA3 and 5 are involved in the 

induction of CBF1 and CBF2, but not CBF2, in response to rapid drops in temperature during the day 

and the night (Kidokoro, Yoneda et al. 2017). The fact that the COOLAIR promotor could potentially 

bind two sets of interacting factors could have implications for very complex feedbacks within the 

cold acclimation pathway. 

  

3.4.5 NTL8 may be involved in COOLAIR induction in response to cold 

 
Another factor, NTL8, was found to bind conserved sequences in the COOLAIR promotor in vitro. 

Interestingly, an NVB COOLAIR: LUC mutant with impaired cold induction of COOLAIR: LUC, 2273, 

was identified as a dominant gain of function mutation in NTL8 (Yang and Zhao, unpub). The loss of 

function NTL8 mutant has no phenotype likely due to redundancy with NTL14 and NTL5.  

 

In 2273, COOLAIR: LUC, endogenous proximal COOLAIR and VIN3 are all transcriptionally elevated 

under NV conditions. A similar dominant gain of function mutant in NTL8 was identified in a parallel 

VIN3: LUC screen to identify thermosensors involved in VIN3 induction in response to vernalisation 

(Zhao, unpub).  NTL8 could be part of a shared thermosensing pathway that affects COOLAIR and 

VIN3 induction in response to prolonged cold, a pathway that therefore affects both the 

transcriptional shutdown and nucleation of epigenetic marks to silence FLC.   
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3.5 Future Experiments 

 

3.5.1 Mutation of cis binding sites in COOLAIR: LUC 

 
Given the presence of potential cis binding sites in the COOLAIR promotor it would be informative to 

investigate COOLAIR: LUC induction when these sites are mutated. This could reveal whether these 

binding sites are necessary for COOLAIR: LUC induction.  

 

Currently, five different versions of the COOLAIR: LUC transgene have been created by mutation of 

the various binding sites (Figure 3‐7). In COOLAIR: LUC 1, both CBF sites have been mutated from a 

CCGAC core motifs to an irrelevant TACGT sequence (Li, Qin et al. 2015). In COOLAIR: LUC 2, the 

CAMTA binding site shown to be conserved across four Brassicaceae species has been mutated from 

CGCGT to ATGCT (Walley, Coughlan et al. 2007). In COOLAIR: LUC 3, the conserved CAMTA site was 

mutated as in COOLAIR: LUC 2 but additionally a CAMTA consensus sequence present just upstream 

of COOLAIR transcription start site was also mutated in case this site is functional in Arabidopsis 

thaliana. This site is not conserved across the Brassicaceae. In COOLAIR: LUC 4, both CBFs sites are 

mutated alongside the conserved CAMTA site whilst in COOLAIR: LUC 5 both CBF and CAMTA sites 

are mutated as described above. 

 

 

 

Figure 3‐7 – Mutation of cis binding sites in COOLAIR: LUC constructs A series of mutations have 
been made in the COOLAIR promotor of the COOLAIR: LUC reporter construct to allow 
investigation if the role of these binding sites in COOLAIR: LUC induction in response to cold. 
COOLAIR: LUC contains the WT sequence of the COOLAIR promotor. COOLAIR: LUC 1 has the CBF 
binding site motifs replaced. COOLAIR: LUC 2 has the conserved CAMTA binding site motif 
replaced whilst COOLAIR: LUC 3 has another CAMTA consensus sequence mutated in addition to 
the conserved CAMTA binding site. COOLAIR: LUC 4 and 5 have the CBF binding site motifs 
replaced in addition to the one or both CAMTA consensus sequences respectively.  
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The five constructs were created by synthesising 323bp long DNA segments, each containing 

different versions of the COOLAIR: LUC promotor, and ligating them into the COOLAIR: LUC construct 

by restriction enzyme digest and an In – Fusion reaction (Takara). The new constructs were 

sequenced across the gene to confirm correct creation of the five different constructs.  

 

All constructs are ready to be transformed into Arabidopsis thaliana plants. Single copy lines can be 

characterised and luciferase expression checked in the resultant generations under NV and V 

conditions. Multiple independent lines will have to be screened and average luciferase expression 

across these lines calculated as insertion sites will differ between each construct.  

 

The NTL8 site may also be mutated in the future though given its location within an exon of 

COOLAIR, it may be difficult to mutate without introducing changes to the COOLAIR lncRNA itself. 
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4 Dissection of COOLAIR induction in the identified mutants 

 

4.1 Background 

 
It is not clear how COOLAIR is induced in response to weeks of cold. A forward genetic mutant 

screen identified a group of mutants that exhibited high COOLAIR: LUC levels before cold exposure 

and impaired induction in response to cold temperature (Chapter 3). One of these mutants, 2265, 

was identified as a loss of function mutation in ARP6, a core component of the SWR1 histone 

remodelling complex that deposits H2A.Z in chromatin. ARP6 has long been known to influence FLC 

expression (Choi, Kim et al. 2005; Martin‐Trillo, Lazaro et al. 2006; Deal, Topp et al. 2007) and play a 

role in thermosensing (Kumar and Wigge, 2010) but it has never been linked to influencing the 

induction of COOLAIR, as identified by the forward genetic screen.  

 

A DAP‐seq database identified certain cold induced factors that bind the COOLAIR promotor in vitro 

(Chapter 3). The three redundant CBF factors (CBF1, CBF2 and CBF3) have been categorised as 

‘master regulators’ of the cold acclimation pathway and are required for increased freezing 

tolerance after previous exposure to cold temperature. (Jaglo‐Ottosen, Gilmour et al. 1998; Gilmour, 

Sebolt et al. 2000; Chinnusamy, Ohta et al. 2003; Gilmour, Fowler et al. 2004; Novillo, Alonso et al. 

2004).  

 

A role for CBF1 in vernalisation has previously been rejected (Liu, Gilmour et al. 2002) based on CBF1 

overexpressing lines that did not have an altered vernalisation response. This study focused 

primarily on VIN3 induction and did not consider how the induction of COOLAIR is affected by 

overexpression of CBF1. In CBF1, 2 or 3 overexpressing lines, FLC levels before vernalisation are 

higher and, whilst vernalisation reduces FLC levels as in WT plants, intermittent cold treatments no 

longer affect FLC expression (Seo, Lee et al. 2009).   

 

It is unknown if CBF expression patterns could correlate with induction of COOLAIR over weeks of 

cold given that few studies have tracked CBF expression over more than 24 hours (Vogel, Zarka et al. 

2005; Lee, Fleming et al. 2009). 

 

The experiments presented below were all carried out by myself. The arp6 (2265) F3 lines are 

progeny of an F2 plant created by Hongchun Yang by crossing the identified 2265 mutant with the 
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CTL progenitor line. These lines are homozygous for the arp6 (2265) mutation and COOLAIR:LUC but 

may contain different background EMS mutations. 

 

4.2 Aim  
 

Investigate the role of CBF1, 2 and 3 and ARP6 in COOLAIR induction and FLC downregulation in 

response to weeks of cold. 

 

4.3 Results 

 

4.3.1 COOLAIR was not induced by cold in a cbfs triple mutant but was induced in a cbf1,3 

double mutant 

 
Total COOLAIR was increased three‐fold in Col‐0 in response to three weeks of cold exposure. This 

induction after three weeks of cold was lost in the cbfs triple mutant (Figure 4‐1A). In the cbf1,3 

double mutant, induction of total COOLAIR after three weeks was similar to Col‐0. The induction of 

total COOLAIR in Col‐0 and cbf1,3 occurred in response to one week of cold with little increase in 

total COOLAIR levels after one week. In cbfs, induction after one week was decreased and there was 

no further induction observed after two or three weeks of cold. 

 

Spliced FLC and unspliced FLC levels decrease in response to weeks of cold in Col‐0 (Figure 4‐1B, 4‐

1C). The downregulation in spliced FLC is comparable to downregulation observed in cbf1,3 or cbfs 

whilst downregulation of unspliced FLC is slightly impaired in cbf1,3 and cbfs 

 

4.3.2 The cbfs triple mutant had altered FLC and total COOLAIR levels before cold 
 

Total COOLAIR levels were 6‐fold reduced in cbfs relative to Col‐0 in non‐vernalisation (NV) 

conditions before exposure to cold, at a time when CBF levels are low (Figure 4‐1A). This was not 

statistically significant as Tukey post hoc testing revealed that the significant difference (ANOVA, 

p<0.05) in total COOLAIR levels at NV was a result of the difference between cbf1,3 and cbfs. At all 

vernalisation timepoints however the total COOLAIR level was significantly different from all 

vernalisation timepoints however the total COOLAIR level was significantly different from Col‐0 

levels (ANOVA, p<0.05, Tukey post hoc test). Spliced FLC levels were 3‐fold reduced in cbfs relative 

to Col‐0, a pattern that was replicated by unspliced FLC levels (Figure 4‐1B, 4‐1C). On a whole plant 

level, FLC and total COOLAIR levels are known to correlate in different mutant backgrounds, in the 
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ndx1‐1 mutant total COOLAIR levels were increased and FLC levels were also increased as a result 

(Sun et al., 2013).  

  

Figure 4‐1 Expression of COOLAIR and FLC in cbf1,3 and cbfs Expression, as measured by RT‐
qPCR using gene specific primers, of total COOLAIR (A), spliced FLC (B) and unspliced FLC (C) in 
non‐vernalisation conditions (NV) and after one, two or three weeks of vernalisation conditions. 
Values presented are the means of 2‐3 biological replicates and error bars represent s.e.m. 
ANOVA tests were carried out comparing all three genotypes at each timepoint. At all timepoints 
there were significant differences (p<0.05) in total COOLAIR expression, a Tukey post hoc test 
revealed that these differences were between cbf1,3 and cbfs at all time points, cbfs and Col‐0 at 
1WV, 2WV and 3WV time points and between Col‐0 and cbf1,3 at the 2WV time point. There 
were significant differences (p<0.05) in spliced FLC expression at 1WV, 2WV and 3WV as a result 
of cbfs differing from Col‐0 and cbf1,3 (Tukey post hoc Test). There were also significant 
differences (p<0.05) in unspliced FLC expression at 1WV, 2WV and 3WV but this was as a result of 
cbf1,3 differing from Col‐0 and cbfs (Tukey post hoc test). The line graphs show COOLAIR 
induction or FLC downregulation by normalisation of expression values to NV conditions. 
Statistical analysis not performed on values normalised to NV.  
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4.3.3 The CBFs were expressed differently in response to weeks of cold 
 

The CBFs are transcriptionally induced by short term cold temperatures (Vogel, Zarka, Van Buskirk, 

Fowler, & Thomashow, 2005) however the expression of CBFs in response to vernalisation are not 

well understood. In Col‐0 CBF1 was transcriptionally induced 4‐fold after one week of cold relative to 

NV and plateaued after two or three weeks of cold (Figure 4‐2A).  CBF2 was induced 12‐fold by one 

week of cold and induced further to 20‐fold by three weeks of cold. (Figure 4‐2B). CBF3 was induced 

two‐fold by one week of cold and drops in level after two and three weeks of cold to an absolute 

level below the starting NV level (Figure 4‐2C). It is unclear how much the CBF factors were induced 

by the initial hours of cold exposure in this experiment, so it is difficult to compare the strength of 

CBF induction by longer term cold relative to the induction that is usually reported. 

 

Figure 4‐2 Expression of CBF1, CBF2 and CBF3 
in Col‐0 Expression, as measured by RT‐qPCR 
using oligo(dT), of CBF1 (A), CBF2 (B) and CBF3 
(C) in non‐vernalisation conditions (NV) and 
after one, two or three weeks of vernalisation 
conditions. Values presented are the means of 
3 biological replicates and error bars represent 
s.e.m. Statistical analysis not carried out as 
samples at each timepoint are not independent 
from each other.  
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4.3.4 COOLAIR: LUC induction was impaired in arp6 (2265) 

 
In the CTL line, COOLAIR: LUC was induced three‐fold in response to three weeks of vernalisation 

treatment (Figure 4‐3A). Induction begins after one week of vernalisation and was linearly correlated 

with length of cold exposure. In three arp6 (2265) F3 lines, which are homozygous for the arp6 

mutation and COOLAIR: LUC but have different background EMS mutations, this induction was 

impaired resulting in a two‐fold increase of COOLAIR: LUC between NV and 3WV. The linear 

response of COOLAIR: LUC was also altered with almost no induction between the NV and 2WV 

timepoint.   

 

COOLAIR: LUC levels were two‐fold higher in 2265 compared to the CTL line at NV, prior to cold 

exposure (Figure 4‐3A), a significant difference (ANOVA, p<0.05) shown between the CTL line and 

each arp6 2265 F3 line (Tukey post hoc test). This difference was lost at 2WV and 3WV timepoints 

when absolute levels of COOLAIR: LUC were similar between the CTL line and arp6 (2265) and there 

were no significant differences (ANOVA). This leads to the observed impaired induction of COOLAIR: 

LUC when relative expression values were normalised to the NV starting level. 

 

4.3.5 Endogenous proximal COOLAIR had impaired induction despite similar starting levels 

in arp6 (2265) 

 
Endogenous spliced proximal COOLAIR was induced three‐fold in Col FRI and the CTL line in response 

to 3 weeks of cold whereas in two of the three 2265 lines, this induction was reduced to 2‐fold 

(Figure 4‐3B). This paralleled the altered induction of COOLAIR: LUC in these mutants.  

 

Starting levels (NV) of endogenous proximal COOLAIR were similar or slightly reduced in the 2265 

mutant relative to Col FRI and the CTL line (Figure 4‐3B), not a significant difference (ANOVA). 

Endogenous proximal COOLAIR levels remained lower than Col FRI or CTL levels throughout the 

period of vernalisation and were significantly different at 2WV and 3WV (ANOVA, p<0.05). This 

phenomenon did not apply to COOLAIR: LUC as previously mentioned where NV levels are two‐fold 

higher.  

 

As mentioned, FLC and total COOLAIR levels are known to correlate in different mutant backgrounds. 

Spliced and unspliced FLC levels were roughly halved in 2265 F3 lines relative to Col FRI and CTL lines 

at all timepoints (Figure 4‐3C, 4‐3D) shown by significant differences at all timepoints tested 

(ANOVA, p<0.05). Downregulation of FLC was similar between mutant and WT (normalization not 
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shown). 

 

   

Figure 4‐3 Expression of COOLAIR: LUC, endogenous proximal COOLAIR and FLC in arp6 (2265) F3 lines 
compared to CTL and Col FRI lines Expression, as measured by RT‐qPCR using gene specific primers, of 
COOLAIR: LUC (A), endogenous proximal COOLAIR (B), spliced FLC (C) and unspliced FLC (D) in non‐
vernalisation conditions (NV) and after one, two or three weeks of vernalisation conditions. Values 
presented are the means of 3 biological replicates and error bars represent s.e.m. Across the genotypes 
used, for each timepoint and each transcript an ANOVA test was carried out. For COOLAIR: LUC 
expression, significant differences (p<0.05) were found at NV and 1WV timepoints and this variation 
was between the CTL line and each of the F3 lines (2,12 and 17) (Tukey post hoc test). For proximal 
COOLAIR expression, significant differences (p<0.05) were found at 2WV and 3WV timepoints and this 
variation between was Col FRI or CTL and F3 lines 2 and 17. F3 line 12 was significantly different to the 
CTL line at 2WV. (Tukey post hoc test). For spliced FLC expression there were significant differences 
(p<0.05) across all timepoints though the genotypes responsible for this varied across time points 
(Tukey post hoc test), though all differences were between Col FRI or CTL and the arp6 2265 F3 lines. 
For unspliced FLC expression there were significant differences (p<0.05) across all timepoints though 
the genotypes responsible for this varied across time points (Tukey post hoc test), though all differences 
were between Col FRI or CTL and the arp6 2265 F3 lines. The line graphs show COOLAIR: LUC or 
endogenous proximal COOLAIR induction by normalisation of expression values to NV conditions. 
Statistical analysis not performed on values normalised to NV due to normalisation calculation.  
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4.3.6 arp6 (2265) did not have elevated levels of CBF transcription factors before cold 

exposure 

 
CBF transcription factors are known to be induced rapidly in response to short term cold 

temperature and H2A.Z gene body deposition is known to be associated with responsive genes 

(Coleman‐Derr & Zilberman, 2012). arp6 mutants have a range of phenotypes due to the widespread 

role H2A.Z has in plant development. It therefore seemed prudent to check expression of CBF factors 

in arp6 (2265). It could be hypothesised that CBFs are elevated without cold exposure in the arp6 

background resulting in higher COOLAIR: LUC levels before cold.  

 

In Col FRI and the CTL line, CBF1 and CBF2 were induced 10 to 30 – fold at 3WV from very low NV 

levels (Figure 4‐4A, B). CBF1 and CBF2 were induced by each additional week of cold whilst CBF3 was 

induced six‐fold by 1WV with less obvious further induction at two and three weeks (Figure 4‐4C) 

CBF3 appeared to be more strongly induced by three weeks cold in the CTL line relative to Col FRI.  

 

CBF1 and 2 levels were similar or slightly lower NV in the arp6 (2265) mutants relative to WT (Figure 

4‐4A, B), they were significantly different at 2WV and 3WV timepoints (ANOVA, p<0.05). This was 

opposite to expectation if the COOLAIR: LUC phenotype in arp6 was due to elevated CBF expression. 

CBF3 transcripts were slightly higher but not to the levels observed at any time points in the 

vernalisation treatments, when proximal COOLAIR induction was occurring (Figure 4‐4C). There was 

much more variability observed in CBF expression between the arp6 (2265) F3 lines and even 

between the Col FRI and CTL lines as shown by Tukey post Hoc testing. In these tests significant 

differences were shown to occur between Col FRI and CTL lines and between individual arp6 (2265) 

F3 lines.  
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Figure 4‐4 Expression of CBF1, CBF2 and CBF3 in arp6 (2265) F3 lines compared to CTL and Col FRI 
lines Expression, as measured by RT‐qPCR using oligo(dT), of CBF1 (A), CBF2 (B) and CBF3 (C) in non‐
vernalisation conditions (NV) and after one, two or three weeks of vernalisation conditions. Values 
presented are the means of 3 biological replicates and error bars represent s.e.m. ANOVA tests were 
performed across all genotypes and at each timepoint for each transcript. For CBF1 expression 
significant differences (p<0.05) were found at 2WV and 3WV. Tukey post hoc testing revealed at 2WV 
this difference was between F3 line 17 and CTL or F3 line 2. At 3WV, this difference was between Col 
FRI or CTL compared to all F3 lines, but also between Col FRI and CTL.  For CBF2 expression, 
significant differences (p<0.05) were found at 2WV and 3WV. Tukey post hoc testing revealed this 
difference was between F3 lines and CTL or Col FRI and also between some individual F3 lines. For 
CBF3 expression significant differences (p<0.05) were found at 1WV, 2WV and 3WV timepoints. 
Tukey post hoc testing revealed these differences were between Col FRI and CTL, Col FRI or CTL and 
the F3 lines or between certain individual F3 lines.  
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4.4 Discussion 

 

4.4.1 The CBFs are required for the cold‐induction of total COOLAIR in Col‐0  

 
In a triple cbfs mutant, total endogenous COOLAIR was not induced by one, two or three weeks of 

vernalisation unlike in Col‐0. The CBF factors induce a suite of factors required for enhanced freezing 

tolerance after cold acclimation however they have never been linked to induction of COOLAIR in 

response to long term cold.  

 

In Col‐0 CBF1 and CBF2 were transcriptionally induced by one week of cold and remained high for 

two and three weeks. This correlated with total COOLAIR induction in Col‐0 supporting the role of 

CBFs in cold induction of COOLAIR.  

 

FLC downregulation was not impaired in the triple mutant highlighting that total COOLAIR 

upregulation and FLC transcriptional downregulation are potentially separable independent 

processes. Col‐0 is not a vernalisation‐requiring genotype so it may not be reasonable to describe 

the FLC downregulation observed as a vernalisation response.  

  

4.4.2 The CBFs influence FLC and total COOLAIR levels prior to cold exposure 

 
Surprisingly, the cbfs triple mutant had reduced levels of COOLAIR prior to any cold exposure. This 

implies that the CBFs may function prior to long term cold exposure to affect COOLAIR levels and 

may be due to a low but still functional level of CBF expression NV.   

 

FLC levels were similarly reduced at the NV time point in the cbfs mutant. It is not possible to 

ascertain whether CBFs primarily affect FLC or COOLAIR transcript levels given the complex feedback 

between sense and antisense associated with the locus. CBF overexpression lines in the Ws 

background have elevated levels of FLC NV so the loss of function phenotype observed is consistent 

with the literature (Seo et al., 2009).  

 

4.4.3 arp6 is epistatic to cold temperature on COOLAIR: LUC and proximal COOLAIR 

expression 

  

In arp6 (2265), COOLAIR: LUC was elevated under NV conditions and induction by cold exposure in 

impaired. This could be due to saturation of COOLAIR: LUC levels that cannot be induced any further 
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due to physical limitations. In other words, COOLAIR: LUC is being maximally expressed as a result of 

the arp6 mutation and cold at 1WV. This may be rejected given that expression levels show that 

after two weeks of cold COOLAIR: LUC levels have actually been reduced from 1WV. This behaviour 

of COOLAIR: LUC could therefore show that cold and ARP6 work in the same pathway to induce 

COOLAIR: LUC. ARP6 represses COOLAIR: LUC expression but exposure to weeks of cold represses 

ARP6 or factors downstream of ARP6 leading to increased COOLAIR: LUC expression. In arp6, 

repression of COOLAIR: LUC is lost therefore cold has no further effect on COOLAIR: LUC expression. 

Induction after one week still occurs as a result of other cold affected factors. Endogenous proximal 

COOLAIR is similarly induced less by cold treatment despite not being elevated at NV.  

 

4.4.4 Complex feedback explains why proximal COOLAIR is not elevated NV in arp6 

 
In arp6 (2265) lines, COOLAIR: LUC is elevated at NV conditions however endogenous proximal 

COOLAIR is not. Promotion of proximal COOLAIR, due to arp6, could secondarily silence the locus 

resulting in the observed reduced expression of FLC and proximal COOLAIR. This effect has been 

observed in prp8 and cdkc2 mutants (Marquardt et al., 2014; Wang, Wu, Raitskin, Sun, & Dean, 

2014). In these cases, the mutation results in loss of proximal COOLAIR expression (a loss of 

COOLAIR: LUC expression) however this causes de‐repression of the endogenous locus leading to the 

observed increased expression of FLC and endogenous proximal COOLAIR. Alternatively, arp6 may 

independently affect both COOLAIR and FLC expression, given that H2A.Z is found at both the 5’ and 

3’ ends of the FLC gene, and the resulting changes in expression observed are due to the complex 

interplay between COOLAIR and FLC.  

 

4.4.5 CBF1 and CBF2 may be induced less by cold in arp6 

 
Given the cold induction associated with the CBF factors and the lack of induction of total COOLAIR 

observed in the loss of function triple mutant, it is possible that the COOLAIR phenotype observed in 

arp6 is the result of mis‐regulated CBF factors. The CBF factors are not however elevated in arp6 

(2265) therefore the elevated basal level of COOLAIR: LUC is not due to increased expression of the 

CBF factors. Interestingly, CBF1 and CBF2 do not appear to be as induced by three weeks of cold in 

the ARP6 mutant. This correlates with reduced induction of COOLAIR:LUC and proximal COOLAIR at 

three weeks of cold in arp6.  
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4.4.6 Model: Cold induces COOLAIR through the induction of CBF factors and by repressing 

an ARP6‐associated pathway 

 
Overall, the CBFs activate COOLAIR expression under a range of conditions. When the FLC gene loop 

is present (NV), CBFs promote COOLAIR expression and the locus is activated to produce FLC and 

total COOLAIR to a high level, relative to the cbfs mutant. In response to cold, the CBFs are induced, 

presumably in the short term but also in response to weeks of cold resulting in COOLAIR induction. 

In response to cold the gene loop is broken, as is the complex feedback between FLC and COOLAIR, 

so FLC does not increase and is in fact downregulated in a potentially independent process (Figure 4‐

5). 

 

Meanwhile, ARP6 represses COOLAIR expression NV. At the endogenous locus, repression of 

proximal COOLAIR or independent functions of ARP6 on FLC leads to high expression of FLC and 

endogenous COOLAIR, relative to the arp6 mutant. Cold represses the ARP6‐associated pathway, 

resulting in increased COOLAIR. Additionally, ARP6 may be required for full induction of CBF1 and 

CBF2 in response to three weeks of cold (Figure 4‐5).  

 

 

Figure 4‐5 Model showing ARP6 and CBF1,2,3 regulating the induction of COOLAIR in response 
to weeks of cold In NV conditions, CBFs activate COOLAIR expression and ARP6 represses 
COOLAIR expression (and may independently promote FLC expression). COOLAIR and FLC display 
complex feedback properties as a result of the gene loop. In response to vernalisation conditions, 
this feedback is broken. The CBFs are transcriptionally induced by cold, perhaps requiring ARP6 
for full induction, and the ARP6‐associated upstream of COOLAIR is repressed by cold.  
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4.5 Future Experiments 

 

4.5.1 Investigate the role of CBFs on induction of COOLAIR in a FRI containing line and on 

induction of COOLAIR: LUC  

 
The cbfs triple mutant has implicated a role for the CBF factors in inducing COOLAIR in response to 

weeks of cold. The Col‐0 background genotype is not however a vernalisation‐requiring genotype 

raising questions of the relevance of this finding.  The cbfs mutant has been crossed to Col FRI 

meaning COOLAIR induction, in a cbfs triple mutant, can be tested in a vernalisation‐requiring line. 

The cbfs triple mutant has also been crossed to the COOLAIR: LUC CTL line so that the direct effect of 

cbfs on COOLAIR, independent of FLC, can be determined.    

 

4.5.2 Investigate induction of total endogenous COOLAIR in arp6, hta9 hta11 and ino80 

 
ARP6, as part of the SWR1 remodelling complex, affects the widespread expression of many 

Arabidopsis genes by affecting H2A.Z localisation within chromatin. To confirm the mechanism 

through which ARP6 affects COOLAIR it is important to confirm that the effect is mediated through 

H2A.Z by checking COOLAIR induction in a double H2A.Z mutant, hta9 hta11 (March‐Diaz et al., 

2008).  

 

H2A.Z is found at the 5’ and 3’ end of FLC.  In arp6, H2A.Z is lost from both the 5’ and 3’ end of FLC 

and this means it is impossible to dissect how endogenous COOLAIR behaves in response to loss of 

H2A.Z at the 3’ end independently of loss of H2A.Z from the 5’ end. The COOLAIR: LUC arp6 (2265) 

phenotype theoretically represents the result of loss of H2A.Z from only the 3’ end of FLC. 

Interestingly in another mutant, ino80‐5, H2A.Z is lost only from the 3’ end of FLC and not the 5’ end 

(Zhang et al., 2015). It would therefore be interesting to measure endogenous total COOLAIR 

induction in ino80, which recreates the effect of arp6 at the 3’ end but not the 5’ end of FLC. INO80 

is part of another chromatin remodelling complex that redistributes H2A.Z in mammals and yeast 

(Gerhold & Gasser, 2014; Knezevic, Gonzalez‐Medina, Gaspa, Hidalgo, & Ayte, 2018). 

 

4.5.3 Map H2A.Z at COOLAIR: LUC and the endogenous FLC locus in response to cold  

 
As arp6 is not additive to exposure to cold, it can be hypothesised that arp6 and cold affect COOLAIR 

expression through a similar mechanism. This could manifest itself as a loss of H2A.Z at COOLAIR in 

response to cold. H2A.Z has previously been shown to be displaced from chromatin in response to 
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warm temperature and arp6 plants display a constitutive warm temperature transcriptome (Kumar 

& Wigge, 2010). It is not known how H2A.Z dynamics alter in the cold. H2A.Z distribution can be 

analysed at the endogenous FLC locus in HTA9‐GFP FRI lines using Chromatin Immunoprecipitation 

(ChIP). Exposure of these plants to vernalisation conditions will allow H2A.Z distribution changes in 

response to cold to be determined.  

 

It is not known whether H2A.Z localises similarly in COOLAIR: LUC as it does at the endogenous 

COOLAIR promotor. Similar localisation of H2A.Z at the endogenous locus and the transgene would 

support the role of H2A.Z in regulating COOLAIR expression levels. Given the sequence identity 

between COOLAIR: LUC and the COOLAIR promotor, a line that has the full endogenous FLC locus 

deleted must be crossed to a HTA9‐GFP COOLAIR: LUC line to allow mapping of H2A.Z at COOLAIR: 

LUC by ChIP. 

 

   



 
50 

 

5 Investigation of COOLAIR induction in response to different 

temperature regimes  

 

5.1 Background 

 
COOLAIR transcripts were first identified when it was found that they are induced in response to two 

weeks of constant 5°C vernalisation conditions concomitant with downregulation of sense FLC 

transcripts (Swiezewski et al., 2009). Since this discovery, it has been shown that, whilst total 

COOLAIR is induced by weeks of constant 5°C, total COOLAIR is not comparably induced by constant 

12°C, 14°C or 22°C (Heckmann, unpub).  

 

In nature temperature fluctuates across a massive range between the day and night, between days 

within a week and across the seasons; temperature inputs to COOLAIR are likely to be complex and 

multiple. This control would permit the plant to induce COOLAIR expression in response to weeks of 

winter cold, which would have a different temperature profile every year, and to not induce in 

response to a cooler day in summer or early autumn.  

 

VIN3 expression is also induced by weeks of constant 5°C however experiments investigating VIN3 

expression dynamics in response to fluctuating temperature regimes identified that VIN3 expression 

responds to four temperature inputs and does not simply detect ‘weeks of constant 5°C’.  FLC 

downregulation was shown to be controlled by two additional thermosensitive stages including a 

VIN3‐independent stage that responds to night‐time temperature (Antoniou‐Kourounioti et al., 

2018).   

 

Given COOLAIR induction has only been studied under constant temperature regimes it is impossible 

to determine what the thermosensors regulating COOLAIR are responding to. It is initially interesting 

to investigate the effect of fluctuating 5°C temperatures on COOLAIR expression, which can inform 

on future experiments to precisely identify the temperature inputs involved at COOLAIR.  

 

Field data in Sweden from the winter of 2016 revealed that total COOLAIR is induced by sub‐zero 

temperatures (Hepworth, Antoniou‐Kourounioti, Doughty, Heckmann, Berggren, Selga, Tudor, 

Bloomer, Cox, Collier Harris, Yates, Wu, Irwin, Säll, Holm, Howard and Dean, in prep). This COOLAIR 

expression peak dwarfed the peak observed over weeks in response to prolonged cold. This 
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phenomenon was replicated in cabinets programmed with an identical temperature regime across a 

week. Total COOLAIR was induced 8‐fold in response to freezing temperatures peaking after eight 

hours from the first exposure.  

 

In the field, temperatures dropped below freezing at multiple times though COOLAIR did not 

respond in a similar way. This could be due to the low resolution of the field experiments where 

COOLAIR expression was checked only weekly. It is therefore unclear if COOLAIR is upregulated in 

response to the first freezing spike or all subsequent spikes.  

 

Additionally there is some evidence that COOLAIR is expressed in a diurnal pattern whereas FLC is 

not (Hepworth, Antoniou‐Kourounioti, personal communication).  

 

The following experiments were carried out by myself informed by previous data gathered by the 

lab. 

 

5.2 Aims 

 

COOLAIR is known to increase in response to two weeks of prolonged cold (constant 5°C) and in 

response to short‐term sub‐zero temperatures. Investigating total COOLAIR induction in response to 

sub‐zero conditions and fluctuating 5°C conditions could reveal interesting expression patterns that 

could, in the future, lead to a temperature input model comparable to the one created for VIN3 

expression.  

 

5.3 Results 

 
The results presented below may form part of a publication currently in preparation: Hepworth, 

Antoniou‐Kourounioti, Doughty, Heckmann, Berggren, Selga, Tudor, Bloomer, Cox, Collier Harris, 

Yates, Wu, Irwin, Säll, Holm, Howard and Dean.   

 

5.3.1 Total COOLAIR was induced by a freezing spike 

 
Total COOLAIR is induced by sub‐zero temperatures in the field however COOLAIR dynamics in 

response to a change from constant 5°C to constant sub‐zero temperatures has not specifically been 
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tested. This experiment would rigorously determine if sub‐zero temperatures specifically cause the 

massive induction of total COOLAIR observed in the field, as opposed to a large drop in temperature.  

 

To test this, Arabidopsis thaliana plants were pre‐grown for ten days under NV conditions, 

transferred to constant 5°C vernalisation conditions for four days, allowing the plants to acclimatise, 

before either remaining in constant 5°C vernalisation conditions or being transferred to sub‐zero 

vernalisation conditions for 32 hours. Samples were taken after pre‐growth (NV), after cold 

acclimation and after 4,8,12,24 or 32 hours of sub‐zero temperatures (solid lines) or continued 

constant 5°C vernalisation (dashed lines).  

 

Proximal COOLAIR was induced after exposure to eight hours of sub‐zero temperature compared to 

exposure to continued vernalisation conditions (Figure 5‐1A). In Col‐0, proximal COOLAIR was 

induced six‐fold from NV starting level by the four‐day cold acclimation. Further exposure to 

vernalisation conditions did not alter proximal COOLAIR expression however exposure to sub‐zero 

conditions led to a further three to four‐fold increase in proximal COOLAIR expression over 32 hours 

(Figure 5‐1A, D). Therefore, short ‐ term freezing induced proximal COOLAIR expression beyond the 

level induced by vernalisation temperatures.   

 

5.3.2 cbfs did not affect the freezing induction of COOLAIR 

 
Given that CBF factors have been implicated in the induction of COOLAIR in response to vernalisation 

conditions (Chapter 4), it is interesting to investigate the role of CBFs in the sub‐zero induction of 

COOLAIR.  

 

As previously shown, proximal COOLAIR levels NV were slightly reduced in the cbfs triple mutant and 

induction of proximal COOLAIR in response to four days of cold acclimation was halved compared to 

Col‐0, induced only three‐fold (Figure 5‐1B). Proximal COOLAIR levels after sub‐zero temperatures 

did not reach the levels of Col‐0 however proximal COOLAIR was still induced relative to a continued 

vernalisation treatment (Figure 5‐1B). When expression levels were normalised to account for the 

different starting levels of proximal COOLAIR, after the four days of cold acclimation), COOLAIR was 

induced by sub‐zero temperatures similarly in the cbfs mutant compared to Col‐0 (Figure 5‐1D).  
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5.3.3 arp6‐1 increased induction of COOLAIR in response to freezing 

 
ARP6 has also been implicated in the cold temperature dependent induction of proximal COOLAIR 

likely by repressing COOLAIR expression under NV conditions and then itself, or downstream events, 

being repressed under vernalisation conditions. arp6‐1 mutants were therefore tested in the 

freezing experiment to investigate the role of ARP6 in the freezing induction of proximal COOLAIR.  

 

As expected, proximal COOLAIR was expressed to less than half the level of Col‐0 in NV conditions 

but induction of proximal COOLAIR in response to four days of cold acclimation was similar to Col‐0  

(Figure 5‐1C). Proximal COOLAIR was induced by sub‐zero temperatures to similar levels to Col‐0 too. 

Interestingly, proximal COOLAIR appeared to be induced slightly more in arp6‐1 than Col‐0 in 

Figure 5‐1 – COOLAIR is induced more by freezing compared to vernalisation conditions 
Proximal COOLAIR expression normalised to UBC and PP2A after 10 days pre‐growth NV, 4 
days cold acclimation under vernalisation conditions and after hours spent in freezing 
conditions (solid line) or after continued hours spent under vernalisation conditions (dashed 
lines) in A) Col‐0, B) cbfs and C) arp6‐1. All points are the mean of one to two biological 
replicates. Error bars represent s.e.m. Given the lack of replicates at each time point statistical 
analysis has not be carried out. D) Proximal COOLAIR expression in response to hours of 
freezing normalised to the starting level of proximal COOLAIR after pre‐growth and 4 days cold 
acclimation.  
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response to sub‐zero temperatures, increasing between six and nine‐fold compared to four‐fold in 

Col‐0 (Figure 5‐1D).  

 

5.3.4 Testing FLC downregulation and COOLAIR induction in constant and fluctuating 5°C 

conditions 

 
COOLAIR induction in response to cold temperature has only rigorously been tested at constant 

temperatures whilst FLC downregulation has been tested in various temperature regimes but only in 

later phases of vernalisation when VIN3‐dependent silencing is ongoing.  To investigate the 

temperature inputs to COOLAIR induction more closely, plants were vernalised, after 10 days NV 

pre‐growth, for two weeks at constant 5°C or one of two fluctuating 5°C regimes (Figure 5‐2A). One 

of the fluctuating regimes ranges from 3°C to 9°C (Fluctuating 5°C (3°C)) across a day whereas the 

other ranged from ‐1°C to 12°C on a day (Fluctuating 5°C (‐1°C)) but the average temperature of 

both regimes across 24 hours was 5°C (Figure 5‐2B). It was important to include a fluctuating regime 

that did not approach freezing conditions given total COOLAIR is known to be induced by short‐term 

sub‐zero temperatures. After one night of vernalisation (1DV) and after two weeks of vernalisation 

(2WV), six samples were taken across a 24‐hour period (Figure 5‐ 2A, B). NV samples were taken at 

the same time as the 1DV samples (Figure 5‐2A).  
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Figure 5‐2 Constant 5°C and Fluctuating 5°C Experimental Design A) Plants were grown for 10 
days under NV conditions. Some plants were then moved at 5pm to one of three different 

vernalisation treatments (Constant 5°C, fluctuating 5°C (3°C) and fluctuating 5°C (‐1°C)). NV 
samples and 1DV samples were taken the following day at 8am, 12pm, 4pm, 8pm, 12am and 
then the day after at 8am. 2WV samples were taken across the day after two weeks under 

vernalisation conditions. B) The daily temperature profiles of each regime Constant 5°C (Bright 
blue), Fluctuating 5°C (3°C) (Dark blue) and fluctuating 5°C (‐1°C) (Pale blue). The starred lines 
represent the time of day of sampling after one day of vernalisation (1DV) or after two weeks of 
vernalisation (2WV). The grey blocks on the graph represent night time (16 hours) and the white 
background represents day time (8 hours).   
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5.3.5 Unspliced FLC was downregulated similarly by all temperature conditions 

 
Unspliced FLC is an approximate measure of transcriptional activity of the FLC locus and can provide 

a readout for the degree of transcriptional downregulation that occurs during the initial phase of 

vernalisation. Spliced FLC has previously been shown to have a long half‐life and therefore could be 

left over from a transcription event that happened prior to cold exposure (Csorba et al., 2014).  

 

After two weeks of constant 5°C, unspliced FLC levels were reduced ~2 – fold compared to NV 

(Figure 5‐3B). Unspliced FLC was reduced similarly in both the fluctuating 5°C regimes. There were 

no significant differences in unspliced FLC levels between the three 5°C regimes (ANOVA).  Unspliced 

FLC levels varied broadly across a day and varied considerably between biological replicates. There 

was no pattern to these changing expression levels across a day comparing across the different 

temperature regimes (Figure 5‐4B).  

 

Figure 5‐3 Expression analysis of FLC and COOLAIR after two weeks of vernalisation in 
constant and fluctuating regimes For each regime, six samples (represented by one data 
point) were taken throughout the day. Each data point is the mean of three biological 
replicates. Error bars are s.e.m. qPCR values normalised to UBC and PP2A control genes. A) 
Spliced FLC B) Unspliced FLC and C) Total COOLAIR. Comparing expression values across the 
three different cold temperature regimes revealed a significant difference (ANOVA, p<0.001) 

in spliced FLC levels but not unspliced FLC levels. This difference was between the 5°C 
fluctuating regime (‐1°C) compared to the other two regimes (Tukey post hoc test). Given the 
obvious outliers statistical tests were not performed for total COOLAIR expression. 
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5.3.6 Total COOLAIR was induced similarly by constant and fluctuating 5°C conditions but is 

more induced by exposure to hours of freezing 

 

Total COOLAIR was induced ~12‐fold by two weeks at constant 5°C. Strikingly, at most timepoints 

throughout the day, total COOLAIR levels were induced very similarly in response to both fluctuating 

regimes (Figure 5‐3C). However, two of the timepoints in the 5°C fluctuating (‐1°C) regime very 

obviously displayed high levels of total COOLAIR expression, over 50‐fold the NV starting level.  

 

These two time points corresponded to the two 08:00 samples taken at the start and end of the 24‐

hour sampling period. Comparing the total COOLAIR profile to the temperature profile revealed that 

the high levels of total COOLAIR expression observed in the 5°C fluctuating (‐1C) regime occurred six 

to eight hours after exposure to temperatures below 0°C (Figure 5‐4A). Interestingly, total COOLAIR 

levels between 12:00 midday and 00:00 midnight were very similar between all temperature 

regimes despite large differences in absolute temperature during these times (Figure 5‐4A).  
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5.3.7 COOLAIR responded to each freezing spike regardless of previous exposure 

 
The observation that total COOLAIR is induced by sub‐zero temperatures after two weeks in a 

fluctuating temperature regime revealed that total COOLAIR can be induced by sub‐zero 

temperatures regardless of previous exposure. From the field data, it had been hypothesised that 

only the first drop to temperatures below freezing would cause this effect. Total COOLAIR was 

induced by the fourteenth and fifteen sub‐zero drops experienced after two weeks of the 5°C 

fluctuating (‐1°C) regime. This induction is comparable to the induction observed after the first and 

second exposure to sub‐zero temperatures after one day of vernalisation (1DV) (Figure 5‐5A). At 1DV 

in the constant 5°C regime,  total COOLAIR was induced 7‐ fold, around half of that observed after 2 

weeks of constant 5C. At 1DV, between 16:00 and 00:00 there was no clear difference between total 

COOLAIR level in 5°C constant or 5°C fluctuating (‐1°C) conditions however at 08:00 total COOLAIR 

was induced highly in the 5°C fluctuating (‐1°C) condition after experiencing sub‐zero temperatures 

during the night.   

 
 

Figure 5‐4 Expression profiles after two weeks of vernalisation across the day The three 
different temperature regimes are shown by dotted lines and night time is shown by the 
shaded grey background. qPCR values normalised to UBC and PP2A control genes. The six 
samples taken throughout the day represent the mean of three biological replicates and error 

present is s.e.m.  NV (Yellow line), constant 5°C (Bright blue), fluctuating 5°C (3°C) (Dark blue 
line), fluctuating 5°C (‐1°C) (Pale blue line). A) Total COOLAIR B) Unspliced FLC C) Spliced FLC 
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5.3.8 Spliced FLC was downregulated more by the 5°C fluctuating regime (‐1°C)  

 

Spliced FLC was hardly reduced by two weeks of 5°C constant or 5°C fluctuating (3°C) vernalisation 

treatments (Figure 5‐3A). The 5°C fluctuating (‐1°C) vernalisation treatment had a clear repressive 

effect on spliced FLC levels, reducing them between two and three‐fold. These expression values 

were significantly lower compared to the constant 5°C or fluctuating 5°C (3°C) regimes (ANOVA, 

p<0.001, Tukey post hoc testing). Given unspliced FLC levels were downregulated similarly by all 

three temperature regimes (Figure 5‐3B), it is interesting that spliced FLC levels did not follow this 

pattern. The 5°C fluctuating (‐1°C) regime decoupled the correlation between unspliced and spliced 

FLC levels. Spliced FLC is reduced at all time‐points throughout the 24‐hour sampling period and did 

not respond to sub‐zero temperatures in the manner total COOLAIR responds (Figure 5‐4C).  

 

5.4 Discussion  

 

5.4.1 COOLAIR expression responds to at least two temperature inputs 

 
COOLAIR is induced in response to prolonged periods of cold, two weeks with an average daily 

temperature of 5°C, and is induced in response to current sub‐zero temperatures. These two 

Figure 5‐5 Total COOLAIR Expression profiles after one day and two weeks of vernalisation 
Dotted lines represent the different temperature regimes. The six samples taken throughout 
the day after one day of vernalisation (1DV, dashed lines) or after two weeks of vernalisation 
(2WV, solid lines) represent he mean of three biological replicates. Error shown is s.e.m.  NV 

(Yellow line), constant 5°C (Bright blue), fluctuating 5°C (‐1°C) (Pale blue line).  
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temperature inputs are likely to be detected by at least two thermosensors given the different 

temperatures and timescales they are responding to.  

 

5.4.2 COOLAIR responds to sub‐zero temperatures rapidly, transiently and repeatedly 

 
Current sub‐zero temperatures drastically upregulated COOLAIR expression relative to continued 

vernalisation conditions. This response occurred between four to eight hours after the first exposure 

to sub‐zero conditions.  

 

Expression of COOLAIR can remain high if sub‐zero temperatures continue, for up to 32 hours tested, 

or can drop to a basal vernalisation level within four hours from peaking if the sub‐zero temperature 

is removed.  COOLAIR upregulation in response to sub‐zero temperatures can therefore be transient 

or persist if the sub‐zero temperature remains.  

 

From the field data, it was originally hypothesised that COOLAIR may be induced only by the first 

exposure to sub‐zero temperatures. This is not supported by the 5°C fluctuating experiment where 

COOLAIR was induced to a similar level by the first, second, fourteenth and fifteenth exposure to 

sub‐zero temperatures. COOLAIR therefore responds repeatedly to sub‐zero temperatures.   

 

5.4.3 ARP6, but not CBF factors, is involved in upregulation of COOLAIR in response to sub‐

zero temperatures 

 
Though likely important for COOLAIR induction in response to prolonged cold, the CBF factors are 

not important for upregulation of COOLAIR in response to freezing. Coincidently, CBF factors are 

important for cold‐acclimation dependent freezing tolerance but are not required for basal freezing 

tolerance (Jia et al., 2016).  Additionally, the CBF signalling pathway does not appear to be as 

important in sub‐zero acclimation compared to cold acclimation. Instead, AP2/EREBP and WRKY 

transcription factors may be involved in this process (Le, Engelsberger, & Hincha, 2008; Le, Pagter, & 

Hincha, 2015).  

 

In arp6‐1 COOLAIR was induced more in response to sub‐zero temperatures. Given the complex role 

of ARP6 on endogenous COOLAIR, described in Chapter 4, it is difficult to hypothesise why this 

happens. It is likely that extreme sub‐zero temperatures alter the biophysical states important for 

transcriptional processes and histone exchange, both of which are intimately linked to ARP6.  
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5.4.4 Insights into how COOLAIR measures two weeks of prolonged cold 

 
Aside from samples taken after exposure to sub‐zero temperatures, the expression level of COOLAIR 

differs little between temperature regimes that have a daily average temperature of 5°C despite 

having very different daily profiles. It is difficult from this experiment alone to determine what 

temperature input is being detected to cause COOLAIR upregulation in response to prolonged cold, 

however various hypothesis can be made.   

 

COOLAIR expression is not repressed by warmer temperatures (up to 12°C) experienced during the 

day‐time. This could mean that warm temperatures have no effect on COOLAIR expression or that 

COOLAIR is not sensitive to temperature during the day.  

 

In all temperature regimes most of the night time was spent at 5°C or below. Thermosensory inputs 

at COOLAIR could only be responsive during the night‐time and the level of COOLAIR during the day 

could be impacted by the temperature of the previous night or nights.  

 

COOLAIR induction in response to prolonged cold may be the result of the plant measuring the 

number of hours per day spent below a certain temperature.  Once the daily quota is reached, 

COOLAIR may be induced to a certain level.  For example, COOLAIR may only be induced after 

experiencing 12 hours per day of temperatures below 5°C. If it receives more than this, COOLAIR is 

not induced further. All three temperature regimes would fulfil this and hence in all regimes, 

COOLAIR is induced to a similar level throughout the day.   

 

This initial experiment will inform future experimental designs to allow the dissection of the 

thermosensory pathways that input to COOLAIR expression that lead to the induction of COOLAIR in 

response to prolonged cold.  
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5.4.5 Bursts of COOLAIR expression in response to repeated sub‐zero spikes may reduce FLC 

levels 

 
Unspliced and spliced FLC levels did not respond in the short term to sub‐zero temperatures 

however spliced FLC was reduced much more by the fluctuating regime that included exposure to 

sub – zero temperatures. Bursts of COOLAIR transcription in response to these sub – zero 

temperatures could be influencing the expression of FLC resulting in a reduction in spliced FLC 

expression over time.  

 

5.5 Future Experiments 

 

5.5.1 Temperature profiles to dissect how COOLAIR measures two weeks of average 5°C 

 

COOLAIR is induced in the long term to an average daily temperature of 5°C according to the 

temperature profiles tested in this Chapter. It is not clear from this experiment what COOLAIR may 

be responding to. Further experiments investigating COOLAIR induction under different temperature 

regimes may allow elucidation of the specific thermosensory inputs required for COOLAIR induction 

in response to prolonged cold.  

 

COOLAIR may be responding to low temperatures experienced during the night time. To test this 

COOLAIR expression could be measured over a day after two weeks vernalisation at constant 5°C, 

fluctuating 5°C (3°C) (as used in the experiments above) and in response to a fluctuating 5°C (3°C) 

regime where the higher temperatures occur during the night and the lower temperatures occur 

during the day (Figure 5‐6A). Although this regime is likely unrealistic in nature, in a lab setting it 

could reveal when COOLAIR is responsive to cold temperatures.  

 

Alternatively, COOLAIR may respond to an absence of warm temperatures, similar to one of the 

thermosensory inputs at VIN3 (Antoniou‐Kourounioti et al., 2018). In the regimes tested day time 

temperature never went above 12°C and COOLAIR expression was similar between the regimes 

tested. A spike of 20°C could prevent COOLAIR expression remaining high despite low temperature 

experienced throughout the rest of the day (Figure 5‐6B). This spike could be tested during the day 

and night and the influence it has on COOLAIR expression recorded.  
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Finally, COOLAIR could be responding to the ‘number of hours per day’ exposed to cold temperature. 

In another experiment, COOLAIR expression could be measured in response to constant 5°C and 

then in regimes where the plants spend different amounts of time at 5°C (Figure 5‐6C).  

 

 

 

 

   

Figure 5‐6 Potential temperature profiles to dissect thermosensory inputs at COOLAIR 
Diagrams representing the temperature profiles across 24‐hour (8‐hour light, 16‐hour dark) 
days of different vernalisation conditions to test COOLAIR expression after two weeks. A) 

Fluctuating 5°C (3°C) regimes that can investigate the role of night time temperatures in 
inducing COOLAIR. B) Investigating whether warm temperature spikes repress COOLAIR 

expression the average daily temperature still being 5°C. C) Exposing plants to different 
lengths of constant 5°C.  
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6 Discussion  

 
My project aimed to investigate how COOLAIR is induced in response to cold temperature during 

vernalisation in Arabidopsis thaliana. COOLAIR induction is important in the transcriptional 

shutdown of FLC, which allows the efficient nucleation of epigenetic silencing marks.  These 

epigenetic marks silence the FLC locus so that after vernalisation FLC is no longer expressed, FT 

repression is lifted, and the plant is permitted to flower.  

 

Specifically, this thesis had two primary aims: to identify and characterise candidate factors required 

for COOLAIR induction and to dissect the temperature inputs detected by pathways to influence 

COOLAIR expression.  Prior to this work, COOLAIR was known to be induced by two weeks of 

constant 5°C by an unknown mechanism. My work identified multiple candidate factors involved in 

COOLAIR induction by utilising forward and reverse genetic approaches (Chapter 3) and has further 

characterised the potential mechanism of two of these candidates, the CBFs and ARP6 (Chapter 4) 

by detailed analysis of COOLAIR expression over a vernalisation time course. Additionally, my work 

isolated at least two thermosensory inputs to the regulation of COOLAIR expression, namely massive 

induction in response to short – term exposure to sub‐zero temperatures and maintained induction 

over weeks of cold with an average daily temperature of 5°C (Chapter 5).  

 

The results presented in this thesis will be summarised below and framed in the context of the aims 

of this thesis first described in the introduction. Implications of this research, relevant to future 

COOLAIR research and research within the wider field, will also be detailed below.  

 

6.1 Identification of regulators of cold‐induced COOLAIR expression  

 
The set of lncRNAs antisense to FLC, COOLAIR, have been known to be induced by the early weeks of 

vernalisation for over a decade yet the mechanism of their induction has remained elusive 

(Swiezewski et al., 2009). In fact, a thermosensor for the process of vernalisation has not yet been 

identified. 

 

To identify candidate thermosensors, a forward genetic mutant screen, based on the induction of a 

translatable COOLAIR: LUC reporter fusion, was undertaken. Interestingly few mutants that had 

impaired induction of COOLAIR: LUC could be recovered. Those that were recovered all expressed 

COOLAIR: LUC more highly before cold and induced COOLAIR: LUC less in response to cold (2273, 
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6722 and 2265) implicating a mechanism whereby COOLAIR repressors are themselves inactivated 

by vernalisation conditions causing COOLAIR induction.    

 

An alternative approach investigating the binding of trans factors to the COOLAIR promotor 

identified the possible role of redundant families of transcription factors being important for 

COOLAIR induction. The redundancy of these factors could explain why few mutants impaired in 

COOLAIR: LUC induction were identified from the screen.  

 

Ultimately, the two approaches led to the identification of multiple candidate regulators of cold – 

specific COOLAIR: LUC induction. These included transcription factors (CBFs, CAMTAs and NTL8) and 

histone remodelling complex proteins (ARP6) and some as yet unidentified factors (6722).  

 

CBFs are well known master regulators of the cold acclimation pathway but few studies have 

investigated the role of CBFs in prolonged cold exposure. CBFs will be described in more depth in 

section 6.2. CAMTAs have been implicated in the induction of SA biosynthesis genes in response to 

weeks of cold temperature. This parallels the induction of COOLAIR observed after weeks of cold 

exposure. Additionally, CAMTA3 activates expression of CBF1 and CBF2. The observation that both 

CBFs and CAMTAs may bind the COOLAIR promotor could represent a novel feedback system 

between CBF and CAMTA proteins when controlling expression of the same target.  

 

NTL8 is a very interesting COOLAIR regulator to follow up given that it also plays a role in VIN3 

induction in response to vernalisation conditions. NTL8, perhaps redundantly with NTL14 and NTL5, 

could represent a vernalisation sensitive regulator that is important for both COOLAIR and VIN3 

induction, directly linking transcriptional shutdown and nucleation of epigenetic silencing marks at 

FLC.  

 

ARP6 was a somewhat surprising discovery from the mutant screen as it is already known to be 

required for high FLC expression. ARP6 is part of the SWR1 complex that deposits H2A.Z into 

chromatin. H2A.Z is present at both the 5’ and 3’ end the FLC locus and it was thought that H2A.Z 

was important for FLC expression. This thesis has shown that in fact H2A.Z may be equally important 

controlling COOLAIR expression, repressing it until exposure to vernalisation conditions. H2A.Z 

dynamics have not been investigated in response to cold temperature despite broadly controlling 

gene expression in response to warm temperature. The potential role of ARP6 in COOLAIR induction 

could reveals the need for this to be investigated.  
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Overall then the identification of multiple candidate factors presented in this thesis could launch the 

investigation of the mechanism by which all these factors may impact COOLAIR expression. In the 

wider field, temperature sensing for the cold acclimation pathway and the vernalisation pathway 

have been tentatively linked whilst further study into H2A.Z dynamics in response to low 

temperature could reveal further insights into the role of H2A.Z and thermosensing.  

  

6.2 Dissection of COOLAIR induction in the identified mutants  

 
In Chapter 4, candidate COOLAIR regulators ARP6 and the CBFs were investigated more closely by 

tracking expression of COOLAIR: LUC and endogenous COOLAIR over multiple time points during 

vernalisation.  

 

This showed that COOLAIR is not induced by one or subsequent weeks of cold in a cbfs triple mutant. 

This implicates the CBF factors in activating COOLAIR expression in response to cold. CBF expression 

was also shown to increase from NV to one, two and three weeks of cold, revealing that the CBFs 

may not just play roles in gene expression changes that happen in response to less than 24 hours 

exposure to cold. This reveals the need for further work into the expression levels and roles of CBF 

factors in prolonged cold periods. The cold acclimation pathway was claimed to be independent 

from vernalisation however the evidence in this thesis would support a role for the CBFs in inducing 

COOLAIR, presumably affecting the transcriptional shutdown of FLC, one stage of vernalisation 

(Bond, Dennis, & Finnegan, 2011).  

 

The arp6 (2265) mutation is epistatic to cold temperature on COOLAIR: LUC expression highlighting a 

role for ARP6 or H2A.Z in repressing COOLAIR during NV conditions but permitting COOLAIR 

expression in response to vernalisation conditions. ARP6 has not been implicated in controlling 

COOLAIR expression before though it has been associated with controlling FLC expression for over a 

decade. This is probably because at the endogenous locus, in arp6, the effect on COOLAIR is subtle 

and could be easily overlooked. This is likely due to the complex feedback associated with the FLC/ 

COOLAIR locus. Again, using a reporter COOLAIR gene that is independent from FLC has revealed the 

primary direct effects of a mutation on COOLAIR expression. Future work should confirm the 

localisation of H2A.Z at COOLAIR: LUC and endogenous COOLAIR to reveal H2A.Z dynamics in 

response to vernalisation conditions. It may also be interesting for the wider field to investigate the 

redistribution of H2A.Z genome wide in response to cold temperature.  
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6.3 Investigation of COOLAIR induction in response to different 

temperature regimes  

 
COOLAIR induction had only been investigated in response to vernalisation lab conditions that are 

highly unrealistic relative to field conditions. A large – scale field experiment provided insights into 

how vernalisation progresses outside of highly controlled conditions and revealed surprisingly that 

COOLAIR is induced by sub‐zero temperatures.  

 

This thesis successfully showed that COOLAIR is induced in response to short‐term sub – zero 

temperatures rapidly, transiently and repeatedly. It is not clear from current research how this could 

influence FLC expression however this thesis did reveal that in response to repeated exposure to sub 

– zero temperatures, spliced FLC was reduced much more than in a fluctuating regime without sub – 

zero spikes. This thesis did not uncover a mechanism for how COOLAIR is induced by freezing 

temperatures though this appears to be an independent thermosensor from that of the induction of 

COOLAIR in response to prolonged cold. It may involve changes in chromatin dynamics given the 

phenotype observed in arp6. The CBFs are not implicated in this induction.  

 

The fluctuating regimes used to test COOLAIR induction also revealed that induction of COOLAIR in 

response to prolonged cold likely responds to an average daily temperature of 5°C. In the future 

various other temperature regimes can be used in an attempt to isolate the true components of 

temperature being sensed to cause COOLAIR induction.  

 

Coupled with work concerning temperature sensing at VIN3 (Antoniou‐Kourounioti et al., 2018), this 

thesis supports the existence of distributive temperature sensing for induction of regulators during 

vernalisation. The hunt for a single thermosensor for vernalisation is probably not realistic. In 

environments where temperature is constantly fluctuating and differing from year to year it may be 

more reliable to use multiple sensors to interpret the temperature profile that feeds into a process 

as important as vernalisation.  

 

6.4 Conclusion 

 
The silencing of FLC in response to vernalisation is a powerful paradigm for epigenetic control of 

gene expression in response to an environmental stimulus. COOLAIR induction has emerged as an 
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important component of the transcriptional shutdown phase of FLC silencing. Yet the temperature 

inputs and thermosensors responsible for this induction have not be uncovered.  

 

This thesis has described identification of multiple candidate regulators for COOLAIR induction and 

further characterised the role of CBF transcription factors and the SWR1 histone remodelling 

complex in COOLAIR induction. Additionally, at least two different temperature inputs to COOLAIR 

induction have been identified. This thesis has also described work showing how thermosensing at 

COOLAIR is likely distributive with COOLAIR induction occurring as a result of multiple converging 

pathways.   
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8 Appendix 
 

qPCR primers 
Luciferase   F ‐ TAACGATCAGTTCGCCGATG 

  R and RT ‐ AGCCATTGTTTGGATCGT TT 

Total COOLAIR  F  ‐ ACGTCCCTGTTGCAAAATAAGC 

  R and RT ‐ TGCATCGAGATCTTGAGTGTATGT 

Proximal COOLAIR   RT ‐ TGGTTGTTATTTGGTGGTGTG 

  F ‐ TCACACGAATAAGGTGGCTAATTAAG 

  R ‐ CCTGCTGGACAAATCTCCGA 

Spliced FLC  F ‐ AGCCAAGAAGACCGAACTCA 

  R and RT ‐ TTTGTCCAGCAGGTGACATC 

Unspliced FLC  F ‐ CGCAATTTTCATAGCCCTTG 

  RT and R ‐ CTTTGTAATCAAAGGTGGAGAGC 

CBF1  F ‐ AGTCAACATGCGCCAAGGAT 

  RT and R ‐ ATGTCCAGGCCATGATTCG 

CBF2  F ‐ TGACGTGTCCTTATGGAGCTA 

  RT and R ‐ CTGCACTCAAAAACATTTGCA 

CBF3  F ‐ CGCTGACTCGGCTTGGA 

  RT and R ‐ GCATCACACATCTCATCCTGAAAC 

UBC  F ‐ CTGCGACTCAGGGAATCTTCTAA 

  RT and R ‐ TTGTGCCATTGAATTGAACCC 

PP2A  F ‐ ACTGCATCTAAAGACAGAGTTCC 

  RT and R ‐ CCAAGCATGGCCGTATCATGT 

 
 
 
 

Figure 8‐1 – qPCR primers at the FLC/COOLAIR locus and COOLAIR:LUC – Forward and reverse 
primer location for qPCR expression analysis of total COOLAIR (red), proximal COOLAIR (pink), 
Spliced FLC (yellow), unspliced FLC (blue) and luciferase (green). RT primers used are the reverse 
in all cases except for proximal COOLAIR – additional RT primer shown.   
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