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Abstract 
 
Humans’ ability to learn about and use tools is considered a defining feature of our 

species, with most related neuroimaging investigations involving proxy 2D picture 

viewing tasks. Using a novel tool grasping paradigm across three experiments, 

participants grasped 3D-printed tools (e.g., a knife) in ways that were considered to 

be typical (i.e., by the handle) or atypical (i.e., by the blade) for subsequent use. As a 

control, participants also performed grasps in corresponding directions on a series of 

3D-printed non-tool objects, matched for properties including elongation and object 

size. Project 1 paired a powerful fMRI block-design with visual localiser Region of 

Interest (ROI) and searchlight Multivoxel Pattern Analysis (MVPA) approaches. 

Most remarkably, ROI MVPA revealed that hand-selective, but not anatomically 

overlapping tool-selective, areas of the left Lateral Occipital Temporal Cortex and 

Intraparietal Sulcus represented the typicality of tool grasping. Searchlight MVPA 

found similar evidence within left anterior temporal cortex as well as right parietal 

and temporal areas. Project 2 measured hand kinematics using motion-capture during 

a highly similar procedure, finding hallmark grip scaling effects despite the unnatural 

task demands. Further, slower movements were observed when grasping tools, 

relative to non-tools, with grip scaling also being poorer for atypical tool, compared 

to non-tool, grasping. Project 3 used a slow-event related fMRI design to investigate 

whether representations of typicality were detectable during motor planning, but 

MVPA was largely unsuccessful, presumably due to a lack of statistical power. 

Taken together, the representations of typicality identified within areas of the ventral 

and dorsal, but not ventro-dorsal, pathways have implications for specific predictions 

made by leading theories about the neural regions supporting human tool-use, 

including dual visual stream theory and the two-action systems model. 



How the brain grasps tools 

 3 

Table of Contents 
 

Abstract ............................................................................................................ 2 

Table of Contents ............................................................................................. 3 

List of Figures .................................................................................................. 6 

List of Tables .................................................................................................. 12 

Acknowledgements ........................................................................................ 13 

Author’s Declaration ...................................................................................... 15 

Chapter 1 ........................................................................................................ 18 

General Introduction ...................................................................................... 18 

1.1. Why study the neural basis of human tool-interactions? ..................... 18 

1.2. What is a tool? ..................................................................................... 20 

1.3. Dual visual stream theory .................................................................... 22 

1.3.1. Seeing 2D tools to using 3D tools ................................................ 29 
1.4. Two-action systems model .................................................................. 33 

1.4.1. Segregated processing of knowledge about tool manipulation & 
function? ............................................................................................................. 39 

1.5. Theory of Affordances ........................................................................ 43 

1.5.1. Tools and functional affordances .................................................. 46 
1.6. A tool processing network ................................................................... 49 

1.6.1. Imagining or pantomiming tool-use as a proxy for real action ..... 54 
1.7. Current Projects ................................................................................... 58 

Chapter 2 ........................................................................................................ 62 

Hand-selective areas in the dorsal and ventral visual streams represent how to 

grasp real 3D tools for use ......................................................................................... 62 

2.1. Introduction ......................................................................................... 62 

2.2. Method ................................................................................................. 72 

2.2.1. Participants .................................................................................... 72 
2.2.2. Stimuli & apparatus ...................................................................... 73 
2.2.3. fMRI grasping paradigm ............................................................... 77 
2.2.4. fMRI visual localiser paradigm .................................................... 78 
2.2.5. Data acquisition ............................................................................ 80 
2.2.6. Data preprocessing ........................................................................ 81 
2.2.7. ROI definitions ............................................................................. 83 
2.2.8. ROI MVPA ................................................................................... 87 
2.2.9. Classification procedure ............................................................... 88 
2.2.10. Searchlight MVPA ...................................................................... 93 



How the brain grasps tools 

 4 

2.3. Results ................................................................................................. 94 

2.3.1. Typicality versus grasp direction decoding .................................. 94 
2.3.2. Object size decoding ..................................................................... 97 
2.3.3. Object category decoding ............................................................. 99 
2.3.4. Tool function decoding ................................................................. 99 
2.3.5. Tool identity decoding ................................................................ 100 

2.4. Discussion.......................................................................................... 103 

2.4.1. Hand-selective cortex and learnt actions .................................... 103 
2.4.2. Visual streams & a semantic hub in learnt actions ..................... 106 
2.4.3. Limitations .................................................................................. 114 
2.4.4. Conclusion .................................................................................. 115 

Chapter 3 ...................................................................................................... 117 

Hand kinematics during tool grasping: A motion-capture investigation ..... 117 

3.1. Introduction ....................................................................................... 117 

3.2. Method ............................................................................................... 125 

3.2.1. Participants .................................................................................. 125 
3.2.2. Stimuli & apparatus .................................................................... 125 
3.2.3. Procedure .................................................................................... 127 
3.2.4. Data preprocessing ...................................................................... 129 
3.2.5. Statistical analysis ....................................................................... 133 

3.3. Results ............................................................................................... 134 

3.3.1. Grasp kinematics ......................................................................... 134 
3.3.2. Reach kinematics ........................................................................ 137 

3.4. Discussion.......................................................................................... 139 

3.4.1. Object category affects hand kinematics ........................................ 139 

3.4.2. Typicality & hand kinematics ........................................................ 144 

3.4.3. Limitations ...................................................................................... 149 

3.4.4. Conclusion ...................................................................................... 151 

Chapter 4 ...................................................................................................... 152 

Preparing to grasp tools: A slow event-related fMRI investigation ............. 152 

4.1. Introduction ....................................................................................... 152 

4.2. Method ............................................................................................... 160 

4.2.1. Participants .................................................................................. 160 
4.2.2. Stimulus & apparatus .................................................................. 161 
4.2.3. fMRI real action paradigm .......................................................... 162 
4.2.4. fMRI visual localiser paradigm .................................................. 164 
4.2.5 Data acquisition ........................................................................... 164 
4.2.6. Data preprocessing ...................................................................... 164 
4.2.7. ROI definitions ........................................................................... 165 
4.2.8. ROI MVPA ................................................................................. 166 



How the brain grasps tools 

 5 

4.2.9. Classification procedure ............................................................. 170 
4.2.10. Searchlight MVPA .................................................................... 172 

4.3. Results ............................................................................................... 173 

4.3.1. Typicality & grasp direction decoding ....................................... 173 
4.3.2. Object size decoding ................................................................... 174 
4.3.2. Object category decoding ........................................................... 174 
4.3.2. Tool identity decoding ................................................................ 174 

4.4. Discussion.......................................................................................... 181 

4.4.1. Decoding from preparatory epochs ............................................. 181 
4.4.2. Decoding from movement execution & passive viewing epochs

 .......................................................................................................................... 187 
4.4.3. Limitations .................................................................................. 191 
4.4.4. Conclusion .................................................................................. 193 

Chapter 5 ...................................................................................................... 194 

General Discussion ....................................................................................... 194 

5.1. Summary of findings ......................................................................... 195 

5.2. Hand-selective cortex: From perception to action ............................. 198 

5.3. Theoretical implications .................................................................... 205 

5.3.1. Dual Visual Stream Theory (DVST) .......................................... 205 
5.3.2. Two-action systems model ......................................................... 210 
5.3.3. Theory of affordances ................................................................. 213 
5.3.4. The tool processing network ....................................................... 216 

5.4. Wider implications ............................................................................ 219 

5.4.1. Clinical implications ................................................................... 219 
5.4.2. Robotics implications ................................................................. 221 

5.5. Limitations to interpretation .............................................................. 222 

5.5.1. Multivariate approaches .............................................................. 222 
5.5.2. Representing the typicality of a grasp ......................................... 225 

5.6. Future directions ................................................................................ 226 

5.7. Concluding remarks ........................................................................... 228 

References .................................................................................................... 231 

Appendix ...................................................................................................... 275 

Appendix A - Somatosensory Cortex decoding in fMRI Project 1 .......... 275 

Appendix B - Data-driven selection of stimuli for fMRI Project 2 .......... 277 

Appendix C - Volume by Volume decoding in Localiser ROIs in fMRI 

Project 2 279 

Appendix D - Motor ROI decoding in fMRI Project 2 ............................ 282 

 



How the brain grasps tools 

 6 

List of Figures 
 
Fig. 1.1. Major functional areas of the neural pathways described in the DVST (red 
and blue) and the two-action systems model (green). According to the DVST, visual 
information travels from the EVC (see below for acronyms) to (1) the ventral visual 
stream for the process of object recognition which receives additional information 
about object concepts from areas known to process conceptual information about 
objects (yellow; see Binder et al., 2009) and (2) the dorsal visual stream for the 
purpose of visuomotor control which can be separated into reaching and grasping 
subnetworks (see Gallivan & Culham, 2015; Perry, Amarasooriya & Fallah, 2016). 
According to the two-action systems model, a separate ventro-dorsal stream is 
critical for processing stored knowledge about the functions and manipulations 
associated with tools which can be translated into sensorimotor based motor plans by 
interacting with the dorso-dorsal stream, perhaps through the aIPS (Binkofski et al., 
2013; Grefkes, & Fink, 2005; Sakreida, et al., 2016). …………………………….23 
 
Fig. 1.2. (A) The tool processing network. Left hemisphere activation generated 
from contrasting viewing 2D tools and viewing 2D objects (i.e., chairs) based on 
data from 31 participants who completed a Bodies, Objects, Tools and Hands fMRI 
functional localiser across Chapters 2 and 4 (see fMRI visual localiser paradigm: 
section 2.2.4. and section 4.2.4.). (B) The tool use motor skill network (blue lines) 
and conceptual and semantic tool networks (green lines) are displayed on the left 
hemisphere as proposed by Lewis (2006). ………………………………………. 51 
 
Figure 2.1. Methods and materials. (A) 3D-printed tool and non-tool stimuli. (B) 
Turntable apparatus used to present graspable objects shown from the side (the 
experiment is completed in the dark, thus lighting here is for illustration only). The 
upper limb and hand are shown at the starting location. The red star represents the 
fixation LED and the delineated yellow zone represents the workspace that was 
illuminated by white LEDs. Cameras recording eye and hand movements in the dark 
were supported by an infrared source. Approximate functional coverage is presented 
(right) and was achieved by suspending a flex coil over the head. (C) Timing of the 
fMRI block design. A schematic of a single ON-OFF block period is highlighted 
(top left) that always consisted of an auditory instruction period (white block, where 
participants heard the word ‘left’ or ‘right’), an ON block where the object is 
illuminated and subsequently grasped five times (green block, where grasping is 
performed once every two seconds on the side of the object previously instructed) 
and followed by an OFF block where the workspace remained dark (grey block, 
where participants continue maintaining fixation). For analysis, a classifier received 
input from the rightward and leftward grasping blocks for both the tool and non-tools 
objects independently. For the tools blocks these right and left grasps corresponded 
to grasping the tool in ways that were typical (i.e., by the handle) and atypical (i.e., 
by the functional-end) for use, respectively (also see Fig. 2.3). (D) Representative 
locations of functionally defined perceptual ROIs are depicted by colour coded cubes 
based on the type of contrast used from a Bodies, Objects, Hands and Tools (BOTH) 
localiser per participant (see Section 2.2.8. for more information). Group activation 
during the BOTH visual localiser is displayed for [all conditions > (baseline*5)] and 
projected onto a left hemisphere cortical surface reconstruction of a reference brain 
(COLIN27 Talairach) available from the neuroElf package 
(http://neuroelf.net).................................................................................................... 75 



How the brain grasps tools 

 7 

 
Figure 2.2. Experimental timing of the Bodies, Objects, Hands and Tools (BOTH) 
perceptual localiser fMRI block design with example stimulus images. Adapted from 
Bracci, Ietswaart, Peelen & Cavina-Pratesi (2010), Bracci, Cavina-Pratesi, Ietswaart, 
Caramazza & Peelen (2011) and Bracci, Cavina-Pratesi, Connolly & Ietswaart 
(2016). ……………………………………………………………………………...80 
 
Figure 2.3. Example of MVPA classification for primary analysis. A classifier was 
trained to learn the mapping between the two types of grasping blocks for the tools 
and non-tools independently (left top and bottom). This was carried out per ROI by 
inputting the voxel activity patterns for these conditions (middle). A classification 
decision was then made for new data that had been reserved from training for the 
purpose of testing the accuracy of the classifier (right). The classifier discriminated 
between trials labelled to be typical versus atypical for the tool conditions (right top) 
and those labelled right versus left for non-tool conditions (left bottom). The cross-
validated decoding accuracy was compared to that expected by chance (50%) using 
one-samples t-tests. If activity patterns in a ROI could be used to decode typicality 
(i.e., from the tool conditions) but not grasp direction (i.e., from the non-tool 
conditions) paired samples t-tests were then used to test if decoding accuracy for 
grasping was significantly higher than grasp direction. This pattern of results would 
be taken as evidence that an ROI carried learnt representations about how to grasp a 
tool in a way consistent with its learnt use. ……………………………………….. 89 
 
Fig. 2.4. Classification labels for control and secondary analyses. Object size (Top). 
This classification was a control analysis that was possible because the heads of the 
knife, spoon and pizzacutter tools (and their paired non-tools) had small, medium 
and large widths when considered relative to one another. Thus, a classifier was used 
to test if discrimination was possible between object of a larger versus smaller size. 
This was achieved by averaging the decoding results from three separate pairwise 
classifications of object size that pitted one set of exemplars versus one of the other 
two sets (the 3 rows of stimuli are separated to show the individual pairwise 
classifications between the objects that were the size of the small knife versus 
medium spoon, small knife versus large pizza-cutter and medium spoon versus large 
pizza-cutter). Object category (Upper middle). This classification was performed 
using a pairwise discriminations of tools versus non-tools. Tool function (Lower 
middle). This classification was performed using two pairwise discrimination of the 
tools that were strongly associated with cutting versus scooping and averaging the 
decoding accuracies (as for object size, the rows of stimuli show the individual 
pairwise comparisons between the knife versus spoon and pizzacutter versus spoon). 
Tool identity (Bottom). This classification was performed using a single multiclass 
discrimination of the different tool exemplars (knife versus spoon versus pizza-
cutter). For all analyses reach direction(s) were controlled. Object size involved left 
grasping blocks only (i.e., conditions where the tools and their paired non-tools had 
identical widths). Object category involved both right and left grasping blocks (i.e., 
to maximise power). Tool function and identity involved right grasping blocks only 
(i.e., handles of the tools were identical). …………………………………………..91 
 
Figure 2.5. (A) Left hemisphere ROI MVPA results for the classifications of 
typicality (i.e., when grasping tools) and, as a control, grasp direction (i.e., when 
grasping non-tools). Decoding accuracies obtained using activity patterns from the 



How the brain grasps tools 

 8 

LOTC-Hand and IPS-Hand ROIs were significantly higher than (1) chance and (2) 
that for grasp direction. (B) Typicality difference map derived from a searchlight 
analysis. Tool and non-tool decoding accuracies were acquired per voxel 
independently and then the values from the tool map were subtracted from the non-
tool map for each participant. The resulting maps were finally tested against zero to 
reveal where decoding accuracies were significantly higher for tools than non-tools. 
(C) Individual IPS-Hand and IPS-Tool ROIs for each subject are overlaid on the 
typicality difference map set at a lower threshold that is not cluster corrected. 
Visually, the cluster clearly overlaps with the IPS-Hand ROIs. Errors bars represent 
SEM. ………………………………………………………………………………..96 
 
Figure 2.6. (A) Left hemisphere ROI MVPA results for the classification of object 
size. No perceptual ROIs decoded object size significantly higher than chance. (B) 
Searchlight results for the classification of object size. (C) Probalistic maps of 
LOTC-Body and LOTC-Hand ROIs are overlaid on the superior LOTC cluster that 
was found by the searchlight to decode object size significantly above chance. Error 
bars represent SEM. ………………………………………………………………...98 
 
Fig. 2.7. Left hemisphere ROI MVPA results for the classification of object 
category. Error bars represent SEM. ……………………………………………….99 
 
Fig. 2.8. (A) Left hemisphere ROI MVPA results for the classification of tool 
function. (B) Searchlight results for the classification of tool function. Error bars 
represent SEM…………………………………………………………………......100 
 
Fig. 2.9. (A) Left hemisphere ROI MVPA results for the classification of tool 
identity. (B) Searchlight results for the classification of tool identity. Error bars 
represent SEM. ……………………………………………………………………101 
 
Fig. 3.1. Apparatus for motion tracking experiment. (Left) The 3D graspable objects 
were presented using the same turntable equipment as described in the fMRI 
experiment. The setup is presented here from behind and is surrounded by motion 
tracking cameras (four additional cameras are ceiling-mounted, out of camera shot). 
The red star represents the fixation LED and the delineated yellow zone represents 
the illuminated workspace emitted by white LEDs. (Right) Marker positions are 
labelled on the index finger, thumb and wrist. The hand is shown at its final contact 
points for an example of a typical tool grasp. Note that the experiment is completed 
in the dark, thus lighting here is for illustration only. …………………………….128 
 
Fig. 3.2. Grasp kinematic analysis and results. (A) Analysis design and results for the 
Tool Atypical & Matched Non-tool Conditions (TA&MNC) (i.e., the tool atypical, 
non-tool left and non-tool right conditions for each of the three different sized 
exemplars: small [knife tool/non-tool], medium [spoon tool/non-tool] and large 
[pizzacutter tool/non-tool]). For PGA and tPGA, the TA&MNC conditions were 
analysed using RM 3 x 3 ANOVAs (TA&MNC x Object size; see top left of 3.2A.). 
For the R2, slope and intercept (i.e., the grip scaling kinematics) the TA&MNC were 
analysed with one-way RM ANOVAs (see bottom left of 3.2A.). Results are 
presented on the right (see dashed lines in Fig. 3.2A.). (B) Analysis and design for 
the Tool Typical & Matched Non-tool Condition (TT&MNC) (i.e., knife typical, 
spoon typical, pizzacutter typical and the equivalently sized non-tool knife right 



How the brain grasps tools 

 9 

condition). For the PGA and tPGA the TT&MNC were analysed using one-way RM 
ANOVAs involving the four conditions from the TT&MNC as groups. Error bars 
represent Standard Error of the Mean (SEM). …………………………………….135 
 
Fig. 3.3. Reach kinematic analysis and results. The conditions examined for all reach 
kinematics are shown in the left panel and were analysed using a RM 2 x 2 ANOVA 
with object category and typicality as factors. Graphs for the RT, MT, PV and tPV 
are presented on the right. Error bars represent SEM……………………………..138 
 
Fig. 4.1. Timing of the fMRI slow event design. A schematic of a single trial is 
provided (top left). A preview phase begins as the object is first illuminated. A plan 
phase begins as the auditory instruction is provided about which movement should 
later be carried out. A go phase begins as another auditory cue signals the movement 
to be executed in closed loop conditions (i.e., the workspace remains illuminated). 
The volumes where MVPA was performed (blue blocks) consisted of those during 
each of the preview, plan and go phases independently. As in Project 1, a classifier 
received input from the rightward and leftward grasping blocks for both the tool and 
non-tools objects independently. For the tools blocks these rightward and leftward 
movements corresponded to grasping the tool in ways that were typical (i.e., by the 
handle) and atypical (i.e., by the head) for use, respectively……………………...163 
 
Fig. 4.2. Percentage signal change in localiser ROIs for the main conditions of 
interest. Grey bars represent the preview, plan and go epochs when MVPA was 
implemented (also see overleaf)…………………………………………………...168 
 
Fig. 4.2. (Continued)………………………………………………………………169 
 
Fig. 4.3. Classification labels for all analyses. As in Project 1, the primary 
classification of typicality and its associated control classification of grasp direction 
(top rows) involved performing independent pairwise classifications of typical 
versus atypical for the tool conditions and right versus left for the non-tool 
conditions, respectively. The resulting decoding accuracies attained by a given ROI 
for each of these classifications would then be compared with a paired samples t-test 
if significant decoding was observed for typicality, but not grasp direction. Object 
size (upper middle rows) classification was a control analysis to ensure typicality 
decoding could not be achieved purely because of changes in object size (see 
Classification procedure: section 2.2.9) and was performed using a pairwise 
discrimination of objects that were smaller versus larger, regardless of object 
category. Object category (lower middle rows) classification was performed using a 
pairwise discrimination of objects that were tools versus non-tools. Tool identity 
(bottom rows) classification was performed using a pairwise discrimination of the 
knife versus pizzacutter. Grasp direction for the classifications of object size, object 
category and tool identity were controlled in the same way as described in Project 1 
(see Classification procedure: section 2.2.9.)……………………………………..171 
 
Fig. 4.4. ROI MVPA. Decoding accuracies in left hemisphere ROIs functionally 
defined from contrasts in an independent visual BOTH localiser. Errors bars 
represent SEM. (Also see overleaf)………………………………………………..176 
 
Fig. 4.4. (Continued)………………………………………………………………177 



How the brain grasps tools 

 10 

Fig. 4.5. Decoding accuracies from searchlight MVPA. The typicality difference 
map (top left) is derived from typicality and control grasp direction decoding 
accuracies that are acquired per voxel independently, where the values from the 
typicality map was subtracted from the grasp direction map (per participant) - the 
resulting maps are then tested against zero to reveal where decoding accuracies were 
significantly higher for tools than non-tools (see section 2.2.10). For the typicality 
different map decoding accuracies are plotted from the go phase where the red and 
blue colours represent the decoding accuracies that were significantly higher for 
typicality and grasp direction, respectively. For the object size classification (top 
right) the red and blue colours represent significant decoding for the go and plan 
phase respectively. For the object category classification (bottom left) the red colour 
represents significant decoding in the plan phase. Finally, for the classification of 
tool identity (bottom right) the red, blue and purple colours represent significant 
decoding in the preview, plan and go phases, respectively………………………..178 
 
Fig. 5.1. Summary of MVPA typicality decoding from fMRI Project 1 and Project 3. 
Dots are placed on surface reconstructions from a reference brain (COLIN27 
Talairach) available from the neuroElf package (http://neuroelf.net) at approximate 
locations of ROI peaks or cluster revealed by the searchlights and are coloured blue 
(Project 1) or yellow (Project 3). As can be seen, Project 1 revealed the coding of 
typicality in hand-selective areas of the left LOTC and IPS as well as the areas in the 
left anterior temporal and right temporal/parietal cortex. For Project 3, the left EVC 
was the only region to code this information and this was during movement 
execution. A number of methodological differences between the projects are 
summarised in the lower boxes. Most notably, Project 3 had weaker statistical power 
(see Sample Size and Design/Reps in lower boxes) and uniquely allowed visual 
feedback during actions. These differences may help explain the null findings during 
motor planning (see Decoding from preparatory epochs: section 4.4.1.) and why 
EVC decoded typicality (see Decoding from movement execution & passive viewing 
epochs: section 4.4.2.) during Project 3…………………………………………...197 
 
Fig. 5.2. Background to the hypothesis that hand-selective cortex is involved in 
generating and/or monitoring hand actions. Example grasping movements for the 
typical and atypical tool grasping conditions are displayed in the Middle. Project 1 
results from fMRI MVPA hand-selective ROIs are shown on the Left: decoding 
accuracies associated with the left IPS-Hand and LOTC-Hand were found to be 
significantly stronger when classifying typicality during tool grasping (i.e., typical 
versus atypical) relative to the control classification of grasp direction during non-
tool grasping (i.e., right versus left). Project 2 grasp kinematic results are shown on 
the Right: no differences were found between typical tool and non-tool grasping 
(Top) whereas measures were found to significantly differ between atypical tool and 
non-tool grasping (Bottom). I predict that the sensitivity of hand-selective cortex to 
typicality is interrelated with distinct grasp kinematics that could occur when 
grasping tools by their handle versus their head (see Bottom: Potential Brain & 
Behaviour convergence arrows)…………………………………………………...200  
 
Appendix A: Fig. 1. Decoding accuracies when classifying typicality and reach 
direction in somatosensory cortex ROIs. Error bars represent SEM………………276 
 



How the brain grasps tools 

 11 

Appendix B: Fig. 1. A random effects general linear model was applied to the dataset 
from the real action experiment in the first project. Individual regressors were 
assigned for each of the exemplars per the two grasping conditions (e.g., knife 
typical, knife atypical, knife non-tool left, knife non-tool right etc.) and convolved 
with a two gamma Boynton hemodynamic response function (HRF). A boxcar HRF 
was aligned to the onset of the stimulus block with the same duration as block 
length. The OFF-block epochs and the baseline epochs at the beginning and end of 
the experiment were excluded from the model, and therefore, all regression 
coefficients (betas) were defined relative to this baseline activity. Finally, the results 
for the contrast used to determine the activity that was stronger for tool typical 
grasping is displayed above when using different combinations of the stimuli 
including the knife and pizzacutter (A), spoon and knife (B) and spoon and 
pizzacutter (C)……………………………………………………………………..277 
 
Appendix C: Fig. 1. Volume by volume decoding in left hemisphere localiser ROIs. 
……………………………………………………………………………………..280 
Appendix C: Fig. 1. (Continued)…………………………………………………..281 
 
Appendix D: Fig. 1. Percentage signal change in motor ROIs. Grey bars represent 
the preview, plan and go epochs (see section 4.2. for further details)……………..284 
 
Appendix D: Fig. 2. Decoding results in motor ROIs. All of the classifications 
performed are described in section 4.2. However, uniquely here, I performed an 
additional left versus right classification that collapsed across object category (white 
bars) to closely match previous studies (this is all left versus right trials except the 
pizzacutter tool to remove the grip change)……………………………………….285 
 
 
 
  



How the brain grasps tools 

 12 

List of Tables 
 
 Table 2.1. Mean sizes and Talairach coordinates of ROIs from the BOTH visual 
localiser…………………………………………………………………………….86 
 
Table 2.2. Searchlight cluster sizes, peak coordinates (Talairach) & statistical values. 
……………………………………………………………………………………..102 
 
Table 3.1. Kinematic dependent variables. Acronyms: ms = milliseconds, mm/s = 
millimetres per second; - = Same as above………………………………………..130 
 
Table 3.2. Post-hoc pairwise comparisons of the main effect of object size for PGA 
and tPGA. Acronyms: K = Knife sized stimuli; S = spoon sized stimuli; P = 
Pizzacutter sized stimuli…………………………………………………………...136 
 
Table 4.1. Mean sizes and Talairach coordinates of the ROIs defined from the BOTH 
visual localiser. Acronyms: SD = Standard deviation……………………………..166 
 
Table 4.2. Searchlight cluster sizes, peak coordinates (Talairach) & statistical values. 
……………………………………………………………………………………..180 
 
Table 5.1. Properties of left LOTC-Hand and IPS-Hand areas interpreted from fMRI 
studies. In the conditions column, italicised text refers to an example stimulus. In the 
properties column, bold text indicates the property of the left LOTC- or IPS-Hand 
region and bracketed text indicates the (related result). The results from my thesis are 
presented in the rows highlighted grey. Acronyms: Exp.# = Experiment number; V. 
Picture = View Pictures; Panto. = Pantomime…………………………………….202 
  



How the brain grasps tools 

 13 

Acknowledgements 
 
 First and foremost, I extend my sincere gratitude to my supervisor Dr. 

Stephanie Rossit. Since 2013, Stephanie has acted as an outstanding mentor, 

steering my progression throughout my entire research career - spanning from the 

first undergraduate research projects to those during my PhD. Her enthusiasm for 

research alongside her supportive nature has continued to push me forward, even at 

times where my confidence in myself has wavered. I hope that we continue our 

collaborations and friendship for many years to come. 

 Second, I wish to thank Dr. Fraser Smith for his invaluable help throughout 

my PhD. Without Fraser’s willingness to share his practical knowledge and to 

provide me with his insights during many useful discussions, my journey would have 

been much more arduous, and for that I am grateful. I would also like to thank Prof. 

John Spencer, my secondary supervisor, for his encouragement and support, 

particularly during research group meetings. 

 Past and present Rossit Lab peers have supported me over the years, and I am 

thankful of this. In particular I wish to thank Courtney Mansfield, Holly Weaver, 

Nedislav Petrunov, Emmeline Mottram and Iwona Szymura for their assistance 

and good-will during our many visits to the Norfolk & Norwich University Hospital 

MR unit. Last, but certainty not least, I thank Dr. Diana Tonin for the great work 

we have done together and for always lending an ear. 

 I thank Dr. Gavin Buckingham for his continued support since our earlier 

collaboration, particularly when providing a friendly face during conference 

presentations. For their technical assistance I am also thankful to Andre Bester, 

Malcolm Rae and Richard Knight. Similarly, I wish to thank the radiography team 

at the NNUH for their extensive support and cooperation during the fMRI projects; 



How the brain grasps tools 

 14 

all of whom have been hugely accommodating though I wish to specifically 

acknowledge Jenna Green for her efforts. 

 Outside of these research projects, I want to give a special thank-you to all of 

my peers whose friendships have greatly enhanced this experience for me. In 

particular I cherish the memories shared with Kerri Bailey, from our meticulously 

planned sightseeing itineraries to evenings spent talking about nothing at all. Nor 

will I forget strolling around the UEA lake with Megan Rudrum and the many 

hours ticked away spent with Dr. Vicky Adams in the analysis laboratory. 

 My family, including my partner Jenny Lewis, have always given me 

unconditional love & support. Without them it would have been far more difficult to 

accomplish my goals. I am privileged to have these special people in my life and for 

that I am forever grateful - I owe you all dearly. 

 Finally, I recognise that this thesis would not have been possible without the 

financial and practical support provided by the staff comprising the UEA School of 

Psychology, of which I am appreciative. I also thank Dr. Kenneth Valyear and Dr. 

Sara Bengtsson for taking the time to read and assess this thesis, as well as Dr. 

Natalie Wyer for agreeing to act as the independent chair for my viva. 

 

 

 

 

  

  

  



How the brain grasps tools 

 15 

Author’s Declaration 
 
I declare that the work contained in this thesis has not been submitted for any other 

award and that it is all my own work. I also confirm that this work fully 

acknowledges opinions, ideas and contributions from the work of others. 

 

The research presented in Chapter 2 has been previously presented in oral and poster 

formats: 

Oral Presentations 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2018). Hand-selective areas in the ventral and dorsal visual streams 

represent how to appropriately grasp 3D tools. Society for Neuroscience Annual 

Meeting - CA, USA. 

 

Rossit, S., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., & 

Knights, E. (2018). Hand-selective areas in the ventral and dorsal visual streams 

represent how to appropriately grasp 3D tools. British Association of Cognitive 

Neuroscience annual meeting (BACN) - University of Glasgow, UK. 

 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2018). Decoding typicality with real tools from both dorsal and ventral 

visual streams. The Multifaceted Body Workshop: Updates into body 

representation and embodiment - Heriot Watt University, UK. 

 



How the brain grasps tools 

 16 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2018). Decoding typicality with real tools from both dorsal and ventral 

visual streams. Vision Sciences Society Annual Meeting - FL, USA.  

 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2018). Decoding typicality with real tools from both dorsal and ventral 

visual streams. Concepts, Actions & Objects Workshop - Rovereto, Italy. 

 

Poster Presentations 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2018). Hand-selective areas in the ventral and dorsal visual streams 

represent how to appropriately grasp 3D tools. Society for Neuroscience Annual 

Meeting - CA, USA. 

 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2018). Hand-selective areas in the ventral and dorsal visual streams 

represent how to appropriately grasp 3D tools. British Psychological Society East 

of England Conference - University of East Anglia, UK. 

 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2017). Cortical representations of typical tool Actions. BACN Annual 

Meeting - University of Plymouth, UK. 

 



How the brain grasps tools 

 17 

Knights, E., Smith, F.W., Mansfield, C., Tonin, D., Weaver, H., Green, J., Saada, J., 

& Rossit, S. (2017). Cortical representations of typical tool actions. Novelty, 

Repetition & the Brain Conference - University of East Anglia, UK. 

 

Any ethical clearance for the research presented in this thesis has been approved. 

Approval has been sought and granted by the School of Psychology Ethics 

Committee at the University of East Anglia. 

 

Name: Ethan Knights 

 

Signature: …………………………. 

 

Date: 11/10/2019 

 

Word count: 87,605 



How the brain grasps tools 

 

 

18 

Chapter 1 
 

General Introduction 
 
1.1. Why study the neural basis of human tool-interactions? 
 
 Humans encounter and utilise many different tools throughout daily life; 

consider, for example, a morning routine involving the use of a toothbrush for 

cleansing teeth, a spoon for scooping cereal, a key for unlocking the front-door and 

so forth. The emergence of these objects in human culture dates back to around 2.5 

million years ago (De Heinzelin et al., 1999; Semaw, 2000), marking the beginning 

of a major cognitive discontinuity between us and our closest relatives (Ambrose, 

2001; Vaesen, 2012). Humans’ unique ability to invent, manufacture, think about 

and use tools is unsurpassed across the animal kingdom and these skills are 

considered a defining feature of our species (Corballis, 1989; Paillard, 1993; Mithen, 

1996; Noble & Davidson, 1997). These behaviours hold clues to our evolutionary 

history (Darwin, 2016/1871; Dawkins & Wong, 2005; Prothero, 2017) and continue 

to captivate scientists across disciplines (e.g., anthropology, neuroscience, 

psychology; Arbib, 2011). 

 Certain animal sub-species display rudimentary uses of tools (for review see 

Bentley-Condit & Smith, 2010) where some chimpanzee tribes, for example, modify 

stones and use them as makeshift anvils to crack nuts (McGrew, Ham, White, Tutin 

& Fernandez, 1997). In fact, seminal evidence showing that a reach-extending tool 

can rapidly increase the brain’s representation of limb length are based on neural 

recordings from the monkey (Iriki, Tanaka & Iwamura, 1996; see Martel, Cardinali, 

Roy & Farne, 2016 for a recent review in the human brain). But, ultimately, these 

skills in animals are largely linked to extractive foraging (van Schaik et al., 1999) 

and pale in comparison to humans’ vast repertoire of tool-using behaviours 
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(Davidson & McGrew, 2005; Iriki & Sakura, 2008). Humans are unique in that we 

constantly use complex tools (e.g., compound artefacts where multiple parts are 

joined together) that transform limb movements into functionally distinct actions 

(e.g., cleansing teeth by moving a toothbrush with the hand; Johnson-Frey, 2003; 

2007). 

 The intelligent use of tools is generally agreed to have neurocognitive origins 

(Gibson, 1993; Wynn, 2002; Reynaud, Lesourd, Navarro & Osiurak, 2016) with 

changes in brain structure (e.g., encephalisation, functional organisation; Navarrete 

& Laland, 2015; Boire, Nicolakakis & Lefebvre, 2002; Reader & Laland, 2002; 

Barton & Harvey, 2000) and cognitive capacities (e.g., exploratory routines, 

sensorimotor learning; Lockman & Kahrs, 2017) being cited as strong predictors of 

how prevalent tool-use is in a species (Seed & Byrne, 2010; Fragaszy & Mangalam, 

2018). Indeed, cognitive tool-use abilities can precede manual dexterity (Osiurak, 

Lesourd, Delporte & Rossetti, 2018), indicating that the human hand likely evolved 

as an adaptation to tool-making and -use (e.g., opposable thumbs and a shorter 

distance between finger and thumb tips; Napier, 1962, Marzke & Marzke, 2000), 

rather than it being the underlying cause of these skills’ emergence. As elegantly put 

by Rosenbaum (2017, p. 29) ‘the cognitive capacities expressed by tool use, which 

only humans can engage in, are supported by human hands, but aren’t due to human 

hands’. 

 Yet the fundamental question about which brain mechanisms support human 

displays of complex tool-use is unresolved. Based on the complex and multifaceted 

nature of human tool-use, its related neuroscience is at the intersection of popular 

research topics including those related to object recognition (e.g., identifying a 

spoon), visuomotor control (e.g., reaching and grasping the spoon) and higher-level 
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goal processing (e.g., using the spoon to scoop sugar into a mug before stirring the 

contents). Yet, few experiments in cognitive neuroscience have directly investigated 

the neural mechanisms that enable us to interact with these special objects and, 

instead, frequently rely on ‘proxy’ tasks where tools are presented as 2D pictures 

(Lewis, 2006; also see Snow, Pettypiece, McAdam, McLean, Stroman, Goodale & 

Culham, 2011 for a similar point). This is a major issue because we would never 

intend to reach out and manipulate a picture of an object (though see Ferretti, 

2016a), nor is their manipulation even possible. Therefore, the novel neuroimaging 

and motion-capture experiments presented in my thesis involve real grasping of 3D 

tools in order to overcome this limitation. 

 First, this chapter considers the definition of what makes an object a tool. 

Next, across four main sections, key findings are reviewed from a range of 

behavioural, neuropsychological and neuroimaging approaches, focusing particularly 

on those drawable from functional Magnetic Resonance Imaging (fMRI), Positron 

Emission Tomography (PET) and Transcranial Magnetic Stimulation (TMS) 

techniques. In these main sections, two leading models are introduced in turn (i.e., 

the dual visual stream theory and two-action systems model) because of their claims 

about how different neural pathways are related to tool-use. After this the concept of 

affordances is introduced, before turning to the tool processing network that has 

been revealed by neuroimaging research. Crucially, each of these four sections 

includes a separate sub-section evaluating relevant points that, together, motivated 

important research questions for the current projects.  

1.2. What is a tool? 
 
 A classic definition considers tools to be ‘any handheld physical implement 

that is used to make changes to other objects in the environment’ (Osiurak, Jarry & 
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Le Gall, 2010 p.5). This enables the distinction that a hammer is a tool, but a nail is 

not, in the case that the hammer is used to alter the state of the nail. Following this 

tradition, my thesis focuses on physical tools, as opposed to those that Osiurak, 

Navarro & Reynaud (2018) describe as sophisticated (e.g., a coffeemaker) or 

symbiotic (e.g., Brain-Computer Interface) and would consequently require a greater 

degree of cognitive abstraction (e.g., the hand’s motion when button-pressing is a 

poor reflection of the tool’s function; Goldenberg & Iriki, 2007). 

 In a comprehensive review, Osiurak, Jarry & Le Gall (2010) have highlighted 

three features common to tool (and tool use) definitions from ergonomics, 

primatology and psychology (Baber, 2003; van Lawick-Goodall, 1970; Gibson, 

1970): tools are commonly described to be (1) discrete and detached objects in the 

environment that (2) amplify the user’s sensorimotor capabilities and are (3) 

restricted to what is manipulated by the user. This summary does not, however, 

emphasise the well learnt action routines (e.g., the oscillation of the elbow for 

swinging a hammer) and their interrelated functions (e.g., the pounding outcome 

associated with a hammer) that others have considered to be critical to tools (e.g., 

Mahon, Milleville, Negri, Rumiati, Caramazza & Martin, 2007; Mruczek, von Loga 

& Kastner, 2013). The ability to attach certain functions and action routines to 

particular objects may be what sets humans apart from other primates; unlike chimps 

that may achieve associative object-action learning after laborious training 

(McGrew, 2013), humans quickly make these links, even exhibiting functional 

fixedness (i.e., a hesitancy to use a tool for its non-designated purpose; Munoz-

Rubke, Olson, Will, James, 2018) after being informed of a tool’s function only once 

(Defeyter & German, 2003). 
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  Here, I consider tools as ‘manipulable objects that are used to transform an 

actor’s motor output into predictable mechanical actions for the purposes of attaining 

specific goals’ (Johnson-Frey, 2007, p.1.). This definition highlights the relationship 

between tools and stored knowledge in the sense that tools are manipulated in a 

predictable manner (e.g., the mechanics of the actions only predictable because they 

match learnt expectations of how to manipulate a given object) and for a specific 

goal (e.g., the goal of the action is only specific because a tool has been learnt to 

serve a particular function). With this important definition in place, I now review 

over four sections major findings related to the neural bases of tool-use. 

1.3. Dual visual stream theory  
 
 Vision is the dominant sense in humans, often guiding our interactions with 

tools, ranging from their recognition to their dexterous manipulation. The Dual 

Visual Stream Theory (DVST; Milner & Goodale, 1995; 2006) has been highly  

influential (though see de Haan & Cowey, 2011) with its argument that the ventral 

and dorsal visual pathways are specialised for object perception (i.e., perceiving 

what an object is) and visuomotor control (i.e., transforming visual coordinates into 

motor commands), respectively (also see Milner & Goodale, 2008). The 

anatomically distinguishable cortical pathways can be seen in Fig. 1.1. (blue and red 

lines) where they both originate in the early visual cortex, but the ventral visual 

stream connects to the Inferior Temporal Cortex (ITC) and the dorsal visual stream 

to the Posterior Parietal Cortex (PPC; also see Ungerleider & Mishkin, 1982). 
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Dorso-dorsal: Structural object manipulation 
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Fig. 1.1. Major functional areas of the neural pathways described in the DVST (red 

and blue) and the two-action systems model (green). According to the DVST, visual 

information travels from the EVC (see below for acronyms) to (1) the ventral visual 

stream for the process of object recognition which receives additional information 

about object concepts from areas known to process conceptual information about 

objects (yellow; see Binder et al., 2009) and (2) the dorsal visual stream for the 



How the brain grasps tools 

 

 

24 

purpose of visuomotor control which can be separated into reaching and grasping 

subnetworks (see Gallivan & Culham, 2015; Perry, Amarasooriya & Fallah, 2016). 

According to the two-action systems model, a separate ventro-dorsal stream is 

critical for processing stored knowledge about the functions and manipulations 

associated with tools which can be translated into sensorimotor based motor plans by 

interacting with the dorso-dorsal stream, perhaps through the aIPS (Binkofski et al., 

2013; Grefkes, & Fink, 2005; Sakreida, et al., 2016). Acronyms: PMd - Dorsal 

Premotor Cortex; PMv - Ventral Premotor Cortex; MC - Motor Cortex;  SPOC - 

Superior parieto-Occipital Cortex; aIPS - anterior Intraparietal Sulcus; cIPS - caudal 

Intraparietal Sulcus; SMG - Supramarginal Gyrus; MTG - Middle Temporal Gyrus; 

aTP - anterior Temporal Cortex; LOTC - Lateral Occipital Temporal Cortex; pFs - 

posterior Fusiform Sulcus; EVC - Early Visual Cortex.  

 
 According to Milner & Goodale (1995; 2006) tool-use is a special form of 

visuomotor behaviour because it requires interactive processing between the ventral 

and dorsal visual pathways. Simple actions are thought to be achieved via dorsal 

visual stream computations based on currently available structural information about 

an object (e.g., its visual shape and size). To use a tool, however, depends on the 

retrieval of previously learnt object properties (e.g., its typical function and 

manipulation), via the ventral visual stream, to also be integrated into visually 

guided motor control (e.g., Goodale & Haffenden, 2003). 

 Twenty-five years since the conception of the DVST, many of its claims 

continue to be supported, atleast to some extent (for recent critical perspectives of 

neuropsychological evidence see Rossetti & Pisella, 2018; Rossit et al., 2018), by the 

behaviour of neuropsychological patients (see Ganel & Goodale, 2019 for a recent 

review). These patients tend to have damage predominantly to the ventral or dorsal 
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visual stream such that they can no longer perceive (i.e., visual form agnosia; 

Culham, Witt, Valyear, Dutton & Goodale, 2008; Karnath, Ruter, Mandler & 

Himmelbach, 2009, Rennig, Karnath, Cornelsen, Wilhelm & Himmelbach, 2018) or 

act toward visually guided objects (i.e., optic ataxia; Jakobson, Archibald, Goodale 

& Carey, 1991; Jeannerod, 1986; Perenin & Vighetto, 1988, Jakobson et al., 1994; 

Goodale, Meenan, Bulthoff, Nicolle, Murphy & Racicot, 1994), respectively. These 

sources of evidence have provided grounds for the compelling argument that there is 

a double dissociation between the ventral stream’s processing of perception and 

dorsal stream’s processing of action (see Milner & Goodale, 1995; 2006) and, 

crucially here, have been used to argue that tool-use actions rely on the additional 

integrity of the ventral visual stream (see Young, 2006). 

 Visual form agnosia patient D.F. is well known for suffering severe damage 

to ventrolateral regions of the occipital lobe comprising the LOTC (James, Culham, 

Humphrey, Milner & Goodale, 2003) and suffering from profound object 

recognition deficits (e.g., D.F. cannot identify visually presented objects; Milner, et 

al., 1991). Interestingly, she is able to grasp everyday tools proficiently (i.e., with a 

well-formed hand posture) but has difficulty in visually selecting the correct part of 

the object to grasp for its subsequent use (e.g., the handle). Conversely, optic ataxia 

patient A.T. has been shown to grasp neutral objects (e.g., a cylinder) with the 

fingers widely spread and poorly calibrated to the size of the target (i.e., a grip 

scaling deficit; Jeannerod, 1986; Cavina-Pratesi, Ietswaart, Humphreys, Lestou & 

Milner, 2010), yet demonstrates less severe performance if grasping familiar objects 

such as a reel of thread (Jeannerod, Decety & Michel, 1994). The behaviour of 

patient D.F. therefore indicates that the ventral visual pathway may be critical for 
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successful tool-use. Convergingly, the behaviour of patient A.T. highlights 

movements with familiar objects seem to be aided by a spared ventral visual stream. 

 Since the development of fMRI and virtual lesion (e.g., TMS) paradigms, a 

great deal of evidence from healthy participants also implicates the ventral and 

dorsal visual stream in their respective roles for perception and action. Yet, direct 

neuroimaging evidence that real functional tool actions requires processing within 

both visual streams is incredibly sparse because real tool manipulation has rarely 

been directly investigated (e.g., Gallivan et al., 2013; Imazu, Sugio, Tanaka & Inui, 

2007). 

 Neural activity in the ventral stream is well known to contain information 

about visual object identity and stimulus categories (e.g., Larsson & Heeger, 2006; 

Kriegeskorte et al., 2008; Bell, Hadj-Bouziane, Frihauf, Tootell & Ungerlieder, 

2009; for reviews see Reddy & Kanwisher, 2006; Weiner & Grill-Spector, 2012).  

Interference to the processing of areas in this pathway can also impair the ability to 

perceive object properties such as shape and form (e.g., Ellison & Cowey, 2006; 

Mullin & Steeves, 2011; Silson, McKeefry, Rodgers, Gouws, Hymers & Morland, 

2013). Likewise, neural activity in the dorsal stream carries information about 

properties of shapes when required for motor control including their depth, 

orientation, size and location during reaching or grasping (e.g., Rice, Valyear, 

Goodale, Milner & Culham, 2007; Kroliczak, McAdam, Quinlan, & Culham, 2008; 

Di Bono, Begliomini, Castiello & Zorzi, 2015; Fabbri, Stubbs, Cusak & Culham, 

2016; for reviews see Culham & Kanwisher, 2001; Grefkes & Fink, 2005; Culham 

& Valyear, 2006; Theys, Romero, van Loon & Janssen, 2015; Fattori, Breveglieri, 

Bosco, Gamberini & Galletti, 2015). Again, stimulation to various parts of the dorsal 

stream circuit has been causally related to visuomotor control (e.g., Vesia, Prime, 
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Yan, Sergio & Crawford, 2010; Davare, Zenon, Pourtois, Desmurget & Olivier, 

2012; Ciavarro, Ambrosini, Tosoni, Committeri, Fattori & Galletti, 2013). 

Nevertheless, to my knowledge, only two studies have systematically searched for 

the neural responses that are linked to performing well learnt tool manipulations 

(Valyear et al., 2012; Brandi et al., 2014) and, as will be discussed in Chapter 2, 

these experiments do not clearly implicate the ventral visual stream in this 

behaviour. 

 Thus, whether both streams are indeed recruited for tool use is as yet unclear. 

This is despite many advancements in the understanding of the organisation 

principles underlying the functional layout of these pathway more generally. For 

example, the ventral visual stream is thought to operate in a hierarchical fashion 

(e.g., Kim, Wohlwend, Leibo & Poggio, 2013; Kravitz, Saleem, Baker, Ungerleider 

& Mishkin, 2013) where signals travelling anteriorly from the early visual cortex 

come to represent categories of stimuli (e.g., tools, bodies, faces) invariantly (i.e., 

activity occurs regardless of different viewpoints retinal size or individual 

exemplars; e.g., Pitcher, Charles, Devlin, Walsh & Duchaine, 2009; for reviews see 

Martin, 2007) with access to increasingly abstract concepts (e.g., knowledge of an 

object’s function, identity and other semantic associations such as where it tends to 

be found; Thomas, Avidan, Humphreys, Jung, Gao & Behrmann, 2009; Peelen & 

Caramazza, 2012; Clarke & Tyler, 2014; Chen, Garcea & Mahon, 2016; Hong, 

Yamins, Majaj & DiCarloe, 2016; Conway, 2018). This is possibly achieved due to 

connections with other temporal lobe areas (e.g., Ramayya, Glasser & Rilling, 2010) 

known to be critical for semantic cognition (see yellow regions in Fig. 1.1.) (e.g., 

Ishibashi et al., 2011; Pobric et al., 2010; Pelgrims et al., 2011; Whitney, Kirk, 

O’Sullivan, Lambon-Ralph & Jefferies, 2010; Davey, Thompson, Hallam et al., 



How the brain grasps tools 

 

 

28 

2016). Equally, the dorsal visual stream is generally agreed to be separated into 

divisible dorsomedial and dorsolateral pathways (Rizzolatti & Matellii, 2003) and 

are thought to relate more strongly to the control of arm reaching and hand grasping, 

respectively (see separated red lines in Fig. 1.; for reviews see Turella & Lingnau, 

2014; Gallivan & Culham, 2015; though also see Vesia et al., 2017). 

 This said, a good deal of evidence from neuroimaging and TMS does indicate 

that other skilled actions, besides tool use, recruit and/or causally require both visual 

streams, such as when grasping-to-lift, reaching to a memorised location or 

pantomiming an action (e.g., Gallivan, Johnsrude & Flanagan, 2016; Tonin, Romei, 

Lambert, Bester, Saada & Rossit, 2017; see van Polanen & Davare, 2015 for a 

review). Consistently, anatomical pathways exist between the streams which could 

support such interplay (e.g., the vertical occipital fasciculus; Borra, Belmalih, 

Calzavara, Gerbella, Murata, Rozzi & Luppino, 2007; Takemura, Rokem, Winawer, 

Yeatman, Wandell & Pestilli, 2015) and functional connectivity techniques further 

evidence such interactions (e.g., Bracci, Cavina-Pratesi, Ietswaart, Caramazza & 

Peelen, 2012; Hutchison, Culham, Everling, Flanagan & Gallivan, 2014; Hutchison 

& Gallivan, 2018). Clearly, there is a possibility that object-related information is 

transferred between the dual visual pathways (also see Milner, 2017; Xu, 2018; 

Vaziri-Pashkam & Xu, 2018). 

 Therefore, a key question addressed in my thesis is whether the ventral and 

dorsal visual pathways are involved in the processing of real hand-tool interactions. 

Perhaps the best evidence so far showing that both visual streams are involved in 

tool-related processing can be drawn from experiments showing that neural 

responses across each pathway are sensitive to whether 2D pictures of familiar tools, 

as opposed to non-tools, are being passively viewed (e.g., Chao, Haxby & Martin, 
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1999; Chao & Martin, 2000). This evidence is introduced next and I highlight the 

intriguing question as to whether these visually defined regions would have a role in 

performing actions involving real 3D tools. 

1.3.1. Seeing 2D tools to using 3D tools 
 
 Seminal neuroimaging studies had participants view, and sometimes name, 

2D pictures of tools relative to images of stimuli from other semantically different 

object categories that were popularly studied at the time, including those of animals, 

faces or houses (for reviews see Joseph, 2001; Lewis, 2006; Martin, 2007; 

Chouinard & Goodale, 2010; Ishibashi et al., 2016; cf. Gerlach, 2007). Most, if not 

all, of these fMRI and PET studies find tool-specific activity in parts of the ventral 

visual stream such as the LOTC and fusiform cortex (e.g., Chao, Haxby & Martin, 

1999; Chao & Martin, 2000; Whatmough, Cherktow, Murtha & Hanratty, 2002; 

Emmorey, Grabowski, McCullough, Damasio, Ponto, Hichwa & Bellugi, 2004; 

Okada et al., 2000). Similarly, tool-specific activity was also commonly reported in 

the dorsal visual pathway including the aIPS or the SPL (Chao & Martin, 2000; 

Buxbaum & Saffran, 2002; Boronat et al., 2005; Hermsdörfer et al., 2007; Peeters et 

al., 2009; Mruczek et al., 2013; Macdonald & Culham, 2015) as well as the premotor 

cortex (Chao & Martin 2000; Kellenbach et al., 2003; Creem-Regehr & Lee, 2005) 

that these areas are proposed to transmit to (Rizzolatti & Matelli, 2003; see Fig. 1.1). 

For both visual streams these effects tend to be largely left lateralised (Lewis, 2006). 

 Various other studies have since replicated these findings after contrasting 

neural activity associated with viewing tools to the viewing of other non-tool objects 

(e.g., musical instruments, graspable shapes) that are better matched for additional 

properties known to influence processing in the dorsal and/or visual pathways, 

including visual appearance (e.g., shape; Grill-Spector, Kourtzi & Kanwisher, 2001; 
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Malach, Levy & Hasson, 2002; Tanaka, 1996), animacy (Bell, Hadj-Bouziane, 

Frihauf, Tootell & Underleider, 2009; Kiani, Esteky, Mirpour & Tanaka, 2007; 

Kriegeskorte, Mur & Bandettini, 2008), real world size (Konkle & Olivia, 2012) or 

graspability (e.g., Handy, Tipper, Borg, Grafton & Gazzaniga, 2006). To illustrate 

the importance of this step, consider, for example, the point that vegetables which 

are of a similar elongated shape to tools, can induce tool-like priming effects (see 

Sakuraba, Sakai, Yamanaka, Yokosawa & Hirayama, 2012). Therefore, using 

similarly shaped non-tool control objects are needed to rule out the possibility that 

tool-specific activation in the dorsal visual stream is not simply driven by the high 

degree of elongation that characterises most tool exemplars (also see Almeida, 

Mahon, Nakayama & Caramazza, 2008; Almeida, Mahon, Zapater-Raverov, Dziuba, 

Cabaco, Marques & Caramazza, 2014; Fang & He, 2005). 

 The regions across each visual pathway that have been identified by these 

studies that use more suitable non-tool control stimuli (i.e., manipulable and 

elongated objects) have included the aIPS (Valyear et al., 2007; Mruczek, von Loga 

& Kastner, 2013), SPL (Vingerhoets et al., 2009; Mahon et al., 2010), premotor 

cortex (Creem-Regehr & Lee, 2005), fusiform gyrus (Mahon et al., 2007; Garcea & 

Mahon, 2014) and LOTC (Bracci et al., 2012; Perini et al., 2014) which often 

extends into the pMTG (Kellenbach et al., 2003; Boronat et al., 2005; Valyear, 

Culham, Sharif, Westwood & Goodale, 2006). In fact, similar tool-specific 

activations have been reported only once participants view novel objects that they 

have experience using (i.e., from a tool training intervention; Creem-Regehr, Dilda, 

Vicchrilli, Federer, & Lee, 2007; Weisberg, van Turennout, & Martin, 2007), thus, 

ruling out any low-level confounds because identical stimulus pictures are used.  
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 Importantly, since these studies use 2D tool pictures as stimuli, tool-specific 

activation in the ventral visual stream could be accounted for by their roles in object 

recognition (see Grill-Spector & Weiner, 2014 for a review), but the role of same 

activation in the dorsal visual stream is less clear because no action is required. From 

cognitive embodiment perspectives, activation of these regions might enable our 

understanding of object concepts (i.e., the ability to retrieve knowledge from 

memory about a class of objects; Martin, 2007) because the ability to recall object 

concepts are supposed to involve simulations of its properties in the motor and 

perceptual systems (Allport, 1985; Barsalou, 1999; Martin, 1998; Hostetter & 

Alibali, 2008), such that we can experience the full representation of a tool (Mahon 

& Caramazza, 2008). An alternative and perhaps non-mutually exclusive view is that 

this activation signifies motor planning where parietal, as well as premotor activity, 

may reflect a prediction or prime for future action (Martin, 2009; Simmons & 

Martin, 2012; Martin, 2016; also see Ferretti, 2016 and Theory of affordances: 

section 1.5.). In both cases, these converge on the point that activation in 

sensorimotor cortex may relate to the retrieval information about the hand and finger 

movements associated with using familiar tools (e.g., Chao & Martin, 2000). 

 The views above elude to the possibility that these visually based 2D tool-

selective regions are relevant for actual visuomotor control. Evidence of this point 

would have a notable implication for the study of tool-use because it would indicate 

that 2D tool viewing tasks are a suitable proxy for understanding real human tool-

use. However, the relationship between brain activity when seeing 2D tools and 

performing real actions has rarely been explored. 

 Valyear et al., (2007) have shown that clusters in the left aIPS which are 

selective to the performance of grasping (versus reaching toward) shapes are not 
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selective to naming 2D tool images, nor do they anatomically overlap with area in 

the aIPS that does show this pattern (i.e., a tool-selective cluster). One possibility for 

this distinction between tool- and grasp-selective clusters in the aIPS may relate to 

stimulus format: newer evidence shows that viewing 3D objects, relative to 2D 

planar representations of the same objects, lead to distinctive neural responses across 

the dorsal and ventral visual streams including the aIPS (Freud, Macdonald, Chen, 

Quinlan, Goodale & Culham, 2018; Snow et al., 2011). Thus, perhaps different parts 

of the aIPS are active based on information about, for example, the depth cues or the 

possibility of a genuine actions which is uniquely provided by 3D objects (Snow et 

al., 2011). Another possibility worth considering is whether grasping tools, rather 

than unfamiliar objects as were used to define grasp-selective aIPS, would have led 

to a functional and/or anatomical similarity between the grasp- and tool-selective 

aIPS areas. 

 Tellingly, Gallivan et al., (2013) have since used a sensitive Multivoxel 

Pattern Analysis (MVPA) approach for another fMRI dataset which, crucially, is 

well suited for addressing the question here. In this approach, patterns of voxel 

activity from a given Region Of Interest (ROI) can be extracted and passed to a 

classification-based machine learning algorithm in order to provide a test as to 

whether types of experimental condition (e.g., reaching versus grasping) can be 

successfully classified or, as often put, decoded (e.g., Mahmoudi, Takerkart, 

Regragui, Boussaourd & Brovelli, 2012) - if decodable, this suggests that an ROI 

store a neural representation (e.g., Mur, Bandettini & Kriegeskorte, 2009) about the 

relevant information (e.g., a representation of action type).  

 In their study, Gallivan et al., (2013) had participants grasp versus reach (i.e., 

action type) an unfamiliar object with either their hand or a tool (i.e., a pair of tongs). 
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Crucially, decoding of action type from activity patterns within a left tool-selective 

aIPS ROI was successful regardless of which effector was being used. Rather 

interestingly, left hemisphere ROIs in the Supramarginal Gyrus (SMG) and posterior 

Middle Temporal Gyrus (pMTG) (note that the latter was also defined by visual 2D 

tool-selectivity) were unique in that their activity patterns could be used to decode 

action type when using the tool, not the hand.  

 These sensitive multivariate fMRI analyses paired with real tool interactions 

have, thus, been particularly revealing. First, these findings imply that 2D tool-

selective visual areas (e.g., the aIPS and pMTG) may have a role in real visuomotor 

control which fits well with other studies showing that tool-selective activation 

across both visual pathways when passively viewing (MacDonald & Culham, 2015) 

or manipulating real 3D tools (Brandi et al., 2014). Second, these findings imply that 

the roles of these visual tool-selective regions in relation to motor control may differ 

by region (e.g., tool-selective aIPS is relevant for grasping in general [for similar 

views see Tunik et al., 2005; Rice et al., 2006] but tool-selective pMTG is 

specifically relevant for the act of tool-use). Nevertheless, the representational 

content of a number of other visually tool-selective regions across the ventral and 

dorsal visual pathways remains to be tested using such procedures. Addressing this, 

the neuroimaging experiments in my thesis (Chapter 2 and 4) use a similar MVPA 

classification approach during real tool grasping with independently defined ROIs 

based on their selectivity to 2D pictures of tools. 

1.4. Two-action systems model 
 
 In an important report, Rizzolatti & Matelli (2003) argued that the monkey 

dorsal visual stream can be divided into a further two streams: a medial dorso-dorsal 

stream and a lateral ventro-dorsal stream (for recent functional connectivity evidence 
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see Borra & Luppino, 2016). Neuroimaging studies with humans have tended to 

confirm this view of separable dorsal networks, particularly when performing 

reaching and grasping actions (for reviews see Filimon, 2010; Turella & Lingnau, 

2014; Gallivan & Culham, 2015). In fact, such a three-pathway division from early 

visual cortex resting state activity (i.e., via a dorsal, ventral and lateral pathway) is 

argued to capture the functional connectivity of the large Human Connectome 

Project dataset (Haak & Beckmann, 2018). 

 The two-action systems model proposed by Buxbaum and colleagues, 

describes how the ventro-dorsal stream plays a major role in tool-use (Buxbaum, 

2001; Buxbaum & Kalenine, 2010; Watson & Buxbaum, 2015; Binkofski & 

Buxbaum, 2013; Buxbaum, 2017). In brief, Binkofski & Buxbaum (2013) argue that 

the left lateralised ventro-dorsal system (see green line Fig. 1.1.) is largely devoted 

to skilled, functional object-related actions (e.g., based on learnt properties of an 

object) while the bilateral dorso-dorsal system is proposed to be specialised for 

actions based on the structure of objects (e.g., based on size) that are currently 

visible (i.e., online visual properties). Tool-use, therefore, is predicted to be a result 

of the rich interactions (e.g., Buxbaum & Kalenine, 2010) between: 

 
 ‘a left-lateralized ventro-dorsal system that subserves manipulation 

 knowledge, from which information is translated into a specific motor plan, 

 and a bilateral dorso-dorsal system specialized for sensory-motor mapping; 

 for example, the translation of information from vision to motor execution 

 (Frey, 2007).’ Buxbaum (2017, p.4). 

 

 Much like the DVST, some of the most compelling evidence in favour of this 

model can be drawn from neuropsychology. Patients with apraxia, a disorder of 
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higher order motor control affecting skilled and learnt actions (see Rounis & 

Humphreys, 2015), tend to have suffered damage to left frontal and/or parietal lobe 

(though right brain damage cases exist; Donkervoort et al., 2000) and, broadly 

speaking, this leads to difficulties with tool using behaviours (e.g., Buxbaum, 

Shaprio & Coslett, 2014). Historically, apraxia patients have been classified into 

those suffering from ideational or ideomotor apraxia. Ideational apraxia refers to 

impairments of object or action knowledge where patients may misuse objects or 

present difficulty matching objects and actions (Leiguarda & Marsden, 2000; 

Petreska et al., 2007). Ideomotor apraxia typically refers to an inability where 

patients are typically unable to perform pantomimed actions such as a limb gesture 

(e.g., waving goodbye) or mimed tool-use (e.g., using a hammer without a hammer 

in the hand) as a result of a problem implementing conceptual knowledge into 

suitable motor acts (Wheaton & Hallet, 2007; Gross & Grossman, 2008). 

Nevertheless, definitions of these apraxia sub-classes are heavily debated, with 

patient behaviour rarely conforming to such distinctions (e.g., patients can exhibit 

impaired performance for both tool use and hand gesture tasks; Buxbaum, 2001; 

Buxbaum et al., 2007; also see Rounis & Humphreys, 2015). 

 For the purposes of making a distinction between the role of the ventro-

dorsal and dorso-dorsal streams, the critical point is that both the behaviour and 

lesion sites associated with apraxia and optic ataxia can be viewed as dissociable 

(Binkofski & Buxbaum, 2013): apraxia deficits consist of both sensorimotor and 

cognitive components that support the ability to perform/understand object-related 

actions (Canzano, Scandola, Gobbetto, Moretto, D’Imperio & Moro, 2016) and are 

frequently associated with Inferior Parietal Lobule (IPL) and/or pMTG lesions (e.g., 

Varney & Damasio, 1987; Buxbaum, Kyle, Grossman & Coslett, 2007; Weiss, 
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Rahbari, Hesse & Fink, 2008; Kalenine, Buxbaum & Coslett, 2010) whereas optic 

ataxia deficits are related to online motor control for reaching and grasping 

regardless of whether actions involve tools (e.g., Grea et al., 2002, Milner et al., 

2001, Pisella et al., 2000; Tunik, Frey, & Grafton, 2005) and tend to follow damage 

of the superior parietal lobule (SPL) and/or the parieto-occipital sulcus (Karnath & 

Perenin, 2005, Perenin & Vighetto, 1988). This difference between optic ataxia and 

apraxia is in line with Gallivan et al.,’s (2013) findings described earlier where it 

was the left SMG and pMTG (i.e., parts of the ventro-dorsal stream), but not the 

aIPS (part of the dorsal stream), that specifically represented tool-based actions. 

 A fundamental assumption of the two-action pathway model is that the 

ventro-dorsal stream, including the left IPL (e.g., Buxbaum, 2001; Buxbaum, 2014; 

also see Osiurak & Badets, 2016; Osiurak et al., 2011) and posterior temporal lobe 

such as the pMTG (see Buxbaum, 2017), encodes stored parameters of internal 

representations about movements and body postures (e.g., Buxbaum, 2001; 

Buxbaum, 2014; also see Liepmann, 1920; Borghi, 2012; Borghi, Flumini, Natraj, & 

Wheaton, 2012; Caligiore, Borghi, Parisi, & Baldassarre, 2010; Thill et al., 2013). 

The information in these representations has been recently expressed in the form of 

manipulation knowledge which Buxbaum (2017, p.5) describes as ‘shorthand for 

multisensory and motor memories learned when using objects and observing others 

using them’.  

 Many types of apraxic deficits can be explained as a result of breakdown in 

manipulation knowledge following IPL and/or pMTG lesions. This includes 

difficulties when matching pictures of hand postures to tools, relative to novel 

objects (Dawson, Buxbaum & Duff, 2010), an increased tendency to grasp tools in a 

way inappropriate for their use (Randerath, Li, Goldenberg, & Hermsdorfer, 2009) 
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and impairments in the understanding or performance of skilled hand actions (e.g., 

Heilman, Gonzalez Rothi, Heilman & Valenstein, 1993; Halsband et al., 2001 

Buxbaum & Saffran, 2002; Kalenine, Buxbaum & Coslett, 2010; Buxbaum, Shaprio 

& Coslett, 2014; for review see Vingerhoets, 2014). 

  The two-action pathway model shares important similarities with schema 

and multiple routes to action theories. First, a motor schema has been described as a 

predetermined set of sub-actions (e.g., for reaching, for grasping or for drinking; see 

Arbib, 1991) whose representations can be assembled together to create a higher 

order motor schema (e.g., to reach for, grasp and cut with a knife), which, if applied 

to apraxia, could explain the disorder as a breakdown in selecting and organising 

schemas into purposive action (see Jeannerod, 1997). Thus, both the two-action 

pathway and schema theory comparably appeal to the notion of stored internal 

representations to account for tool-using deficits. Second, Humphreys (2001) has 

argued for the existence of a semantic (i.e., indirect) and non-semantic (i.e., direct) 

route to action where the former route contains contextual and associative 

knowledge about tools while the latter route extracts a structural description of tools 

(e.g., their visual properties; Rumiati & Humphreys, 1998; Yoon, Heinke, & 

Humphreys, 2002; Yoon & Humphreys, 2005, 2007; also see Johnson & Grafton, 

2003 for a similar view). The link here then is rather clear: both theories reference 

how action processing can occur in separable routes to action (e.g., the ventro-dorsal 

and dorso-dorsal stream). 

 However, the claim by the two-action systems model that the ventro-dorsal 

stream utilises stored representations about tool-related actions has been recently 

challenged by the reasoning-based approach (Osiurak & Badets, 2016; Osiurak et 

al., 2011; Reynaud et al., 2016) since it cannot account for some neuroimaging and 
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neuropsychological evidence. For example, left hemisphere IPL-damaged apraxic 

patients show difficulty solving mechanical problems (e.g., selecting an appropriate 

object to use for retrieving a target out of a box; Goldenberg & Hagmann, 1998; 

Goldenberg & Spatt, 2009; also see Hodges, Spatt & Patterson, 1999) which cannot 

be attributed to a breakdown in utilising stored manipulation knowledge because the 

objects are novel (Osiurak & Badets, 2016). Likewise, if acquired knowledge was 

processed in the left IPL then activity may be stronger for actions involving familiar, 

relative to unfamiliar, tools, yet these areas (as well as almost all other areas) 

activate to a similar degree during tool pantomiming, regardless of familiarity 

(Vingerhoets, Vandekerckhove, Honore, Vandemaele, & Achten, 2011). 

 The key idea behind the reasoning-based approach is that tool-use is 

achieved via mechanical knowledge where online reasoning is carried out about the 

properties of a physical object (e.g., hardness, width) so that an appropriate tool can 

be selected and, thus, tool-use can be mentally simulated and performed (Osiurak & 

Badets, 2016). A major strength of this approach is that it accounts for the act of 

using novel objects as a tool (e.g., a stick to acquire an out of reach object), or even 

when using a tool for its unconventional purposes (e.g., a shoe for pounding a nail). 

From a neural perspective, Osiurak & Badets (2017) have parcellated the IPL and 

reinterpreted its roles: area PF of the SMG is important for technical reasoning (e.g., 

reasoning about tool object relationships) and a more anterior part of the SMG 

(aSMG) is responsible for integrating signals from PF with those of the dorso-dorsal 

stream which are relevant for motor control (i.e., processing hand and object 

relationships).  

 Considered together, both the two-action systems model and the reasoning-

based approach agree that the ventro-dorsal stream is critical for tool-use (see 
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Osiurak, Rossetti & Badets, 2017), but this reasoning-based approach denies the 

existence of stored sensory-motor memories. Instead, the reasoning, based approach 

views tool-use as achieved largely through processes that are carried out de novo 

(Buxbaum, 2017). With relevance to this controversy, the experiments in my thesis 

provide one of the first tests (also see Gallivan et al., 2013) that ventro-dorsal stream 

regions have a role in real hand-tool interactions and if their activity is sensitive to 

learnt aspects of tool-use (i.e., grasping a tool in a way consistent with its learnt use 

or not). 

 Another feature of the two-action systems model worth highlighting is that 

manipulation knowledge is argued to participate in semantic memory-based 

representations (I consider semantic memory as ‘a large division of long-term 

memory containing knowledge about the world including facts, ideas, beliefs and 

concepts’ Martin, 2007, p.26) of tools themselves (Buxbaum, 2017). This has been 

argued due the fact that, as manipulation knowledge degrades, the ability to 

recognise a tool’s identity becomes slower (Lee, Mirman, & Buxbaum, 2014). This 

link between manipulation and semantic knowledge conforms with embodied or 

grounded cognition accounts (see Mahon, 2015), but, as I next review, findings are 

mixed as to whether manipulation-based knowledge of a tool (e.g., knowing an 

appropriate grasp) shares neural correlates with that of function-based knowledge 

(e.g., knowing the appropriate purpose). 

1.4.1. Segregated processing of knowledge about tool manipulation & 

function? 

 Clinically, cases of apraxia indicate that the knowledge of a tool’s function is 

dissociable from knowledge about how to manipulate it (Buxbaum et al., 2000; 

Hartmann, Goldenberg, Daumuller & Joachim, 2005; Warrington & Taylor, 1978). 
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For example, apraxia patients have been described who can name, and identify from 

name, tools that they could neither use nor explain how to use (Ochipa, Rothi, & 

Heilman, 1989; also see Buxbaum, Veramontil, & Schwartz, 2000), whereas another 

patient F.B. has shown the opposite pattern of deficits where they can match objects 

by the way they are manipulated but is unable to match them by function or name 

(Sirigu, Duhamel, & Poncet, 1991). Semantic dementia patients are also a good 

example of this latter pattern where their Anterior Temporal Lobe (ATL) 

deterioration has been associated with retained abilities to use tools correctly 

(Snowden et al., 1996; Graham et al., 1997; Hodges et al., 1998, 1992; Buxbaum, 

Schwartz & Carew, 1997; Lauro-Grotto, Piccini & Shallice, 1997), despite their 

characteristic impairments when retrieving conceptual knowledge about objects 

(e.g., calling a banana an apple; Lambon-Ralph, Jefferies, Patterson & Rogers, 2017; 

Snowden et al., 2018). 

 Consistently, decision-making paradigms have shown that such forms of 

knowledge are dissociable at the behavioural level (e.g., recall the function of a tool 

or the way that a tool would be held; Garcea & Mahon, 2012). Further, 

neuroimaging has shown that function-related knowledge retrieval selectively 

activates the lateral anterior infero-temporal lobe (Canessa et al., 2008; Chen, 

Garcea, & Mahon, 2016; also see Peelen & Caramazza, 2012), fusiform gyrus 

(Valyear et al., 2006; Rice et al., 2007; Chen et al., 2017; also see Kleineberg, 

Dovern, Binder, Grefkes, Eickhoff, Fink & Weiss, 2018) and possibly the pMTG 

(see functional connectivity evidence in Bach, Peelen & Tipper, 2010). Likewise, 

stimulation of the left ATL and pMTG can selectively interfere with the recall of 

tool functions (Ishibashi et al., 2011; Ishibashi, Mima, Fukuyama, & Pobric, 2018; 

Andres et al., 2013) while that to the left SMG selectively interferes with recalling 
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manipulation-based knowledge (Pelgrims, Olivier & Andres, 2011; Andres, 

Pelgrims, Olivier & Vannuscorps, 2017). 

 However, it is possible to refute the claim that the regions needed to retrieve 

both manipulation- and function-based knowledge are dissociable (see Vingerhoets, 

2014 for a review). For example, Hodges, Spatt & Patterson (1999) and Hamanaka, 

Matsui, Yoshida et al., (1996) have each described two semantic dementia patients 

with losses of object-conceptual knowledge that are also associated with failures in 

using those objects (also see Hodges, Bozeat, Lambon Ralph, Patterson & Spatt, 

2000). Similarly, a Voxel Lesion Symptom Mapping (VLSM) study with 38 chronic 

stroke patients showed that the deficits affecting their ability to either match 

common tools to recipient objects or to perform associated tool actions were both 

associated with fronto-parietal lesions (Goldenberg & Spatt, 2009), suggesting links 

between these two aspects of knowledge. Even some approaches to this question 

utilising neuroimaging have failed to find any neural region responding more during 

the retrieval of a tool’s functional properties, rather than those related to their typical 

manipulation (e.g., Boronat et al., 2005; Kellenbach, Brett, & Patterson, 2003). 

 The complex picture being drawn so far is reflected in two sets of findings 

from a recent VLSM study of 136 left hemisphere stroke patients (Martin, Beume, 

Kummerer et al., 2016). Martin et al., (2016) had their patients perform tasks that 

neatly map on to the distinction between manipulation- and function-based tool 

knowledge, namely, that of tool use (e.g., hammer the nail) and tool selection (e.g., 

choosing the nail for the hammer), respectively. First, the left IPL was found to be 

associated with impairments on both tasks. Second, the left ATL and pMTG, 

amongst some other parts of frontal cortex, were more strongly associated with tool 

selection, than tool use, deficits. Thus, despite a notable divide in processing of tool 
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function (e.g., selectively processed by ATL and pMTG) the IPL here was required 

for utilising both aspects of manipulation- and function-based knowledge. 

 This may help to explain why the IPL is important for both physical tool use 

(e.g., McDowell, Holmes, Sunderland & Schurmann, 2018) and processing more 

abstract knowledge needed to, for example, sort objects according to their use 

(Boronat et al., 2005; Canessa et al., 2008; Chen et al., 2015). Equally, this division 

of labour between the left IPL and pMTG is captured in another VSLM study 

showing that lesions to these regions are linked to spatial and semantic gesture 

recognition deficits (i.e., incorrectly matching sawing with a different manipulation 

of a saw versus a different tool), respectively (Kalenine, Buxbaum & Coslett, 2010).  

 A remaining issue, however, is why the left pMTG appears to play a role in 

action-related tasks with tools that do not require the declarative recall or selection of 

a tool based on its function (e.g., see results described earlier by Gallivan et al., 

2013): contradicting the VLSM results just described, Gallivan et al.,’s (2013) 

results suggest that the pMTG and the IPL are both relevant for function- and 

manipulation-based knowledge. This highlights the difficulties in attempting to 

segregate the regions required for retrieving these two types of knowledge. Indeed, 

the exact role of the left pMTG continues to be debated, and perhaps unsurprisingly 

so, given that activation of the left MTG during tool recognition and the processing 

of tool attributes continues to be the most robust finding from the neuroimaging 

literature (for reviews see Binder et al., 2009; Martin, 2007) and that it has dense 

anatomical interconnections with parietal cortex (Bi et al., 2015; Ramayya, Glasser, 

& Rilling, 2010). 

 Currently, a leading view argues that the pMTG is a multimodal integration 

site (e.g., Hein & Knight, 2008; Willems, Ozyurek & Hagoort, 2009) that, in the case 
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of tool-use, may play a primary role in representing knowledge about hand-tool 

relationships derived from experience in a visual (Watson & Buxbaum, 2015) or 

visuo-kinesthetic format (Buxbaum, 2017; Kalénine et al., 2010, Orban & Caruana, 

2014; Watson, Cardillo, Ianni, & Chatterjee, 2013; but for additional evidence in the 

auditory domain also see Beauchamp, Argall, et al., 2004; Beauchamp, Lee et al., 

2004). According to Buxbaum (2017) this information about what hand-tool actions 

look and feel like is an aspect of manipulation knowledge (see the quote provided in 

the previous section) which does not neatly align with either manipulation- or 

function-based knowledge. Overall then, whilst the case could be made that there are 

regions relevant for specifically processing function-, rather than manipulation-based 

knowledge (e.g., the ATL), parcellating areas of the ventro-dorsal stream according 

to this distinction may not be so simple. By matching the tool stimuli used in the first 

fMRI experiment of my thesis (see Chapter 2) to different primary functions (e.g., a 

knife and pizzacutter are used for cutting), it was possible to further examine which 

brain regions (e.g., parts of the ventro-dorsal stream) were sensitive to the different 

functions of tools.  

1.5. Theory of Affordances 
 
 Coined by Gibson (1979), the term affordance was initially used to describe 

what the environment affords the individual (e.g., a hammer affords pounding or 

pavement affords walking across), with the core of his philosophy being that 

perception, by its nature, carries information about afforded actions. This ecological 

view is radically different from traditional views of perception that suggest it 

involves building an accurate representation of the external world and instead depicts 

a tight interrelation between perception and action (for contemporary ideas sharing 
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this view see for example Creem-Regehr, 2005; Creem-Regehr & Kunz, 2010; 

Decety & Grezes, 1999; Loomis, Da Silva, Fujita & Fukusima, 1992). 

 For Gibson (1979) affordances do not simply reflect objective or subjective 

object properties (e.g., the hammer’s head is made from metal or is heavy, 

respectively). Rather, affordances are better viewed as relations between the features 

of a situation and the abilities of an individual (Chemero, 2001; 2003; 2009) such 

that, for example, a hammer affords pounding for an adult with the motor capacity to 

lift the object, but not a baby who lacks the required strength. Building on this idea, 

the concept of affordances has been widely expanded over the past 40 years (for 

reviews see Borghi & Riggio, 2015; Oisurak, Rosetti & Badets, 2017), particularly 

since Tucker & Ellis’s (1998) influential evidence of an affordance effect from a 

Stimulus Response Compatibility (SRC) paradigm. 

 Typically, an SRC paradigm involves testing whether behavioural responses 

are faster if the spatial position of a stimulus is compatible, relative to incompatible, 

with the required response (e.g., a left sided target is compatible with a left, but not 

right, sided button-press; Proctor & Vu, 2006). Tucker & Ellis (1998) had 

participants judge via left or right handed button presses whether pictures of familiar 

graspable objects with handles (e.g., a frying pan) were inverted. Reaction times 

(RTs) were faster when the object’s handle was oriented towards the hand used to 

respond, even though the handle orientation was irrelevant to inversion judgements. 

In line with affordance theory, this evidence is commonly interpreted to show that 

the motor programs afforded by an object (e.g., grasping the handle) are integral to 

its representation; a point that is supported by numerous other reports (e.g., 

Costantini, Ambrosini, Scorolli & Borghi, 2011; Yang & Beilock, 2011; Costantini, 

Ambrosini et al., 2010; Ferri et al., 2011; Wamain et al., 2016; Godard, Wamain & 
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Kalenine, 2019), most notably in experiments involving more naturalistic responses 

such as squeezing (Tucker & Ellis, 2001) or reaching-to-grasp (Bub, Masson & 

Kumar, 2018). 

 Based on this, it is often described how merely perceiving an object leads to 

the automatic planning, or evocation, of the movements afforded by that object (e.g., 

Tipper, Paul & Hayes, 2006; Ferri, Riggion, Gallese & Costantini, 2011; Bub, 

Masson & Kumar, 2018). Rather convincingly, seminal electrophysiological 

evidence in the monkey brain has also shown that, even if a monkey does not move, 

grasp‐related neurons respond to the visual presentation of objects according to their 

importance for action (Rizzollatti, Camarda, Fogassi, Gentilucci, Luppino & Matelli, 

1988; also see Cisek & Kalaska, 2010). In fact, the already described tool-specific 

fMRI activation in the human dorsal visual stream during tool picture viewing 

paradigms (see section 1.3.1.) is often interpreted in the same way (e.g., Chao & 

Martin, 2000) with recent evidence even showing that these effects can occur 

without perceptual awareness of even having seen a tool (Tettamanti, Conca, Falini 

& Perani, 2017). This evidence is supplemented by other affordance effects where 

viewing objects can increase measures of motor excitability, perhaps suggesting a 

plan to move (Buccino, Sato, Cattaneo, Roda & Riggio, 2009; Makris, Hadar & 

Yarrow, 2011; Franca, Turella, Canto, Brunelli et al., 2012; cf. Fadiga, Fogassi, 

Pavesi & Rizzolatti, 1995). Altogether then, it is apparent that object vision can 

evoke motor affordances, even in the absence of an intention to act. 

 This said, the automaticity of affordance effects is not a generalisable 

principle and is instead sensitive to context and intentions of the actor (e.g., 

Buxbaum & Kalénine, 2010; Osiurak et al., 2010; 2011; Valyear et al., 2011). 
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For example, automatic affordance effects in behaviour have been shown to occur 

only if task demands are relatively undemanding (e.g., if a pantomime does not 

involve forward planning; Randerath, Martin & Frey, 2013) and can be enhanced 

based on past behaviour (e.g., if tool-use was performed earlier; Jax & Buxbaum, 

2010).  

 Nevertheless, the conditions under which object perception can trigger 

affordances are relatively underspecified. Macdonald & Culham (2015) recently 

failed to find any significant fMRI activation during a passive viewing task when the 

hand and the handle of a real 3D tool were of matching orientations. This effect is 

rather surprising given that these objects afforded genuine action, unlike images of 

tools that have been predominantly studied in the past (see Snow et al., 2011). To 

further investigate the neural basis of object affordances, the experiments in my 

thesis involve graspable 3D that authentically afford action. 

1.5.1. Tools and functional affordances 
 
 Motor affordances can be evoked that relate to the learnt function of a tool 

(e.g., Kalenine, Wamain, Decroix & Coello, 2016; Mizelle, Kelly & Wheaton, 2013; 

Hartson, 2003; Stoytchev, 2005; Awaad, Kraetzschmar & Hertzberg, 2015; Young, 

2006; Masson, Bub & Breuer, 2011; Mon-Williams & Bingham, 2011; Pellicano, 

Iani, Borghi, Rubichi & Nicoletti, 2010; Valyear et al., 2013). For example, when 

Tucker & Ellis (1998) found that compatible handle positions evoked actions, this 

could be attributable to the fact that we have learnt to grasp the handle of such 

objects (e.g., a knife) because it is how they would be held for subsequent use (e.g., 

cutting). A functional affordance is the term that some authors have adopted to 

capture this notion (e.g., Mon-Williams & Bingham, 2011; Pellicano, Iani, Borghi, 

Rubichi & Nicoletti, 2010; Young, 2006).  
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 As a brief note, functional affordances are treated separately here to the 

notion of stable affordances. Both types of affordance are based on previous 

experience, but stable affordances do not necessarily rely on learnt knowledge about 

an object’s function and instead reflect any learnt properties of an object (e.g., shape 

or size), as is indicated in the following example: ‘we know a marble is graspable 

with a precision grip’ (Sakreida, Effnert, Thill, Mereike et al., 2016, p.90).  

 To appreciate this concept, first consider that functional affordances are 

evocable much like pure physical/structural affordances are (Symes, Ellis & Tucker, 

2007), where this latter type of affordance is simply based on the structure of an 

object (e.g., a cylinder oriented toward the hand can still facilitate RTs in an SRC 

paradigm based on the fact that it affords grasping; Symes, Tucker & Ellis, 2006; see 

Chapter 3 for further discussion). For example, Bub, Masson & Creek (2008) 

demonstrate that hand kinematics (e.g., RTs) are facilitated regardless of whether an 

action is performed that is consistent with the functional (e.g., a whole hand grasp 

for pliers) or structural affordance (e.g., a whole hand grasp for a spray bottle) of a 

pictured tool. Similarly, Jax & Rosenbaum (2010) found that RTs are slower when 

responding to objects with a mismatched structural and functional affordance that 

could perhaps indicate a time-consuming inhibition process for the irrelevantly 

evoked action (also see Kalenine, Wamain, Decroix & Coello, 2016; cf. Bub, 

Masson & van Mook, 2018). Together, these studies demonstrate that affordances 

are not simply dictated based on an object’s structure but can be based on the learnt 

knowledge about how to manipulate that object (i.e., as is critical for tools). 

 To provide an additional example from neuropsychology, Riddoch, 

Humphreys & Price (1989) have also presented a patient with cortico-basal 

degeneration who showed over-utilisation deficits (i.e., a strong tendency to 
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automatically perform grasp actions toward objects even when not explicitly 

intended) and asked her to grasp a cup using the hand that was on the matching side 

of the table (i.e., left versus right). In line with affordance theory, her actions were 

cued by the orientation of the cup’s handle in relation to the patient’s preferred hand. 

Crucially, however, the frequency of this grasp action decreased when the cup was 

inverted, even though the physical positioning of the handle was identical as to when 

it was upright. Therefore, again, it was not simply the structure of the object that led 

to overutilization of the affordance, but it was presence of a functional affordance 

that altered the patient’s propensity for action. 

 Perhaps the most compelling evidence of the existence of functional 

affordances comes from one of the rare fMRI experiments where participants 

interacted with real 3D tools. Specifically, Valyear, Gallivan, McLean & Culham 

(2012) found that select parieto-frontal regions, including the left aIPS, precentral 

gyrus and right SPL displayed suppressed activity when demonstrating the well 

learned action of a tool after having passively viewing that tool in the same trial. 

Crucially, this neural adaptation was absent if the task instead required the tool to be 

viewed, but this time, then used for demonstrating a control movement that was 

newly learned and cued by colour (e.g., trace a circle with a red tool-handle). 

Therefore, it appears that simply viewing a tool can evoke the well learnt action it is 

associated with, though it is worth noting that such a conclusion lies on the 

assumption that suppression truly reflects planning (also see Theory of affordances: 

section 5.3.3.). 

 Returning to the frameworks described in earlier sections, functional 

affordances are proposed to be processed by the ventral (e.g., Oisurak, Rosetti & 

Badets, 2017; Young, 2006) and/or ventro-dorsal streams (e.g., Buxbaum & 
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Kalenine, 2010; Buxbaum, 2017) whereas structural affordances would are expected 

to be processed by the dorsal/dorso-dorsal stream (e.g., Osiurak, Rosetti & Badets, 

2017; Buxbaum, 2017). Rather interestingly, the most recent form of the two-action 

systems model (i.e., the two action-systems plus model), Buxbaum (2017) argues 

that the left SMG may act as a buffer that prepares multiple afforded actions. These 

actions are apparently able to be based on either structural affordances processed by 

the dorso-dorsal stream or functional affordances processed by the ventro-dorsal 

stream (e.g., the pMTG or possibly IPL; Buxbaum, 2017). The action that is 

ultimately performed is expected to be based on contextual information (e.g., such as 

the actor’s intention; also see Cisek & Kalaska, 2010) processed by the Inferior 

Frontal Gyrus (IFG) (see Garcea, Stoll & Buxbaum, 2019 for recent VLSM evidence 

in favour of this view; also described in Chapter 2 discussion). In this way, the two-

action-systems model now clearly provides a division of labour between the 

posterior temporal cortex and the IPL (see Segregated processing of knowledge 

about tool manipulation & function?: section 1.4.1.). 

 To further explore the notion of functional affordances, the experiments in 

my thesis had participants grasp tools in a way that was consistent with the 

functional affordance of that tool (i.e., by the handle). Though, crucially, they never 

actually performed their associated use-based actions - in this way, results might be 

linked to automatic triggering of affordances because there is no intention to carry 

out such actions. 

1.6. A tool processing network 
 
 Neuroimaging studies investigating the brain regions linked to processing 

tools has become an incredibly popular area of study. This type of stimulus is suited 

to overcome the common criticism that the DVST offers little account of how visual 
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information from the ventral and dorsal visual pathways become integrated (e.g., 

Schenk & McIntosh, 2010; but see Milner 2017 and Cloutman, 2013). Likewise, 

these special objects are critical for testing hypotheses drawn by the ventro-dorsal 

stream models that describe how learned knowledge is integrated with online visual 

information, regardless of whether these models focus on gesturing (e.g., Buxbaum, 

2001) or problem-solving (Osiurak et al., 2013). In fact, these stimuli have been 

popular throughout cognitive neuroscience since they are able to help understand 

category selectivity (e.g., do related categories overlap; Bracci et al., 2012; Peelen & 

Downing, 2019), affordances (see Tools and functional affordances: section 1.5.1.), 

neural connectivity (e.g., Bi, Han, Zhong, Ma, Gong et al., 2015) and neurocognitive 

development (e.g., Dekker, Mareschal, Sereno & Johnson, 2011; Kersey, Clark, 

Lussier, Mahon & Cantlon, 2015). 

 Meta-analyses now highlight a robust network of brain regions, often with a 

strong degree of left lateralisation, that activate when viewing, hearing, imagining, 

naming, pantomiming and, in some rare studies, acting with tools (for reviews see 

Lewis, 2006; Martin, 2007; 2016). Following the nomenclature of others (e.g., 

Garcea & Mahon, 2014), I refer to this collection of regions as the tool processing 

network (see Fig. 1.2A. for an example of these areas). 
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Fig. 1.2. (A) The tool processing network. Left hemisphere activation generated 

from contrasting viewing 2D tools and viewing 2D objects (i.e., chairs) based on 

data from 31 participants who completed a Bodies, Objects, Tools and Hands fMRI 

functional localiser across Chapters 2 and 4 (see fMRI visual localiser paradigm: 

section 2.2.4. and section 4.2.4.). (B) The tool use motor skill network (blue lines) 
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and conceptual and semantic tool networks (green lines) are displayed on the left 

hemisphere as proposed by Lewis (2006). Acronyms: ITC, Inferotemporal Cortex; 

FC, Fusiform Cortex; Inferior Frontal Gyrus, IFG. Figure 1.2B. is adapted and 

reprinted from Lewis (2006). 

 
 In a highly cited meta-analysis, Lewis (2006) examined the results of 31 tool-

related neuroimaging studies that clearly shows this tool processing network and 

drew a distinction between a conceptual versus manipulation tool use network based 

on the number of paradigms showing activation overlap for a given type of task (see 

Fig. 1.2B.). The conceptual network was derived from findings that similar regions 

were found to be activated regardless of the sensory modality that tools were 

presented in. For instance, simply reading words depicting tools, relative to animals 

or other object categories (Mummery et al., 1998; Chao et al., 1999; Moore & Price, 

1999; Perani, et al., 1999; Grossman et al., 2002; Phillips et al., 2002) can activate 

the posterior temporal and fusiform cortex (for review see Binder, Desai, Graves & 

Conant, 2009). Likewise, studies investigating hearing tools (e.g., Bunzeck, 

Wuestenberg, Lutz, Heinze & Jancke, 2005; Lewis et al., 2005) also shows a strong 

tool-selective left lateralisation of activity throughout parieto-premotor and posterior 

temporal cortex. As for the tool use motor skill network, this was based on 

neuroimaging experiments where participants either pantomimed the use a tool 

without the object in hand (e.g., Inoue et al., 2001) or imagined performing these 

actions (e.g., Grafton, Arbib, Fadiga & Rizzolatti, 1996; Fridman, Immisch, 

Hanakawa, Bohlhalter, Waldvogel, Kansaku, Wheaton, Wu & Hallet, 2006; 

Wadsworth & Kana, 2011). 

 Importantly, the tool-use motor skill network described by Lewis (2006) is 

based only on a single study investigating tool-use where participants manipulated 
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chopsticks (Inoue et al., 2001). These pantomiming or imagination based studies are 

beneficial from a practical perspective (presenting tools in the confined space of an 

MRI scanner is technically challenging and increases the risk of motion artefacts 

driven by performing real actions), but, as highlighted by Lewis (2006), processing 

related to these behaviours may or may not reflect levels of abstraction needed 

during actual tool use. This point is emphasised by evidence that apraxia patients’ 

symptoms can become less severe if allowed to manipulate a real tool, as opposed to 

pantomime their use (Buxbaum et al., 2000; Clark et al., 1994; Goldenberg & 

Hagmann, 1998; Goldenberg et al., 2004; Hermsdörfer et al., 2006; Laimgruber et 

al., 2005; Liepmann, 1908; Wada et al., 1999; Rapcsak et al., 1995; DeRenzi & 

Lucchelli, 1988). 

 The lack of real tool-use tasks during neuroimaging remains to be a major 

weakness in the field, possibly contributing to inconclusive findings in more recent 

meta-analyses. To demonstrate this point, consider a recent Activation Likelihood 

Estimate (ALE) analysis (Ishibashi, Pobric, Saito & Lambon Ralph, 2016) which 

investigated the neural clusters relevant to the retrieval of identity- (i.e., recognising 

or naming tasks) versus action-related properties of tools (i.e., planning, imagining 

and executing tool-use behaviour). These authors found a significant likelihood of 

activation for action processing within the left PMd and SPL, yet, the same areas 

were not found to be tool-selective when Valyear et al., (2017) collated clusters of 

activation from studies involving real grasping relative to tool-related actions (e.g., 

pantomiming, real manipulation) in another meta-analysis. I suspect difficulties in 

understanding which brain regions are critical for the retrieval of action-related 

knowledge needed for real tool-use will continue until further studies overcome 

difficulties of measuring real actions during neuroimaging. Thus, another aim of my 



How the brain grasps tools 

 

 

54 

thesis was to assess which of the regions in the tool processing network carry 

information relevant to performing tool-related actions.  

1.6.1. Imagining or pantomiming tool-use as a proxy for real action 
 
 Remarkably, imagining to perform an action is known to share neural 

correlates with action observation and even motor production (e.g., Grezes & 

Decety, 2001; Case, Pineda & Ramachandran, 2015). Accordingly, motor imagery 

provides a way to explore tool-using behaviours during neuroimaging without 

increasing the risk of motion-artefacts that may be caused by moving the upper-limb 

or hand when performing real actions (see Culham et al., 2003) and would thus 

confound results (e.g., Friston, Williams, Howard, Frackowiak & Turner, 1996).  

 These imagination-based paradigms have revealed findings highly consistent 

with principles described earlier, indicating their usefulness in understanding the 

neural correlates of real tool-use. For example, left lateralisation is a key feature of 

multiple neuroscientific models that focus on tool-use (e.g., Binkofski & Buxbaum, 

2013; Lewis, 2006) and imagining to use a tool correspondingly leads to activation 

within the IPL, SPL, IFG, MTG and FC that is strongly lateralised to the left 

hemisphere (e.g., Moll et al., 2000; Gerardin, Sirigu, Lehericy, Poline, Gaymartd, 

Marsault, Agid & Bihan, 2000; Creem-Regehr & Lee, 2005; Imazu, Sugio, Tanaka 

& Inui, 2007; Wadsworth & Kana, 2011). Likewise, Tomasino, Weiss & Fink 

(2012) have found that simply imagining tool-use can lead to increased functional 

connectivity between the left IPL and another brain area that represents the body 

(i.e., the extrastriate body area; Downing, Jiang, Shuman & Kanwisher, 2001; 

Urgesi, Candidi, Ionta & Aglioti, 2007; Downing & Peelen, 2016) - this reflects 

popular claims that tool-use involves the incorporation of these objects into a 

representation of the body (Iriki, Tanaka & Iwamura, 1996; Arbib, Bonaiuto, Jacobs 



How the brain grasps tools 

 

 

55 

& Frey, 2009; Cardinali, Jacobs, Brozzoli et al., 2012; Farne, Serino & ladavas, 

2007; Jacobs, Bussel, Combeaud & Roby-Brami, 2009; Maravita & Irki, 2004). 

 Another fMRI experiment utilising motor imagery also holds useful insights 

regarding claims made by the two-action systems model. Specifically, Vingerhoets, 

Acke, Vandemaele & Achten (2009) had participants imagine performing tool-

related actions that were relevant to its use (i.e., grasp to use or grasp and use) as 

well as other intransitive actions (i.e., grasp to move or pointing to an object) and 

contrasted these with other objects that decreased in familiarity (i.e., unfamiliar tools 

well as for neutral shapes). The findings here showed that imagining actions based 

on tool-use increased activity within the left IPS, while those with more familiar 

tools activated the IPL in both hemispheres (though more strongly on the left). Thus, 

use-relevant actions appeared to be linked to the dorso-dorsal stream while tool 

familiarity was linked to activity within the ventro-dorsal stream, demonstrating that 

(1) there may be rich interactivity between the streams for tool-use (Kalenine & 

Buxbaum, 2010) and (2) that the dorso-dorsal stream may have access to stored 

knowledge (for a consistent link between the IPS and tool-related knowledge also 

see Valyear et al., 2007). 

 There are, however, well recognised drawbacks of using motor imagery as a 

proxy for real actions. Compliance to task demands cannot be directly assessed in 

imagination-based paradigms (though see Decety, Jeannerod & Prablanc, 1989) and 

the neural correlates of motor imagery and overt action do not perfectly overlap 

(Hetu, Gregoire, Saimpont, Coll, Eugene, Michon & Jackson, 2015). It could be 

argued the that neural differences between these two task types is mainly linked to 

differences in visual/sensorimotor feedback such that increased activation should 

only occur within primary sensory and motor areas (Gerardin et al., 2000; Hanakawa 
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et al., 2003; Lotze et al., 1999). However, recent TMS evidence highlights that even 

the left IPL is critical for motor imagery (Kraeutner, Serafi, Lee & Boe, 2019) and, 

upon direct comparison, Imazu et al., (2007) show that actual chopstick use, relative 

to imagined chopstick use, can differentially activate this area. Accordingly, 

generalising findings from imagination-based tasks to real action behaviours should 

be carried out cautiously, particularly given that they can rarely be compared with 

real tool-use because only few neuroimaging studies have measured such behaviour. 

 A similar number of important findings can be drawn for tool-pantomiming 

studies, which involve participants pantomiming the action of a tool without it in 

their hand. For instance, these tasks commonly implicate the left parietal and/or 

frontal cortex, often independent of the hand used (Moll, Oliverira-Souza, Passman, 

Cunha, Souza-Lima & Andreiuolo, 2000; Choi, Na, Kang, Lee, Lee & Na, 2001; 

Oghami, Matsuo, Uchida & Nakai, 2004; Johnson-Frey, Newman-Norlund & 

Grafton, 2005; Bohlhalter et al., 2009; Kroliczak & Frey, 2009; Vingerhoets, Acke, 

Alderweireldt, Nys, Vandemaele & Achten, 2012). This effect being hand-

independent rules out the important possibility that left lateralisation for tool-use 

merely reflects the tendency for action-related neuroimaging experiments to involve 

participants performing right-handed actions and that there is a contralesional 

mapping between the acting side of the body and sensorimotor cortex (e.g., Rice, 

Tunik, Cross & Grafton, 2007). 

 Similarly, a few of these pantomiming studies have indicated that many of 

the brain regions required to execute a tool-related pantomime are similarly active 

when simply planning these actions (i.e., after being instructed which pantomime to 

later perform; Johnson-Frey, Newman-Norlund & Grafton, 2005; Fridman et al., 

2006). This approach not only mitigates the risk of motion-artefacts confounding 
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results during tool pantomiming (i.e., there is no overt movement during planning) 

but also clearly informs the study of motor planning, a popular topic which motor 

control theories frequently identify as being distinct from motor execution (e.g., 

Wolpert, 1997; see Chapter 4 for further discussion). 

 However, atleast two points indicate that caution should still be taken before 

generalising actions related to tool pantomiming to that of real tool-use. First, the 

neural correlates of real tool-use are likely to dissociate from those for pantomimed 

tool-use given that such deficits dissociate in apraxia (De Renzi et al., 1982, 

Goldenberg, 2013, Hermsdörfer et al., 2012, Jarry et al., 2013, Randerath et al., 

2011). Second, upon a direct contrast of tool pantomime and tool demonstration (i.e., 

pantomiming action with the tool in hand), Lausberg, Kazzer, Heekeren & 

Wartenburger (2015) have found that, independent of the hand used, pantomiming 

specifically activates the left middle and superior temporal gyri (Lausberg, Kazzer, 

Heekeren & Wartenburger, 2015) a region presumed to be critical for planning tool-

pantomimes (Johnson-Frey et al., 2005). 

 In fact, Randerath, Goldenberg, Spijkers, Li & Hermsdorfer (2011) have 

described a number of differences between the act of pantomiming and actually 

using tools that may, in turn, lead to distinct activations for tool pantomiming. These 

include the fact that tool pantomiming involves more degrees of freedom (i.e., 

visual/proprioceptive cues about the tool are absent) and places a larger demand on 

working memory (i.e., representations of the tool and recipient object need to be 

maintained). Likewise, others view pantomiming in general as a highly 

communicative behaviour (Goldenberg 20013; Goldenberg et al. 2003) which could 

explain its tendency to recruit left lateralised networks (Frost, Binder, Springer, 

Hammeke, Bellgowan, Rao & Cox, 1999). 
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 Of course, one could argue that these pantomiming actions are a suitable 

measure of regions required for processing stored long-term knowledge about tools 

because they contrast tool-pantomimes with other types of intransitive pantomimes 

(e.g., communicatory gestures). However, as I highlighted when describing findings 

from imagination tool-based studies, validation of this claim requires additional 

studies of real tool-related actions to be carried out to assess whether they do in fact 

show converging findings. Altogether, it is not yet clear if imagination- or 

pantomime-based tasks are optimal to investigate which brain regions are relevant 

for real tool-use because such behaviour is rarely studied. Accordingly, a real 

grasping paradigm was utilised for the experiments in my thesis. 

1.7. Current Projects 
 
 The principal aim of my thesis was to investigate which brain regions carry 

learnt information about tools during a real grasping paradigm (Project 1 [Chapter 2] 

and Project 3 [Chapter 4]) and to explore if this is manifested in the kinematics of 

these actions (Project 2 [Chapter 3]). I reasoned that this was an important area of 

study because (1) knowledge about tools (e.g., their typical manipulations and 

functions) is key to human tool-use and (2) only very rarely has neuroimaging been 

performed when the hand is used to interact with a tool. To this end, I carried out 

two fMRI experiments as well as a motion-tracking investigation, all involving 

variations of the same 3D tool grasping paradigm. 

 This paradigm involved participants grasping tools in ways that were 

considered to be typical (i.e., by the tool’s handle) or atypical (i.e., by the tool’s 

head) for its subsequent use. A few neuroimaging experiments have employed 

observational tasks of a similar nature (e.g., Johnson-Frey et al., 2003; Mizelle & 

Wheaton, 2010), perhaps most comparably, in a movie viewing task where 
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participants watched movies of these actions (Valyear & Culham, 2010). But, to my 

knowledge, this is the first time this task has been adapted for real grasping. As in 

Valyear & Culham (2010), a brain region sensitive to these conditions was taken to 

reflect a sensitivity to the learnt aspects of tool-use. 

 Careful consideration was given to the design of this paradigm in order to 

provide insights into a number of points raised during this introduction. First and 

foremost, a real grasping paradigm was chosen since the vast majority of tool-related 

experiments involving passively viewing tools or utilise pantomime or imagination-

based tasks that might not truly reflect the neural processing required for real human 

tool-use (see Seeing 2D tools to using 3D tools: section 1.3.1. and Imagining or 

pantomiming tool-use as a proxy for real action: section 1.6.1.). Therefore, these 

experiments offer a rather unique test of the claims that tool-use is supported by the 

ventral visual (see Dual visual stream theory: section 1.3.). and ventro-dorsal 

pathways (see Two-action systems model: section 1.4.). Second, non-tool stimuli 

matched for important properties such as grasp kinematics and elongation were also 

used as (1) a control for the tool grasping conditions and (2) to investigate which 

brain regions were sensitive to object category (see in particular Seeing 2D tools to 

using 3D tools: section 1.3.1.). Third, by including different tool exemplars, 

manipulation- and function-based knowledge of tools could be experimentally teased 

apart (see Segregated processing of knowledge about tool manipulation & function: 

section 1.4.1.). Fourth, since we focused on grasping, rather than real tool-use 

actions, results may bare relation to the concept of affordances (see Theory of 

affordances: sections 1.5. and Tools and functional affordances: section 1.5.1.) 

because tool-related differences would not be attributable to an explicit intention to 

use these objects (note that by measuring grasping instead of tool-use, the conditions 
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could also be more easily equated for kinematic complexity). Finally, by using a 

localiser ROI MVPA approach (described below) it was possible to assess whether 

parts of the tool-processing network usually identified during picture viewing 

paradigms are also sensitive to the performance of real tool-related actions (see 

Seeing 2D tools to using 3D tools: section 1.3.1. and A tool processing network: 

section 1.6.). 

 Project 1 (Chapter 2) used a powerful fMRI block design that was well suited 

to avoid motion artefacts to investigate which regions were sensitive to the learnt 

aspects of tool use. This was achieved using state-of-the-art MVPA classification 

techniques: first, in a ROI approach involving category selective areas (e.g., tool-

selective areas) based on each participant’s activity from an independent fMRI visual 

localiser (Bracci et al. 2012) and, second, in a searchlight approach that was 

performed throughout the entire brain. I hypothesised that much of the tool 

processing network (see Fig. 1.2.) would carry information regarding tool 

knowledge. In particular the hypothesis was made that key regions of the ventral 

(e.g., LOTC, pFs) and ventro-dorsal (e.g., SMG, pMTG) pathways would be 

sensitive to the way that the tools were grasped (e.g., typically or atypically).  

 Project 2 (Chapter 3) was a behavioural follow-up experiment in which 

participants repeated the just described investigation in a motion-tracking lab. 

Primarily, this experiment was designed to validate the paradigm by assessing for 

hallmark behavioural grasping characteristics (e.g., whether grip size scaled with 

object size) despite the unconventional nature of the block-design task (i.e., laying 

supine and making repetitive actions within a block). Second, this experiment also 

served to characterise the kinematics associated with the reaching (e.g., reaction 

time) and grasping (e.g., maximum grip aperture) portions of the movements, 
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allowing the novel tests of two questions. First, I hypothesised that there would be 

differences between hand kinematics between grasping objects of a different 

category (i.e., the tools and non-tools) due to related evidence from motion-capture 

when grasping tools in order to use, relative to move, them. Second, I hypothesised 

that that typicality of a tool action may influence RT due to related evidence from 

other behavioural experiments modifying similar properties. 

 Project 3 (Chapter 4), involved a slow-event fMRI design that could 

disentangle whether the same representations described in Project 1 (Chapter 2) were 

decodable during motor planning, that is, before the hand moved. In this case, 

participants were instructed how to act but withheld this action during a delay 

period. The same MVPA procedures were used as in Project 1 (Chapter 2) and 

involved decoding during phases where participants simply viewed a tool (i.e., a 

preview phase), instructed how to grasp (i.e., a plan phase) and actually performed 

this movement (i.e., a grasp phase). Predictions were made based on the results of 

Project 1 and it was considered that PMv may play an important role here due to its 

hypothesised role in motor planning. During the preview phase, it was also predicted 

that ventral and, possibly, ventro-dorsal stream regions would code information 

about tool identity (e.g., is a knife being viewed or a pizzacutter) and object category 

(e.g., is a tool being viewed or a non-tool) because viewing 3D tools might be 

largely similar to results reported when participants have viewed 2D tools. 
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Chapter 2 
 

Hand-selective areas in the dorsal and ventral visual streams 

represent how to grasp real 3D tools for use  

2.1. Introduction 

 Humans’ extraordinary ability to develop and use tools has co-occurred with 

neural evolution (e.g., Stout & Chaminade, 2012; Orban & Caruana, 2014). 

Comparative fMRI across humans and rhesus monkeys indicates that activation 

within an anterior part of the left Supramarginal Gyrus (SMG) is uniquely found 

when humans observe tool-use, even if the animals had previously been trained to 

use the tools (Peeters, Rizzolatti & Orban, 2013; Peeters, Simone, Nelissen, Fabbri-

Destro, Vanduffel, Rizzolatti & Orban, 2009). Nevertheless, as will be made clear 

here, there is remarkably little neuroimaging evidence demonstrating which human 

brain regions support the ability to skilfully manipulate real tools with the hand (e.g., 

rather than the ability to perceive tools presented on a screen). 

 When we pick up tools, there is a propensity to grasp them by the handle. 

This behaviour persists even when the handle is oriented away from the hand and is 

found to cease only if performing a concurrent and taxing task involving semantic 

memory (Creem & Proffit, 2001). The influential Dual Visual Stream Theory 

(DVST; Milner & Goodale, 1995; 2006) considers these use-appropriate actions as a 

special form of visuomotor behaviour because they do not rely solely on processing 

within the dorsal visual stream, a pathway hypothesised to transform visual 

information about an object’s structural properties (e.g., width, orientation) into real-

world metrical coordinates for visually guided motor control (e.g., grasping). 

Instead, these actions are thought to additionally rely on processing from the ventral 

visual stream, another pathway which is differently hypothesised to process visual 
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information for the purpose of object recognition. These perceptual mechanisms in 

the ventral stream would be critical for identifying a tool (e.g., Goodale & Milner, 

2010) and to be involved in the selection of the appropriate hand posture for using it 

(Milner & Goodale, 2006; Goodale, 2014).  

 The behaviour of visual form agnosia patient D.F., a case study whose brain 

damage has been traditionally linked to the bilateral ventral (e.g., Lateral Occipital 

Temporal Cortex; LOTC) but not dorsal (e.g., Intraparietal Sulcus; IPS), visual 

stream (James, Culham, Humphrey, Milner & Goodale, 2003), clearly implicates this 

ventral pathway in the act of tool-use. When visually presented with a series of tools, 

patient D.F. does not necessarily grasp these objects by their handles, despite the fact 

that her actions are well-formed (e.g., her grip size is well scaled to object size) and 

that she has no impairment in retrieving learnt knowledge about these objects (e.g., 

following tactile exploration D.F. can pantomime the use of the tool; Carey, Harvey 

& Milner, 1996). Having a stable grasp on any portion of a tool (e.g., by the head of 

a tool) is suitable for purposes such as moving them from one location to another, 

but it is choosing to grasp the handle that reflects the successful transformation of 

stored knowledge about a tool into motor programs for prehension (Johnson-Frey, 

2007). Accordingly, the retrieval of learnt information about object-associated 

actions is contingent on accessing the identity of the object and this is likely to be 

subserved by the ventral visual pathway (also see Almeida, Fintzi & Mahon, 2013). 

 Building on this, the two-action systems model (e.g., Binkofski Buxbaum, 

2013; Buxbaum, 2017) theorises that tool-use is supported by a left lateralised 

ventro-dorsal stream that courses through the left posterior temporal cortex (e.g., 

Middle Temporal Gyrus [MTG]) / Inferior Parietal Lobule (IPL) to left frontal areas 

including the Ventral Premotor Cortex (PMv) and Inferior Frontal Gyrus (IFG; see 
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Rizzolatti & Matelli, 2003 and Fig. 1.1. in Chapter 1). More specifically, the ventro-

dorsal pathway is predicted to be devoted to skilled actions that depend on 

previously learned information about familiar objects such as their identity, function 

and the way that it would be typically be manipulated (e.g., grasping a tool for its 

use; Buxbaum, 2001, Fridman et al., 2006, Glover, 2004; Buxbaum & Kalénine, 

2010; Johnson-Frey, 2004, Pisella et al., 2006, Randerath et al., 2010, Vingerhoets et 

al., 2009). This pathway is contrasted with the bilateral dorso-dorsal stream that, 

instead, runs through the Superior Parietal Lobule (SPL), IPS and dorsal premotor 

cortex (PMd; Rizzolatti & Matelli, 2003) and is supposedly for processing 

information based on currently available visual and proprioceptive information (e.g., 

grasping a tool based on its structure; Binkofski & Buxbaum, 2013). 

 Behaviour from patients with apraxia clearly illustrate claims made about the 

ventro-dorsal stream by the two-action systems model (e.g., Watson & Buxbaum, 

2015). These patients tend to be impaired during tasks that involve retrieving stored 

knowledge about an object, such as when having to pantomime the use of a tool 

(Buxbaum, Sirigu, Schwartz & Klatzky, 2003; Sirigu et al., 1995; Poizner, Mack, 

Verfaellie, Rothi & Heilman, 1990) and when having to interact with a real tool 

(e.g., Hermsdorger, Li, Randerath, Roby-Brami & Goldenberg, 2013; Sperber, 

Christensen, Llg, Giese & Karnath, 2018), which can even be detected when simply 

grasping the handle of a tool in order to demonstrate its use (Randerath, Li, 

Goldenberg, & Hermsdorfer, 2009; also see Goldenberg & Hagmann, 1998). 

Crucially, these apraxic deficits are often apparent despite no impairments when 

performing or recognising hand actions based on the structure of an unfamiliar 

object (e.g., when matching hand postures to a novel object; Sirigu et al., 1995; 

Buxbaum, Sirigu, Schwartz & Klatzky, 2003) and tend to follow lesions to the 



How the brain grasps tools 

 

 

65 

ventro-dorsal stream such as the left IPL (e.g., Buxbaum, Kyle, Grossman & Coslett, 

2007; Haaland, Harrington, & Knight, 2000; Heilman, Rothi & Valenstein, 1982; 

Randerath, Goldenberg, Spijkers, Li, & Hermsdörfer, 2010), or, less commonly, the 

left premotor areas and middle/inferior frontal gyri (e.g., Goldenberg, 2009),  

 Theoretically, the ventro-dorsal stream is proposed to support tool-use 

through its access to manipulation knowledge which is predicted to be in the form of 

stored multisensory and motor memories that are learnt from using objects 

(Buxbaum, 2017). Specifically, it is predicted that the posterior temporal cortex (e.g., 

the posterior MTG [pMTG]) encodes information about the learnt relationship 

between the hand and tool (e.g., visually and kinaesthetic representations of the hand 

and the tool’s handle), while the SMG prepares candidate movements (e.g., grasping 

by the handle or grasping by the head) and the IFG uses contextual information to 

select which of those movements should ultimately be executed (e.g., confirming if 

the goal is to use the tool; also see Cisek, 2007; Cisek & Kalaska, 2010). This 

process is expected to be supplemented by processing within the dorso-dorsal visual 

stream that translates learned representations of a tool-related movement into an 

action suited for the current situation (e.g., based on real-time sensory input about 

the exact tool exemplar). 

 Ideally, these hypotheses from the DVST and two-action systems model 

would be heavily tested with neuroimaging techniques (e.g., fMRI, PET) by 

examining the brain’s responses when humans interact with real 3D tools. However, 

obvious technical constraints make this approach challenging, particularly in the case 

of fMRI (e.g., limitations of space, required use of non-ferrous equipment). This 

said, a few studies do involve participants using a single tool throughout the 

scanning session (e.g., a pair of chopsticks or tongs; Tsuda, Aoki, Oku, Kimura, 
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Hatazawa & Kinoshita, 2009; Imazu, Sugio, Tanaka & Inui, 2007; Ogawa, 

Schormann, Zilles & Fukuda, 2001; Yoo, Sohn & Jeong, 2013; Gallivan et al., 2013) 

and, most notably, two studies (i.e., Valyear, Gallivan, McLean & Culham, 2012; 

Brandi Wohlschlager, Sorg & Hermsdorfer, 2014; also see Stark & Zohary, 2008) 

have utilised specialist equipment (see Culham et al., 2003) to facilitate paradigms 

where participants manipulate a series of real tools during fMRI (see Valyear et al., 

2017 for a review). 

 Those two fMRI experiments that overcome the difficulty of presenting a 

series of 3D tools during scanning have revealed that actions linked to tool-use (e.g., 

a spatula for flipping), rather than tool-related actions that do not rely on stored 

knowledge (e.g., moving a tool or performing an arbitrarily cued action), is linked to 

processing throughout parieto-frontal (Valyear, et al., 2012; Brandi, et al., 2014) and, 

to some extent, occipito-temporal (Brandi et al., 2014) cortex. In the first study, 

Valyear et al., (2012) found a series of regions including the bilateral SMG, left 

anterior IPS (aIPS) and right SPL that were more active, or exhibited neural 

adaptation (see Chapter 1 for further description of this study) for performing well 

learnt actions. In the second study, Brandi et al., (2014) presented participants with 

an impressive number of tool and manipulable bar shaped non-tool objects in order 

to contrast neural activity when these stimuli were used or simply moved. Most 

relevant here, it was revealed that performing the functional use of a tool (e.g., 

cutting string with scissors), relative to either the use of a non-tool (e.g., fitting a bar 

into an inset) or moving a tool (e.g., lifting scissors), preferentially activated the left 

Middle Occipital Gyrus, as well as areas within the ventro-dorsal stream (i.e., MTG, 

SMG and PMv). 
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 From a critical perspective, however, performing learnt actions in these 

studies did not implicate canonically described ventral visual stream regions such as 

the LOTC (i.e., area LO and the posterior Fusiform Gyrus [FG]; Grill-Spector & 

Malach, 2004). In fact, close inspection of results obtained from Brandi et al., (2014) 

reveals that the left LOTC co-activated with critical substrates of the dorso-dorsal 

stream (e.g., bilateral SPL and left PMd) when an object was used, regardless of 

whether it was tool or a non-tool. This fits rather poorly with the DVST claim that 

the ventral visual pathway is specifically involved in tool-use. 

 All of this said, over two decades of neuroimaging evidence clearly pinpoints 

a tool-processing network that activates when imagining or perceiving stimuli 

depicting tools regardless of whether they are presented in the form of pictures, 

words, movies or sounds (for reviews Ishibashi, Pobric, Saito & Lambon Ralph, 

2016; Chouinard & Goodale, 2010; Lewis, 2006). The tool processing network is 

largely left lateralised and encompasses occipito-temporal and parieto-frontal areas 

most of which were already described earlier in relation to the DVST and two-action 

systems model (see Fig. 1.2. in Chapter 1). Neuroimaging studies using these non-

action tasks continue to demonstrate that many parts of the tool-processing network 

are sensitive to the functions (e.g., Mahon, Milleville, Negri, Rumiati, Caramazza & 

Martin, 2007; Canessa, Borgo, Cappa, Perani, Falini, Buccino & Shallice, 2008; 

Peelen & Caramazza, 2012; Leshinskaya & Caramazza, 2015; Tonin, 2018) and 

identities of tools (e.g., Mahon & Caramazza, 2010). Recently, Chen et al., (2017) 

even showed that viewing tools, relative to similarly elongated non-tool objects, 

increases fMRI functional connectivity between core nodes within the ventral (i.e., 

left Fusiform Gyrus; FG) and ventro-dorsal stream (i.e., left MTG) to another node 
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in the dorsal stream (i.e., the anterior IPS; aIPS), as may be expected by the DVST 

and two-action systems model. 

 How relevant this tool-processing network is to real tool-use remains an open 

question, however. Images of tools are a popular choice of stimuli, yet there is 

growing evidence that real 3D objects are represented differently than a 2D picture 

of that same object within the ventral and dorsal visual streams (Snow, Pettypiece, 

McAdam, McLean, Stroman, Goodale & Culham, 2011; Freud, Macdonald, Chen, 

Quinlan, Goodale & Culham, 2018). This is perhaps unsurprising given that real 

objects offer richer cues about depth as well as a genuine possibility for action, as 

demonstrated by the fact that performing a grasp towards a flat picture follows a 

fundamental psychophysical principle (i.e., Weber’s law) but real object grasping 

does not (Holmes & Heath, 2013).  

 One particularly interesting avenue worth exploring is whether overlapping 

portions of the left LOTC and IPS that are selective to pictures of tools or hands (i.e., 

LOTC-Tool, LOTC-Hand, IPS-Tool and IPS-Hand; Op de Beeck, Brants, Baeck & 

Wagemans, 2010; Bracci, Ietswaart, Peelen & Cavina-Pratesi, 2010; Bracci, Cavina-

Pratesi, Ietwaart, Caramazza & Peelen, 2012; Bracci & Peelen, 2010; Striem-Amit, 

Vannuscorps & Caramazza, 2017; Perini, Caramazza & Peelen, 2014) play a role in 

real tool interactions. A number of picture viewing studies suggest that these areas, 

particularly in the LOTC, carry information about action-related properties of hand 

movements (e.g., Bracci, Cavina-Pratesi, Connolly & Ietswaart, 2016; Peelen, 

Bracci, Lu, He, Caramazza & Bi, 2013), such as the type of grasp (e.g., precision 

versus power grasp; Bracci, Caramazza & Peelen, 2018) or action that is associated 

with a tool (e.g., squeezing versus rotating; Perini, Caramazza & Peelen, 2014). 
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 Driven by the fact that the sensitivity of an fMRI analysis can be optimised 

by using multivariate techniques (Haxby, Gobbini, Furey, Ishai, Schouten & Pietrini, 

2001; Kamitani & Tong, 2005; Kriegeskorte & Bandettini, 2007), it has become 

increasingly popular to use Multi-Voxel Pattern Analysis (MVPA) to understand 

where representations about real actions are stored (for reviews see Gallivan & 

Culham, 2015; Hutchinson & Gallivan, 2018). One technique, known as MVPA 

classification, involves passing voxel activity patterns from a region into a machine 

learning algorithm to test if different types of experimental condition can be decoded 

(Haxby, Gobbini, Furey, Ishai, Schouten & Pietrini, 2001). 

 This MVPA classification approach has revealed that patterns of activity 

throughout the primary motor cortex as well as the dorso-dorsal stream, such as the 

premotor cortex, SPL, and IPS can be used to discriminate between movements 

involving different reach directions (e.g., left versus right; Fabbri, Stubbs, Cusak & 

Culham, 2016; Gallivan, McLean, Smith & Culham, 2011; Gallivan, McLean, 

Flanagan & Culham, 2013), degree of grip precision (touch versus grasp; Gallivan, 

McLean, Valyear, Pettypiece & Culham, 2011; Fabbri, Stubbs, Cusak & Culham, 

2016; Ariani, Wurm & Lingnau 2015; Ariani, Oosterhof & Lingnau, 2018), hand 

rotation (e.g., Shay, Chen, Garcea & Mahon, 2019) or even individual finger 

movements (Diedrichsen, Wiestler & Krakauer, 2013). 

 Recently, a few studies have shown that decoding is possible for various 

abstract aspects of a tool-related pantomime that cannot simply be attributed to 

specific movement kinematics. For example, the left FG has been shown to carry 

representations about the function associated with a tool (i.e., open versus cut) 

whereas regions including the pMTG, premotor cortex and IPL represent their 

related action types (i.e., rotate versus squeeze; Chen, Garcea & Mahon, 2016; Chen, 
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Garcea, Jacobs & Mahon, 2017). Likewise, the aIPS has been shown to code the 

identity of a tool (Ogawa & Imai, 2016) while many regions including the ventral 

part of the LOTC, IPS, premotor cortex, MTG and SMG code functional tool 

grasping (Buchwald, Przybylski & Kroliczak, 2018). However, how well these 

results reflect those that would be obtained from real tool interactions is unclear, 

particularly given that pantomiming places additional demands on the ventral visual 

stream (e.g., Westwood & Goodale, 2003; Tonin, 2018). 

 The primary goal of the current experiment was to examine which brain 

regions contain activity patterns that are sensitive to grasping a tool in a way that is 

consistent with its learnt use. A few picture/movie viewing fMRI experiments have 

used stimuli depicting hands grasping a tool in conditions that can be considered as 

either typical (i.e., by the tool’s handle) or atypical (i.e., by the tool’s head) in 

relation to the object’s ordinary use (e.g., Johnson-Frey, Maloof, Newman-Norlund, 

Farrer, Inati & Grafton, 2003; Valyear & Culham, 2010; Mizelle & Wheaton, 2010a; 

Mizelle & Wheaton, 2010b; also see Hoeren, Kaller, Glauche, Vry et al., 2013 and 

Roberts & Humphreys, 2010). Consistent with visual form agnosia patient D.F.’s 

failure to grasp tools in a way consistent with their learnt use (Carey, Harvey & 

Milner, 1996), most of these studies report that activity in the ventral visual (and 

ventro-dorsal) stream is sensitive to the typicality of viewed grasp (e.g., Valyear & 

Culham, 2010; Mizelle & Wheaton, 2010a). For example, Valyear & Culham (2010) 

have demonstrated that ventral stream regions including the bilateral pMTG and 

LOTC were more greatly active when participants viewed movies of typical, than 

atypical, tool grasping. Likewise, Mizelle Kelly & Wheaton (2013) similarly 

reported large clusters of activity throughout bilateral occipitotemporal and 

parietofrontal cortex were influenced by the appropriateness of how a tool was held 
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(e.g., a hammer held by its handle so that its head is over a nail versus a hammer 

held by its head so the hand is over a nail). The nature of this task, then, appears 

suitable for identifying the regions sensitive to the learnt aspects of tool-use.  

 Here, we measured brain activity with fMRI while participants reached-to-

grasp 3D-printed tool (i.e., kitchen utensils) and bar shaped non-tool (i.e., bar-

shaped) objects matched for their degree of elongation, required grip size and reach 

distance (Fig. 2.1A). A ROI and searchlight MVPA classification strategy was 

employed to assess which brain regions exhibited activity patterns that could be used 

to decode the typicality of tool grasping - this entailed decoding between tool grasps 

that were considered to be typical (i.e., by the tool’s handle) versus atypical (i.e., by 

the tool’ head) for subsequent use. As a control, we also assessed whether decoding 

was possible for the grasp direction of non-tool grasping - this entailed decoding 

between non-tool grasps that were located on their right versus left sides (i.e., the 

sides of the non-tools that corresponded to the typical and atypical grasping of tools, 

respectively). We reasoned that a region containing representations that are tuned to 

the learnt aspects of tool-use would display decoding accuracies for typicality that 

were significantly higher than (1) chance and (2) the decoding accuracy obtained 

from the same ROI when discriminating between grasp direction.  

 For the ROI MVPA, an independent fMRI visual localiser to define left-

hemisphere tool-processing network ROIs (LOTC-Tool, IPS-Tool, pMTG, PMv, 

PMd, aSMG, posterior Fusiform sulcus [pFs]) per subject. Additionally, the localiser 

allowed us to define other left hemisphere category selective portions of the IPS and 

LOTC that were selective to pictures of hands (LOTC-Hand, IPS-Hand), bodies 

(LOTC-Body) and objects (LOTC-Object) as well as control ROI in the left Early 

Visual Cortex (EVC). The searchlight MVPA approach was used to test if this 
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information could be decoded from activity patterns from any other brain region 

across either hemisphere. 

 Based on the DVST (Milner & Goodale, 1995; 2006), we predicted that 

ventral visual stream regions would specifically represent typicality (e.g., the LOTC 

and pFs), particularly in parts of the LOTC selective to pictures of tools and hands 

because they are known to process information about object-directed actions (e.g., 

Perini, et al., 2014; Striem-Amit, Vannuscorps & Caramazza, 2017). The same 

pattern of results was anticipated to occur in the ventro-dorsal stream ROIs, 

including the pMTG, aSMG and PMv, because of their access to manipulation 

knowledge as predicted by the two-action pathways model.  

 As a secondary goal, stimuli were designed to enable us to examine which 

brain regions coded additional features relevant to tool-directed actions including 

object category (i.e., grasping tools versus non-tools) as well as tool function (i.e., 

grasping tools strongly associated with cutting versus scooping) and tool identity 

(i.e., grasping a knife versus spoon versus pizzacutter). In particular, it was predicted 

that ventral stream regions (i.e., LOTC and FG) would code information about object 

category and tool identity given their role in object identification (Milner & Goodale, 

1995; 2006) and ventro-dorsal stream regions (i.e., pMTG, aSMG, PMv) would code 

information about tool function due to their roles in retrieving learnt object-related 

knowledge (e.g., Buxbaum, Veramontil & Schwartz, 2000; Boronat, Buxbaum, 

Coslett, Tang, Saffran, Kimberg & Detre, 2005). 

2.2. Method 

2.2.1. Participants 

 A total of twenty right-handed (Edinburgh Handedness Questionnaire; 

Oldfield, 1971) healthy volunteers were recruited from the University of East 
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Anglia’s (UEA’s) paid participant panel. One participant was excluded due to 

excessive head motion during scan sessions (see Data preprocessing: section 2.2.7.) 

leaving a total sample of nineteen participants (10 males, 18-34 years of age; mean 

age [standard deviation] = 23.4 [4.2]). Fifteen of the participants were naïve to the 

purpose of the study and the remaining five were authors. All had normal or 

corrected-to-normal vision, no history of motor, psychiatric or neurological disorders 

and gave informed consent in accordance with the ethical committee at the UEA. 

Financial compensation was provided for all volunteers. 

2.2.2. Stimuli & apparatus 

 Two different categories of stimuli were presented during the experiment: 

tools and non-tools (Fig. 2.1A). The tool set comprised three commonly used kitchen 

utensils (i.e., a knife, pizza-cutter and spoon). The non-tool set included three bar 

shaped objects (also see Brandi et al., 2014) that were each paired to a single tool by 

matching their degree of elongation and maximum width. To closely match the 

required kinematics (i.e., reach distances and required grip aperture) needed to grasp 

the tools typically/atypically with that of grasping the paired non-tools on either side, 

two black squares (0.6cm x 0.6cm) were located on the left and right sides of each 

stimulus indicating where the object should be precision grasped widthways (i.e., 

finger on top and thumb on bottom). These black markers were positioned at the 

widest part of the functional-end of the tools and then, equidistantly from the middle, 

on their handles (identical positions were transposed on to the non-tools). Note that 

the knife tool and non-tool pair were controlled most effectively where the required 

grip size was identical throughout all conditions.  

 The tools had identical handles (maximum dimensions for length x width x 

depth: 11.6cm x 1.9cm x 1.1cm) attached to different functional-ends (pizza-cutter: 
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10.1cm x 7.5cm x 0.2cm, spoon: 10.1cm x 4.1cm x 0.7cm & knife: 10.1cm x 1.9cm 

x 0.2cm). The non-tool objects were built from two cylindrical shapes. These were 

an identical length to the paired tools’ handle or functional-end. To minimise the 

resemblance of the non-tools to a tool (e.g., a spatula), the maximum width and 

depth of both cylinders were matched to the paired tools’ functional-end (i.e., the 

non-tool cylinders matching the length of the handles for the spoon and pizza-cutter 

were thus wider than the handles of the paired tools). Both cylinders were connected 

using a third cylindrical shape with the same size dimensions as the paired tools’ 

neck (e.g., the non-functional part such as the non-serrated part of the knife blade). 

In foil trials, a fourth whisk tool (10.1cm x 5.6cm x 5.6cm) and the pizzacutter non-

tool (i.e., the non-tool with a width most similar to the whisk’s functional end) were 

presented but excluded from further analysis to keep the number of experimental 

trials per exemplar equal. All objects were digitally designed (Autodesk Inc., San 

Rafael, CA, USA) and 3D-printed (Objet30 Desktop) in VeroGray material 

(Stratasys) material. 

 Two back-to-back pedestals rested on a custom-built turntable (e.g., Gallivan, 

Cavina-Pratesi & Culham, 2009) that sat above the subjects’ pelvis when lying 

supine in the scanner (Fig. 2.1B). Stimuli were secured to a backboard so that they 

could be inserted on to the sloped platform (~10-15° away from the horizontal) at a 

distance comfortably within reach (the mean distance between the resting hand and 

centre of an object was 43cm [SD = 4cm]). To achieve direct vision of stimuli 

without the use of mirrors, the head coil was tilted and foam cushions (NoMoCo 

Pillow, La Jolla, CA, USA) were used to support the head (head tilt = ~30°). The 

likelihood of motion artefacts related to performing reach-to-grasp actions was 
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reduced by restraining the upper-right arm and providing support with additional 

cushions so that movements were performed by flexion around the elbow only. 

 During the experiment, objects were only visible when illuminated by white 

Light Emitting Diodes (LEDs) attached to a flexible plastic stalk (LOC-LINE; 

Lockwood Products, Inc., Lake Oswego, OR, USA) positioned above the 

participant’s left shoulder. Earphones (Sensimetrics MRI-Compatible Insert 

Earphones Model S14, USA) were worn for receiving verbal instructions and a 

centrally aligned red fixation LED was located above objects (subtending a mean 

visual angle of ~20° [SD = 0.7°] from the centre of stimuli). Movements of the right 

eye and arm were recorded using two infrared cameras (MRC Systems GmbH, 

Germany). A custom designed script written in Matlab (The MathWorks, USA 

R2010a), using the Psychophysics Toolbox extensions (Brainard, 1997) controlled 

all equipment. 
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Figure 2.1. Methods and materials. (A) 3D-printed tool and non-tool stimuli. (B) 

Turntable apparatus used to present graspable objects shown from the side (the 

experiment is completed in the dark, thus lighting here is for illustration only). The 

upper limb and hand are shown at the starting location. The red star represents the 

fixation LED and the delineated yellow zone represents the workspace that was 

illuminated by white LEDs. Cameras recording eye and hand movements in the dark 

were supported by an infrared source. Approximate functional coverage is presented 

(right) and was achieved by suspending a flex coil over the head. (C) Timing of the 

fMRI block design. A schematic of a single ON-OFF block period is highlighted 

(top left) that always consisted of an auditory instruction period (white block, where 

participants heard the word ‘left’ or ‘right’), an ON block where the object is 

illuminated and subsequently grasped five times (green block, where grasping is 

performed once every two seconds on the side of the object previously instructed) 

and followed by an OFF block where the workspace remained dark (grey block, 

where participants continue maintaining fixation). For analysis, a classifier received 

input from the rightward and leftward grasping blocks for both the tool and non-tools 

objects independently. For the tools blocks these right and left grasps corresponded 

to grasping the tool in ways that were typical (i.e., by the handle) and atypical (i.e., 

by the functional-end) for use, respectively (also see Fig. 2.3). (D) Representative 

locations of functionally defined perceptual ROIs are depicted by colour coded cubes 

based on the type of contrast used from a Bodies, Objects, Hands and Tools (BOTH) 

localiser per participant (see Section 2.2.8. for more information). Group activation 

during the BOTH visual localiser is displayed for [all conditions > (baseline*5)] and 

projected onto a left hemisphere cortical surface reconstruction of a reference brain 

(COLIN27 Talairach) available from the neuroElf package (http://neuroelf.net). 
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2.2.3. fMRI grasping paradigm 

 In an fMRI block design 10s ON/OFF blocks were used because they have 

been shown to optimally detect BOLD signal changes without significant motion 

artifacts (Birn, Cox & Bandettini, 2004; Fig. 2.1C). In an ON block, the object was 

briefly illuminated (0.25s) five times with two second intervals. Every illumination 

of the object acted as a cue for participants to perform a precision grasp (i.e., using 

index finger and thumb to grasp the top and bottom of the object, respectively) using 

their right hand at a natural pace in open-loop conditions (e.g., Monaco, Sedda, 

Cavina-Pratesi & Culham, 2015). Between illumination periods, the hand returned to 

the starting location (i.e., closed and resting on the middle of the chest; see Fig. 

2.1B). The workspace remained dark in the OFF blocks that followed each ON 

block. This flashing presentation cycle within the ON blocks has been shown to 

maximise the signal-to-noise ratio in previous perceptual decoding experiments 

(Kay, Naselaris, Prenger & Gallant, 2008; also see Smith & Muckli, 2010). 

Participants were asked to maintain fixation throughout each run and all 3D objects 

appeared in their lower peripheral visual field (Rossit et al. 2011). 

 Importantly, before each ON block began, a verbal ‘Left’ or ‘Right’ auditory 

cues (0.5s) informed the participant which side of the object was to be grasped. 

Crucially, the tools’ handles (and the side of the non-tools matching the length of 

these handles) were always oriented to the right so that right- and left-ward grasping 

for the tool conditions were could be labelled as typical and atypical, respectively. 

Participants were never instructed to use the objects and all stimuli were described as 

objects rather than tools to volunteers. 

 Each functional run included 16 ON blocks. For the 12 experimental ON 

blocks, three repetitions were completed per condition (i.e., tool typical, tool 
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atypical, non-tool right and non-tool left). Specifically, every exemplar was 

presented twice per run, once for a left and once for a right grasp. The remaining foil 

ON blocks involved grasping the tool and non-tool by each side but were excluded 

from analysis. On average participants completed six runs (minimum five, maximum 

seven), equalling 18 reps per the primary conditions (i.e., tool typical, tool atypical, 

non-tool right and non-tool left). Block orders were pseudorandomised so that 

conditions were never repeated (two-back) and preceded an equal amount of times 

by other conditions. Including the start and end baseline fixation periods (14s), each 

functional scan lasted 356s (5:56 minutes), making the length of a single session ~1 

hour 45 minutes. Prior to the fMRI experiment, participants were familiarised with 

the setup and practiced grasping each side of every exemplar in a separate lab 

session (30 minutes) outside of the scanner. 

2.2.4. fMRI visual localiser paradigm 

 Following the real action experiment, all participants returned for a separate 

session where we used a Bodies, Objects, Hands and Tools (BOTH) fMRI visual 

localiser (Bracci, Ietswaart, Peelen & Cavina-Pratesi, 2010; Bracci, Cavina-Pratesi, 

Ietswaart, Caramazza & Peelen 2011; Bracci, Cavina-Pratesi, Connolly & Iettswaart, 

2016). This enabled ROIs to be defined based on independent functional data in 

regions commonly reported to activate when participants view 2D pictures of tools 

(Fig. 2.1D.). In separate blocks (14s) 14 different images (0.5 seconds) were 

presented and interleaved by blank white screens (0.5 seconds) for a given stimulus 

category (Fig. 2.2.). Every fifth block contained fixation-only scrambled image 

epochs and the order of the four experimental conditions were randomised between 

these baseline periods. 
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 To match, as much as possible, characteristics within the tool (i.e., identity & 

orientation), body (i.e., gender, body position & amount of skin shown), hand (i.e., 

position & orientation) and chair (i.e., materials, type & style) categories, two sets of 

24 individual 2D grayscale images depicting an isolated stimuli against a white 

background (400 x 400 pixels) were selected from previous stimuli sets (Bracci, et 

al., 2010; Bracci, Cavina-Pratesi, Ietswaart, Caramazza & Peelen 2011; Bracci, 

Cavina-Pratesi, Connolly & Iettswaart, 2016). Image sets were presented in 

alternated runs that were counterbalanced across the sample and had a central black 

and white bullseye fixation overlaid throughout the experiment. Stimuli were rear-

projected (SilentVision SV-6011 LCD, Avotech Inc., Stuart, FL, USA) on to a 

screen and were viewed through a head-coil mounted mirror while participants laid 

supine in the scanner. A one-back detection task was performed with responses 

collected via button press (FORP, Current Design, Inc., USA). Individual orders of 

stimulus exemplars were randomised, and a single run included 24 category blocks 

(6 reps per condition) with blank fixation baseline periods (14s) at the beginning and 

the end of the experiment. Each localiser scan lasted 448 seconds (7:28 minutes) 

and, on average, participants completed 4 runs (minimum 3, maximum 4). The entire 

localiser session lasted ~50 minutes after including the time taken for an anatomical 

scan plus setting up (~10 minutes each). 

 

 
 
 
 
 
 
 
 
 
 



How the brain grasps tools 

 

 

80 

 
 

 

 

 

Figure 2.2. Experimental timing of the Bodies, Objects, Hands and Tools (BOTH) 

perceptual localiser fMRI block design with example stimulus images. Adapted from 

Bracci, Ietswaart, Peelen & Cavina-Pratesi (2010), Bracci, Cavina-Pratesi, Ietswaart, 

Caramazza & Peelen (2011) and Bracci, Cavina-Pratesi, Connolly & Ietswaart 

(2016). 

2.2.5. Data acquisition 
 
 The BOLD fMRI measurements were acquired using a 3T wide bore GE-750 

MR scanner. To achieve a good signal to noise ratio during the grasping paradigm, 

whilst enabling direct vision of the workspace without the use of mirrors, the head 

rested in a tilted posterior half of a 21-channel receive-only coil and a 16-channel 

receive-only flex coil was suspended over the anterior-superior part of the skull. A 

full 21-channel head coil was used for the BOTH localiser paradigm. 

 Functional MRI volumes were acquired using T2*-weighted single-shot 

gradient Echo-Planer Imaging (EPI) sequences during both the grasping experiment 

and the BOTH visual localiser (Time to Repetition [TR] = 2000ms; Voxel 

Resolution [VR] = 3.3 x 3.3 x 3.3mm; Time to Echo [TE] = 30ms; Flip Angle [FA] 

= 78°; Field of View [FOV] = 211x 211mm; Matrix Size [MS] = 64 x 64). Each 

volume comprised 35 contiguous (no gap) oblique slices acquired through axial 

Baseline/Fixation 
(14s)

Scrambled
(14s)

Chairs
(14s)

Tools
(14s)

Bodies
(14s)

Hands
(14s)
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orientation, providing near whole-brain coverage. A T1-weighted anatomical image 

was acquired at the start of each paradigm using BRAVO sequences (TR = 2000ms; 

TE = 30ms; FOV = 230mm x 230mm x 230mm; FA = 9°; MS = 256 x 256; Voxel 

size = 0.9 x 0.9 x 0.9mm) with 196 slices providing near whole-brain coverage. The 

MR imaging for the real action paradigm and 18 of the localiser paradigms was 

performed at the Norfolk & Norwich University Hospital (Norwich, UK). Datasets 

for the two remaining localiser sessions were retrieved from Rossit, Tonin & Smith 

(2018) where a Siemens whole-body 3T MAGNETON Prisma fit scanner with a 64-

channel head coil and integrated parallel imaging techniques was used at the 

Scannexus imaging centre (Maastricht, Netherlands). In these cases the same number 

of slices were acquired for the functional T2*-weighted images (TR = 2000 ms; TE 

= 30 ms, FA = 77°; FOV = 216 mm; matrix size = 72 x 72), whilst the T1-weighted 

anatomical image had 192 slices (TR = 2250 ms; TE = 2.21ms; FA = 9°; FOV = 256 

mm; matrix size = 256 x 256). 

2.2.6. Data preprocessing 

 To ensure that participants performed the real action paradigm correctly and 

that they maintained eye fixation, the recorded videos of the right eye (available of 8 

participants due to technical issues) and workspace (available for 14 participants due 

to technical issues) were screened. Two runs (of two separate participants) from the 

entire experiment were excluded from further analysis. In one of these blocks the 

participant failed to follow the grasping task instructions correctly (i.e., performing 

alternated left and right grasps) and for the remaining block another participant did 

not maintain fixation (i.e., saccaded downward to object). In the remaining runs that 

were analysed, participants made performance errors in <1% of experimental trials. 

The types of errors included not reaching after every illumination (3 trials, 2 
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participants), reaching in the wrong direction (1 trial, 1 participant) and downward 

eye saccades (5 trials, 3 participants). A one-way Repeated Measures (RM) ANOVA 

with 12 levels (i.e., the six exemplars across both left versus right grasping 

conditions) showed that these percentage of errors were equally distributed amongst 

trial types regardless of whether the percentage of hand and eye errors were analysed 

after being combined or treated separately (all p’s > 0.28).  

 Preprocessing of the raw functional datasets and the subsequent ROI 

definitions were carried out using BrainVoyager QX [version 2.8.2] (Brain 

Innovation, Maastricht, The Netherlands). BrainVoyager’s 3D motion correction 

(sinc interpolation) aligned each functional volume within a participant to the 

functional volume acquired closest in time to the anatomical scan (e.g., Fabbri, 

Stubbs, Cusack & Culham, 2016; Rossit, McAdam, Mclean, Goodale & Culham, 

2013). One subject was excluded from further analysis because of excessive head 

movements (i.e., x, y & z translation and rotation spikes exceeded 1mm and 1° 

rotation, respectively) as revealed by screening the time-course movies and motion 

plots created with the motion-correction algorithms for each run. Slice scan time 

correction (ascending and interleaved) and high-pass temporal filtering (2 

cycles/run) was also performed. Functional data were superimposed on to the 

anatomical brain images acquired during the localiser paradigm that were previously 

aligned to the plane of the anterior-posterior commissure and transformed into 

standard stereotaxic space (Talairach & Tournoux, 1988). No additional spatial 

smoothing was applied. 

 To identify ROIs from the BOTH localiser datasets per participant we used 

independent fixed-effects General Linear Model (GLM) analyses. The predictors for 

each image condition (i.e., Bodies, Objects, Tools, Hands and Scrambled) were 
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created from boxcar functions that were then convolved with a two gamma Boynton 

(Boynton, Engel, Glover & Heeger, 1996) hemodynamic response function (HRF). 

A boxcar HRF was aligned to the onset of the stimulus block with the same duration 

as block length. The baseline epochs were excluded from the model, and therefore, 

all regression coefficients (betas) were defined relative to this baseline activity. 

2.2.7. ROI definitions 

 Twelve ROIs (see Fig. 2.1D and Table 1) that could be functionally defined 

from the BOTH localiser activity were selected based on their well-documented 

roles in processing information related to tools (see Lewis, 2006 and Valyear, 

Fitzpatrick & McManus, 2017 for reviews), body parts (Bracci, Iettswaart, Peelen & 

Cavina-Pratesi, 2010; Bracci, Cavina-Pratesi, Ietswaart, Caramazza & Peelen, 2011; 

Bracci, Cavina-Pratesi, Connolly & Iettswaart, 2016) and/or objects (see Grill-

Spector & Weiner, 2014 for a review). These included multiple ROIs in the LOTC 

(i.e., LOTC-Hand, LOTC-Body, LOTC-Tool & LOTC-Object) and IPS (i.e., IPS-

Hand & IPS-Tool) that were defined based on their selectivity to different categories 

of stimuli, as well as the pMTG, posterior Fusiform sulcus (pFs), SMG, PMd, PMv 

and, as a control, the Early Visual Cortex (EVC). All of these areas were identified 

in the left hemisphere because of evidence the strong left lateralisation for tool 

processing (Lewis, 2006). 

 ROIs were defined by drawing a cube (15 voxels3) around the peak of 

activity from previously reported volumetric contrasts set at a threshold of t = 3 

which equated to p < 0.005 (Gallivan, McLean, Valyear, & Culham, 2013). If no 

activity was identified a more liberal threshold was applied (t = 2.581, p < .01) 

(Bracci, Cavina-Pratesi, Connolly & Ietswaart, 2016) and in cases where no activity 

was observed these ROIs were omitted for that participant (see Table 1 for mean 
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Talairach coordinates and frequencies of ROI per subject). The location of 22% 

ROIs were verified by a senior author (S.R.) with respect to the following anatomical 

guidelines: 

- Lateral Occipitotemporal Cortex-Object selective (LOTC-Object) - [Chairs > 

Scrambled] (Hutchinson, Culham, Everling, Flanagan & Gallivan, 2014; Bracci & 

Op de Beeck, 2016) - defined by selecting the peak of activation near the Lateral 

Occipital Sulcus (LOS) (Malach, Reppas, Benson, Kwong, Jiang, Kennedy, Ledden, 

Brady, Rosen & Tootell, 1995; Grill-Spector, Kourtzi & Kanwisher, 2001; Grill-

Spector, Kushnir, Edelman, Avidan, Itzchak & Malach, 1999; Bracci & Op de 

Beeck, 2016). 

- Lateral Occipitotemporal Cortex-Body selective (LOTC-Body) - [Bodies > 

Chairs] (Bracci & Op de Beeck, 2016) - defined by selecting the peak of activation 

near the LOS and inferior to the left Extrastriate Body Area (EBA; Valyear & 

Culham, 2010) which was identified by the contrast [(Bodies + Hands > Chairs)] 

(adapted from Bracci, Ietswaart, Peelen & Cavina-Pratesi (2010) [(Whole Bodies + 

Body Parts) > (Hands + Chairs)]). EBA was not included in the analysis. 

- Lateral Occipitotemporal Cortex-Hand selective (LOTC-Hand) - [(Hands > 

Chairs) AND (Hands > Bodies)] (Bracci & de Beeck, 2016) - defined by selecting 

the peak of activation near the LOS. These were often anterior to LOTC-Body 

(Bracci & Op de Beeck, 2016; Bracci, Ietswaart, Peelen & Cavina-Pratesi, 2010). 

- Lateral Occipitotemporal Cortex-Tool selective (LOTC-Tool) - [Tools > 

Chairs] (Bracci, Cavina-Pratesi, Ietswaart, Caramazza & Peelen, 2012; Hutchinson, 

Culham, Everling, Flanagan & Gallivan, 2014) - defined by selecting the peak of 

activation near the LOS. These often closely overlapped LOTC-Hand (Bracci, 

Cavina-Pratesi, Ietswaart, Caramazza & Peelen, 2012). 
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- Posterior Middle Temporal Gyrus (pMTG) - [Tools > Chairs] (Hutchinson, 

Culham, Everling, Flanagan & Gallivan, 2014; Valyear & Culham, 2010) - defined 

by selecting the peak of activation on the pMTG, more lateral, ventral and anterior to 

EBA (Hutchison et al., 2014). We selected the peak anterior to the Anterior Occipital 

Sulcus (AOS), as the MTG is in the temporal lobe and the AOS separates the 

temporal from the occipital (Damasio, 1995). 

- Posterior Fusiform Sulcus (pFs) - [Chairs > Scrambled] (Hutchinson, 

Culham, Everling, Flanagan & Gallivan, 2014) - defined by selecting the peak of 

activation in the posterior aspect of the fusiform gyrus, extending into the 

occipitotemporal sulcus (Hutchinson, Culham, Everling, Flanagan & Gallivan, 

2014). 

- Intraparietal Sulcus-Hand selective (IPS-Hand) - [Hands > Chairs] (Bracci, 

Cavina-Pratesi, Connolly & Ietswaart, 2016; Bracci & Op de Beeck, 2016) - defined 

by selecting the peak of activation on the IPS (Bracci & Op de Beeck, 2016). 

- Intraparietal Sulcus-Tool selective (IPS-Tool) - [Tools > Scrambled] (Bracci, 

Cavina-Pratesi, Connolly & Ietswaart, 2016; Bracci et al., 2016) - defined by 

selecting the peak of activation on the IPS (Bracci & Op de Beeck, 2016). 

- Supramarginal Gyrus (SMG) - [Tools > Scrambled] (Creem-Regehr, Dilda, 

Vicchrilli, Federer & Lee, 2007) - defined by selecting the peak of activation located 

most anterior along the SMG (Peeters, Rizzolatti & Orban, 2013), lateral to the 

anterior segment of the IPS (Gallivan, Chapman, McLean, Flanagan & Culham, 

2013), posterior to the Precentral Suclus (PreCS) and superior to the lateral sulcus 

(Ariani, Wurm & Lingnau, 2015). 

- Dorsal Premotor Cortex (PMd) - [Tools > Scrambled] - defined by selecting 

the peak of activation at the junction of the PreCS and the superior frontal sulcus 
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(Gallivan, Chapman, McLean, Flanagan & Culham, 2013; Ariani, Wurm & Lingnau, 

2015). 

- Ventral Premotor Cortex (PMv) - [Tools > Scrambled] (Creem-Regehr, 

Dilda, Vicchrilli, Federer & Lee, 2007) - defined by selecting the voxels inferior and 

posterior to the junction between the inferior frontal sulcus and the PreCS (Gallivan, 

Chapman, McLean, Flanagan & Culham, 2013). 

- Early Visual Cortex (EVC) - [All Conditions > Baseline] (Bracci & Op de 

Beeck 2016) - defined by selecting the voxels in the occipital cortex near the 

calcarine sulcus (Singhal, Monaco, Kaufman, & Culham, 2013). 

 

Table 2.1. Mean sizes and Talairach coordinates of ROIs from the BOTH visual 

localiser. Acronyms: SD = Standard Deviation. 

 

ROI 

Number of 

subjects 

Mean voxel size  

(SEM) 

Mean peak coordinates  

(SD) 

  X Y Z 

EVC 19 114 (35) -14 (6) -89 (4) -9 (9) 

LOTC-Object 19 148 (34) -42(4) -77 (4) -7 (4) 

LOTC-Body 18 55 (30) -45 (3) -76 (5) 2 (6) 

LOTC-Hand 17 81 (44) -47 (4) -71 (4) -1 (5) 

LOTC-Tool 17 77 (45) -47 (5) -71 (5) -2 (6) 

pMTG 17 96 (48) -45 (4) -57 (3) 3 (4) 

pFs 19 105 (41) -40 (4) -54 (4) -14 (4) 

SMG 17 69 (43) -53 (6) -28 (4) 27 (6) 

IPS-Hand 19 110 (57) -38 (4) -46 (7) 42 (3) 

IPS-Tool 19 81 (55) -37 (5) -41 (7) 42 (5) 

PMv 14 61 (19) -45 (7) -1 (6) 31 (5) 

PMd 14 47 (43) -29 (5) -13 (4) 51 (4) 
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2.2.8. ROI MVPA 

 Pattern classification was performed with a combination of in-house scripts 

(Smith & Goodale, 2015) using Matlab with the Neuroelf toolbox [version 0.9c; 

http://neuroelf.net/] and a linear Support Vector Machine (SVM) classifier (libSVM 

2.12 toolbox; https://csie.ntu.edu.tw/~cjlin/libsvm/). The SVM was trained to learn 

the mapping between multivariate observations of voxel activity within an ROI for 

the particular types of grasping blocks that had been performed (e.g., typical and 

atypical grasping blocks). Accuracy was then assessed by testing the classifier’s 

ability to discriminate between these types of blocks on reserved data that was not 

included in the training. This was achieved using a “leave-one-run-out” N-fold 

cross-validation approach. As in previous studies (e.g., Smith & Goodale, 2015; 

Gallivan, Johnsrude, & Flanagan, 2016), we performed this N-1 cross validation 

procedure until all runs were tested and then averaged across N-iterations in order to 

produce a representative decoding accuracy measure for each participant, ROI and 

pairwise/multiclass classification (Duda, Hart & Stork, 2001). The input to the 

pattern classifier were individual voxel beta values for each ROI. The time course of 

each ROI’s voxel per run was extracted and each block was modelled by a separate 

predictor variable that resulted from a convolving a standard double gamma HRF 

model with the block duration (Smith & Muckli, 2010; Vetter et al., 2014). Note that 

the activity of each ROI was normalised (separately for training and test data) within 

a range of -1 to +1 before input the SVM (Smith & Muckli, 2010) and the linear 

SVM algorithm was implemented using the default parameters provided in the 

LibSVM toolbox (C = 1). 
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2.2.9. Classification procedure 

 A combination of pairwise and multiclass discriminations were used for 

MVPA. To satisfy the primary goal of this study (i.e., to identify brain regions that 

contained learnt representations about how to grasp a tool in a way consistent with 

its learnt use) we were interested in the decoding accuracy for each ROI when 

classifying blocks of tool grasping movements that were considered to be typical 

versus atypical (i.e., the classification of typicality). As a control, we also assessed 

decoding accuracy for these ROIs when classifying blocks of similar non-tool 

grasping movements that were directed to the right versus left side of the non-tool 

control object (i.e., the control classification of grasp direction). 

 This control classification of grasp direction with the non-tools allowed us to 

ensure that successful decoding of typicality when grasping the tools was not simply 

explainable by the direction of grasp because typical grasping always consisted of 

rightward grasping and atypical grasping always consisted of leftward grasping. We 

reasoned that decoding accuracy would be stronger for typicality, than grasp 

direction, in regions that were sensitive to learnt information about tool-related 

actions. To this end, we first tested if decoding accuracy was significantly higher 

than chance (i.e., 50%) with one-samples t-tests when classifying typicality and 

grasp direction separately. Second, we tested if decoding accuracy was significantly 

higher for the classification of typicality, than grasp direction, using pairwise t-tests 

(see Fig. 2.3). These second pairwise comparisons were only used to compare 

accuracies from ROIs that displayed evidence of being sensitive to functional tool 

grasping; that is, where decoding accuracy was significantly above chance for the 

typicality, but not grasp direction. 
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Figure 2.3. Example of MVPA classification for primary analysis. A classifier was 

trained to learn the mapping between the two types of grasping blocks for the tools 

and non-tools independently (left top and bottom). This was carried out per ROI by 

inputting the voxel activity patterns for these conditions (middle). A classification 

decision was then made for new data that had been reserved from training for the 

purpose of testing the accuracy of the classifier (right). The classifier discriminated 

between trials labelled to be typical versus atypical for the tool conditions (right top) 

and those labelled right versus left for non-tool conditions (left bottom). The cross-

validated decoding accuracy was compared to that expected by chance (50%) using 

one-samples t-tests. If activity patterns in a ROI could be used to decode typicality 

(i.e., from the tool conditions) but not grasp direction (i.e., from the non-tool 

conditions) paired samples t-tests were then used to test if decoding accuracy for 

grasping was significantly higher than grasp direction. This pattern of results would 

be taken as evidence that an ROI carried learnt representations about how to grasp a 

tool in a way consistent with its learnt use. 

 As another control, we also tested the extent to which the patterns of activity 

in these ROIs were sensitive to object size regardless of object category (see Fig. 

Conditions Voxel Activity Patterns Classification Decision

Typical vs. Atypical

Typical vs. Atypical

Paired-Samples 
t-test

Right vs. Left 
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2.4.). This was important because the tool blocks (i.e., typical and atypical grasping) 

sometimes included trial pairs that differed in object size (i.e., smaller grasping 

versus larger head for the spoon and pizza-cutter tools). As this did not occur within 

the non-tool blocks (i.e., both sides were the same width), tool-specific decoding for 

the spoon and pizzacutter objects could be attributed to having differential demands 

on size perception and/or scaling grip aperture. Secondary aims of the study were to 

assess which brain regions coded other information about object category, tool 

function and tool identity (see Fig. 2.4.), all of which have been reported to be coded 

in when viewing or pantomiming 2D presented tools.  
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Fig. 2.4. Classification labels for control and secondary analyses. Object size (Top). 

This classification was a control analysis that was possible because the heads of the 

knife, spoon and pizzacutter tools (and their paired non-tools) had small, medium 

and large widths when considered relative to one another. Thus, a classifier was used 

to test if discrimination was possible between object of a larger versus smaller size. 

This was achieved by averaging the decoding results from three separate pairwise 

classifications of object size that pitted one set of exemplars versus one of the other 
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two sets (the 3 rows of stimuli are separated to show the individual pairwise 

classifications between the objects that were the size of the small knife versus 

medium spoon, small knife versus large pizza-cutter and medium spoon versus large 

pizza-cutter). Object category (Upper middle). This classification was performed 

using a pairwise discriminations of tools versus non-tools. Tool function (Lower 

middle). This classification was performed using two pairwise discrimination of the 

tools that were strongly associated with cutting versus scooping and averaging the 

decoding accuracies (as for object size, the rows of stimuli show the individual 

pairwise comparisons between the knife versus spoon and pizzacutter versus spoon). 

Tool identity (Bottom). This classification was performed using a single multiclass 

discrimination of the different tool exemplars (knife versus spoon versus pizza-

cutter). For all analyses reach direction(s) were controlled. Object size involved left 

grasping blocks only (i.e., conditions where the tools and their paired non-tools had 

identical widths). Object category involved both right and left grasping blocks (i.e., 

to maximise power). Tool function and identity involved right grasping blocks only 

(i.e., handles of the tools were identical). 

 
 All statistical tests were one-tailed because (1) decoding was not expected to 

occur below chance when using one-samples t-tests (Walther, Caddigan, Fei-Fei & 

Beck, 2009; Walther, Chai, Caddigan, Beck & Fei-Fei, 2011; Chen, Namburi, 

Elliott, Heinzle, Soon, Chee & Haynes, 2011; Smith & Goodale, 2015) and (2) we 

predicted that paired-samples t-tests for the functional tool grasping analysis would 

show significantly higher decoding accuracy for typicality than grasp direction. To 

control for the problem of multiple comparisons, a False Discovery Rate (FDR) 

correction of q ≤ 0.05 was applied to all t-tests performed for each ROI per 

classification. 
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2.2.10. Searchlight MVPA 

 In addition to the ROI analysis above, we repeated these classification 

procedures with a whole-brain searchlight (Kriegeskorte, Goebel & Bandettini, 

2006; Walther, Caddigan, Fei-Fei & Beck, 2009; Pereira & Botvinick, 2011). The 

SearchMight toolbox (Pereira & Botvinick, 2011) implemented in Matlab was used 

to shift a cube (5 x 5 x 5 voxel length, equal to 125 voxels) throughout the whole-

brain volume and perform the same decoding analyses as described in the ROI 

MVPA (see Section 2.2.9) independently at each different centre voxel position 

(Smith & Goodale, 2015). These analyses were performed independently for each 

participant, using a common group mask and the accuracy values for each voxel 

were converted to unsmoothed statistical maps. The common group mask was 

defined by voxels with a mean BOLD signal > 100 for every participant’s fMRI runs 

to ensure that all voxels included in searchlight MVPA contained suitable activation 

values.  

 To assess where in the brain coded information about typicality, we used a 

paired samples t-test approach. The non-tool accuracy maps were subtracted from 

the tool accuracy map per subject. A group tool > non-tool difference map was then 

produced based on the mean, where statistical significance was assessed by testing 

whether decoding accuracies were higher than zero at each voxel. Group accuracy 

maps resulting from the remaining classifications (i.e., object size, object category, 

tool function and tool identity) were tested against the value expected by chance for 

that classification (i.e., 50% or 33%). BrainVoyager’s cluster-level statistical 

threshold estimator (Goebel et al., 2006; Forman et al., 1995) was used for cluster 

correction (voxelwise thresholds were set to p = 0.01 and then the cluster-wise 

thresholds were set to p < .05 using a Monte Carlo simulation of 1000 iterations; for 
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similar approaches see Morrison, Tipper, Fenton-Adams & Bach, 2013; Monaco, 

Sedda, Cavina-Pratesi & Culham, 2015) and results are projected on to an averaged 

anatomical scan generated from the 19 subjects. 

2.3. Results 

2.3.1. Typicality versus grasp direction decoding 

 Decoding accuracies for the typicality classification (i.e., based on tool 

grasping) was found to be significantly above chance when based on activity 

patterns in the LOTC-Hand (56%, t(16) = 2.73, p = 0.007, d = 0.66 [chance: 50%]) 

and IPS-Hand ROIs (57%, t(18) = 2.72, p = 0.007, d = 0.62). The activity patterns in 

these ROIs could not, however, be used to decode the control grasp direction 

classification (i.e., based on non-tool grasping) significantly higher than chance 

(both p’s > 0.22), ruling out the possibility that these regions were merely encoding 

different grasp directions. In fact, classification accuracy was significantly higher for 

typicality, than grasp direction, in these LOTC-Hand (t(16) = 2.11, p = 0.026, d = 

0.51) and IPS-Hand ROIs (t(18) = 3.26, p = 0.002, d = 0.75; Fig 2.5A.). No other 

ROIs showed a similar pattern of results, including parts of the LOTC and IPS that 

were sensitive to other stimulus categories (i.e., tools, bodies, hands or objects). 

Instead, significant above-chance decoding was observed in LOTC-Body and pFs for 

the classification of both tool typicality (59%, t(17) = 4.75, p < 0.001, d =1.12 and 

58%, t(18) 2.57, p = 0.01, d = 0.59, respectively) and grasp direction (56%, t(17) = 

2.46, p = 0.012, d = 0.58 [chance = 50%] and 57%, t(18) = 2.59, p = 0.009, d = 0.59, 

respectively). The PMd ROI displayed significant decoding of reach direction for 

non-tool grasping only (59%, t(13) = 4.11, p = 0.001, d = 1.1). All remaining one-

samples t-tests were not significant. 
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 As in the ROI analysis, the decoding accuracies obtained from the searchlight 

for typicality when grasping the tools were compared with that for grasp direction 

when grasping the non-tools (see the typicality difference map in Fig. 2.5B.). 

Significantly higher decoding accuracy for typicality than grasp direction was 

observed in a large cluster (see Table 2.2. for cluster sizes) comprising an anterior 

portion of the left Superior and Middle Temporal Gyri (STG; MTG) that extended 

into the Parahippocampal Gyrus (PHG). Other clusters meeting these criteria were 

found in the right hemisphere within the Fusiform Gyrus (FG), anterior Superior 

Parieto-Occipital Cortex (aSPOC) and posterior Superior Temporal Sulcus (pSTS). 

Additionally, to explore whether searchlight results corroborated results from the 

ROI analysis, we also examined the uncorrected map at a more liberal threshold (p < 

0.05) and observed higher tool decoding accuracy within the IPS that overlapped the 

IPS-Hand ROIs (Fig. 2.5C.). The difference map revealed no evidence of 

significantly higher decoding accuracy in the opposite direction, that is, where grasp 

direction decoding was significantly higher than typicality decoding. 
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Figure 2.5. (A) Left hemisphere ROI MVPA results for the classifications of 

typicality (i.e., when grasping tools) and, as a control, grasp direction (i.e., when 

grasping non-tools). Decoding accuracies obtained using activity patterns from the 

LOTC-Hand and IPS-Hand ROIs were significantly higher than (1) chance and (2) 

that for grasp direction. (B) Typicality difference map derived from a searchlight 

analysis. Tool and non-tool decoding accuracies were acquired per voxel 

independently and then the values from the tool map were subtracted from the non-

tool map for each participant. The resulting maps were finally tested against zero to 

reveal where decoding accuracies were significantly higher for tools than non-tools. 
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(C) Individual IPS-Hand and IPS-Tool ROIs for each subject are overlaid on the 

typicality difference map set at a lower threshold that is not cluster corrected. 

Visually, the cluster clearly overlaps with the IPS-Hand ROIs. Errors bars represent 

SEM. 

2.3.2. Object size decoding 

 Decoding accuracies for the classification of object size did not significantly 

differ from chance for any of the visual localiser ROIs (all p’s < 0.18; Fig. 2.6A.). 

Reflecting the ROI analysis, the searchlight also did not show evidence that the areas 

around the IPS-Hand or LOTC-Hand could discriminate size significantly above 

chance (Fig. 2.6B.). Instead, significant size decoding was observed in a posterior 

part of the right IPS (pIPS), left Pre-Supplementary Motor Area (Pre-SMA), 

posterior Middle Temporal Gyrus (pMTG), Insula (INS), Retrosplenial Cortex 

(RSC) and bilateral cerebellum around layers I-IV in the left and layer VI in the right 

hemispheres. A superior portion of the left LOTC was also found to discriminate 

object size significantly above chance, and this overlapped with a probalistic map of 

the LOTC-Body ROIs, but not that of LOTC-Hand (Fig. 2.6C.; probalistic maps 

were generated using the volume-of-Interest based function in BrainVoyager QX). 
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Figure 2.6. (A) Left hemisphere ROI MVPA results for the classification of object 

size. No perceptual ROIs decoded object size significantly higher than chance. (B) 

Searchlight results for the classification of object size. (C) Probalistic maps of 

LOTC-Body and LOTC-Hand ROIs are overlaid on the superior LOTC cluster that 
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was found by the searchlight to decode object size significantly above chance. Error 

bars represent SEM.  

2.3.3. Object category decoding 
 
 Decoding accuracy for the classification of object category was found to be 

above chance for the LOTC-Object ROI, though this did not survive FDR correction 

for multiple comparisons (53%, t(18) = 2.86, p = 0.005, d = 0.66 [chance = 50%]; 

see Fig. 2.7.). No significant clusters by the searchlight for decoding object category. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.7. Left hemisphere ROI MVPA results for the classification of object 

category. Error bars represent SEM. 

 
2.3.4. Tool function decoding 

 Decoding accuracy for the classification of tool function was found to be 

above chance for the SMG ROI, though this did not survive FDR correction for 

multiple comparisons (56%, t(16) = 2.2, p = 0.022, d = 0.53 [chance = 50%]; see 

Fig. 2.8A.). The searchlight identified significant clusters for decoding tool function 

within the left secondary somatosensory cortex (S2) and posterior SPOC (pSPOC), 

plus the right Inferior Frontal Gyrus (IFG) and MTG (Fig. 2.8B.). 
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Fig. 2.8. (A) Left hemisphere ROI MVPA results for the classification of tool 

function. (B) Searchlight results for the classification of tool function. Error bars 

represent SEM. 

 
2.3.5. Tool identity decoding 

 As was the case for the decoding of tool function, decoding accuracy was 

above chance for the classification of tool identity for the SMG ROI, though this 

again did not survive FDR correction (41%, t(16) = 2.28, p = 0.018, d = 0.55 [chance 

= 33%]; see Fig. 2.9A.). The searchlight revealed a cluster in the left pre-SMA that 

decoded tool identity significantly above chance (see Fig. 2.9B.). 
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Fig. 2.9. (A) Left hemisphere ROI MVPA results for the classification of tool 

identity. (B) Searchlight results for the classification of tool identity. Error bars 

represent SEM. 
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Table 2.2. Searchlight cluster sizes, peak coordinates (Talairach) & statistical values. 

Region of activation Cluster 

voxel size 

Peak coordinates t p 

 X Y Z   

Typicality Difference Map 

Typicality > Grasp direction 

      

L-MTG 1674 -39 -16 -11 5.6 < 0.001 

L-STG  -45 -7 -5 5 < 0.001 

L-PHG  -27 -19 -23 4.8 < 0.001 

R-FG 1410 30 -73 -5 4.8 < 0.001 

R-aSPOC 278 15 -67 31 4.64 < 0.001 

R-pSTS 

 

242 36 -43 7 4.7 < 0.001 

Size       

L-INS 228 -36 14 -12 5.18 < 0.001 

L-MOG 281 -36 -79 7 6.56 < 0.001 

L-MTG 447 -63 -43 -2 4.8 < 0.001 

L-RSC 548 -9 -58 1 5.29 < 0.001 

L-SMA 282 -9 8 52 4.58 < 0.001 

R-aSPOC 194 21 -76 47 4.42 < 0.001 

L-I-IV 1294 -3 -46 -29 4.66 < 0.001 

R-VI 

 

568 27 -61 -20 4.9 < 0.001 

Function       

L-S2 254 -42 -13 16 4.52 < 0.001 

L-SPOC 887 -9 -82 22 5 < 0.001 

R-IFG 408 54 20 7 4.88 < 0.001 

R-MTG 

 

213 44 -19 -14 4.05 < 0.001 
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2.4. Discussion 

 During a real 3D tool grasping paradigm, fMRI MVPA was used to examine 

which brain regions contain representations about the learnt aspects of tool-use. 

After controlling for very similar actions with a series of non-tools, regions selective 

for viewing pictures of hands in the dorsal and ventral visual streams (IPS-Hand and 

LOTC-Hand) were found to be sensitive to whether a tool is grasped in a way that is 

typical for use (i.e., when grasping the tool’s handle) or not (i.e., when grasping the 

tool’s head). These representations, as well as others regarding the identity, function 

or category of an object, were also decodable from grasp-related activity within 

parieto-frontal and temporo-occipital cortex across hemispheres, including a large 

portion of left anterior temporal cortex (i.e., MTG, PHG & STG). Together, these 

findings imply that these regions have a role in humans’ highly evolved ability to 

interact with tools. 

2.4.1. Hand-selective cortex and learnt actions 

 The human brain contains multiple areas that respond preferentially to the 

sight of a pictured hand in both the sensorimotor and visual systems (e.g., Perini, 

Caramazza & Peelen, 2014; Bracci, Cavina-Pratesi, Ietswaart, Caramazza & Peelen, 

2012; Bracci & Op de Beeck, 2016). These regions are proposed to be relevant for 

object-directed action (e.g., Bracci, Cavina-Pratesi, Connolly & Ietswaart, 2016; 

Striem-Amit, Vannuscorps & Caramazza, 2017; Bracci, Caramazza & Peelen, 2018) 

such as for storing the hand movements or hand postures associated with specific 

tools (Peelen, Bracci, Lu & He, Caramazza & Bi, 2013). Our results clearly fit with 

Tool Identity       

Pre-SMA 201 -9 8 22 4.54 < 0.001 
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this view, showing that hand-selective cortex is sensitive to whether a hand 

movement matches the way in which a tool is typically grasped for use. 

 This interpretation relies on the assumption that representations within these 

hand-selective areas can be shaped through learning (i.e., the link between tool-use 

and hand movements are learnt through experience; Sirigu et al., 1995; Buxbaum, 

Sirigu, Schwartz & Klatzky, 2003). A number of cases now argue that prior 

knowledge can indeed alter representations within occipito-temporal cortex 

(Gallivan & Culham, 2015; Lingnau & Downing, 2015), particularly for body-

selective regions (Downing & Peelen, 2016). Likewise, compelling fMRI evidence 

from one-handed participants (e.g., amputees) indicates that responses within such 

LOTC and IPS areas could be experience-dependent because their responses are 

related to the amount they use a prosthetic limb, with this degree of experience even 

modulating LOTC-Hand’s connectivity with primary somatomotor cortices (van den 

Heiligenberg, Macdonald, Duff, Henderson, Johansen-berg, Culham & Makin, 2015; 

van den Heiligenberg, Orlov, Macdonald, Duff, Slater, Beckmann, Johansen-Berg, 

Culham & Makin, 2018). Thus, good evidence supports this interpretation, though 

further study is needed to identify how learning affects processing within these 

regions (e.g., what experience is necessary to distinguish between functional and 

non-functional grasping; e.g., Dempsey-Jones, Wesselink, Friedman & Makin, 2019) 

and is well suited by tool-training interventions (e.g., Weisberg, Van Turrenout & 

Martin, 2006; Kiefer, Sim, Liebich, Hauk & Tanaka, 2007; Bellebaum, Tettamanti, 

Marchetta et al., 2013) that have, so far, been used only during perceptual 

experiments (see Future directions: section 5.6.). 

 Of particular interest, typicality decoding was successful using activity 

patterns from hand-selective, but not overlapping parts of tool-selective cortex. Not 
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only do these LOTC-/IPS-Hand and LOTC-/IPS-Tool ROIs share a number of 

voxels anatomically, picture viewing experiments have shown that these overlapping 

areas exhibit similar responses (e.g., Bracci, Cavina-Pratesi, Ietswaart, Caramazza & 

Peelen, 2012; Bracci & Peelen, 2013; Bracci, Cavina-Pratesi, Connolly & Ietswaart, 

2016). The results here, then, uniquely suggest that these tool- and hand-selective 

sites may reflect distinct neural populations (for consideration of this point see 

Bracci, Cavina-Pratesi, Ietswaart, Caramazza & Peelen, 2012; Striem-Amit, 

Vannuscorps & Caramazza, 2017), a claim that could be investigated using high-

resolution fMRI (e.g., Grill-Spector, Sayres & Ress, 2006; Schwarzlose, Baker & 

Kanwisher, 2005; McGugin, Gatenby, Gore & Gauthier, 2012). 

 Perhaps, we found that typicality was specifically decodable from hand-

selective regions because, in this experiment, we examined hand, rather than tool, 

movements. Indeed, Gallivan et al., (2013) have differently found that a tool-

selective area around the pMTG (even described as LOTC-Tool by Gallivan, 2014), 

carries information about whether a pair of tongs is used to perform grasping versus 

reaching. This suggests a potential difference between these tool- and hand-selective 

areas, but it is worth highlighting that reaching and grasping are not necessarily 

equated for kinematic complexity (e.g., grasping may take longer or demand more 

exact positioning of the tool) making such a conclusion from the Gallivan et al. 

(2013) study tentative. Continuing to carefully design control tool-related actions 

(e.g., Valyear et al., 2012; Brandi et al., 2014) will be important and might benefit 

from, for example, highlighting contact points as was the case for our reach-to-grasp 

movements.  

 An unlikely explanation, however, of the specific decoding of typicality for 

hand-, but not tool-selective regions, is that they are caused by differences in the 
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number of voxels between these ROIs (i.e., hand-selective regions were larger than 

tool-selective regions; see Etzel, Zacks & Braver, 2013). In LOTC the mean voxel 

sizes of these ROIs were almost identical (i.e., LOTC-Hand mean size was 4 voxels 

larger than LOTC-Tool). Similarly, the IPS ROI that did differ to a greater extent 

(i.e., IPS-Hand mean size was 29 voxels larger than IPS-Tool) were replicated by a 

searchlight (i.e., the typicality cluster showed substantial overlap with IPS-Hand, not 

IPS-Tool) that used identically sized cubic inputs. In fact, the only result I suspect 

may be influenced by average voxel size is the decoding of object category in left 

LOTC-Object; of the neighbouring LOTC ROIs this was clearly the largest and was 

the only one to show any evidence of decoding object category (i.e., tool versus non-

tool), suggesting a possible link between voxel size and decoding accuracy (see 

Eger, Ashburner, Haynes, Dolan & Rees, 2008; Walther, Caddigan, Fei-Fei & Beck, 

2009; Axelrod, Bar, Rees & Yovel, 2014; Said, Moore, Engell, Todorov & Haxby, 

2010). Therefore, I interpret this data to suggest that hand-selective cortex carries 

information that could serve tool-use and, accordingly, indicates that these regions in 

the LOTC and IPS (and possibly those described by others within the left ventral 

temporal cortex, bilateral pSTS, inferior precentral gyrus and IFG; see Grosbras, 

Beaton & Eickhoff, 2012; Bracci, Cavina-Pratesi, Connolly & Ietswaart, 2016), 

deserve particular attention by future investigations of tool-related processing. 

2.4.2. Visual streams & a semantic hub in learnt actions 

 As in closely-related perceptual (e.g., Valyear & Culham, 2010; Mizelle et 

al., 2014; also see uncorrected results from Yoon, Humphreys, Kumar & Rotshtein, 

2012) and pantomiming experiments (e.g., Przybylski & Króliczak, 2017; Buchwald, 

Przybylski & Króliczak, 2018) a sensitivity to the typicality of a tool grasping 

movement was observed in the ventral visual stream (i.e., left LOTC-Hand and right 
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FG). This is consistent with the DVST’s claim that, even though visuomotor control 

is processed by the dorsal visual stream, the ventral visual stream is needed for 

actions involving tools because such movements rely on information that has been 

previously learnt (e.g., how they should be grasped; Milner & Goodale, 1995; 2006; 

also see Carey, Harvey & Milner, 1996). In fact, many contemporary arguments 

have consistently made the claim that the ventral visual stream plays a role in the 

storage and integration of knowledge about learned hand-tool interactions (e.g., 

Johnson-Frey, 2004; Culham & Valyear, 2006; Johnson-Frey, 2007; Mahon, 

Milleville, Negri, Rumiati, Caramazza & Martin, 2007; Watson & Chatterjee, 2011; 

van Elk, van Schie & Bekkering, 2014; Orban & Caruana, 2014). 

 Only recently, however, has there been direct evidence that these ventral 

stream regions contain neural representations relevant to object-directed actions (for 

reviews see Lingnau & Downing, 2015; Gallivan & Culham, 2015). These 

representations have ranged from those linked to basic kinematic components of a 

movement (e.g., reach direction; Gallivan, Chapman, McLean, Flanagan & Culham, 

2013; Gallivan, McLean, Valyear & Culham, 2013; Gallivan, Johnsrude & Flanagan, 

2016) to those that are abstract and independent of such kinematics (e.g., lifting 

versus punching/lifting heavy versus light objects; Ooserhof, Wiggett, Diedrichsen, 

Tipper & Downing, 2010; Gallivan, Cant, Goodale & Flanagan, 2014; Ariani, 

Oosterhof & Lingnau, 2018; also see Wurm & Lingnau, 2015 and Wurm, Ariani, 

Greenlee & Lingnau, 2016 for similar evidence when viewing object-directed 

actions). Our findings add to both growing bodies of evidence: the ventral stream 

contains abstract representations, in the form of typicality and object-category 

decoding (see Hand-selective cortex and learnt actions: section 2.4.1.), as well as 

representations that simply reflect kinematic properties including those of grasp 
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direction and/or object size (e.g., within the left LOTC-Body and pFs ROIs; see Fig. 

2.5A. and searchlight results in the LOTC in Fig. 2.6C.). 

 As for the dorsal visual stream, the findings here are not entirely consistent 

with original claims of the DVST (nor the two-action systems model; Buxbaum, 

2017), because areas of the dorso-dorsal stream coded typicality (i.e., left IPS-Hand 

and right pSPOC; see Fig. 2.5.) and tool function (i.e., left aSPOC; see Fig. 2.8B.). 

These regions were not identified in important control classifications of grasp 

direction (i.e., grasping the right versus left sides of non-tools) or object size (i.e., 

grasping smaller versus larger objects) implying that these results are not attributable 

to basic kinematic differences (e.g., smaller versus larger grip size). Importantly, the 

control classifications appear to be a valid approach to identify such kinematic 

confounds because they revealed findings matching previous MVPA real action 

experiments regarding other parts of the dorso-dorsal stream including the decoding 

of grasp direction in the left PMd (see Fig. 2.5A. and the left PMd/Frontal Eye Field 

ROI in Gallivan, McLean, Smith & Culham, 2011) and object size in the right pIPS 

(see Fig. 2.6B. and the left pIPS ROI in Gallivan, McLean, Valyear, Pettypiece & 

Culham, 2011). In fact, results from the control searchlight classification of object 

size (Fig. 2.6B.) clearly implicated other areas known to be responsible for motor 

control including the left pre-SMA and bilateral cerebellar areas (e.g., Nowak, 

Topka, Timmann, Boecker & Hermsdorfer, 2007; Glover, Wall & Smith, 2012; 

King, Hernandez-Castillo, Poldrack, Ivry & Diedrichsen, 2019; for review see 

Hardwick, Caspers, Eickhoff & Swinnen, 2018) advocating this techniques 

capability of detecting representations about less abstract properties. 

 Like the results here, a number of related studies have found that parts of the 

IPS are sensitive to the learnt aspects of tool-use (e.g., Chen, Garcea & Mahon, 
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2016; Chen, Garcea, Jacobs & Mahon, 2017). Most comparably to the experiment 

here, this has been demonstrated when participants view typical and atypical 

grasping (Valyear & Culham, 2010) as well as when pretending to grasp a pictured 

tool by its handle (Przybylski & Króliczak, 2017; Buchwald et al., 2018). 

Accordingly, an interesting inference is that perhaps distinct parts of the dorso-dorsal 

stream do have access to stored knowledge (cf. Milner & Goodale, 2006; Buxbaum, 

2001). A similar conclusion could be drawn from results reported by Valyear, 

Cavina-Pratesi, Stiglick & Culham (2007) where they found that a portion of the 

aIPS which is selectively activated when naming tools (relative to other graspable 

non-tools) was distinctly posterior from another region of the aIPS that was active 

when these participants grasped novel objects. 

 More unique, however, are the pattern of decoding results in SPOC. Detailed 

experimentation of reaching and grasping behaviour has most commonly linked 

SPOC activity, often bilaterally (see Monaco, Cavina-Pratesi, Sedda, Fattori, Galletti 

& Culham, 2011) to the processing of hand kinematics (e.g., wrist orientation or 

reach distance; Karnath & Perenin, 2005; Monaco, Cavina-Pratesi, Sedda, Fattori, 

Galletti & Culham, 2011; Cavina-Pratesi, Monaco, Fattori, Galletti, McAdam, 

Quinlan, Goodale & Culham, 2010; Gallivan, Cavina-Pratesi & Culham, 2009). 

Nevertheless, I believe these findings are unlikely to be attributable to subtle 

differences in hand kinematics, especially in the case of the left pSPOC because this 

region decoded tool function which involved grasping the identical handles of 

stimuli that simply had different heads attached. A nearby precuneus area has been 

similarly implicated in the processing of conceptual knowledge before (Fairhall & 

Caramazza, 2013) and SPOC even preferentially responds to the areas where actions 

are most typically performed (i.e., the lower, relative to upper, visual field; Rossit, 
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McAdam, McLean, Goodale & Culham, 2013), suggesting, perhaps, that this 

region’s activity is sensitive to past experience (also see Scholz, Klein, Behrens & 

Johansen-Berg, 2009 for experience-dependent structural changes around the nearby 

Posterior Occipital Sulcus bilaterally). 

 Rather surprisingly, the left pMTG, a canonical part of the ventro-dorsal 

stream that is presumed to process manipulation knowledge (Buxbaum, 2017) was 

not found to decode typicality, tool function or tool identity. Activation in this area is 

argued to be the most robust finding in tool-related literature (e.g., Chao, Haxby & 

Martin, 1999; Beauchamp, Lee, Haxby & Martin, 2003; Lewis, 2006; Martin, 2016) 

but, taking a critical stance, null results from select studies have previously 

questioned whether function- and action-related information is represented here 

(Chen, Garcea & Mahon, 2016 and Chen, Garcea, Jacobs & Mahon, 2018) or if this 

area is even tool-selective at all (e.g., Kellenbach, Brett & Patterson, 2003; 

Downing, Chan, Peelen, Dodds & Kanwisher, 2006).  

 An important puzzle here is why Valyear & Culham (2010) found typical 

grasping selectivity in the left pMTG (in addition to LOTC) during their picture 

viewing paradigm, whereas we did not when participants actually performed these 

actions (also see Mizelle et al., 2014). I suspect this is related to the observational 

nature of Valyear & Culham’s (2010) task because action observation, relative to 

imitation, has been shown to specifically activate the left pMTG (Caspers, Zilles, 

Laird & Eickhoff, 2010). In fact, action observation, relative to simply grasping a 

cued side of an object, is likely to be more semantically taxing (e.g., attributing 

intentions to an actor; Catmur, 2015) and an increase in such demands has been 

shown to shift tool-related activity anteriorly (e.g., from LOTC toward the MTG; 

Bracci & Peelen, 2013; Simmons & Martin, 2012; Simmons, Reddish, Bellgowan & 
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Martin, 2010). This presents a potential division between the roles of the left LOTC 

(i.e., LOTC-Hand) and pMTG, however these regions have rarely been explicitly 

distinguished between (e.g., Lingnau & Downing, 2015). The use of specific labels 

within the LOTC (see Weiner & Grill-Spector, 2012) will deepen our understanding 

of tool-related neural activity (Gallivan, 2014; Chen, Garcea, Jacobs & Mahon, 

2017; Perini et al., 2014; Bracci & Peelen, 2013) and could facilitate comparisons 

with lesion methodologies that tend to implicate large portions of the left posterior 

temporal cortex in action production and/or recognition deficits (e.g., Campanella et 

al., 2010; Kalenine et al., 2010; Tranel et al., 2003; Tarhan, Watson & Buxbaum, 

2015). 

 Other ventro-dorsal stream areas (i.e., left SMG and PMv) also displayed no 

evidence that they could be used to decode typicality. Again, this is inconsistent with 

previous research involving real actions (e.g., Oosterhof, Tipper & Downing, 2012) 

showing, for example, that the left IPL represents various action-related properties 

during tool pantomiming (e.g., Chen et al., 2015; Chen et al., 2017) as well as TMS 

evidence that it is causally linked to tool grasping (McDowell, Holmes, Sunderland 

& Schurmann, 2018). Nevertheless, notice that many of these studies have not 

included important non-tool control actions (as was the case here) impeding the 

conclusion that these areas have a role in the performance of tool-specific actions, 

rather than actions, per se (in fact see Reader, Royce, Marsh, Chivers & Holmes, 

2018 for evidence that TMS of SMG disrupts actions regardless of whether they are 

well learnt or not). Likewise, even stimulation evidence is difficult to link to this 

exact region because effects may be outside of the SMG (though see Andres, 

Pelgrims, Olivier & Vannuscorps, 2017). 
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 An important difference between this study and the highly related tool-use 

paradigms described earlier which did implicate ventro-dorsal stream regions in 

learnt tool-use (Brandi, Wohlschlager, Sort & Hermsdorfer, 2014; Valyear, Gallivan, 

McLean & Culham, 2012; Gallivan et al., 2013), is that those paradigms contrasted 

rather kinematically distinctive real hand-tool actions (e.g., reaching versus grasping, 

using versus lifting). In line with lesion evidence showing that tool-use, but not 

functional tool grasping, deficits are clustered around the SMG (Randerath, 

Goldenberg, Spijkers, Li & Hermsdorfer, 2010), perhaps such regions are involved 

only during more demanding tool-use acts.  

 This said, the pattern of results we found for decoding tool function and tool 

identity in the left SMG and, sometimes, the right IFG did closely resemble recent 

results showing these that these regions are part of a pathway mediating action 

competition that arises between- (i.e., a difficulty inhibiting the action associated 

with a distractor tool), but not within-tools (i.e., a difficulty inhibiting the conflicting 

actions associated with a single tool; Garcea et al., 2019; also see Buxbaum, 2017). 

Here these regions consistently showed evidence for decoding the functions and 

identities between-tools (e.g., coding what is a knife as opposed to a spoon or 

pizzacutter), rather than within-tool differences (e.g., grasping a knife by its handle 

versus blade). Of note, the SMG decoding evidence of this was rather weak and 

might imply that a larger number of tool exemplars will be useful in clarifying this 

point.  

 The remaining regions that did represent typicality included those known to 

be highly relevant to semantic processing (see Binder et al., 2009), that is, those 

within the anterior portions of the left temporal lobe (e.g., Mummery et al., 2000) as 

well as the right pSTS (see Hocking & Price, 2009; Hasan, Valdes-Sosa, Gross & 
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Belin, 2016; Mion, Patterson, Acosta-Cabronero, Pengas et al., 2010) and FG (e.g., 

Baker et al., 2001). In fact, involvement of the anterior-ventral and/or posterior-

superior temporal cortex has been detected during innovative tool-related tasks (e.g., 

tool-manufacturing, reasoning where a tool is typically found; Stout, Toth, Schick, 

Stout & Hutchins, 2000; Putt, Wijeakumar, Franciscus & Spencer, 2017; 

Vingerhoets, 2008; Peelen & Caramazza, 2012). Likewise the right pSTS is argued 

to be integral for understanding the meaning of hand actions (e.g., Puce, Allison, 

Bentin, Gore & McCarthy, 1998; Pelphrey, Morris & McCarthy, 2004; Pelphrey, 

Morris, Michelich, Allison & McCarthy, 2005) and has even been shown to grow in 

the macaque after learning to use a tool (Quallo, Price, Ueno, et al., 2009), denoting 

their relevance to tool grasping.    

 The hub-and-spoke theory for semantic representation (e.g., Lambon Ralph, 

Jefferies, Patterson & Rogers, 2017) offers a viable account of the widespread 

coding of typicality reported here that, importantly, does not preclude related 

embodied cognition views (e.g., Damasio & Damasio, 1994; Barsalou, 1999; 

Pulvermuller, 2005, Martin, 2007). Based on data spanning TMS, fMRI and 

semantic dementia cases (e.g., Hodges et al., 1995, Binney, Embleton, Jefferies, 

Parker & Lambon Ralph, 2010), the bilateral Anterior Temporal Lobe (ATL) is 

predicted to constitute a semantic hub that mediates cross-modal semantic 

processing through its connections to spokes in the sensory and motor cortices 

(Lambon Ralph et al., 2017). Under this framework, it could be speculated that it is 

through bidirectional connections with the left ATL (see Chen, Lambon Ralph & 

Rogers, 2017) that other brain regions (e.g., left hand-selective cortex, right FG) 

come to represent typicality. From here, aspects of the results here raise intriguing 

questions about this model such as the role of lateralisation (e.g., were ATL 
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representations only identified in the left hemisphere here due to the lateralisation of 

tool-processing? For a similar left ATL lateralisation in language processing see 

Visser & Lambon Ralph, 2011), interhemispheric connections (e.g., can information 

transfer between left ATL and right FG/pSTS? For evidence in favour of this 

possibility see Ramayya et al., 2009; Anzellotti et al., 2016) and ATL sub-regions 

(e.g., does the large cluster encompassing anterior STG, MTG and PHG reflect the 

multimodal nature of tool-use?; For related discussions see Visser & Lambon Ralph, 

2011; Visser, Jefferies, Embleton & Lambon Ralph, 2012; Jackson, Hoffman, Pobric 

& Lambon Ralph, 2015; Martin, Simmons, Beauchamp & Gotts, 2014). 

2.4.3. Limitations 

 I have focused my interpretation of successful decoding between the grasping 

of typical and atypical grasping as a reflection of the learnt aspects of tool-use (i.e., 

handle grasping is considered to be typical for use because we have learnt the 

association between this action and the function of that object) but there are 

alternative views. First, it could be argued that typicality decoding is caused by 

differences in somatosensory stimulation associated with grasping the tools’ handles 

versus heads (e.g., differences in smoothness), but an explanation based wholly on 

somatosensation cannot explain these results since a ROI in left somatosensory 

cortex did not show the same pattern of results as the left hand-selective cortex ROIs 

(i.e., decoding was possible for typicality as well as grasp direction based on non-

tool grasping; see Appendix A). Second, perhaps these results were driven by 

differences in attention (e.g., attention is drawn towards the head of the tool; Skiba & 

Snow, 2016; Xiong, Proctor & Zelaznik, 2019). Great care was taken to control 

many properties between the respective portions of the handles and heads of the 

tools and non-tools (e.g., maximum width, reach distance, required grip aperture), 



How the brain grasps tools 

 

 

115 

though, as is often the case, further studies with additional control stimuli would be 

useful in ruling out this possibility (e.g., using scrambled non-tools; see Macdonald 

& Culham, 2015). Finally, the decoding of typicality could be linked to familiarity 

(e.g., maybe we grasp tools by their handles more often than the head). As discussed 

further in Chapter 5, I consider familiarity and typicality to be closely related (e.g., 

as familiarity with an object increases there may be a better understanding of its 

typically associated action), though I appreciate that tool-training paradigms would 

be particularly suitable for further elucidating this point. 

 In order to optimise this project’s experimental power (see Methods), 

participants performed highly unnatural consecutive grasping actions five times 

within a block. Whether this unusual behaviour affected movement kinematics is 

unknown and is a particularly interesting point given our unexpected findings that 

hand-, but not tool-selective, cortex decoded typicality (e.g., are representations in 

hand-selective cortex related to hand kinematics?). Accordingly, the next chapter 

(Chapter 3) presents a follow-up behavioural motion-capture experiment that closely 

examines hand kinematics during the same paradigm. Likewise, the final 

experimental chapter (Chapter 4) used adapted this paradigm for use with a slow 

event-related fMRI approach (with a more natural single grasping action) to 

investigate whether decoding of typicality decoding was also possible during motor 

planning, that is, before the hand even moved. 

2.4.4. Conclusion 

 Simply grasping a tool by its handle, even when the intention to use it is 

absent, appears sufficient to evoke representations about learnt tool-use. Regions 

spread across both hemispheres were found to carry such information, perhaps most 

notably within hand-, but not overlapping tool-, selective cortex. A huge amount of 
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neuroimaging research has focused on examining neural responses associated with 

perceiving or thinking about tools. The results here give the impression that directing 

further attention to areas specialised for hand-related processing may yield valuable 

insights into the neural bases of human tool-use. After all, for the vast majority of us, 

our hands are fundamental to the skilled use of these objects. 
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Chapter 3 

 
Hand kinematics during tool grasping: A motion-capture 

investigation 

3.1. Introduction 

 Tools are central to our world with humans being able to handle them with 

remarkable dexterity. Our understanding of how this behaviour unfolds at the 

kinematic level is hugely unexplored, even when simply reaching toward and 

grasping these objects. This is despite there being more extensive study of reach-to-

grasp kinematics in general (for review see Castiello & Dadda, 2019) as well as a 

detailed understanding of how tools influence behaviour when measured in other 

ways (e.g., eye-tracking, button-presses). Addressing this, a behavioural follow-up 

experiment to the previous fMRI study (Project 1, Chapter 2) is presented in this 

chapter, where hand kinematics during the same tool and non-tool grasping 

paradigm were measured with motion-capture. 

 When the hand approaches an object, the point where grip size (i.e., the 

distance between the thumb and index finger) is at its largest has been described as a 

clearly identifiable landmark since early film and motion analysis (e.g., Jeannerod, 

1984; Wing, Turton & Fraser, 1986; Gentilucci et al., 1991). This measure, often 

referred to as Peak Grip Aperture (PGA), has been reliably shown to covary with 

object size (Marteniuk et al., 1990; Gentilucci et al., 1991; Castiello et al., 1992; 

Castiello, Bennet & Stelmach, 1993), with the relationship between MGA and object 

size being commonly used to quantify a degree of grip scaling (e.g., Jackson & 

Shaw, 2000; Jackson, Newport & Shaw, 2002; Vishton, Rea, Cutting & Nunez, 

1999; Sedda, Monaco, Bottini & Goodale, 2011).  
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 Inspecting such measures continues to be invaluable for refining influential 

theories related to motor control (e.g., Smeets & Brenner 1999; 2018), including that 

of the Dual Visual Stream Theory (DVST) that specifically offers an explanation of 

the processes underlying tool-use behaviour (e.g., Milner & Goodale, 1995; 2006). 

Likewise, hand kinematic analyses also offer key insights about the aetiology (e.g., 

Perenin & Vighetto, 1998; Pisella, Rossetti & Rode, 2017) and rehabilitation (e.g., 

Levin, 2016; Kapur, Jensen, Buxbaum, Jax & Kuchenbecker, 2010; Buxbaum & 

Randerath, 2018) of clinical disorders (e.g., visual neglect; optic ataxia, visual form 

agnosia), including apraxia, a disorder specifically linked to tool misuse (e.g., 

Hermsdorfer, Randerath, Goldenberg & Johannsen, 2012; Sperber et al., 2018). 

Considering the epistemological criticism that neural measures alone cannot derive 

the processes underlying a given behaviour (Krakauer, Ghazanfar, Gomez, Malcolm, 

Maclver & Poeppel, 2017; also see Gramann, Ferris, Gwin & Makeig, 2014), 

kinematic investigations of tool grasping are needed to understand the mechanisms 

that support tool-use. 

 Unlike fMRI investigations where participants must lay supine, grasping 

kinematic measures are nearly always taken when participants sit upright at a table 

(e.g., Holt, Lefevre, Flatters et al., 2013; Paulun, Gegenfurtner, Goodale & Fleming, 

2014), as would be the case for much everyday behaviour (e.g., when grasping the 

computer mouse at a desk). Moreover, most grasping studies focus on single reach-

to-grasp actions (e.g., Lukos, Ansuini & Santello, 2008; though see Castiello, 1997; 

Quinlan & Culham, 2015), whereas the particular fMRI block-design utilised in 

Project 1 entailed an unnatural repetitive grasping action (i.e., grasp an object five 

times within a trial). These points raise the question as to whether the actions 

performed during the fMRI study would share the same characteristics as those 
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normally studied in laboratory-based grasping experiments, particularly since other 

types of awkward grasps have been shown to influence hand kinematics (e.g., when 

using the ring finger and thumb or the non-dominant hand; Gonzalez, Ganel, 

Whitwell, Morrissey & Goodale, 2008; Franz, Hesse & Kollath, 2009; Janczyk, 

Franz & Kunde, 2010; Tang, Whitwell & Goodale, 2014; Eloka, Feuerhake, Janczyk 

& Franz, 2015). 

 A primary aim of the experiment here, therefore, was to clarify whether 

participants were likely to have been scaling their grip according to object size 

during the fMRI grasping paradigm presented in Project 1. To this end, a separate 

behavioural motion-capture experiment was carried out using a highly similar design 

and setup (see Methods and Fig. 2.1B). Supplementary kinematic measures have 

been recorded for other fMRI grasping paradigms (e.g., Begliomini, Caria, Grodd & 

Castiello, 2007; Bernier & Grafton, 2010; Rossit, McAdam, McLean, Goodale, 

Culham, 2013), but only rarely are the constraints (e.g., laying supine) matched 

between neuroimaging and behavioural assessment (Grol, Majdandzic, Stephan, 

Verhagen, Dijkerman et al., 2007; Cavina-Pratesi, Monaco, Fattori, Galletti et al., 

2010; Monaco, Cavina-Pratesi, Sedda, Fattori, Galletti & Culham, 2011). 

 By using the same tool and non-tool stimuli (see Methods and Fig. 2.1A), 

this grasping experiment is unique from most related studies that instead examine 

actions involving unfamiliar geometric shapes that have no obvious use (e.g., Efron 

blocks; Efron, 1969). Even the rarer experiments that investigate the grasping of 

other everyday objects often use stimuli such as cups, fruits or balls (e.g., Castiello, 

1996; Riddoch, Edwards, Humphreys, West & Heafield, 1998; Gentilucci, 2003; 

Parma, Ghirardello, Tiriindelli & Castiello, 2011; Sartori, Ciani, Bulgheroni & 

Castiello, 2013; Glover, Rosenbaum, Graham & Dixon, 2004) that closely resemble 
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classes of objects (e.g., vegetables or sports equipment) which, when passively 

viewed during neuroimaging, do not activate the brain in the same way as viewing a 

picture of a tool does (e.g., Kraut, Moo, Segal & Hart Jr, 2002; Valyear, Cavina-

Pratesi, Stiglick & Culham, 2007; Bracci & Op de Beeck, 2016; cf. Downing, Chan, 

Peelen, Dodds & Kanwisher, 2005).  

 This said, important studies have already investigated tool-related actions at 

the kinematic level, often focusing on how behaviour is altered by the movement 

intended to be performed with the tool. For example, Jax & Buxbaum (2010) have 

shown that the reaction time (RT) is generally slower if grasping a tool when the 

intention is to demonstrate its use, relative to simply moving the tool to another 

location. Sensitive motion-capture technology has been used to replicate this RT 

effect and has additionally revealed that grasping a tool for using, rather than 

moving, is linked to a prolonged movement times (MT) and enlarged PGA in both 

young (Valyear, Chapman, Gallivan, Mark & Culham, 2011; Cicerale, Ambron, 

Lingnau & Rumiati, 2014) and elderly adults (Cicerale, Ambron, Lingnau & 

Rumiati, 2014). 

 Identification of unique hand kinematics when using, rather than moving, a 

tool fits well with the view that there are distinct neural mechanisms required for 

using a tool for its well-learnt purpose (e.g., Milner & Goodale, 1995; 2006; 

Buxbaum, 2017). In fact, a number of accounts on this topic clearly contrast this 

knowledge-based action with others, such as when distinguishing between 

prehension (versus utilisation) (Johnson-Frey, 2003), acting-with (versus acting-on) 

an object (Johnson-Frey & Grafton, 2003) or acting consistently with object 

properties that are functional (versus structural/volumetric) (Bub, Masson & Cree, 

2008). Common to all of these views is that such actions rely on access to stored 
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knowledge about how to manipulate the tool. Nonetheless, two important details 

should be considered before presuming that different hand kinematics when using, 

versus moving, a tool are specifically based on retrieving stored tool-action 

associations.  

 First, tool-use may rely on more extensive planning than tool-moving 

(Valyear, Chapman, Gallivan, Mark & Culham, 2011), a point easily drawn if 

considering the amount of concrete steps between the former (e.g., grasp the knife, 

demonstrate a slicing action and place it down) and latter task (e.g., grasp the knife 

and place it down). In fact, the findings that RTs are actually faster for using a tool if 

this action is instead compared to passing the tool to another person (Oisurak, Roche, 

Ramone & Chainay, 2013) suggests that the degree of movement extent is an 

important consideration because, in this case, the amount of steps are more closely 

matched (i.e., grasp the knife, rotate the knife, pass the knife), with RT being thought 

to correspond to motor planning (e.g., Delmas, Casamento-Moran, Park, Yacoubi & 

Christou, 2018). 

 Second, accuracy demands are poorly specified in these tool-use tasks (i.e., 

demonstrating its use in mid-air without a real object to contact), particularly since 

the tool-move conditions have a real marked goal (e.g., lay it on a foam pad; 

Cicerale, et al., 2014). Not only are kinematic variables related to both grasping 

(e.g., grip scaling) and reaching (e.g., peak velocity, MT) influenced by whether an 

action is real or pantomimed (e.g., Goodale, Jakobson & Keillor, 1994), the realness 

of a tool-related action has also been shown to influence kinematics (Lulic, 

Maciukiewicz, Gonzalez, Roy & Dickerson, 2018), even when specifically 

comparing the demonstration versus actual contextual use of a tool (Hermsdorfer, 

Randerath, Goldenberg & Johannsen, 2012). 
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 Worth highlighting, the highly relevant motion-capture studies (i.e., Valyear, 

Chapman, Gallivan, Mark & Culham, 2011; Cicerale, Ambron, Lingnau & Rumiati, 

2014) carefully restricted their kinematic analyses to the point where the hand first 

contacted the object, thus, minimising the influences of these two methodological 

considerations (i.e., differences in movement extent or accuracy demands are 

constant when initially grasping the tool). However, it is clear that upcoming 

movements in an action sequence can influence the way that the object is initially 

grasped (e.g., when grasping to throw versus to place; Rosenbaum, Vaughan, 

Barnes, & Jorgensen, 1992; Cohen and Rosenbaum 2004; Marteniuk et al., 1987; 

Ansuini et al., 2006; Ansuini, Giosa, Turella, Altoe & Castiello, 2008; Schuboe, 

Maldonado, Stork & Beetz, 2008; Johnson-Frey, McCarty & Keen, 2004; Gentilucci, 

Negrotti & Gangitano, 1997; Rosenbaum, Chapman, Weigelt, Weiss & van der Wel, 

2012; Rosenbaum & Feghhi, 2019). Thus, additional investigations with different 

tool grasping tasks where movement extent and accuracy demands are more similar 

would be useful to further clarify whether tool-related movements do rely on access 

to learnt knowledge. 

 Accordingly, another aim of this experiment was to test whether there were 

distinct kinematics between tool and non-tool grasping because tool, but not non-

tool, actions are linked to stored knowledge (e.g., Milner & Goodale, 1995; 2006; 

Buxbaum, 2017; Osiurak et al., 2014; Johnson-Frey, 2003; Johnson-Frey & Grafton, 

2003; Bub, Masson & Cree, 2008) yet movement extent and accuracy demands are 

tightly matched if simply grasping these objects. Indeed, there is already kinematic 

evidence indicating that tool grasping which takes into consideration the object’s 

functional properties (i.e., for demonstrating its use) is slower with a wider PGA 

than if grasping the same tool when only needed to consider its structural properties 
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(i.e., for moving it elsewhere; Valyear, Chapman, Gallivan, Mark & Culham, 2011; 

Cicerale, Ambron, Lingnau & Rumiati, 2014; also see Jax & Buxbaum, 2010). A 

key hypothesis, then, was that tool, relative to non-tool grasping would share the 

same characteristics (i.e., slower with a wider PGA). 

 Importantly, these findings were predicted even for the simple act of grasping 

(i.e., rather than using a tool) because even passively viewing a tool (e.g., as a prime) 

can influence subsequent grasping behaviour (e.g., Bub, Masson & Cree, 2008; 

Valyear et al., 2011). In fact, many other behavioural studies, besides those 

involving grasping, examining tool-related processing have found that the 

presentation of tool can, atleast under certain conditions (see Tipper et al., 2006; 

Pellicano et al., 2010; Costantini, Ambrosini, Scorolli & Borghi, 2010; Costantini, 

Committeri & Sinigaglia, 2011; Ambrosini, Scorolli, Borghi & Costantini, 2012; 

also see Valyear et al., 2011 for an example of how strategy affects tool priming 

during grasping), automatically evoke motor preparation (for reviews see Thill, 

Caligiore, Borghi, Ziemke & Baldassarre, 2013; van Elk et al., 2014; Borghi & 

Riggio, 2015; Osiurak, Rossetti & Badets, 2017). 

 Rather interestingly, a selection of these other behavioural studies involving 

button-press judgements have consistently shown that RTs are faster if pictures or 

videos of tools depict their typical manipulation (for review see Humphreys, Kumar, 

Yoon, Wulff, Roberts & Riddoch, 2013). For example, action decision RTs (e.g., 

when naming a tool or its action) are faster if watching an axe be swung or even 

simply gripped in such a way, relative to if they consistent with an atypical action 

such as wiping (Yoon & Humphreys, 2005; Kumar, Yoon & Humphreys, 2012; 

Yoon, Humphreys, Kumar & Rotshtein, 2012). Likewise, faster action decision RTs 

also occur if pictured tools appear in locations such that its handle is congruently 
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positioned with the responding hand (Yoon & Humphreys, 2007; Yoon, Humphreys 

& Riddoch, 2010). In fact, Valyear et al.,’s (2011) video viewing experiment of 

which the grasping paradigm in Chapter 2 was adapted from, similarly found a faster 

voice onset when naming tools being grasped in a way that was typical (e.g., by the 

handle), relative to atypical (e.g., by the head) or not being grasped at all. 

 Whether the typicality of an action also affects 3D tool grasping is, to my 

knowledge, yet to be explored. Unlike 2D pictures, 3D objects have features (e.g., 

shape, depth) that are directly extractable by the visual system and offer the 

possibility of a genuine action (Snow, Pettypiece, McAdam, McLean, Stroman, 

Goodale & Culham, 2011). Reasonably then, the final aim of this experiment was to 

investigate whether motor planning may indeed be faster for actions involving the 

handle of a tool, relative to its head (see below for a specific prediction). 

 Here, motion-capture was used to record kinematics of the right hand when 

participants performed tool and non-tool grasping in conditions highly similar to the 

previous fMRI project (see Chapter 2, Project 1). First and foremost, this behavioural 

follow-up experiment was designed to assess whether participants were likely to 

have been scaling their grip during the previous fMRI project despite the fact that 

these actions were performed under unconventional conditions (i.e., while laying 

supine and when grasping five times in within a trial). This was tested by examining 

whether PGA significantly changed as a function of the three object sizes (i.e., small, 

medium and large). A second aim of this experiment was to examine whether there 

were differences between tool and non-tool grasping, that is, a difference between 

grasps based on object category. Specifically, I predicted that tool, relative to non-

tool, grasping would be significantly different for the reach (e.g., RT, MT) and 

grasp (e.g., PGA, grip scaling) portions of the movement, since previous evidence 
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(Jax & Buxbaum, 2010; Valyear, Chapman, Gallivan, Mark & Culham, 2011; 

Cicerale, Ambron, Lingnau & Rumiati, 2014) shows that tool grasps are slower and 

with a wider PGA if the action is based on their functional (i.e., when using the tool), 

relative to structural, properties (i.e., when moving the tool). The final aim was to 

examine whether responses were significantly faster for typical (i.e., grasp by the 

tool’s handle), relative to atypical, tool grasps (i.e., grasp by the tool’s head). Based 

on evidence that RTs are faster when 2D depictions of tools match the way that tools 

are typically manipulated (e.g., Yoon & Humphreys, 2005; Yoon & Humphreys, 

2007), I predicted that RTs may also be modulated by the typicality of tool grasping. 

This could have been in the form of an additional interaction between object 

category and typicality for the analysis of RT where measures would be faster for 

non-tool, relative to atypical tool grasping, but not relative to typical tool grasping. 

3.2. Method 

3.2.1. Participants 

 Twenty-two right-handed (Edinburgh Handedness Questionnaire; Oldfield, 

1971) healthy volunteers completed this experiment (6 males, 19-29 years of age, 

Mean Age = 22.3, SD = 2.4). Ten of these participants had completed the previous 

fMRI experiment, while the rest were naïve to study’s purpose. All had normal or 

corrected-to-normal vision, no history of motor, psychiatric or neurological disorders 

and gave informed consent in accordance with the ethical committee at the 

University of East Anglia. In return for participation, volunteers were compensated 

£12. 

3.2.2. Stimuli & apparatus 

 Stimuli were the same 3D-printed tools (i.e., knife, spoon and pizzacutter) 

and non-tools (i.e., cylinders with widths the same size as the heads of the knife, 
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spoon or pizzacutter) described in the fMRI experiment (Project 1, Chapter 2; Fig. 

2.1A; see Stimuli & Apparatus: section 2.2.2.). Participants laid supine in the 

turntable apparatus described previously (Fig. 2.1B) which was set-up in the Vision 

& Action laboratory at the UEA (Fig. 3.1.). The relative distances between the 

participants and the fixation or stimuli were based on the average measurements 

taken from the fMRI experiment such that stimuli were again directly reachable (the 

resting hand and object centre for every participant was at a distance of 43cm) and 

that the centrally aligned red fixation LED was located above the objects (subtending 

a mean visual angle of ~20° from the centre of stimuli). A head tilt comparable to the 

fMRI experiment (i.e., ~20°) was achieved in this experiment by using two pillows. 

Only several minor differences existed between the apparatus used for fMRI and the 

behavioural follow-up experiment. First, no arm-strap nor eye monitoring cameras 

were used here; though participants did complete the same pre-experiment training 

period as for in Project 1 and received verbal reminders between experimental 

blocks to maintain fixation and to minimise upper arm movements. Second, noise-

cancelling headphones (Bose Corporation, USA) were worn to ensure that the sound 

of stimulus placement did not provide cues about an upcoming trial. 

 A Qualisys Oqus (AB, Gothenberg, Sweden) sampling at 179 Hz measured 

the position of small passive markers affixed to the participants’ right wrist and the 

nails of the right index finger and thumb (Fig. 3.1.). A custom script written in 

Matlab (The MathWorks, USA R2010a), supported by the Psychophysics Toolbox 

(Brainard, 1997), received a trigger from the workstation at the beginning of each 

run to control the electronic equipment (i.e., fixation, object illuminator, audio and 

the motion-capture system). 
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3.2.3. Procedure 
 
 The procedure here was largely the same as for the previous fMRI 

experiment (see Procedure: section 2.2.3.). In brief, the experiment was completed 

in darkness, where participants rested their hands on their chest. First, an audio cue 

was heard (i.e., Left or Right) and the stimulus was then illuminated (500ms later) 

cueing the reach-to-grasp action which was to be directed to the side of the stimulus 

that was auditorily instructed. Crucially, the tools’ handles (and the side of the non-

tools matching the length of these handles) were always oriented to the right so that 

right- and left-ward grasping for the tool conditions were labelled as typical and 

atypical tool grasping, respectively. As before, stimuli were illuminated five times 

(i.e., open loop conditions with illumination lasting 250ms each) in a given trial with 

an interval of two seconds - the marker positions were recorded for these five 

grasping repetitions within a trial using a continuous 10 second recording. 

 Grasping was performed using a precision grip where the objects were 

grasped from across their width (hereon referred to as size) from the top to bottom 

with the index finger and thumb, respectively (Fig. 3.1.). Actions were instructed to 

be performed at a natural pace and the objects were never instructed to be used. The 

elements critical for modelling the haemodynamic response during fMRI were not 

carried out in this behavioural experiment: we removed the baseline periods at the 

beginning/end of each experimental block and periods of darkness (i.e., fMRI off-

blocks) were not interspersed between trials. 

 The same pseudorandomised trial orders were used as in Project 1 with 16 

trials per block. For the 12 experimental trials the three repetitions were completed 

per condition (i.e., tool typical, tool atypical, non-tool right and non-tool left) with 

each exemplar (e.g., knife tool/non-tool, spoon tool/non-tool and pizzacutter 
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tool/non-tool) being grasped by their right and left sides once. The foil tool and non-

tool were grasped by each side in the remaining four trials and were excluded from 

analysis. On average participants completed seven runs (minimum six, maximum 

seven) and this totalled on average 84 experimental trials and 21 repetitions per 

condition for each participant. The entire experiment lasted approximately one hour 

and the extra run that was collected in comparison to the fMRI experiment ensured 

that sufficient repetitions remained after accounting for excluded trials that would 

arise from the occlusion of markers (see Data preprocessing: section 3.2.4).  

 

Fig. 3.1. Apparatus for motion tracking experiment. (Left) The 3D graspable objects 

were presented using the same turntable equipment as described in the fMRI 

experiment. The setup is presented here from behind and is surrounded by motion 

tracking cameras (four additional cameras are ceiling-mounted, out of camera shot). 

The red star represents the fixation LED and the delineated yellow zone represents 

the illuminated workspace emitted by white LEDs. (Right) Marker positions are 

labelled on the index finger, thumb and wrist. The hand is shown at its final contact 

points for an example of a typical tool grasp. Note that the experiment is completed 

in the dark, thus lighting here is for illustration only. 
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3.2.4. Data preprocessing 

 Kinematic data were obtained by localising the x, y and z positions of the 

markers attached to the index finger, thumb and wrist of the participants’ right hand 

(see Fig. 3.1. for positions). Analyses were conducted off-line using a customised 

software written in Matlab. These 3D positions for each marker were filtered using a 

low-pass Butterworth filter (10 Hz-cut-off, 2nd order) (Krigolson & Heath, 2004; 

Binsted, Brownell, Vorontsova, Heath & Saucier, 2007; Davarpanah & Heath, 

2016). The wrist marker position was then used to determine the onset and offset of 

the movement toward objects using a velocity threshold of 50mm/s (e.g., Cohen et 

al., 2009).  

 Like a similar study that measured reaches with an outward (i.e., reach 

toward object) and inward (i.e., return hand to home position) reaching component 

(Quinlan & Culham, 2015), the local minimum of the velocity trace was used as the 

offset of the outward reach (i.e., the floor velocity value) if this value did not fall 

between the 50mm/s criteria. This end velocity criteria had to be manipulated on 

<1% of trials. A one-way Repeated Measures ANOVA (RM ANOVA) with all 12 

individual grasping conditions per exemplar as factors (i.e., knife tool typical, knife 

tool atypical, spoon tool typical, spoon tool atypical, pizzacutter tool typical, 

pizzacutter tool atypical, knife non-tool typical, knife non-tool atypical, spoon non-

tool typical, spoon non-tool atypical, pizzacutter non-tool typical and pizzacutter 

non-tool atypical) and the frequency of trials where this value had to be manipulated 

as a dependent variable, indicated that there was no significant differences between 

the conditions in which this end velocity criteria had to be manipulated (F(11) = 1.4, 

p = 0.16, ηp2 = 0.06). 
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Table 3.1. Kinematic dependent variables. Acronyms: ms = milliseconds, mm/s = 

millimetres per second; - = Same as above. 

 

Dependent 
Measures 

Name Unit Marker(s) Description 

 
Reach Kinematics 

Reaction 
Time 

RT ms Wrist Time interval between 
illumination cue and the 
onset of the movement. 

Movement 
Time 

MT ms Wrist Time interval between 
movement onset to 
movement offset. 

Time to 
Peak 
Velocity 

tPV ms Wrist Time interval between 
movement onset and PV. 

Peak 
Velocity 

PV mm/s  Peak velocity of the wrist 
marker within MT. 

 
Grasp Kinematics 

Peak Grip 
Aperture 

PGA mm Index & 
thumb 

Peak Euclidean distance 
between the thumb and 
index finger. 

Time to 
Peak Grip 
Aperture 

tPGA ms Index & 
thumb 

Time interval between RT 
and PGA. 

Grip Scaling Fisher Transformed R2 Index & 
thumb 

Variables obtained from the 
linear regression analysis 
between PGA and object 
size (also see section 3.2.3). 

- Slope - - 

- Intercept - - 
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Every dependent variable (see Table 3.1.) was computed per trial for each of 

the five grasping repetitions (i.e., five values per trial), but the repetition number 

within a trial (e.g., grasp repetition one or two) was never explicitly modelled, 

meaning that grasping repetition was collapsed for analysis. This was comparable to 

the analysis of the fMRI experiment (i.e., multivariate pattern analysis was 

performed using blocks of brain activity across the five grasp repetitions). 

Additionally, performing the analysis in this way maximised statistical power 

because this allowed a maximum of 35 values for a given exemplar in a condition 

(e.g., knife atypical grasping was performed across seven blocks with five grasp 

repetitions per block). 

A grand mean was calculated for the PGA and tPGA grasp kinematics per 

exemplar (e.g., knife, knife non-tool, spoon, spoon non-tool, pizzacutter and 

pizzacutter non-tool) and per grasp direction (i.e., typical/right and atypical/left). 

This enabled the conditions for each tool exemplar to be matched with non-tool 

conditions where the grasped portion of the object was of an equivalent size (see 

Statistical analysis: section 3.2.5.). A grand mean was calculated for the RT, MT, 

PV and tPV reach kinematics for the four key conditions (i.e., tool typical, tool 

atypical, non-tool right and non-tool left) since reach distance was identical between 

the tools and their paired non-tool exemplars. Finally, additional grip scaling 

measures were taken to analyse grasp kinematics (see next paragraph for the 

particular variables used). These were computed using a linear regression between 

object size (i.e., small, medium and large) and the PGA for the Tool Atypical & 

Matched Non-tool Conditions (TA&MNC; see Fig. 3.2A.). These TA&MNC 

conditions were used because this is where object size increased at an identical rate 

across both object categories. Note that this analysis could not be performed for 
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typical tool grasping because the Tool Typical & Matched Non-tool Condition 

(TT&MNC; see Fig. 3.2B) all involved grasping identically sized handles meaning 

that grip would not scale with object size. 

The linear regression used to measure the degree of grip scaling resulted in 

R2, slope and intercept dependent variables. The R2 output was normalised with a 

fisher transformation (Fisher, 1921) for each subject individually (Cohen, 2003; 

Rossit, McAdam, Mclean, Goodale & Culham, 2013; Keefe & Watt, 2009) and 

relies on the standard deviation of the MGA, thus removing information about the 

original units of the variables (Whitwell, Striemer, Nicolle, & Goodale, 2011). These 

R2 values reflect how tight each MGA cluster is around the slope: the greater the 

variability, the smaller the R2 will be. The slope indicates the sensitivity of the grip 

aperture to size changes across the objects (Borchers & Himmelbach, 2012): a slope 

of 0 indicates no scaling of the MGA to the object and a slope of 1 indicates perfect 

scaling meaning that higher slopes reflect greater proficiency in grasping (Smeets & 

Brenner, 1999; Cuijpers, Brenner & Smeets, 2006). The intercept indicates the 

location where the line intersects an axis, and, therefore, higher values of the 

intercept corresponds to larger grip apertures (Keefe & Watt, 2009). 

In cases where data needed to be excluded from the analysis for a given 

grasping repetition (out of the five) within a trial, the data was removed for that 

specific repetition for every dependent variable. Grasping repetitions within a trial 

were excluded from the analysis (2.62% datapoints) for the following reasons: 

index/thumb marker occlusion at the frame following PGA (2.09%), object 

presentation was incorrect (0.04%), and if the subject reached too late (0.11%) or in 

the wrong direction (0.38%). A series of one-way RM ANOVAs with all 12 

individual grasping conditions per exemplar as factors (see end velocity criteria 
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ANOVA) and the percentage of these four types of errors as dependent variables 

(cumulatively or independently), indicated that there was no significant differences 

between the conditions where these errors occurred (all p’s > 0.42). 

3.2.5. Statistical analysis 

 Four types of ANOVAs (three types for grasp kinematics and one type for 

reach kinematics) were used to meet all the experimental aims. The PGA and tPGA 

grasp kinematic measures were analysed using two separate types of ANOVA: one 

type for atypical tool grasping (i.e., 3 x 3 RM ANOVAs with TA&MNC and object 

size as factors; see top of Fig. 3.2A.) and another type for typical tool grasping (i.e., 

one-way RM ANOVAs (4 groups) with the TT&MNC as the four groups; see Fig. 

3.2B.). Next, the R2, slope and intercept measures of grip scaling were analysed 

using one-way RM ANOVAs (3 groups) including the TA&MNC (see bottom of Fig. 

3.2A.). Lastly, the RT, MT, PV and tPV reach kinematics were examined using 2 x 2 

RM ANOVAs with object category (i.e., tool and non-tool) and typicality (i.e., 

typical/right and atypical/left) as factors (see Fig. 3.3.). 

 The first experimental aim (i.e., examining whether PGA changed as a 

function of object size) was addressed by the 3 x 3 RM ANOVAs with TA&MNC and 

object size as factors because a main effect of object size could be tested for here. 

The second aim (i.e., examining whether grasp and reach kinematics changed across 

object categories) was addressed by all four types of ANOVA because they allowed 

comparisons between object categories (i.e., tool versus non-tool). The final aim 

(i.e., examining whether reach kinematics were altered by the typicality of a tool 

action) was directly addressed by the 2 x 2 RM ANOVAs with object category and 

typicality as factors. A Bonferroni correction was used to control for the problem of 

multiple comparisons. 



How the brain grasps tools 

 

 

134 

3.3. Results 

3.3.1. Grasp kinematics 
 
 Analysis of PGA and tPGA for the AT&MNC revealed a main effect of 

object size where PGA was larger (F(1,28) = 520.2, p < 0.001, ηp2 = 0.96) and tPGA 

was later (F(2,29) = 95.1, p < 0.001, ηp2 = 0.82) for objects of larger, compared to 

smaller, sizes (all pairwise comparison p’s < 0.006) confirming that participants 

were able to scale their grip to the object’s size regardless of the category of that 

object (see Table 3.2.). 

In this analysis for PGA, there was also a significant interaction between 

condition and object size (F(2,51) = 62.74, p < 0.001, ηp2 = 0.75). Post-hoc 

comparisons revealed that grasping the bowl of the spoon led to a higher PGA 

compared to grasping the non-tool spoon exemplar on its left (mean difference 

[standard error] = 3.9mm [0.6mm]) and right side (mean difference [standard error] 

= 4.3mm [0.7mm]; all p’s < 0.001; see PGA graph in Fig. 3.2A.). Oppositely, 

grasping the wheel of the pizzacutter of the spoon led to a lower PGA compared to 

grasping the pizzacutter non-tool on its left (mean difference [standard error] = 

3.8mm [0.5mm]) and right side (mean difference [standard error] = 4.9mm [0.6mm]; 

all p’s < 0.001; see PGA graph in Fig. 3.2A.). The same interaction was not 

significant for tPGA (p = 0.6) and, instead, there was a significant main effect of 

condition (F(2,42) = 8.6, p = 0.001, ηp2 = 0.29). Post-hoc comparisons indicate that 

this effect was driven by differences related to reach direction where the tPGA was 

achieved later for leftward (i.e., contralateral) relative to rightward (i.e., ipsilateral) 

grasping: tPGA was significantly later for leftward tool, than rightward non-tool, 

grasping (mean difference [standard error] = 14.7ms [3.9ms]; p = 0.004; see tPGA 

graph in Fig. 3.2A.) and a similar trend was observed between leftward, relative to 
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rightward, non-tool grasping (mean difference [standard error] = 10.1ms [4ms]; p = 

0.058). No other main effects or interactions for these ANOVAs analysing PGA or 

tPGA for the TA&MNC were significant (all p’s > 0.6). 

 

 
 
Fig. 3.2. Grasp kinematic analysis and results. (A) Analysis design and results for the 

Tool Atypical & Matched Non-tool Conditions (TA&MNC) (i.e., the tool atypical, 

non-tool left and non-tool right conditions for each of the three different sized 

exemplars: small [knife tool/non-tool], medium [spoon tool/non-tool] and large 

[pizzacutter tool/non-tool]). For PGA and tPGA, the TA&MNC conditions were 

analysed using RM 3 x 3 ANOVAs (TA&MNC x Object size; see top left of 3.2A.). 

For the R2, slope and intercept (i.e., the grip scaling kinematics) the TA&MNC were 

analysed with one-way RM ANOVAs (see bottom left of 3.2A.). Results are 
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presented on the right (see dashed lines in Fig. 3.2A.). (B) Analysis and design for 

the Tool Typical & Matched Non-tool Condition (TT&MNC) (i.e., knife typical, 

spoon typical, pizzacutter typical and the equivalently sized non-tool knife right 

condition). For the PGA and tPGA the TT&MNC were analysed using one-way RM 

ANOVAs involving the four conditions from the TT&MNC as groups. Error bars 

represent Standard Error of the Mean (SEM). 

 

Table 3.2. Post-hoc pairwise comparisons of the main effect of object size for PGA 

and tPGA. Acronyms: K = Knife sized stimuli; S = spoon sized stimuli; P = 

Pizzacutter sized stimuli. 

 
Stimuli size  Mean (standard 

error) 

Pairwise comparison p values 

 Small  

vs. 

Medium 

Medium 

vs. 

Large 

Small 

vs. 

Large 

PGA (mm) 

Small (K) 57.8 (1.1) 

< 0.001 < 0.001 < 0.001 Medium (S) 65.1 (1.2) 

Large (P) 78.9 (1.3) 

tPGA (ms) 

Small (K) 504.7 (18.4) 

0.005 < 0.001 < 0.001 Medium (S) 516.2 (18.5) 

Large (P) 554.2 (18.9) 

 

 The grip scaling ANOVAs that compared the R2, slope and intercept values 

across the AT&MNC all revealed a main effect of condition which was characterised 

by the same object category effect: atypical tool grasping was significantly different 



How the brain grasps tools 

 

 

137 

from the non-tool grasping conditions (see bottom graphs of Fig. 3.2A.). 

Specifically, analysis of the fisher transformed R2 revealed a main effect of condition 

(F(2,42) = 11.29, p < 0.001, ηp2 = 0.35) where the extent of grip scaling to object 

size was significantly lower for atypical tool grasping compared to grasping non-

tools on the left (mean difference [standard error] = 0.2 [0.05], p = 0.001) or right 

side (mean difference [standard error] = 0.19 [0.05], p = 0.003). Analysis of the 

intercept found a main effect of condition (F(2,42) = 51.5, p < 0..001, ηp2 = 0.71) 

where the intercept of the linear regression was significantly higher for tool atypical 

grasping compared to grasping a non-tool on the left (mean difference [standard 

error] = 3.8 [0.5], p < 0.001) or right side (mean difference [standard error] = 4.7 

[0.5], p < 0.001). Finally, analysis of the slope of the linear regression revealed a 

main effect of condition (F(2,42) = 51.5, p < 0..001, ηp2 = 0.71) where the slope was 

significantly shallower for tool atypical grasping compared to grasping a non-tool on 

the left (mean difference [standard error] = 0.08 [0.01], p < 0.001) or right side 

(mean difference [standard error] = 0.11 [0.01], p < 0.001). No significant 

differences were observed for the remaining post-hoc tests that compared the two 

non-tool grasping conditions (all p’s > 0.13). 

As for the analysis of PGA and tPGA for the typical tool grasping conditions, 

no significant main effects or interactions were observed between the TT&MNC 

where the handles of the tools and the matched part of a non-tool were compared (all 

p’s = 0.66; see Fig. 3.2B.). 

3.3.2. Reach kinematics 
 

Analysis of RT and MT revealed significant main effects of object category 

(RT: F(1,21) = 15, p = 0.001, ηp2 = 0.42; MT: F(1,21) = 5.74, p = 0.026, ηp2 = 0.22) 

where grasping was slower for grasping tools than non-tools (RT mean difference 
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[standard error] = 9.7ms [2.5ms]; MT mean difference [standard error] = 6ms 

[2.5ms]; see top graphs of Fig. 3.3.). Reach direction also affected behaviour since 

there was also a significant main effect of typicality where leftward, relative to 

rightward, movements were linked to a longer MT (F(1,21) = 8.9, p = 0.007, ηp2 = 

0.3) and decreased PV (F(1,21) = 11.48, p = .003, ηp2 = 0.35) (MT mean difference 

[standard error] = 14.8ms [5ms]; PV mean difference [standard error] = 34.4ms 

[10.2ms]; see Fig. 3.3.). No other significant main effects or interactions were 

observed for the analysis of reach kinematics (all p’s > 0.15). 

 
 
 

 

 

 

 

 

 

 

 
 

 

Fig. 3.3. Reach kinematic analysis and results. The conditions examined for all reach 

kinematics are shown in the left panel and were analysed using a RM 2 x 2 ANOVA 

with object category and typicality as factors. Graphs for the RT, MT, PV and tPV 

are presented on the right. Error bars represent SEM. 

 

RT

RM 2 x 2 ANOVA 
(Object Category x Typicality)

Object Category
Tool Non-tool

Ty
pi

ca
l/R

ig
ht

At
yp

ic
al

/L
ef

t
Ty

pi
ca

lit
y

350

375

400

425

450

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

650

675

700

725

750

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

*

RT MT

*

A

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Temporal Kinematics

*

150

175

200

225

250

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

B
tPV

R
T 

(m
s)

P
V

 (
m

s)

800

850

900

950

1000

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

PV

Tool Typical Tool Atypical Non-tool Typical Non-tool Atypical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

M
T 

(m
s)

tP
V

(m
s)

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

*

* Object Category p < 0.05 Reach Direction p < 0.05*
Conditions

Effects

Tool 
Typical

Tool
Atypical

Nt
Right

Nt
Left

R
T 

(m
s)

350

375

400

425

450

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

650

675

700

725

750

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

*

RT MT

*

A

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Temporal Kinematics

*

150

175

200

225

250

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

B
tPV

R
T 

(m
s)

P
V

 (
m

s)

800

850

900

950

1000

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

PV

Tool Typical Tool Atypical Non-tool Typical Non-tool Atypical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

M
T 

(m
s)

tP
V

(m
s)

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

*

* Object Category p < 0.05 Reach Direction p < 0.05*
Conditions

Effects

MT

350

375

400

425

450

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

650

675

700

725

750

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

*

RT MT

*

A

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Temporal Kinematics

*

150

175

200

225

250

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

B
tPV

R
T 

(m
s)

P
V

 (
m

s)

800

850

900

950

1000

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

PV

Tool Typical Tool Atypical Non-tool Typical Non-tool Atypical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

M
T 

(m
s)

tP
V

(m
s)

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

*

* Object Category p < 0.05 Reach Direction p < 0.05*
Conditions

Effects

PV

Tool 
Typical

Tool
Atypical

Nt
Right

Nt
Left

350

375

400

425

450

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

650

675

700

725

750

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

*

RT MT

*

A

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

Temporal Kinematics

*

150

175

200

225

250

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

B
tPV

R
T 

(m
s)

P
V

 (
m

s)

800

850

900

950

1000

Too
l_Ty

pic
al

Too
l_Atyp

ica
l

Non
too

l_T
yp

ica
l

Non
too

l_A
typ

ica
l

PV

Tool Typical Tool Atypical Non-tool Typical Non-tool Atypical

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

M
T 

(m
s)

tP
V

(m
s)

Tool 
Atypical

Non-tool
Typical

Non-tool
Atypical

Tool 
Typical

*

* Object Category p < 0.05 Reach Direction p < 0.05*
Conditions

Effects

tPV

Tool 
Typical

Tool
Atypical

Nt
Right

Nt
Left

Reach Kinematics
Object Category p > 0.05
Grasp Direction p > 0.05

Effect Type



How the brain grasps tools 

 

 

139 

3.4. Discussion 

 Despite the highly unconventional setting in which grasping is performed 

during fMRI (e.g., laying supine), especially for the grasping paradigm used during 

Project 1 (i.e., grasping five times within a trial), this motion-capture experiment 

demonstrated that, under similar conditions, participants still demonstrated classic 

scaling between grip and object size (see Table 3.2. and Fig. 3.2.; Jeannerod, 1984; 

Gentilucci et al., 1991; Castiello et al., 1992). Rather interestingly, hand kinematics 

were also revealed to be affected by the category of the object (see Object category 

affects hand kinematics; section 3.4.1.) and, possibly, the typicality of the action (see 

Typicality and hand kinematics; section 3.4.2.) even though many features of these 

movements (e.g., required grip size, reach distance) were tightly controlled. 

3.4.1. Object category affects hand kinematics 

As predicted, subtle differences were observed in grasp and reach kinematics 

when directly comparing tool and non-tool grasping. First, grip aperture size was 

found to be significantly different between object categories during atypical tool 

grasping (see Fig. 3.2A.), regardless of whether the comparison simply involved 

PGA or if these values were transformed into sensitive grip scaling measures (i.e., 

the R2, slope and intercept of a regression between object size and PGA). Second, 

the time taken to initiate (i.e., RT) and perform movements (i.e., MT) was found to 

be significantly longer when grasping tools, relative to non-tools (see Fig. 3.3.). 

From a kinematic perspective, grasping and reaching measures have been 

extensively studied when changing superficial properties of an object (e.g., its shape 

or distance away from the hand; Marteniuk, MacKenzie, Jeannerod, Athenes & 

Dugas, 1987; Roy et al., 2000; Bootsma et al., 1994; Gentilucci et al., 1991; 

Jakobson & Goodale, 1991; Sartori, Ciani, Bulgherni & Castiello, 2012) or an action 



How the brain grasps tools 

 

 

140 

(e.g., movement direction or speed; Roy, Paulignan, Meunier & Boussaoud, 2002; 

Wing, Turton & Fraser, 1986). Related effects were replicated here (e.g., 

contralaterally directed movements of the right hand were linked to a longer MT and 

later tPGA; see Connolly & Goodale, 1999; Paulignan et al., 1997), most notably 

where PGA increased as a function of object size (e.g., Jeannerod, 1984; Jakobson & 

Goodale, 1991). This suggests that the same hallmark behavioural characteristics 

may have been exhibited when this paradigm was used during fMRI in Project 1. But 

the additional findings here showing that object category also affected hand 

kinematics are particularly interesting because this occurred even after controlling 

for such superficial properties (e.g., PGA was significantly different between 

atypical tool and non-tool grasping despite the widths of these object types being 

matched). 

A few behavioural studies indicate that, in line with the evidence here, 

button-press RTs are faster when processing non-tools than tools. Vingerhoets, 

Vandamme & Vercammen (2009) found that RTs were faster when simple shapes, 

relative to tools, were presented as primes in a traditional Stimulus Response 

Compatibility (SRC) paradigm (i.e., where the handle position does/does not match 

the responding hand; see Theory of affordances: section 1.5.). Likewise, RTs are 

faster when responding to pictures of natural (e.g., cherry, leaf), relative to man-

made, objects (e.g., tweezers, pen) during object categorisation (Borghi, Bonfiglioli, 

Lugli, Ricciardelli, Rubichi & Nicoletti, 2007). In fact, a portion of the stimuli in 

those experiments had the same identities to those employed here for both the tools 

(i.e., knife, spoon; Borghi, Bonfiglioli, Lugli, Ricciardelli, Rubichi & Nicoletti, 

2007) and non-tools (i.e., cylinders; Vingerhoets, Vandamme & Vercammen, 2009). 
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Accounting for this distinction between object categories, Borghi et al., 

(2007) highlighted that, while both natural and man-made objects are linked to 

information regarding how to reach and grasp them (e.g., their shape), the latter (i.e., 

like the tools here) are additionally associated with functional gestures (e.g., how to 

use them properly; also see Borghi, 2005). Accordingly, perceiving these particular 

objects was suggested to ‘lead to the simulation not only of the hand gestures 

required to grasp it, but also of the other gestures required to actually use it’ (Borghi 

et al., 2007, P. 19). As participants were never instructed to use the tools in this 

grasping paradigm, the findings here extend this view, implying that the irrelevant 

use-related actions associated with tools prolong responses even during a real hand-

tool interaction. This also fits with Vingerhoets et al., (2009) conclusion that there is 

a dominance for physical (e.g., shape) rather than functional (e.g., associated actions) 

action elicitation (also see Rumiati & Humphreys, 1998) because actions initiation 

was faster if based purely on physical properties (i.e., when grasping non-tools). 

Worth highlighting, the opposite pattern of results (i.e., faster RTs for tools 

than non-tools) could be expected since other detection paradigms have found that 

RTs are faster for pictures of objects that afford action (e.g., a cup or hammer), 

relative to other stimuli (e.g., a cactus or animals; Handy et al., 2003; Garrido-

Vasquez & Schubo, 2014). However, these effects appear to be restricted to certain 

parts of visual space (e.g., the right lower visual field; Handy et al., 2003), may be 

related to object graspability (see Garrido-Vasquez & Schubo, 2014 experiment 2) 

and often involve object competition displays (i.e., a tool and non-tool are 

simultaneously presented) that tap into distinctive mechanisms of attentional control 

(i.e., between object attention allocation; see Egly, Driver & Rafal, 1994; Stoll et al., 

2015; Buschman & Kastner, 2015). Thus, unlike those findings, grasping a 
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singularly presented tool, relative to a similarly manipulable non-tool, appears to 

slow RT. 

Unique from button-press studies and by virtue of the sensitive motion-

capture methods used here, movements were also found to be performed faster when 

grasping non-tools, relative to tools. Correspondingly, Cicerale et al., (2014) 

identified a faster MT when grasping a tool for demonstrating its use, rather than if 

simply for moving, and interpreted this as evidence that more attention was paid to 

grasping a tool for use. The opposite pattern of results was reported by Valyear et al., 

(2012), but, in this study, tool-use involved an extensive action sequence (i.e., 

demonstrate tool-use three times), relative to tool moving (i.e., place the tool once), 

and led the authors to suggest that this may reflect a compression effect (e.g., 

grasping is shortened for more elaborate actions; also see Johnson-Frey, McCarty & 

Keen, 2004). Thus, in line with Cicerale et al.,’s (2014) interpretation, grasping a 

tool also appears to demand further attention than grasping a non-tool. This more 

clearly fits with Handy et al.’s (2003) view that tools draw attention and, based on 

Borghi et al.,’s (2007) suggestion, this could indicate ongoing processing of the 

functional (yet irrelevant) actions strongly associated with tools. 

Again, due to the motion-capture technology utilised here, object category 

influenced grasp kinematics because PGA and related measures of grip scaling were 

found to differ between the atypical tool and non-tool actions. Other studies 

consistently describe how grip components of grasping are affected by semantic 

properties of an object (e.g., Frak, Croteau, Bourbonnais, Duval, Duclos & Cohen, 

2007) particularly when focusing on stored knowledge about objects (e.g., their 

prototypical appearance) or their associations (e.g., the meaning of an object). For 

instance, hand pre-shaping is closely linked to the familiar size of an object 
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(Borchers & Himmelbach, 2012), even if grasping a differently sized replica of that 

object (McIntosh & Lashley, 2008). Likewise, grip size can be influenced by words 

(e.g., ‘large’ or ‘small’; Glover & Dixon, 2002) or numbers (a high or low value; 

Andres, Ostry, Nicol & Paus, 2008) that are printed on, and thus associated with, an 

object. Here then, the non-superficial properties of an object (i.e., its semantic 

category) seems to influence both reach (i.e., RT, MT) and grasp kinematics (i.e., 

PGA and grip scaling; see next sub-section for further discussion about the direction 

of these effects). 

Taken together, these object category effects on reach and grasp kinematics 

provides evidence that tool-related actions rely on stored knowledge. This converges 

with previous evidence that tool grasps are slower, with a wider PGA if the action is 

based on their functional (i.e., for demonstrating tool-use), relative to structural, 

properties (i.e., for tool-moving; Valyear, Chapman, Gallivan, Mark & Culham, 

2011; Cicerale, Ambron, Lingnau & Rumiati, 2014; also see Jax & Buxbaum, 2010). 

Importantly, the grasping paradigm here demonstrates this even when the conditions 

that were related to stored knowledge (i.e., tool grasping) or not (i.e., non-tool 

grasping) are closely matched in terms of movement extent (i.e., a single action is 

performed) and accuracy demands (i.e., the same grasping action is required; see 

Introduction: section 3.1.). Theoretically, this fits well with many accounts that tool-

related actions are achieved via distinctive conceptual (e.g., Arbib, 1981; Rumiati & 

Humphreys, 1998; Christensen, Sutton & Bicknell, 2019) and neural mechanisms 

(e.g., Milner & Goodale, 1995; 2006; Buxbaum, 2017; Osiurak et al., 2014; 

Johnson-Frey, 2003; Johnson-Frey & Grafton, 2003; Young, 2006; Bub, Masson & 

Cree, 2008). 
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An important consideration is whether these differences between object 

categories are driven by low level stimulus features. Since actions involving objects 

with smaller surface areas requires a larger degree of visual feedback (Bootsma, 

Marteniuk, Mackenzie & Zaal, 1994; Chieffi & Gentilucci, 1993) and, thus, can 

increase MT (Berthier, Clifton, Gullapalli, McCall & Robin, 1996), perhaps the 

disadvantage for tools (e.g., poorer grip scaling, slower RT and MT) is a reflection 

of these actions being, sometimes, directed at smaller parts of an object (i.e., the 

width of the spoon and pizzacutter handles are smaller than their paired non-tool 

conditions because these parts of the non-tools match the width of the tools’ head, 

rather than handle; see Stimuli & apparatus: section 2.2.1.). Nevertheless, this 

confound is entirely avoided in the analysis of grasp kinematics (i.e., typical and 

atypical tool grasping are analysed separately). Further, this kind of effect in the 

analysis of reach kinematics should contribute to an interaction between object 

category and typicality where non-tool grasping should be specifically faster than 

typical tool grasping because it is those tool actions where object size is specifically 

smaller for the tools than the non-tools. In fact, such an interaction was specifically 

predicted for other theoretical reasons but was not found (see Introduction: section 

3.1. & Typicality & hand kinematics: section 3.4.2.), strongly implying that such 

low-level changes in size cannot account for the object category effects. 

3.4.2. Typicality & hand kinematics 

 Contrary to predictions, the typicality of tool grasping did not influence RT. 

Despite the differences in stimulus format in this experiment (i.e., we uniquely used 

3D objects) and other behavioural studies that have previously reported how the 

typicality of a tool-related action affects RT (e.g., Yoon & Humphreys, 2007), these 

results are rather surprising because the handle of real 3D, but not a pictured 2D, tool 
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provides visual information pertinent to action (e.g., Snow et al., 2011). In fact, 

Symes, Ellis & Tucker (2007) have systematically shown during a traditional SRC 

paradigm that the facilitation of RT becomes stronger as 2D objects appear more 

realistic, three-dimensional and graspable. Nevertheless, there may still be 

differences that are poorly understood between these types of stimuli that warrant 

further direct comparison. Indeed, not only does the perceived dimensionality of an 

object influence the kind of actions that are made towards it (Castiello, Bonfiglioli & 

Bennet, 1996; Castiello, Bonfiglioli & Bennet, 1998), but fundamental 

characteristics of grip scaling are also altered when pretending to grasp 2D, relative 

to 3D, objects (see Holmes & Heath, 2013). 

 Task differences are another, possibly more likely, source of these 

unexpected results. Many of the previous behavioural experiments finding that the 

typicality of an action affected RT involved tasks where there was an explicit need to 

retrieve tool-related knowledge, such as when naming a tool (Valyear et al., 2011) or 

judging the category of an object (Kumar, Yoon & Humphreys, 2012). Perhaps the 

lack of effects of typicality for RT are, thus, related to the context of this grasping 

paradigm where participants simply grasp an auditorily cued side of an object 

without needing to recall this information. This view clearly differs from that put 

forth when interpreting results about object category (e.g., see Borghi et al., 2007), 

but others have similarly found differences between findings about judgements of 

object category and typicality (i.e., object category is judged faster than the typicality 

of a tool action; Yoon, Humphreys, Kumar & Rotshein, 2012). 

 Clearly, further investigation is needed to determine the conditions under 

which the typicality of a tool-related action influences processing speed. Indeed, 

novel task contexts are well known to alter affordance processing (e.g., Tipper et al., 
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2006; Valyear et al., 2011; Masson, Bub & Breuer, 2011; Kalenine, Shapiro, 

Flumini, Borghi & Buxbaum, 2014) and even recent traditionally designed SRC 

paradigms do not always produce expected RT advantages toward the handle of a 

tool (e.g., Kourtis, Vandemaele & Vingerhoets, 2018; Kourtis & Vingerhoets, 2015; 

also see Cho & Proctor, 2011; Skiba & Snow, 2016; Pellicano, Iani, Borghi, 

Rubichi, & Nicoletti, 2010; Vainio, Ellis, & Tucker, 2007). An important next step 

would be to examine whether RTs are influenced by the typicality of tool-related 

actions when subsequent actions rely on stored knowledge about these objects. This 

could be achieved by contrasting hand kinematics across conditions that have, so far, 

only been utilised during separate experiments, such as between grasping tools for 

use (e.g., Jax & Buxbaum, 2010; Valyear et al., 2011; Cicerale et al., 2014) and for 

demonstrating newly learnt actions (e.g., Valyear et al., 2012; Osiurak et al., 2014; 

Brandi et al., 2014). This would allow a direct test of how learnt tool actions 

influence processing speed even when suitably controlling for kinematic complexity 

and when placing similar demands on accuracy. 

 This said, findings from the grasp kinematic analysis could be taken to 

suggest that the typicality of an action influences grasping behaviour. When directly 

compared, grip scaling measures were found to be significantly poorer for atypical 

tool, relative to non-tool, grasping (see bottom row of Fig 3.2A.). Rather 

interestingly, this differs from previous studies comparing grasp kinematics between 

object categories (e.g., familiar and unfamiliar objects; Haffenden & Goodale, 2000; 

Dijkerman, McIntosh, Schindler, Nijboer & Milner, 2009) because those studies tend 

to find that object familiarity (e.g., the familiar objects such as tools here) improves 

the calibration grip size to object size (McIntosh & Lashley, 2008; Borchers & 

Himmelbach, 2012).  
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 The argument could be made that is the atypical nature of these tool actions 

(i.e., grasping tools by their head) that led to this detrimental effect on the degree of 

grip scaling. When viewing tools and their related objects (e.g., a paintbrush and 

paint-bucket), not only have participants been shown to sparsely gaze at the head of 

a tool (Natraj, Pella, Borghi &Wheaton, 2015; though see Van Der Linden, Mathot 

& Vitu, 2015), judging their relationship is slowed if a hand is depicted manipulating 

the tool in an atypical way (e.g., when holding the bristles of the paintbrush; Borghi, 

Flumini, Natraj & Wheaton, 2012; also see Natraj, Poole, Mizelle, Flumini, Borghi 

& Wheaton, 2013). Likewise, distinguishable behavioural characteristics, mostly 

during button-press responses (though see Anelli, Ranzini, Nicolletti & Borghi, 

2013), have been identified when participants avoid responding to affordances 

related to objects that either afford multiple actions (e.g., a calculator affords 

clenching and poking; Jax & Buxbaum, 2010), no longer afford an action (e.g., a 

mug with a broken handle no longer affords grasping; Buccino et al., 2009) or afford 

dangerous actions (e.g., broken glass; Anelli, Nicoletti, Kalkan, Sahin & Borghi, 

2012). Though the underlying processes are debated (e.g., are affordances inhibited 

or are aversive affordances activated; see Borghi & Riggio, 2015 for review), the 

nature of these actions are highly similar to the behaviour here where participants 

had to avoid the learnt action (i.e., grasping the tool by its handle).  

 Close inspection of the PGA analysis suggests that the disruption of grip 

scaling associated with atypical tool grasping is driven by actions involving the 

spoon and pizzacutter tools when each were compared with their equivalently sized 

non-tools (see Fig. 3.2A. top row). These PGA effects are unlikely to be the result of 

by a speed-accuracy trade-off (i.e., where tool actions could be more inaccurate due 

to faster responses) because a similar effect was not seen for tPGA (see Fig. 3.2A. 
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top row) and MT was generally longer for tools than non-tools (see Fig. 3.3. top 

row). Oddly, the PGA effects were in opposite directions for the heads of the 

pizzacutter (i.e., decreased for the tool) and spoon (i.e., increased for the tool; see 

Fig. 3.2A.) relative to the non-tools. Further study with a variety of tool exemplars 

that have matching properties (e.g., of the same size and shape) is needed to clarify 

whether this could be attributed to low level differences in shape that are known to 

influence kinematics, such as those related to convexity (e.g., the spoon head is more 

concaved; Sartori, Straulino & Castiello, 2011), edge protrusion (e.g., the spoon head 

protrudes further toward the hand; Cuijpers, Smeets & Brenner, 2004), overall size 

(e.g., the spoon head was smaller; McIntosh et al., 2018) or implied texture (e.g., the 

spoon head is smoother; Fleming, Klatzky & Behrmann, 2002; Flatters, Otten, 

Tivliet, Henson et al., 2012) as opposed to a higher-level affordance mechanism 

(e.g., an aversive affordance mechanism activated when grasping a blade; see Borghi 

& Riggio, 2015). 

 Regardless, when considering all findings here together (related to object 

category and typicality), a final important point can be drawn: kinematics during 

actions involving tools (particularly if they are atypical) and non-tools resemble 

known distinctions between movements based on moment-to-moment visual 

information (i.e., on-line actions) and those that are also influenced by stored 

information (i.e., off-line actions; e.g., Goodale, Jakobson & Keillor, 1994; 

Thaler & Goodale, 2011; for related reviews see Harvey & Rossit, 2012 and Goodale 

& Ganel, 2019). According to the DVST, off-line actions (e.g., tool-use, delayed 

reaching, pantomimed grasping) not only rely on visual processing within the dorsal 

visual stream, but also that of the ventral pathway since this is linked to memory-

based representations of objects (also see Chapter 1), thus, explaining why RT, MT 
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and grip scaling is negatively affected when grasping tools, relative to non-tools. In 

fact, this view is clearly supported by the fMRI results in the previous chapter where 

hand-selective cortex of both the visual streams carried information about the 

typicality of a tool action. Speculation regarding potential brain and behaviour 

convergence is discussed further in Chapter 5 (see Hand-selective cortex: From 

perception to action: section 5.2.). 

3.4.3. Limitations 

 An important limitation of this experiment is that sensitive grip scaling 

measures could not be computed for typical tool grasping since the tool handles were 

of an identical width. This also leaves open the question as to whether grasp 

kinematics differ between atypical and typical tool grasping, since these conditions 

could not be directly compared (also see Fig. 5.2.). This said, it is unlikely that the 

grasp kinematic analysis that was performed for the PGA of typical tool grasping 

(versus non-tool grasping) failed to find a significant effect due to the insensitivity of 

this analysis because the same analysis for the atypical tool grasping conditions did 

find significant effects. Extending the stimulus set to include tools with differently 

sized handles would make this test possible in the future and may even be readily 

addressable by using a recently available database that includes tool-using motion-

capture data across 66 different objects (Roda-Sales, Vergara, Sancho-Bru, Gracia-

Ibanez & Jarque-Bou, 2019).  

Also, there are other reach and grasp kinematics not computed here that may 

also have held important insights about how behaviour is influenced by the category 

of object or typicality of an action. Perhaps most importantly, wrist orientation 

(Cicerale et al., 2014) and grasp posture (i.e., the orientation between the index 

finger and thumb; Valyear et al., 2011) are measures previously found to be sensitive 
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to the whether a tool is grasped for use, relative to being grasped for moving. Similar 

findings could be predicted here based on the grasp kinematic findings (i.e., 

significant differences between atypical tool and non-tool grasping) and this may 

help understand differences in PGA when grasping the heads of the spoon and 

pizzacutter (e.g., perhaps there is more wrist rotation when grasping the pizzacutter 

head, thus leading to a smaller PGA) as grasp posture is known to change across tool 

identities (Valyear et al., 2011). Likewise, other novel analysis approaches could be 

taken such as measuring the force of grip closure (e.g., Dijkerman, McIntosh, 

Schindler, Nijboer & Milner, 2009) or by investigating individual grip-shaping 

differences (e.g., Bongers, Zaal & Jeannerod, 2012) as these measures may be 

sensitive to non-superficial properties of an object too (e.g., Dawson, Buxbaum & 

Duff, 2010; Chainay, Bruers, Martin & Osiurak, 2014; da Silva, Labrecque, 

Caromano, Higgins & Frak, 2018). 

 Finally, like the behavioural control experiments related to many other 

reaching/grasping fMRI studies (e.g., Begliomini, Caria, Grodd & Castiello, 2007; 

Bernier & Grafton, 2010; Cavina-Pratesi, Monaco, Fattori, Galletti et al., 2010; 

Monaco, Cavina-Pratesi, Sedda, Fattori, Galletti & Culham, 2011; Rossit et al., 

2013; also see Grol, Majdandzic, Stephan, Verhagen, Dijkerman et al., 2007) 

motion-capture here was performed in a separate session. This approach has been 

suggested to validate the approach taken in fMRI (see Bernier & Grafton, 2010) but, 

ideally, these measures should be taken during neuroimaging (e.g., Casellato, 

Ferrante, Gandolla et al., 2010; also see Maidhof, Kastner & Makkonen, 2014). 

Brain-behaviour correlations would then be possible within participants (for related 

approaches using RT measures see Grol, Majdandzic, Stephan, Verhagen, Dijkerman 

et al., 2007; Tankus & Fried, 2012; Valyear & Frey, 2015) to evidence, for example, 
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that differences in grip scaling (e.g., when grasping tools atypically) is linked to 

neural representations of typicality (see Chapter 5 for further discussion). Touching 

on this, the next chapter presents a slow-event related fMRI design that investigated 

the relationship between hand kinematics and neural representations about the 

typicality of an action by performing the same analyses as in Project 1 before the 

action begins (i.e., during pre-movement planning), that is, before differences in 

hand kinematics can even unfold. 

3.4.4. Conclusion 

 In conjunction with the previous fMRI experiment, so far, it has been shown 

that the way that tools are grasped is reflected in activity within hand-selective 

cortex (see Chapter 2) and hand kinematics (this Chapter). Reach and grasp 

kinematics when interacting with tools even appear to resemble those reported 

during other types of off-line actions (e.g., pantomimed grasping), and, under the 

framework of the DVST, clearly fits with the previous fMRI evidence showing that 

both the dorsal and ventral visual streams carry information about tool-related 

actions. By using a grasping paradigm where, crucially, there is no intent to use the 

tools, this motion-capture experiment also implies that the functional actions 

associated with tools may automatically interfere with motor control during real tool 

interactions (e.g., Castiello, 1996; Humphreys & Riddoch, 2001; Rafal, Ward & 

Danziger, 2006; Tucker & Ellis, 1998; Buccino, Sato, Cattaneo, Roda & Riggio, 

2009; Naish, Reader, Houston-Price, Bremner & Holmes, 2013; Gentilucci, 2002; 

Valyear et al., 2011; Jax & Buxbaum, 2010). 
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Chapter 4 
 

Preparing to grasp tools: A slow event-related fMRI investigation 
 
4.1. Introduction 

 Voluntary movements are prepared before they are executed (Day et al., 

1989, Ghez et al., 1997; Keele, 1968; Kutas & Donchin, 1974; Riehle & Requin, 

1989; Rosenbaum, 1980; Sussillo, Churchland, Kaufman & Shenoy, 2013). Most 

theories of motor control distinguish between this planning phase and a separate 

execution period (e.g., Kawoto, 1999; Wolpert & Flanagan, 2011; Wolpert, 

Diedrichsen & Flanagan, 2011), as do many developments in robotic engineering 

(e.g., Schaal & Schweighofe, 2005; Toussaint & Goerick, 2010; Mainprice, Hayne & 

Berenson, 2015), even for the act of simply grasping an object (e.g., Toussaint, 

Plath, Lang & Jetchev, 2010; Galbraith, Guenther & Versace, 2015). 

 Motor planning, often referred to as movement preparation, can be identified 

by the correlation between neural responses and future actions (e.g., Li, Daie, 

Svoboda & Druckman, 2016). This process has been extensively studied with 

delayed instruction paradigms using non-human primates (for reviews see Graziano, 

Taylor, Moore & Cooke, 2002; Svoboda & Li, 2018). In these tasks, a delay 

separates the points in time that a subject receives a ‘plan’ and a ‘go’ cue which, 

respectively, provide instructions about which movement is to be performed and 

when. Thus, neural activity about motor preparation and online motor control can be 

disentangled. 

 A key finding from monkey neurophysiological recordings, predominantly at 

the level of the single cell, is that neural activity occurs well before movement onset 

in motor and premotor cortex (e.g., Weinrich et al., 1984) and that this pre-

movement activity can be used to predict whether the upcoming action will be, for 
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example, aimed toward or away from a stimulus (e.g., Zhang & Barash, 2000; Gail 

& Andersen, 2006). In fact, an early study showed that on the rare trials where the 

monkey performed the wrong movement (i.e., the one not instructed by the plan 

cue), the planning activity tended to reflect the future, rather than instructed, 

movement, strongly characterising this activity as preparatory (Tanji & Evarts, 1976; 

also see Pearce & Moran, 2012). 

 Remarkably, Andersen & Buneo (2002) highlighted that the simultaneous 

firing from as few as 10-15 neurons in the monkey parietal reach region are 

predictive of which of one, out of eight, trajectories an animal’s reach will take, 

seconds before that movement is even initiated (for similar evidence in terms of 

voxels during fMRI when human’s imagine and observe actions see Filimon, Rieth, 

Sereno & Cottrell, 2015). Accordingly, preparatory activity in these motor-related 

regions has since been shown to code various movement parameters like grip-type 

(Baumann et al., 2009; Fluet et al., 2010; Townsend et al., 2011; Schaffelhofer, 

Agudelo-Toro & Scherberger, 2015; Schaffelhofer & Scherberger, 2016; Kaufman, 

Churchland, Ryu & Shenoy, 2014; Michaels, Dann, Intveld & Scherberger, 2018) or 

wrist orientation (Fattori, Breveglieri, Marzocchi, Filippini, Bosco & Galletti, 2009) 

and has even been causally linked to reaction times (Churchland et al., 2006; Afshar 

et al., 2011; Snyder, Batista & Andersen, 1998; Michaels et al., 2015; Churchland & 

Shenoy, 2007; Gerits et al., 2011), implying that this activity functionally contributes 

to motor control. 

 Humans also exhibit preparatory activity prior to movement in regions across 

bilateral sensorimotor cortex when performing delayed instruction paradigms related 

to reaching, pointing, looking and/or grasping (e.g. Astafiev et al., 2003; Connolly, 

Andersen & Goodale, 2003; Tosoni, Galati, Romani & Corbetta, 2008). However, 
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the information that is represented in these regions of the human or macaque brain is 

contested. Some theories describe how preparatory activity may represent a 

subthreshold activation or an initial state (e.g., Cisek, 2006) such that efficient 

movement generation can occur once the action is actually cued (for review see 

Churchland, Cunningham, Kaufman, Ryu & Shenoy, 2010). Alternatively, this 

activity may reflect goal processing more abstractly where it is linked to the 

intentions and action outcomes that occur beyond a set of specified movement 

kinematics (e.g., Grafton & Hamilton, 2007). Evidence for both views can be drawn 

from univariate fMRI analyses during instructed delay paradigms. For example, 

preparatory activity shows some topographical relationship to the sensory 

stimulation that is linked to the upcoming movement (e.g., reaching and saccading 

activates distinct parts of the Intraparietal Sulcus [IPS]; Kawashima et al., 1996) 

suggesting subthreshold motor activation. Yet much of parieto-frontal cortex is also 

found to be active regardless of which effector is used (e.g., hand or eye), instead 

suggesting that this activity reflects a higher-level goal, beyond a particular set of 

kinematics (Beurze, de Lange, Toni & Medendorp, 2009; Hagler, Riecke & Sereno, 

2007). 

 Crucially, when these delayed instruction paradigms with humans have been 

paired with recently developed fMRI analytic techniques, particularly Multivariate 

Pattern Analysis (MVPA), richer conclusions can be drawn about what is 

represented in this preparatory activity (for review see Gallivan & Culham, 2015). 

Like conventional MVPA classification designs (e.g., Haxby et al., 2001; Kamitani 

& Tong, 2005; Kriegeskorte et al., 2008; Harrison & Tong, 2009) a test is performed 

to assess whether a class of conditions in the elicited spatial patterns of fMRI signals 

can be ‘decoded’ from a given Region of Interest (ROI). But by performing this test 



How the brain grasps tools 

 

 

155 

using neural activity acquired during a pre-movement delay, it is possible to predict 

upcoming behaviours, as is normally the case for monkey neurophysiological 

experiments. 

 In a number of these studies, the left ventral and dorsal parts of the premotor 

cortex (PMd; PMv), and/or portions of the IPS (throughout the posterior, medial and 

anterior IPS; pIPS; mIPS; aIPS) are commonly found to display pre-movement 

activity patterns that represent distinct qualities of upcoming limb movements, 

including their direction (Gallivan, McLean, Smith & Culham, 2011; Gallivan, 

McLean, Flanagan & Culham, 2013; Gallivan, Johnsrude & Flanagan, 2016; Fabbri 

et al., 2016), grip aperture size (Gallivan, McLean, Valyear, Pettypiece & Culham, 

2011), the hand used (Gallivan, McLean, Flanagan & Culham, 2013) or whether a 

grasping or reaching action is performed (Gallivan, McLean, Flanagan & Culham, 

2013). Additionally, preparatory codes for movement intentions have been identified 

in left PMd, SPL and/or IPS as shown by tasks that either decouple precise 

kinematics from the goal of a movement (e.g., Krasovsky, Gilron, Yeshurun & 

Mukamel, 2014; Gertz, Lingnau & Fiehler, 2017) or simply involve imagined 

actions that require no movement at all (Pilgramm, de Haas, Helm, Zentgraf, Stark, 

Munzert & Kruger, 2016). 

 For more complex object directed tasks such as those involving tools, both 

sensorimotor and occipitotemporal cortex are also found to activate during motor 

preparation (Johnson-Frey, Newman-Norlund & Grafton, 2005; Fridman et al., 2006; 

Brandi et al. 2014; Gallivan, Chapman, McLean, Flanagan & Culham, 2013). Across 

various designs (e.g., instructed delay paradigms or go/no-go paradigms), actions 

related to tools, regardless of whether their uses are pantomimed (Johnson-Frey, 

Newman-Norlund & Grafton, 2005; Fridman et al., 2006; Bohlhalter et al., 2009; 
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Kroliczak & Frey, 2009) or actually executed with a tool in hand (Brandi et al. 

2014), lead to both planning and execution related activity within major portions of 

the left lateralised tool network including the posterior temporal cortex (e.g., 

Superior Temporal [STG], Middle Temporal [MTG] and fusiform gyri), inferior 

frontal cortex (e.g., ventral premotor [PMv] cortex and Inferior Frontal Grus [IFG]) 

as well as the parietal cortex (e.g., anterior Supramarginal Gyrus [aSMG] and IPS). 

 To my knowledge, only Gallivan, McLean, Valyear & Culham (2013) have 

combined an MVPA approach with a delayed movement paradigm involving a real 

tool interaction. This study found that the type of action (i.e., reaching versus 

grasping) with a pair of tongs, but not if simply performed with the hand, could be 

decoded from preparatory activity in the left SMG and pMTG. Not only was this 

pMTG region defined based on its responses to viewing 2D pictures of tools (see 

Seeing 2D tools to using 3D tools: section 1.3.1.), but this pattern of findings across 

the ventro-dorsal stream areas (e.g., Binkofski & Buxbaum, 2013; see Two action 

systems model: section 1.4.) was unique from other areas that decoded between 

action types either when using the hand only (i.e., left Superior Occipito-Temporal 

Cortex; SPOC and Extrastriate Body Area; EBA) or regardless of the effector used 

(i.e., left aIPS, PMd, PMv, pIPS, mIPS). 

 However, to what extent might representations in the SMG and pMTG reflect 

well learnt aspects of tool use? Tools are strongly linked to knowledge-based action 

routines (e.g., Mahon, Milleville, Negri, Rumiati, Caramazza & Martin, 2007; 

Mruczek, von Loga & Kastner, 2013; see What is a tool?: section 1.2.) where they 

are associated with typical movements (e.g., grasping the tool by its handle). Based 

on the findings from Gallivan et al., (2013), it may be predicted that preparatory 

activity patterns in the left SMG and pMTG would also carry information about the 
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typicality of an action with a tool (e.g., grasping a knife by its handle versus its 

blade).  

 Recent evidence shows that parts of the tool processing network (e.g., Garcea 

& Mahon, 2014; see A tool processing network: section 1.6.) are activated 

(Przybylski & Kroliczak, 2017) when planning to pantomime functional tool 

grasping, relative to non-tools, and that this can also be decoded from activity 

patterns throughout the left ventral Lateral Occipital Temporal Cortex and posterior 

parietal cortex (Buchwald, Przybylski & Kroliczak, 2018). Similarly, recent TMS 

evidence also shows that interference to the SMG during action planning specifically 

affects the ability to point a cursor toward the handle of a tool (Potok, Maskiewicz, 

Kroliczak & Marangon, 2019). Nevertheless, further work is needed to clarify 

whether conclusions from pantomiming tool-related actions are generalisable to real 

tool actions (see Imagining or pantomiming tool-use as a proxy for real action: 

section 1.6.1.). 

 Other MVPA decoding studies hint that object-related actions may be 

represented in the preparatory activity of the LOTC. First, in a careful grasp-to-lift 

design, the bilateral area LO and the posterior Fusiform sulcus (pFs), areas which 

together make up the LOTC (Grill-Spector & Malach, 2004; Grill-Spector, Kushnir, 

Edelman, Itzchak & Malach, 1999; Malach et al., 1995), have been shown to both 

contain preparatory activity patterns that can discriminate between heavy and light 

objects regardless of whether this is based on knowledge that is learned extensively 

(i.e., cued by texture such that metal is heavier than wood) or only recently (i.e., 

cued by texture with the opposite mapping but was learnt in a pre-exposure phase; 

Gallivan, Cant, Goodale & Flanagan, 2014). Similarly, Gallivan, Johnsrude & 

Flanagan (2016) have shown that preparatory activity within the left LO and right 
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pFs can discriminate between actions within a sequence of object-directed 

movements (i.e., when having to grasp an object to be held versus placed in a cup on 

the left/right side). Together, these findings suggest that occipitotemporal circuits are 

also engaged when having to transform object-related information into complex goal 

directed movements (Lingnau & Downing, 2015; also see Wurm, Ariani, Greenlee 

& Lingnau, 2016). 

 Atleast three reasons highlight the importance of a slow-event related fMRI 

design investigating pre-movement representations about the typicality of a tool-

related action. First, preparing to pantomime tool-use has been shown to 

preferentially activate several regions (i.e., the left Superior Temporal Gyrus 

[Johnson-Frey et al., 2005] or caudal Ventral Premotor Cortex [Fridman et al., 2006; 

but see Kroliczak & Frey, 2009]) but, during real tool-use, no region showed such 

plan-specific activity (Brandi et al., 2014), indicating that the initial effects could be 

related to the pantomiming nature of the task (for evidence of STG and PMv activity 

during hand/tool pantomiming see Lausberg, Kazzaer, Heekeren & Wartenburger, 

2015; Krolickzak, Cavina-Pratesi, Goodman & Culham, 2007). Second, movements 

of large masses (e.g., the shoulder or upper arm) during fMRI can induce artifacts in 

participant’s data (Culham, 2006) but, crucially, they can be avoided if temporally 

decoupling the preparatory portion of the BOLD signal time course from a reach-

and-grasp action (Culham, Danckert, De Souza, Gati, Menon & Goodale, 2003). 

Thirdly, this approach allows neural processing to be directly linked to intentions or 

underlying motor representations, rather than simply related to movement kinematics 

(e.g., Nicholson, Roser & Bach, 2017), suggesting a role of higher-level goal 

processing in tool-use (e.g., Norman & Shallice, 1986; Hommel, Musseler, 
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Aschersleben & Prinz, 2001; Botvinick, Buxbaum, Bylsma & Jax, 2009; Osiurak, 

Jarry & Le Gall, 2010; Badets & Osiurak, 2015; Buxbaum, 2017). 

 Here we were primarily interested in whether preparatory brain activity was 

sensitive to the learnt aspects of tool-use. The fMRI paradigm reported in Project 1 

(Chapter 2) was adapted into a slow-event related fMRI design that included an 

instructed delay period so that MVPA classification could assess whether 

preparatory activity patterns predicted the typicality of an upcoming tool grasp - as 

before, this entailed decoding between tool grasps that were considered to be typical 

(i.e., by the tool’s handle) versus atypical (i.e., by the tool’ head) for subsequent use. 

Again, as a control, we also assessed whether decoding was possible for the grasp 

direction of non-tool grasping - this entailed decoding between non-tool grasps that 

were located on their right versus left sides (i.e., the sides of the non-tools that 

corresponded to the typical and atypical grasping of tools, respectively). The same 

reasoning was made for the analysis as before: if a region contained representations 

that were tuned to the learnt aspects of tool-use, then decoding accuracies for 

typicality were predicted to be significantly higher than (1) chance and (2) the 

decoding accuracy obtained from the same ROI when discriminating between grasp 

direction. 

 This was carried out using the same ROI (i.e., an independent visual localiser 

design) and searchlight approach as in Project 1 (see Chapter 2 and Methods: section 

4.2). Ventral visual (e.g., pFs, LOTC), ventro-dorsal stream (e.g., pMTG, SMG) as 

well as premotor cortex (e.g., PMv) areas were predicted to show the above 

described pattern of findings because of previous evidence that preparatory activity 

in them carries information about object- or tool- directed actions (e.g., Gallivan et 

al., 2013; Gallivan et al., 2014; Gallivan et al., 2016). This may have also been 
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particularly evident in hand-selective parts of the LOTC and IPS (i.e., LOTC-Hand 

and IPS-Hand) based on the findings that these areas, but not overlapping tool-

selective areas, coded for typicality in Project 1 (see Typicality versus grasp 

direction decoding results: section 2.3.1.). 

 As a secondary objective, there was an interest whether typicality could be 

decoded during the execution of the movement too (i.e., during the go phase), with 

results being predicted to converge with those reported in Project 1 (i.e., 

representations of typicality in the LOTC-Hand and IPS-Hand ROIs [see Fig. 2.5A.] 

as well as throughout left anterior temporal cortex and right temporo-parietal cortex 

[see Fig. 2.5B.]). Additionally, the design here allowed neural activity during a 

preview phase to be isolated where participants passively viewed the different 

objects (i.e., before they were instructed how to act), much like has been investigated 

in previous studies where participants view 2D (e.g., Chen et al., 2017) or 3D tools 

(Macdonald & Culham, 2015). Thus, the ventral visual (e.g., LOTC, pFs) and 

ventro-dorsal stream (e.g., SMG, pMTG) regions implicated in those studies were 

expected to show evidence of coding for object category (i.e., tool versus non-tool) 

and tool identity (i.e., knife versus pizzacutter) during this preview phase.  

4.2. Method 
 
4.2.1. Participants 
 

 A total of twenty-three right-handed (Edinburgh Handedness Questionnaire; 

Oldfield, 1971) healthy volunteers were recruited from UEA’s paid participant 

panel. Three participants were excluded due to excessive head motion during scan 

sessions and a further three were excluded due to technical errors during data 

acquisition (see Data preprocessing: Section 4.2.6.) leaving a total sample of 

seventeen participants (9 males, 19-35 years of age; mean [standard deviation] = 
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24.4 [3.5]). Nine of the participants were naïve to the purpose of the study, while the 

remaining eight participants had completed the previous fMRI experiment and/or 

were part of the research team. All had normal or corrected-to-normal vision, no 

history of motor, psychiatric or neurological disorders and gave informed consent in 

accordance with the ethical committee at the UEA and National Health Service 

(NHS). Volunteers received £40 in compensation for their time. 

4.2.2. Stimulus & apparatus 

 Two categories of 3D stimuli were presented during this experiment: tools 

and non-tools. These were comprised of the knife and pizza-cutter tools and their 

paired non-tools described in Project 1 (see Fig. 2.1A. and Stimulus & apparatus: 

section 2.2.2.). The decision to remove one stimulus pair (i.e., the spoon tool/non-

tool) was based on the constraint to present all exemplars an equal amount of times 

within a run. Therefore, this decision was made to minimise individual run lengths 

(i.e., repeating three, rather than two, exemplars per run would have exceeded 10 

minutes) whilst maximising the number of condition repetitions (i.e., four conditions 

repetitions could be achieved by repeating each exemplar once). The decision to 

exclude the spoon specifically was data-driven: an exploratory univariate analysis 

from the previous fMRI study identified that the pizzacutter and knife exemplars 

together revealed the largest cluster of activity selective for typical tool grasping 

[3*(Tool Typical) > (Tool Atypical + Non-tools Atypical + Non-tools Typical)] in 

the temporal lobe (see Appendice B). The custom-built turntable apparatus, selected 

3D printed models and associated equipment (i.e., headphones, video cameras, 

Light-Emitting Diodes serving as fixation and illuminators) were setup as in Project 

1. 



How the brain grasps tools 

 

 

162 

4.2.3. fMRI real action paradigm 

 To extract the sustained planning response from the visual and motor 

execution responses, a slow-event related fMRI paradigm was used with the same 

epoch lengths as in Gallivan, McLean, Smith & Culham (2011). Each trial (34s) 

consisted of three distinct phases in the following order: ‘preview’, ‘plan’ and ‘go’ 

(Fig. 4.1.). During the preview phase (6s) the workspace was illuminated revealing 

the object. The plan phase (12s) was marked by an auditory ‘Left’ or ‘Right’ verbal 

cue (lasting 0.5s) instructing which side of the object was to be precision grasped in 

this trial. There were no visual differences between the preview and plan phase, but 

only during the plan phase did participants have the necessary information to prepare 

the upcoming movement with the right hand. The go phase (2s) began with a beep 

sound (lasting 0.5s) which cued the planned movement to be immediately executed 

with the right hand before returning to the home position. Afterwards the workspace 

became dark as the illuminator turned off (Inter-Trial Interval; 14s) where the BOLD 

response was allowed to return to baseline and the next stimulus could be prepared. 

Actions were completed in closed-loop (i.e., with full visual feedback; Gallivan, 

McLean, Valyear & Culham, 2013; Gallivan, Chapman, McLean, Flanagan & 

Culham, 2013; Gallivan, McLean, Valyear, Pettypiece & Culham, 2011; Gallivan, 

McLean, Smith & Culham, 2011) and, as before, upper fixation was maintained 

throughout the experiment (measurements to fixation were not recorded). 

 Functional runs included 16 trials with the two exemplars from both object 

categories being grasped on the left and right sides twice (i.e., four reps per main 

condition: tool typical, tool atypical, non-tool right and non-tool left). Except for one 

participant who completed six runs, all volunteers completed eight runs totalling an 

average of 128 trials and 32 repetitions per condition. Trials were pseudorandomised 
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so that conditions were never repeated (two-back) and preceded an equal amount of 

times by other conditions. Including the start and end baseline fixation periods (14s), 

functional scans lasted 576 seconds (9:36 minutes), making the length of a single 

session ~1 hour 45 minutes. Before the fMRI experiment, participants were 

familiarised with the setup and practiced grasping each side of every exemplar in a 

separate lab session (30 minutes). 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Timing of the fMRI slow event design. A schematic of a single trial is 

provided (top left). A preview phase begins as the object is first illuminated. A plan 

phase begins as the auditory instruction is provided about which movement should 

later be carried out. A go phase begins as another auditory cue signals the movement 

to be executed in closed loop conditions (i.e., the workspace remains illuminated). 

The volumes where MVPA was performed (blue blocks) consisted of those during 

each of the preview, plan and go phases independently. As in Project 1, a classifier 

received input from the rightward and leftward grasping blocks for both the tool and 
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non-tools objects independently. For the tools blocks these rightward and leftward 

movements corresponded to grasping the tool in ways that were typical (i.e., by the 

handle) and atypical (i.e., by the head) for use, respectively. 

4.2.4. fMRI visual localiser paradigm 

 Following the real action paradigm session, all participants except one (due 

to recruitment difficulty), returned for a separate Bodies, Objects, Hands and Tools 

(BOTH) fMRI visual localiser session (Bracci, Iettswaart, Peelen & Cavina-Pratesi, 

2010, Bracci, Cavina-Pratesi, Ietswaart, Caramazza & Peelen 2012; Bracci, Cavina-

Pratesi, Connolly & Ietswaart, 2016) with the same protocol described in Project 1 

(see Fig. 2.2. and fMRI visual localiser paradigm: section 2.2.4.). The one 

participant that did not attend the localiser scans was included in the searchlight 

analysis only. 

4.2.5 Data acquisition 

 The data acquisition parameters were identical to those described in Project 1 

(see Data acquisition: section 2.2.5.) except that the amount of T2 scanning volumes 

for the fMRI grasping paradigm was increased to 288 to account for the increased 

length of the experimental runs. 

4.2.6. Data preprocessing 

 To ensure that participants performed the grasping paradigm correctly and 

that they maintained peripheral eye fixation, the recorded videos of the right eye 

(available of 12 participants due to technical issues) and workspace (available for all 

participants) were screened. A total of 10 errors were identified after monitoring 

both hand and eye-related errors which equated to >1% of trials. These types of 

errors included reaching during the plan phase (2 trials, 2 participants), fumbling 

with the object (2 trials, 2 participants), reaching in the wrong direction (2 trials, 2 



How the brain grasps tools 

 

 

165 

participants) and downward eye saccades (4 trials, 2 participants). A one-way 

Repeated Measures (RM) ANOVA with 8 groups (i.e., the two exemplars per object 

category across both grasping conditions) showed that these were equally distributed 

amongst all trial types when the percentage of errors were compared within an 

effector (i.e., hand and eye separately) and when collapsed across (all p’s > 0.43). 

 The same preprocessing pipelines for the grasping and visual localiser 

paradigms were used with the same analysis software as reported in Project 1 

(adjusted for the number of volumes; see Data preprocessing: Section 2.2.6.). Due 

to excessive head movements (i.e., x, y & z translation and rotation spikes exceeded 

1mm and 1° rotation, respectively), three of the total 23 participants were excluded 

from the analysis, as well as an additional nine runs (i.e., 6% of runs) from the 

remaining 20 participants. Additionally, another three of the 20 participants were 

excluded from further analysis due to poor automated aligning of the functional 

datasets. 

4.2.7. ROI definitions 

 The same contrast, anatomical guidelines and definitions were used from the 

previous experiment (see ROI definitions: section 2.2.7.) to locate visually defined 

ROIs in the 16 participants who performed the visual localiser (see Table 4.1.).  
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Table 4.1. Mean sizes and Talairach coordinates of the ROIs defined from the BOTH 

visual localiser. Acronyms: SD = Standard deviation.  

 

4.2.8. ROI MVPA 

 To prepare the data for spatial pattern classification, the percentage signal 

change was computed from a windowed average of the time course at a time point of 

interest (e.g., Preview, Plan or Go) with respect to a windowed average of the time 

course at a common baseline for each voxel in the ROI (see Fig. 4.2.). The epochs of 

interest matched those used by Gallivan, McLean, Smith & Culham (2011). 

Specifically, the baseline window was defined as the average of volumes - 1 and 0 

with respect to the start of the trial (i.e., before initiation of the trial). For the Preview 

phase, we extracted the mean of volumes 3 and 4 (i.e., time points corresponding to 

 

ROI 

Number of 

Subjects 

Mean voxel size  

(SEM)  

Mean peak coordinates  

(SD) 

  X Y Z 

EVC 16 125 (7) -18 (5) -90 (5) -11 (5) 

LOTC-Object 16 147 (11) -42 (5) -76 (5) -5 (5) 

LOTC-Body 13 63 (11) -46 (2) -73 (6) 3 (5) 

LOTC-Hand 14 104 (9) -48 (3) -70 (4) -2 (6) 

LOTC-Tool 16 84 (11) -49 (5) -70 (5) -1 (6) 

pMTG 12 102 (16) -45 (4) -57 (4) 2 (5) 

pFs 16 115 (10) -38 (6) -52 (6) -17 (5) 

SMG 14 66 (13) -52 (6) -29 (5) 29 (7) 

IPS-Hand 15 108 (9) -37 (6) -43 (6) -42 (5) 

IPS-Tool 15 88 (12) -38 (5) -40 (6) 42 (6) 

PMv 12 54 (11) -46 (7) -1 (4) 29 (6) 

PMd 13 70 (12) -28 (5) -12 (5) 52 (4) 
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the peak of the visual transient response). For the plan phase, we extracted the 

average of volumes 8 and 9 (i.e., time points corresponding to the sustained activity 

of a planning response). Finally, the go phase was computed from the mean of 

volumes 12 and 13 (i.e., time points corresponding to the peak of the motor 

response). Training and test data, this time in terms of the percentage signal change 

values, were again normalised using the same procedure as in Project 1 (see ROI 

MVPA: section 2.2.8). 
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Fig. 4.2. Percentage signal change in localiser ROIs for the main conditions of 

interest. Grey bars represent the preview, plan and go epochs when MVPA was 

implemented (also see overleaf). 
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Fig. 4.2. (Continued). 
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4.2.9. Classification procedure  

 For every phase (i.e., preview, plan and go) classifications of typicality, reach 

direction, object size, object category and tool identity were performed in a similar 

way to those described in Project 1 (see Classification procedure: section 4.2.9.). 

But in this case always using pairwise discrimination because the third spoon 

tool/non-tool exemplars were not used in this experiment (see Fig. 4.3.). As a result 

of omitting this stimulus the classification of tool function was also not possible here 

(i.e., both the knife and pizzacutter tools are strongly associated with the same 

cutting function). 
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Fig. 4.3. Classification labels for all analyses. As in Project 1, the primary 

classification of typicality and its associated control classification of grasp direction 

(top rows) involved performing independent pairwise classifications of typical 

versus atypical for the tool conditions and right versus left for the non-tool 

conditions, respectively. The resulting decoding accuracies attained by a given ROI 

for each of these classifications would then be compared with a paired samples t-test 

if significant decoding was observed for typicality, but not grasp direction. Object 

size (upper middle rows) classification was a control analysis to ensure typicality 

Object Size 

Object Category
Tools Non-toolsvs.

Tool Identity
vs.Knife Pizza-cutter

Largervs.
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decoding could not be achieved purely because of changes in object size (see 

Classification procedure: section 2.2.9) and was performed using a pairwise 

discrimination of objects that were smaller versus larger, regardless of object 

category. Object category (lower middle rows) classification was performed using a 

pairwise discrimination of objects that were tools versus non-tools. Tool identity 

(bottom rows) classification was performed using a pairwise discrimination of the 

knife versus pizzacutter. Grasp direction for the classifications of object size, object 

category and tool identity were controlled in the same way as described in Project 1 

(see Classification procedure: section 2.2.9.). 

 

All statistical tests of decoding accuracy were compared using one-tailed 

tests as in Project 1 (see Section 2.2.9.). This involved either comparing decoding 

accuracy against chance (i.e., one sample t-tests) or, in the case of the primary 

analysis, comparing decoding accuracy between the typicality and grasp direction 

classifications. The problem of multiple comparisons was overcome using a False 

Discovery Rate (FDR) correction of q ≤ 0.05 for all t-tests performed for each ROI 

per classification and per phase (i.e., preview, plan and go). 

4.2.10. Searchlight MVPA 

 The same classification procedures described in the previous section were 

used for the searchlight analysis for 17 subjects (i.e., including the participant who 

did not participate in the BOTH visual localiser). Searchlight MVPA was performed 

in the same way described during Project 1 (see Searchlight MVPA: section 2.2.10.) 

during the preview, plan and go phases independently. 
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4.3. Results 

All time-locked results from the left hemisphere ROI MVPA are displayed in 

Fig. 4.5. separated by phase (only results surviving FDR correction are reported in 

this section). All findings from searchlight MVPA are displayed in Fig. 4.6. with 

their related cluster sizes reported in Table 4.2. 

4.3.1. Typicality & grasp direction decoding 

 During the plan phase, only the decoding accuracy from the left PMv was 

found to be significantly higher than chance for the classification of grasp direction 

(55%, t(11) =  3.5, p < 0.001, d = 1.85). During the go phase, left EVC was the only 

ROI to demonstrate significantly higher than chance decoding of typicality (59%, 

t(15) = 4.16, p < 0.001, d = 2 [chance 50%]) and a paired samples t-test showed that 

this decoding accuracy was also significantly higher for typicality than for grasp 

direction (t(15) = 2.38, p < 0.016, d =  0.57). Differently, grasp direction was found 

to be discriminated significantly above chance from the left LOTC-Hand (57%, t(13) 

= 3.17, p < 0.001, d = 1.65 [chance 50%]) and pFs (58%, t(15) = 5.66, p < 0.001, d = 

2.83). As expected, no significant decoding was found during the preview phase 

after controlling for multiple comparisons (all p’s > 0.02) since participants were not 

yet aware of the direction they would be grasping toward. 

 For the searchlight, no significant differences were found between decoding 

accuracies of typicality and grasp direction during the plan phase. For the go phase, 

however, decoding accuracies were found to be significantly higher for typicality 

than grasp direction in the vicinity of the cingulate gyrus. The remaining clusters 

displayed the opposite pattern where accuracy was higher for grasp direction than 

typicality, which were located in the left PMv, IFG and crus I of the cerebellum, as 
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well as the layer VI of the right cerebellum and within the vicinity of the medial 

Frontal gyrus (MeFG). 

4.3.2. Object size decoding 
 
 Activity patterns from no ROIs were found to discriminate object size 

significantly higher than chance during any of the preview, plan or go phases (all p’s 

> 0.08). The searchlight revealed a cluster in the left insula and middle temporal 

gyrus that decoded object size significantly higher than chance during the plan 

phase. During the go phase, a cluster was also identified in the left PMd by the 

searchlight analysis. 

4.3.2. Object category decoding 

 Activity patterns from no ROIs were found to discriminate object category 

significantly higher than chance (after controlling for multiple comparisons) during 

any of the preview, plan or go phases (all p’s > 0.047). The searchlight revealed 

clusters in the left EVC and MeFG that decoded object category significantly higher 

than chance during the plan phase. 

4.3.2. Tool identity decoding 

 As was the case for the classifications of object size and object category, 

activity patterns from no ROIs were found to discriminate tool identity significantly 

higher than chance (after controlling for multiple comparisons) during the preview, 

plan or go phases (all p’s > 0.02). The searchlight revealed clusters decoding tool 

identity significantly higher than chance in the left Inferior Frontal Gyrus (IFG) and 

superior temporal gyrus (STG), as well as the right anterior Parahippocampal Gyrus 

(PHG) during the go phase. During the go and plan phase, overlapping clusters in the 

crus II of the right cerebellum was found to discriminate tool identity significantly 
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higher than chance. Finally, during the preview phase, a cluster was found to decode 

tool identity significantly higher than chance in a posterior part of the left PMd. 
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Fig. 4.4. ROI MVPA. Decoding accuracies in left hemisphere ROIs functionally 

defined from contrasts in an independent visual BOTH localiser. Errors bars 

represent SEM. (Also see overleaf). 
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Fig. 4.4. (Continued).  

D
ec

od
in

g 
A

cc
ur

ac
y 

(%
)

D
ec

od
in

g 
A

cc
ur

ac
y 

(%
)

D
ec

od
in

g 
A

cc
ur

ac
y 

(%
)

*

*

*

* * *
* *

*

Non-tools: Typical vs. Atypical

Tools: Typical vs. Atypical q(FDR) < 0.05

p < 0.05
*
*

Category: Tool vs. Non-tool

Size: Large vs. Small

Identity: Knife vs. Pizzacutter

Chance

Preview Plan Go



How the brain grasps tools 

 

 

178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Decoding accuracies from searchlight MVPA. The typicality difference 

map (top left) is derived from typicality and control grasp direction decoding 

accuracies that are acquired per voxel independently, where the values from the 

typicality map was subtracted from the grasp direction map (per participant) - the 

resulting maps are then tested against zero to reveal where decoding accuracies were 

significantly higher for tools than non-tools (see section 2.2.10). For the typicality 

different map decoding accuracies are plotted from the go phase where the red and 

blue colours represent the decoding accuracies that were significantly higher for 

typicality and grasp direction, respectively. For the object size classification (top 

right) the red and blue colours represent significant decoding for the go and plan 

phase respectively. For the object category classification (bottom left) the red colour 
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represents significant decoding in the plan phase. Finally, for the classification of 

tool identity (bottom right) the red, blue and purple colours represent significant 

decoding in the preview, plan and go phases, respectively. 
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Table 4.2. Searchlight cluster sizes, peak coordinates (Talairach) & statistical values. 

Region of activation Phase Cluster voxel size Peak 

coordinates 

t p 

  X Y Z   

Typicality Difference Map 

Tools > Non-tools 

       

L-Cingulate 

 

Go 236 -15 8 37 4.5 < 0.001 

Non-tools > Tools        

L-PMv Go 244 -57 12 19 -4.3 < 0.001 

L-IFG Go 301 -36 26 -5 -5.6 < 0.001 

L-Cerebellar Crus I Go 374 -33 -43 -32 -4.6 < 0.001 

R-MeFG Go 239 24 33 16 -4.4 < 0.001 

R-Cerebellar Lobule VI 

 

Go 300 24 -61 -20 -5.1 < 0.001 

Size        

L-PMd Go 258 -39 14 49 4.5 < 0.001 

L-INS Plan 493 -57 -10 16 5.2 < 0.001 

L-MTL 

 

 

Plan 243 -41 -4 -8 5.1 < 0.001 

Object Category        

L-EVC Plan 196 -12 -91 4 4.5 < 0.001 

L-MeFG 

 

Plan 207 -14 47 16 4.7 < 0.001 

Tool Identity        

L-IFG Go 356 -54 26 16 5.8 < 0.001 

L-STG Go 580 -57 -19 1 5.7 < 0.001 
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4.4. Discussion 

 In this experiment, we were primarily interested in identifying which brain 

regions coded typicality of tool grasping during a pre-movement phase (i.e., the plan 

phase), that is, before any action was actually performed. To our surprise, both ROI 

and searchlight MVPA classification failed to identify a single cortical region whose 

preparatory activity could be used to predict the typicality of an upcoming action. 

Findings from MVPA classification during the movement execution (i.e., the go 

phase) were also surprising since only the left EVC was found to discriminate 

between typical and atypical tool grasping. Activity patterns from a few regions 

could, however, be used to discriminate between object category and tool identity 

when participants passively viewed stimuli at the beginning of a trial (i.e., the 

preview phase). 

4.4.1. Decoding from preparatory epochs 
 
 Previously, Gallivan et al., (2013) showed that preparatory activity patterns 

from canonical ventro-dorsal stream areas (i.e., the pMTG and SMG) can be used to 

predict the type of upcoming action (i.e., reach versus grasp) performed with a tool. 

Here, preparatory activity patterns from ROIs in these areas defined based on their 

selectivity to pictures of tools, were not found to discriminate between typical and 

atypical tool grasping (Fig. 4.4.). In fact, pre-movement activity patterns could not 

be used to decode typicality from any ROIs, even though others (e.g., Gallivan, Cant, 

R-aPHG Go 288 18 -13 -20 4.2 < 0.001 

R-Cerebellar Crus II Go 451 36 -52 -38 5.1 < 0.001 

R-Cerebellar Crus II Plan 276 36 -58 -41 4 < 0.001 

L-posterior PMd Prev-

iew 

190 -51 -10 43 4.5 < 0.001 
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Goodale & Flanagan, 2014) have previously shown that activity patterns from the 

ventral visual stream (e.g., left LOTC, pFs) can be used to predict learnt properties 

about a to be manipulated object (e.g., its weight). Likewise, the type of hand action 

which is directed at an object, such as whether they involve reaching versus grasping 

or the left versus right hand, are also known to be decodable from posterior parietal 

and premotor cortex (e.g., Gallivan, Chapman, McLean, Flanagan & Culham, 2013; 

Gallivan, McLean, Flanagan & Culham, 2013).  

 Even the searchlight analysis that covered all voxels found no evidence of a 

brain region that coded typicality during the plan phase (Fig. 4.5.). This said, the 

univariate analysis by Brandi et al., (2014) similarly found no area to selectively 

increase activity when planning to use a tool, relative to other actions that did not 

rely on stored knowledge about an object (e.g., moving a tool, or acting with non-

tools). Taken together with Brandi et al.,’s (2014) results, it may be suggested that 

no region is specifically relevant to the planning of tool-related actions and, perhaps, 

previous plan-specific activity during tool pantomime studies (e.g., Johnson-Frey et 

al., 2005; Fridman et al., 2006) could be linked to their pantomiming nature (e.g., 

Lausberg, Kazzaer, Heekeren & Wartenburger, 2015). Nevertheless, clearly at odds 

with the findings here, Brandi et al., (2014) did find a large degree of overlap 

between brain areas that were active for both the planning and actual execution of 

tool-use (for similar evidence during pantomiming also see Johnson-Frey et al., 

2005; Fridman et al., 2006; Bohlhalter et al., 2009; Kroliczak & Frey, 2009). 

 While significant decoding evidences different underlying neural 

representations with respect to different conditions (Norman, Polyn, Detre, & 

Haxby, 2006), a lack of decoding could have different meanings. Based on the above 

evidence from both multivariate and univariate approaches, I expect that the lack of 
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decoding does not reflect the fact that the two conditions (i.e., planning typical and 

atypical grasps) engages all of these areas in (1) a similar manner or (2) not at all. 

For the same reason, I do not expect that neural pattern differences have simply 

failed to be identified/utilised by the vector pattern classifier (i.e., a limitation of the 

methodology; also see Pereira & Botvinick, 2011). This leaves the possibility that 

these null findings may reflect a limitation of the current dataset. 

 Exploring this further, an additional post-hoc volume-by-volume ROI MVPA 

analysis was performed (see Appendice C). The aim being to investigate whether the 

neural representations about typicality might have been short-lived and were thus not 

reflected in the activity patterns during the late plan phase epoch (i.e., MVPA was 

originally performed during the final 2 volumes of the plan phase because previous 

delayed movement experiments suggest that planning is a sustained neural process 

that persists throughout the entire delay until the trigger cue; e.g., Chapman et al., 

2011; Curtis et al., 2004; Gallivan et al., 2011; Toni et al., 2001). A short-lived 

representation of typicality would fit well with behavioural and neurophysiological 

evidence showing that (1) affordance compatibility effects can rapidly diminish 

(Tucker & Ellis, 2001; Makris et al., 2011; Makris et al., 2013; cf. Phillips & Ward, 

2002; Vingerhoets et al., 2009), (2) such representations did not need to be 

maintained as participants never used the tools and (3) motor planning activity can 

be transient (Fiehler, Bannert, Bischoff, Blecker, Stark, Vaitl, Franz & Rosler, 2011; 

Ariani, Oosterhof & Lingnau, 2018). 

 Nevertheless, significant decoding was never observed after controlling for 

multiple comparisons when performing ROI MVPA in volume by volume fashion 

(see Appendice C). This said, it is worth highlighting that even a single volume here 

lasted two seconds; a period longer than which affordance related effects are 
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demonstrated to peak, regardless of whether they are argued to be long lasting (e.g., 

1000-1200m; Phillps & Ward, 2002; Vingerhoets et al., 2009) or short-lived (i.e., 

around 400ms; Makris et al., 2011; Makris et al., 2013; also see Cohen, Cross, 

Tunik, Grafton & Culham, 2009 and Kourtis, Vandemaele & Vingerhoets, 2018). 

Pairing EEG/MEG MVPA classification (e.g., Tucciarelli, Turella, Oosterhof, Weisz 

& Lingnau, 2015) with the present tool grasping paradigm would be suited to 

explore the temporal nature of such typicality representations (e.g., sustained versus 

transient). 

 Another possibility I considered post-hoc was whether the current study 

lacked sufficient power to detect the predicted effects. The current sample size (16 

and 17 participants were available here for the ROI and searchlight analysis, 

respectively) seems sufficient given that the effect size for the left LO to decode 

object weight significantly above chance (see Gallivan, Cant, Goodale & Flanagan, 

2014) was considered high (d = 0.86; Cohen, 1969) where a power analysis (using 

Gpower; Erdfelder, Faul & Buchner, 1996) indicated that a total sample of 17 

participants would be needed to detect an effect of this size with 95% power (one 

samples case) with alpha at 0.05. However, the study here had notably fewer 

repetitions (i.e., on average 32) relative to related fMRI real action decoding studies 

(i.e., a maximum of either 48 [Gallivan & Flanagan, 2014] or 80 [Gallivan et al., 

2013]), particularly if compared with fMRI Project 1 that included an average of 18 

experimental blocks per condition with five grasping repetitions within a block (i.e., 

90 grasping repetitions). 

 Another additional exploratory ROI MVPA analysis was performed post-hoc 

using contralesional motor related ROIs activity patterns (i.e., motor cortex, SPOC, 

aIPS, pIPS and, as a control the somatosensory cortex; see Gallivan, McLean, 
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Flanagan & Culham, 2013; see Appendice D). This time, to focus on whether 

statistical power may have contributed to the lack of decoding from preparatory 

activity patterns. Again, significant decoding of reach direction or grip size was not 

achieved, despite such effects being commonly reported for comparable behaviours 

(i.e., when planning to grasp objects that were either presented [Gallivan, McLean, 

Smith & Culham, 2011] or to be placed [Gallivan, Johnsrude & Flanagan, 2016] on 

the left versus right, as well as when grasping a smaller versus larger object 

[Galivan, McLean, Valyear, Pettypiece & Culham, 2011]). As a final indication 

power is an important source of these null findings during planning, a new 

classification of grasp direction involving more repetitions (i.e., by collapsing across 

object categories) was even found to boost decoding accuracies in the motor cortex 

and the aIPS (p < 0.05; see Appendice D). Rapid event-related designs may be useful 

in the future to increase repetitions without prolonging the, already lengthy, 

participation time (though note that even this leads to additional issues for plan-

related decoding designs; see Ariani, Oosterhof & Lingnau, 2018). 

 Moving on, only in one circumstance was there evidence of decoding during 

the planning phase from ROI MVPA: activity in the left PMv could be used to 

predict grasp direction during the control non-tool classification (Fig. 4.4.). 

Representations of superficial movement kinematics (i.e., left versus right directed 

movements) in this region fits well with other studies also showing its activity 

patterns can be used to discriminate between grasping and reaching actions (Turella, 

Tucciarelli, Ooserhof, Weisz, Rumiati & Lingnau, 2016; Gallivan, McLean, Valyear, 

Pettypiece & Culham, 2011) and its proposed role in transforming visual information 

about object features into corresponding grasp-related motor programs (e.g., 
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Jeannerod et al., 1995; Rizzolatti & Luppino, 2001; Vesia & Davare, 2011; Gallivan 

& Culham, 2015). 

 As for the searchlight MVPA, preparatory activity patterns from the left 

insula and MTG were found to successfully decode object size (Fig. 4.5. top right). 

This finding in the insula is consistent with evidence that it its activity is linked to 

changes in grip force (e.g., power versus precision squeezing; Ehrsson, Fagergren, 

Jonsson, Westling, Johansson & Forssberg, 2000; Kuhtz-Buschbeck, Gilster, Wolff, 

Ulmer, Siebner & Jansen, 2008; King, Rauch, Stein & Brooks, 2014) as well as 

being selective to object grasping (relative to if it is simply pointing or looked at; 

Faillenot, Toni, Decety, Gregoire & Jeannerod, 1997), particularly during motor 

planning, rather than execution (Glover, Wall & Smith, 2012). The fact that the 

MTG coded object size, however, is more puzzling because this area is normally 

associated with non-superficial properties of executed or observed object-directed 

actions (e.g., their meaning or goal; Rizzolatti, Fadiga, Matelli, Bettinardi, Paulesu, 

Perani & Fazio, 1996; Decety et al., 1997; Grezes, Costes & Decety, 1998; 

Schubotz, Wurm, Wittmann & von Cramon, 2014). Nevertheless, discrepant results 

have been reported before (e.g., a cluster in the left inferior and middle temporal gyri 

has been shown to be more strongly active when imagining to interact with a tool for 

non-prehensile use, rather than functional grasping; Buxbaum, Kyle, Tang & Detre, 

2006), suggesting that whole-brain univariate and multivariate approaches will 

continue to be useful to clarifying the roles of this area during tool-use. 

 The last set of findings from the searchlight MVPA during the plan phase 

were that object category could be decoded from activity patterns taken from the left 

EVC and MeFG (Fig. 4.5. bottom left). Since the tool and non-tool stimuli inevitably 

have low-level visual differences (e.g., surface area, luminance), such a finding in 
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the EVC is not surprising (e.g., Boyaci, Fang, Murray & Kersten, 2007; Haynes, 

Lotto & Rees, 2004). However, why these representations were restricted to the plan 

phase (i.e., and not the preview phase) is less clear, possibly suggesting that 

participants paid more attention to the objects once instructed how to act. Such an 

explanation would be in line with role of the MeFG in shifting visual attention (e.g., 

Kozasa, Sato, Lacerda, Barreiros et al., 2012), even if only covertly, that is, without 

moving the eyes (Corbetta et al., 1998; Beauchamp, Petit, Ellmore, Ingeholm & 

Haxby, 2001; Sali, Courtney & Yantis, 2016). 

4.4.2. Decoding from movement execution & passive viewing epochs 
 
 Contrary to predictions, activity patterns during the movement execution 

epoch that were taken from the visually defined hand-selective areas in the left 

LOTC and IPS (i.e., LOTC-Hand and IPS-Hand) did not evidence representations of 

typicality (Fig. 4.4.). Neither of the IPS ROIs (IPS-Hand and IPS-Tool) 

demonstrated any type of decoding that was significantly above chance, probably 

owing to the lack of statistical power (see Decoding from preparatory epochs: 

section 4.4.1.). Differently, the LOTC-Hand ROI (and left pFs) showed significant 

decoding of grasp direction during the non-tool control classification, thus, directly 

contrasting with findings from fMRI project 1 where this area specifically 

represented typicality (see Fig. 2.5A.). This said, such a finding does fit well with 

evidence that bilateral LO and pFs activity patterns during movement execution can 

be used to decode between placing an object on the left versus right (Gallivan, 

Johnsrude & Flanagan, 2016). Despite not surviving the correction for multiple 

comparisons, even some of the other LOTC ROIs here (i.e., LOTC-Body, LOTC-

Tool) similarly showed some evidence that they may be sensitive to reach direction 

(Fig. 4.4.).  



How the brain grasps tools 

 

 

188 

 Perhaps representations in left LOTC-Hand change as a function of visual 

feedback availability (i.e., visual feedback was provided here but not in Project 1), 

where, for example, with visual feedback this area is most readily sensitive to the 

seen direction of the moving hand. Consistently, the LOTC is often argued to play an 

important role in comparing visual information about an action with afferent sensory 

information (e.g., Miall & Wolpert, 1996; Seidler, Noll & Theirs, 2004; Gritsenko, 

Krouchev & Kalaska, 2007; Franklin & Wolpert, 2011; Gallivan, 2014; Gallivan & 

Culham, 2015) in order to dynamically update limb representations for motor control 

(e.g., Astafiev et al., 2003; Orlov Makin & Zohary, 2010; Orlov, Porat, Makin & 

Zohary, 2014; Gallivan, Johnsrude & Flanagan, 2016). An alternative, but not 

mutually exclusive, possibility is that this area is more actively involved in 

extracting object features (e.g., the handle of a tool; also see Gallivan, 2014) when 

visual feedback is withdrawn (i.e., as in Project 1), much like how activity from 

posterior/inferior parietal areas is modulated by the availability of this visual 

information during simple reaching, pointing and grasping behaviours (e.g., Inoue, 

Kawashima, Satoh, Kinomura, Goto et al., 1998; Prado, Clavagnier, Otzenberger, 

Scheiber, Kennedy & Perenin, 2005; Filimon, Nelson, Huang & Sereno, 2009; 

Vesia, Prime, Yan, Sergio & Crawford, 2010; for evidence in the monkey see Bosco, 

Breveglieri, Chinellato, Galletti & Fattori, 2010 and Galletti & Fattori, 2018). 

Unfortunately, due to other methodological differences between Project 1 and 3 

(e.g., number of repetitions), clarification of this would require additional data that 

directly compares these actions when performed with and without visual feedback. 

 The finding that the left EVC ROI specifically represented the typicality of 

an executed action is also likely attributable to the unique availability of visual 

feedback in this particular experiment. This area may utilise low level visual 



How the brain grasps tools 

 

 

189 

differences that could be present when grasping the handle or head of a tool such as 

which parts of the objects are occluded (e.g., Smith & Muckli, 2010; Orlov & 

Zohary, 2018) and/or subtle changes in hand kinematics (e.g., longer movement 

times or hand pre-shaping; see Project 2 [Chapter 3]). Another possibility is that 

activity patterns in this area are indeed modulated by higher level properties of an 

action, as was the interpretation of some of the regions in Project 1 (i.e., movements 

were unseen in that experiment, meaning that the observed decoding of typicality 

cannot be accounted for by simple changes in visual feedback). Growing evidence 

characterises the EVC in such a way, where its preparatory activity is predictive of 

action-related object properties (i.e., orientation; Velji-Ibrahim, Crawford, Cattaneo 

& Monaco, 2018), correlates with other behavioural performance (Williams et al., 

2008; Chambers et al., 2013) and is even found to re-activate when reaching to a 

remembered target (Monaco, Gallivan, Figley, Singhal, & Culham, 2017; Singhal et 

al., 2013). Notably, however, representations of typicality should be expected 

elsewhere in the brain (e.g., in LOTC-Hand and IPS-Hand) if appealing to this 

explanation because such information in EVC is presumed to result from 

psychophysiological interactions with parts of the dorsal and ventral visual streams 

(Velji-Ibrahim, Crawford, Cattaneo & Monaco, 2018).  

 Despite the unexpected findings so far, the searchlight revealed successful 

decoding of object size during movement execution from the left PMd (Fig. 5.5. top 

right). This mirrors both human- (Ehrsson, Fagergren & Forssberg, 2001; Monaco, 

Sedda, Cavina-Pratesi & Culham, 2015) and monkey-based evidence (Raos, Umilta, 

Gallese & Fogassi, 2004; Stark & Abeles, 2007; Hendrix, Mason & Ebner, 2009; Di 

Bono, Begliomini, Castiello & Zorzi, 2015) that activation here is affected by 

different grip sizes or postures and that it has an important role in controlling hand 



How the brain grasps tools 

 

 

190 

movements (for reviews see Davare, Kraskov, Rothwell & Lemon, 2011; Turella & 

Lingnau, 2014; also see Rizzolatti, Luppino & Matelli, 1998).  

 Interestingly, the identity of a tool was also coded in the left PMd (more 

posteriorly; Fig. 5.5. bottom right) at the beginning of a trial when participants 

simply viewed these objects. Premotor cortex is well known to activate when simply 

viewing and/or naming pictures of tools (e.g., Chao & Martin, 2000) with a similar 

area, though in the right hemisphere, being recently reported to be sensitive to the 

function of a tool during pantomiming (Chen, Garcea & Mahon, 2016). Such activity 

in this frontal areas is commonly linked to the visual priming of object-specific 

motor schemata (e.g., Jeannerod, Arbib, Rizzolatti & Sakata, 1995; Chao & Martin, 

2000; Grafton, Fadiga, Arbib & Rizzolatti, 1997; Handy, Grafton, Shroff, Ketay & 

Gazzaniga, 2003) and is supported by evidence that lesions here cause apraxic 

symptoms (e.g., difficulty retrieving learnt motor plans; Dovern, Fink, Saliger, 

Karbe, Koch & Weiss, 2011). Alternatively, it could also be related to the possibility 

that participants may have silently named the presented tools because such behaviour 

has been shown to augment PMd activity during 2D tool observation (Grafton, 

Fadiga, Arbib & Rizzolatti, 1997). 

 The possible relation of this tool-identity related representations to sub 

vocalisation (i.e., silent naming) could clearly be extended to the other searchlight 

results regarding tool identity that were obtained from the movement execution 

epoch (see red clusters in Fig. 5.5. bottom right). Many of these areas (e.g., STG, left 

IFG) are well known to be linked to speech and language processing (e.g., Dejerine, 

1914; Okada & Hickok, 2006; Karbe et al., 1998; Martin, Naeser, Ho, Doron, 

Kurland et al., 2009) with some regions (e.g., right medial temporal lobe and pars 

triangularis of the left IFG) being reported to specifically activate when naming 
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different categories of stimuli (e.g., tools; Chouinard & Goodale, 2010; Shinkareva, 

Mason, Malave, Wang, Mitchell & Just, 2008; Garn, Allen & Larsen, 2009). In fact, 

many of the areas here (e.g., medial cerebellum and even the pre-SMA area 

identified to code tool identity in Project 1; see Fig. 2.9B.) match the regions 

associated with the semantic-lexical demands of retrieving an object’s name or 

function, rather than merely articulating the word (Kemeny, Xu, Park, Hosey, Wettig 

& Braun, 2006). Further work focusing on the naming versus the use of real 3D 

objects would be useful in teasing apart these competing interpretations (i.e., motor 

versus sub vocalisation). They would also help uncover why there are differences 

between the brain regions (i.e., the PMd versus the PHG, IFG, STG and cerebellum) 

that code tool identity between the preview and plan epochs, respectively (e.g., could 

the PMd transfer information about tool identity to other areas?; for TMS evidence 

of candidate PMd functional connections see Bestmann, Baudewig, Seibner, 

Rothwell & Frahm, 2005 and Bestman, Swayne, Blankenburg et al., 2010). 

4.4.3. Limitations 
 
 Aside from the lack of statistical power (see Decoding from preparatory 

epochs: section 4.4.1.), an important consideration is that pre-movement delays may 

provoke activation supporting additional cognitive processes (e.g., working memory, 

anticipation, response inhibition, self-monitoring etc.) that are not needed for natural 

everyday actions (e.g., Kemeny, Xu, Park, Hosey, Wettig & Braun, 2005). Indeed, 

motor planning might only truly occur following a go cue (see Ames, Ryu & 

Shenoy, 2014) with it being action selection that is processed during a delay (Wong, 

Haith & Krakauer, 2014). Even the go/no-go paradigms dominating this area of 

study so far (e.g., Kroliczak & Frey, 2009; Brandi et al., 2014) do not necessarily 

overcome this limitation since they also rely on response inhibition (i.e., when 
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inhibiting a response on a no-go trial) which may influence the BOLD signal that 

peaks later than when inhibition is cued. To appreciate the extent of this limitation, 

notice that the only area identified to be selectively active for planning to perform a 

right handed tool pantomime during Fridman et al.,’s (2006) go/no-go paradigm was 

the left PMv, and that the same area is responsible for the motor inhibition of 

contralateral actions (Baumer et al., 2009; Duque & Ivry, 2009; Duque, Labruna, 

Verset, Olivier & Ivry, 2012; Giboin et al., 2017). As touched on earlier, other 

methodologies (e.g., EEG/MEG) can overcome such issues by either shortening 

unnatural delays, taking measures earlier than the time taken for the BOLD signal to 

peak following a no-go cue (i.e., before inhibition processing contaminates the 

planned response) or using entirely different approaches (e.g., measuring the 

readiness potential; for a relevant example see Vogt, Kato, Schneider, Turk & 

Kanosue, 2017). 

 Finally, it is worth highlighting that, should evidence of representations about 

action typicality have been apparent during motor planning here, the specific nature 

of information during motor planning is heavily debated (see Andersen & Buneo, 

2002; Nanay, 2013; Sheahan, Franklin & Wolpert, 2015; Schaffelhofer & 

Scherberger, 2016; Gilbert & Fung, 2018). Activity during motor planning could be 

reflective of shifts in spatial attention (e.g., attending to the direction of an 

impending action; Robinson, Goldberg & Stanton, 1978; Boussaoud, 2003), an 

intention to act (e.g., a desire to move; Bratman, 1987; Haggard, 2005), a motoric 

representation of the upcoming movement (e.g., the outcomes and detailed kinematic 

features of an action; Jeannerod, 1997) or a mixture of these processes. As already 

discussed, some plan-related findings here may be related to changes in attention 

(e.g., coding of object category from left EVC and MeFG; see Decoding from 
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movement execution and passive view epochs; section 4.4.2.), but teasing apart 

whether the predicted representation of typicality would have reflected motor-related 

intentions versus representations would have been more challenging (see Butterfill & 

Sinigaglia, 2014 for a discussion of related philosophy). 

4.4.4. Conclusion 
 
 Attempting to identify whether representations about learnt tool-related 

actions are present during motor planning, this fMRI experiment included an 

instructory delay period prior to the performance of tool grasping. Neural 

representations about low level sensorimotor information (e.g., reach direction, 

object size) were identifiable with MVPA during motor planning and execution. 

Further, abstract properties about tools (i.e., their identity) were also found to be 

represented during object viewing. However, more statistically powerful designs will 

be needed (e.g., with more repetitions) to investigate whether plan-based 

representations exist about the way that tools are typically grasped for subsequent 

use. 
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Chapter 5 
 

General Discussion 

 The principal aim of my thesis was to investigate which brain areas represent 

learnt information about tools during a real grasping paradigm (Project 1 [Chapter 2] 

& Project 3 [Chapter 4]) and to explore if this is manifested in the kinematics of 

these actions (Project 2 [Chapter 3]). I reasoned that this was an important area of 

study because (1) tools are often defined based on their link to action-related 

knowledge (e.g., the way in which they are typically manipulated or their typical 

function) and (2) only very rarely have neuroimaging experiments involved real tool 

manipulation. To this end, two fMRI and one behavioural motion-capture 

experiment were carried out using the same paradigm where participants grasped a 

series of tools and, as a control, a set of non-tools matched for important features 

including elongation, reach distance and object width.  

 Findings from each project are first summarised (see Summary of findings: 

section 5.1.) and then a key finding that draws on the projects altogether is discussed 

(see Hand-selective cortex: From perception to action: section 5.2.). Next, the 

implications of the results are related to theoretical frameworks that were introduced 

in Chapter 1 (see Theoretical implications: section 5.3.) and then considered in 

relation to other fields beyond cognitive neuroscience (see Wider implications: 

section 5.4.). After, the limitations of my interpretation are emphasised (see 

Limitations to interpretation: section 5.5.) before highlighting which questions in the 

domain of tool-use I believe to be most deserving of future attention (see Future 

directions: section 5.6.). The chapter ends with concluding remarks that re-iterate the 

critical contributions of my thesis (see Concluding remarks: section 5.7.). 
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5.1. Summary of findings 

 In Project 1, the powerful fMRI block-design, analysed using ROI- and 

searchlight-based Multivariate Pattern Analysis (MVPA), revealed that a number of 

areas carried information about how to appropriately grasp a tool for its subsequent 

use (see blue dots in Fig. 5.1.) including hand-selective areas of the left dorsal and 

ventral visual streams. In addition, there was evidence of representations about 

object category (i.e., grasping a tool versus non-tool) in left LOTC-Object, whereas 

tool function (i.e., grasp a tool associated with cutting versus scooping) and/or 

identity (i.e., grasping a knife versus pizzacutter versus spoon) were found to be 

represented in various somatomotor regions and the left SMG. 

 In Project 2, motion-capture was used to record hand kinematics during the 

same tool and non-tool reach-to-grasp paradigm used in Project 1. Results from this 

behavioural follow-up experiment first confirmed that participants scaled their grip 

to the size of the grasped stimuli, even though the block-design task was unusual 

with respect to everyday life (e.g., grasping objects five times within a block while 

laying supine). As for differences between the category of the object being grasped, 

tool grasping was found to be initiated and performed more slowly than non-tool 

grasping. When directly comparing atypical tool grasping (i.e., grasping the head of 

the tools) to grasping non-tools on either side (i.e., the conditions where object size 

was identical), tool grasping was associated with a significantly poorer degree of 

grip scaling. Contrastingly, no differences in grip size were found when directly 

comparing typical tool grasping (i.e., grasping the handle of the tools) with grasping 

an identical part of a non-tool. 

 In Project 3, a slow event-related version of the fMRI experiment was used 
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that included an instructory delay period in order to examine whether similar 

representations of action typicality were present during motor planning, that is, 

before the hand even moves. Efforts to decode abstract information during a plan 

phase were largely unsuccessful, likely owing to weak experimental power (see 

bottom of Fig. 5.1.) because, unlike previous reports, grasp direction could not even 

be decoded using plan-related activity from the contralateral primary motor cortex. 

The only area where activity patterns during movement execution could successfully 

decode typical versus atypical grasping was the left Early Visual Cortex (see yellow 

dot in Fig. 5.1.), probably reflecting methodological differences between Project 1 

and 3 (e.g., visual feedback was uniquely available for Project 3; see bottom of Fig. 

5.1.). Finally, tool identity (i.e., decoding knife versus pizzacutter grasping) could be 

decoded from the left PMd when simply viewing tools (i.e., before motor planning) 

whilst being more widely represented (e.g., across temporal and frontal cortex of 

both hemispheres) when actually grasping tools. 
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Fig. 5.1. Summary of MVPA typicality decoding from fMRI Project 1 and Project 3. 

Dots are placed on surface reconstructions from a reference brain (COLIN27 

Talairach) available from the neuroElf package (http://neuroelf.net) at approximate 

locations of ROI peaks or cluster revealed by the searchlights and are coloured blue 

(Project 1) or yellow (Project 3). As can be seen, Project 1 revealed the coding of 
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typicality in hand-selective areas of the left LOTC and IPS as well as the areas in the 

left anterior temporal and right temporal/parietal cortex. For Project 3, the left EVC 

was the only region to code this information and this was during movement 

execution. A number of methodological differences between the projects are 

summarised in the lower boxes. Most notably, Project 3 had weaker statistical power 

(see Sample Size and Design/Reps in lower boxes) and uniquely allowed visual 

feedback during actions. These differences may help explain the null findings during 

motor planning (see Decoding from preparatory epochs: section 4.4.1.) and why 

EVC decoded typicality (see Decoding from movement execution & passive viewing 

epochs: section 4.4.2.) during Project 3. 

5.2. Hand-selective cortex: From perception to action 

 One of the most remarkable findings in my thesis are drawn from fMRI 

Project 1: activity patterns from parts of the IPS and LOTC that were selective to 2D 

pictures of hands (i.e., IPS-Hand and LOTC-Hand) could be used to decode whether 

a tool was grasped in a way appropriate for its subsequent use or not. The 

significance of this finding is partly due the failure to perform this same decoding 

when using activity patterns from overlapping parts of the IPS or LOTC that were 

instead defined by a selectivity to 2D pictures of tools (i.e., IPS-Tool and LOTC-

Tool). In fact, for the LOTC, this decoding of typicality was not possible in 

additional overlapping regions that were sensitive to pictures of other objects or 

whole bodies either (i.e., LOTC-Object and LOTC-Body). It seems then, that hand-

selectivity in the LOTC and IPS play a unique role in coding the relationships 

between a hand and a tool (e.g., a knife is typically grasped by the handle, not the 

blade) during real grasping. 
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 Unlike tool-, body- and object-selectivity that have been heavily investigated 

(for reviews see Gerlach, 2007; Chouinard & Goodale, 2010; Grill-Spector & 

Malach, 2004; Lewis, 2006; Kanwisher, 2010, Grill-Spector & Weiner, 2014; 

Ishibashi et al., 2016; Peelen & Downing, 2017), the cortex that is hand-selective has 

received far less attention (see Table 5.1.), often being simply described to exhibit 

functional profiles that are very similar to those in the neighbouring tool-selective 

regions (e.g., Bracci et al., 2016; Tonin, 2018; Palser & Cavina-Pratesi, 2018). The 

findings here present new knowledge suggesting that the individual hand- and tool-

selective areas do not constitute an entirely common system despite their 

overlapping voxels (also see Bracci et al., 2012 and Striem-Amit, Vannuscorps & 

Caramazza, 2017 for a similar consideration). In particular my findings suggest that 

only hand-selective areas that carry information which may be important for guiding 

the skilful grasping of tools. 

 An important arising question is: why would hand-selective cortex uniquely 

code this information? I hypothesise that, despite being visually selective brain areas, 

these specific regions have particularly important roles in generating and/or 

monitoring hand actions, behaviours by which they come to represent the learnt 

relationship between hands and tools. Not only have similar proposals been made 

regarding the function of body-selective cortex (e.g., the Extrastriate Body Area; Di 

Nota, Levkov, Bar & DeSouza, 2016; Orlov, Porat, Makin & Zohary, 2014), results 

from the motion-capture experiment (Project 2) could be interpreted as support for 

this particular hypothesis: subtle changes in grasp kinematics were identified when 

directly comparing atypical tool and non-tool grasping, but not when directly 

comparing typical tool and non-tool grasping. Speculatively then, decoding between 

atypical and typical tool grasping in hand-selective cortex could be linked to 
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potential differences in the control of hand movements (see Fig. 5.2.). Worth noting, 

Project 3 was designed to shed further light on the link between hand kinematics and 

decoding of typicality by using the same MVPA procedures during a motor planning 

phase. However, due to a number of limitations (see Fig. 5.1. and Decoding from 

preparatory epochs: section 4.4.1.) no brain area could be used to successfully 

decode such a property when using activity patterns prior to movement onset. Aside 

from addressing the limitations in Project 2, an important test of this hypothesis 

could also be achieved in the future by directly comparing grasp kinematics when 

grasping the handles and heads of tools that are of identical sizes (see black arrow in 

Fig. 5.2; though for another approach see Limitations: section 3.4.3.). 

 

 

Fig. 5.2. Background to the hypothesis that hand-selective cortex is involved in 

generating and/or monitoring hand actions. Example grasping movements for the 

typical and atypical tool grasping conditions are displayed in the Middle. Project 1 

results from fMRI MVPA hand-selective ROIs are shown on the Left: decoding 

accuracies associated with the left IPS-Hand and LOTC-Hand were found to be 
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significantly stronger when classifying typicality during tool grasping (i.e., typical 

versus atypical) relative to the control classification of grasp direction during non-

tool grasping (i.e., right versus left). Project 2 grasp kinematic results are shown on 

the Right: no differences were found between typical tool and non-tool grasping 

(Top) whereas measures were found to significantly differ between atypical tool and 

non-tool grasping (Bottom). I predict that the sensitivity of hand-selective cortex to 

typicality is interrelated with distinct grasp kinematics that could occur when 

grasping tools by their handle versus their head (see Bottom: Potential Brain & 

Behaviour convergence arrows).  

 

 Consistent with this, many picture viewing studies have identified properties 

reflecting action processing in hand-selective areas of the left LOTC and IPS (see 

Table. 5.1.). The left LOTC-Hand is sensitive to retrieving tool-related actions from 

long-term memory (Perini et al., 2014; Tonin, 2018) or whether a viewed object is a 

tool (Bracci et al., 2010; Bracci et al., 2012; Bracci & Peelen, 2013; Bracci & Op de 

Beeck, 2016; Bracci et al., 2016) and even codes their unique identities (Tonin, 

2018). Likewise, this region’s activity adapts when viewing consecutive pairs of 

semantically related stimuli (Palser & Cavina-Pratesi, 2018) and represents the type 

of a seen action-related hand posture (Bracci et al., 2018). Though less extensively 

studied, the left IPS-Hand has similarly been reported to be sensitive to the category 

of an object (Bracci & Op de Beeck, 2016) and codes for the identity and action-

related information of a seen tool (Tonin, 2018). 
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Table 5.1. Properties of left LOTC-Hand and IPS-Hand areas interpreted from fMRI 

studies. In the conditions column, italicised text refers to an example stimulus. In the 

properties column, bold text indicates the property of the left LOTC- or IPS-Hand 

region and bracketed text indicates the (related result). The results from my thesis 

are presented in the rows highlighted grey. Acronyms: Exp.# = Experiment number; 

V. Picture = View Pictures; Panto. = Pantomime.  

Study (Exp.#) Task type Conditions Properties of hand-selective 
area 

 
Left LOTC-Hand 

 
 

Bracci, et 

al., (2010) 
Exp.#1 

V. picture: 

Univariate 

View hands, whole bodies, body 

parts, tools & chairs. 

Hand preference (hands > all) 

with tool preference (tools > 

chairs). 

Exp.#2 
View human hands, fingers, 

body parts, feet & robotic hands. 

Hand preference (human hands 

> all except robotic hands). 

 

Bracci, et 

al., (2012) 
Exp.#1 

 

 

 

 

 

V. picture: 

Univariate 

View hands, tools, animals & 

scenes. 

Hand preference (hands > all) 

and tool preference (tools > 

scenes & animals). 

Exp.#2 
View hands, tools, chairs, whole 

bodies & body parts. 

Hand preference (hands > all 

others). 

 

 

Bracci  

& Peelen 

(2013) 

 

Exp.#1 

 

 

 

V. picture: 

Univariate 

 

View tools (hammer) & objects 

that are acted-with/-on 

(comb/door knob) or of high/low 

graspability (book/clock). 

Tool preference (tools + act-

with objects > act-on or high/low 

graspability objects) with a 

sensitivity to graspability (high 

> low graspability). 

Exp.#2 

View tools, small/large music 

instruments (guitar/piano) & 

small/large objects (alarm-

clock/blackboard). 

Tool preference (tools > 

instruments) & insensitive to 

size (small object = large object). 

Exp.#3 

View sports act-with objects 

(racquet), sports-related objects 

(ball), animals & vehicles. 

Tool preference (sports act-with 

> sports-related objects) and 

insensitive to animacy (animals 

= vehicles) 
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Perini et al., (2014) 

Judge 

picture: 

Univariate 

Judge a tool’s related action 

(rotate/squeeze) & location 

(kitchen/garage). 

Action-retrieval preference 

(action > location). 

Bracci & Op de 

Beeck (2016) 

V. picture: 

MVPA 

View tools, sports equipment, 

musical instruments, fruit/veg, 

animals & minerals. 

Codes shape & category of 

stimulus (activity patterns & 

behaviour ratings correlate). 

Bracci et al., (2016) 
V. picture: 

MVPA 

View tools, nonmanipulable 

objects, hands, bodies & 

scrambled objects 

Hand preference (hands > all) 

with body (body > tools) & tool 

preferences (tool > 

nonmanipulable objects). 

Palser & Cavina-

Pratesi (2018) 

V. Picture: 

fMRI 

adaptation 

View tools, hands with a tool-

related/-unrelated posture (power 

grasp/pointing) & semantically 

pairable stimuli (mouse/cheese). 

Sensitive to semantically 

pairable stimuli (adaptation for 

mouse/cheese but not tools/hands 

regardless of posture). 

van den Heiligenberg 

et al., (2018) 

V. picture: 

Univariate 

& 

functional 

connectivity 

One-handed participants viewed 

hands, active- or cosmetic-hand 

prosthetics and objects. 

Modified by visuomotor 

experience ([1] One-handers 

activity & connectivity with 

somatomotor cortex > controls. 

[2] One-handers correlation with 

daily usage > controls correlation 

with observing prosthetics). 

Tonin 

(2018) 
 

Panto. & 

V. picture: 

MVPA 

Pantomime/view tools with 

different functional 

(rotate/squeeze) & structural 

(power/precision grasp) actions. 

Codes functional & structural-

action retrieval with a 

functional-preference 

(functional > structural). Codes 

tool identity. No differences 

across task (pantomime = view). 

Bracci, et 

al., (2018) 
 

V. picture: 

MVPA 

View hand postures for action & 

communication (grasp/thumbs-

up) from differing viewpoints. 

Codes hand postures invariant 

of viewpoint (activity pattern 

correlations of same viewpoint > 

different viewpoint). 

Project 1  
Grasping: 

MVPA 

Grasp 3D tools and non-tools by 

their handle or head. 

Codes typicality of tool 

grasping ([typical vs. atypical 

tool grasping] > [right vs. left 

non-tool grasping]) 

Project 3  
Grasping: 

MVPA 

Plan and grasp 3D tools and non-

tools by their handle or head. 

Codes grasp direction ([right vs. 

left non-tool grasping] > chance) 

during action execution. 
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Left IPS-Hand 

Bracci & Op de 

Beeck (2016) 

V. picture: 

MVPA 
See above. 

Codes category of stimulus 

(activity patterns & behaviour 

ratings correlate). 

Bracci et al., (2016) 
V. picture: 

Univariate 
See above. Hand preference (hands > all). 

Tonin (2018) 

Panto. & 

V. picture: 

MVPA 

See above. 

Codes structural-action 

properties when pantomiming. 

Codes functional-action 

properties across tasks with a 

functional- (function > 

structural) & pantomime-

preference (pantomime > view). 

Codes tool identity with a view-

preference (view > pantomime). 

Project 1 
Grasping: 

MVPA 
See above. 

Codes typicality of tool 

grasping ([typical vs. atypical 

tool grasping] > [right vs. left 

non-tool grasping]). 

 

 Only cautiously, however, should findings from picture viewing paradigms 

be generalised to behaviours involving actual visuomotor control (e.g., grasping 3D 

tools). Despite picture viewing experiments being sensible (i.e., LOTC-Hand and 

IPS-Hand are defined based on their sensitivity to 2D pictures of hands), there is 

strong support for the claim that the systems for visually-based perception and action 

are, atleast partly, divisible (see Dual Visual Stream Theory: Section 5.3.1.) and a 

growing number of both behavioural (e.g., Snow, Skiba, Coleman & Berryhill, 2014; 

Kithu, Saccone, Crewther, Goodale & Chouinard, 2019) and neural studies (e.g., 

Freud et al., 2016; Snow et al., 2011) imply that 3D objects are processed differently 

to those of pictured 2D objects. If excluding Project 1 and Project 3, to my 

knowledge, only Tonin (2018) has investigated the roles of IPS-Hand and LOTC-

Hand during actual movement (i.e., when pantomiming the action of a pictured tool) 
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and found, for the IPS, that the coding of tool function and identity are indeed altered 

across tasks concerning perception (i.e., picture viewing) versus action (i.e., 

pantomiming; see Table 5.1.).  

 Accordingly, further experiments involving real tool-related actions are 

needed to address the hypothesis that hand-selective cortex is important for 

controlling hand movements. Examining if LOTC-Hand and IPS-Hand share a 

similar neural code for behaviours involving acting with and perceiving tools (e.g., 

by using cross-task decoding designs; see Chen, Garcea, Jacobs & Mahon, 2017 for 

evidence of such in the IPL and ventral temporal cortex across perceiving tools and 

pantomiming their use) would also advance this issue because this would imply that 

properties found during tool perception would be readily apparent during tool-related 

actions. Nevertheless, so far, classifiers trained on activity patterns from these areas 

during tool perception have not been generalisable to tool-use pantomiming (or vice-

versa; Tonin, 2018), indicating that a shared neural code may be unlikely and, 

consequently, why further tool-related action studies are important. 

5.3. Theoretical implications  
 
 The theoretical questions raised during the General Introduction (Chapter 1), 

are next considered in light of the results from Projects 1-3. 

5.3.1. Dual Visual Stream Theory (DVST) 
 
 A key aim of my thesis was to test the claim that tool-use relies on an 

interplay of processing between the ventral and dorsal visual pathways (e.g., Milner 

& Goodale, 1995; 2006). Support for this view can be taken from the results of 

Project 1 in the sense that areas canonically described to be parts of either stream 

coded information about the relationship between a hand and tool during grasping 

(i.e., left LOTC-Hand, right FG, left IPS-Hand and right aSPOC). This is a 
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particularly novel finding because the ventral visual stream was not implicated in 

previous neuroimaging studies of learnt hand tool interactions (Valyear et al., 2012; 

Brandi et al., 2014). Prior to this project, the closest evidence linking ventral visual 

stream activity to processing learnt knowledge about tool-related actions comes from 

pantomiming studies (e.g., Buchwald et al., 2018; Tonin, 2018) whose 

interpretations are limited because the ventral stream activity might be influenced by 

the non-goal-directed nature of pantomiming (e.g., Krolickzak, Cavina-Pratesi, 

Goodman & Culham, 2007; Cohen, Cross, Tunik, Grafton & Culham, 2009; Singhal, 

Monaco, Kaufman & Culham, 2013; Tonin, Romei, Lambert, Bester, Saada & 

Rossit, 2017; Lausberg, Kazzaer, Heekeren & Wartenburger, 2015; also see 

Imagining or pantomiming tool-use as a proxy for real action: section 1.6.1.). 

 The motion-capture results from Project 2 showing that reaching was slower 

and that grasping was performed more poorly for tool than non-tool actions, might 

also be interpreted, atleast indirectly, as evidence that tool-related actions require 

input from the ventral visual stream. Like the tool-related actions here, slower and 

more inaccurate hand movements are also known to occur for other actions previous 

argued to not rely purely on real-time dorsal visual stream processing (e.g., when 

acting toward a target versus a remapped target or after a delay; Thaler & Goodale, 

2011; Goodale, Jakobson & Keillor, 1994) and, thus, require input from the ventral 

visual stream (e.g., Manzone & Heath, 2018). Such a view converges with additional 

evidence from Project 1 showing that a part of the ventral visual pathway (i.e., 

LOTC-Object; see Fig. 2.7.) was specifically sensitive to the category of the object 

being grasped (though an experiment with more than three tool stimuli is needed to 

verify the reliability of this particular finding). 
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 Nevertheless, the strict functional division of labour that the DVST proposes 

to exist between the dorsal and ventral visual streams has been frequently challenged 

(e.g., Franz, Hesse & Kollath, 2009; Schenk & McIntosh, 2010; Farivar, 2009; also 

see Vaziri-Pashkam, & Xu, 2018) and the data presented here further question the 

claim that these streams exclusively process visual information for the roles of action 

and perception, respectively. In the case of dorsal visual stream areas, successful 

decoding of typicality and tool-function was observed (e.g., within IPS-Hand Fig. 

2.5A. and SPOC Fig. 2.8B.) and is not explainable if assuming that this pathway has 

no access to information other than that which is provided in real-time (or if it 

rapidly decays; e.g., Jax & Rosenbaum, 2009). As for the ventral visual stream, 

successful decoding was possible about the size of a grasped object (e.g., superior 

portion of the LOTC; Fig. 2.6B.) or direction of a grasp (e.g., pFs; Fig. 2.5A. and 

Fig. 4.4.) which is normally related to the dorsal visual stream and the premotor 

cortex that it projects to (e.g., Monaco, Sedda, Cavina-Pratesi & Culham, 2015; 

Fabbri, Caramazza & Lingnau, 2010). Thus, the results here somewhat contradict the 

traditional views of the dorsal and ventral visual streams, suggesting that they are 

each sensitive to action-related information regardless of whether these are based on 

stored knowledge or acquired in real-time (for recent similar views see Lingnau & 

Downing, 2015; Freud, Plaut & Behrmann, 2016). 

 The major outstanding question then, concerns how information is 

transferred between the ventral and dorsal visual streams (e.g., Mahon & Caramazza, 

2011; Cloutman, 2013; van Polanen & Davare 2015; Milner 2017). Xu (2018) has 

recently highlighted that, although tool-related information may be represented in the 

posterior parietal cortex, it does not necessarily originate from there (though see 

Mahon, Milleville, Negri, Rumiati, Caramazza & Martin, 2007) because the 
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representation of action information is only present in this area when it is task 

relevant (Bracci et al., 2017; though note that this is different from Project 1 where 

this typicality was irrelevant to the task). Findings from fMRI experiments 

capitalising on the fact that the two streams have unique links to visual awareness 

support this view (see Darcy, Sterzer & Hesselmann, 2019; Almeida, Fintzi & 

Mahon, 2013; Mahon, Kumar & Almeida, 2013; Kristensen, Garcea, Mahon & 

Almeida, 2016), as do voxel-based lesion symptom mapping results showing that 

impaired access to tool-use knowledge is associated with lesions of posterior 

temporal, not posterior parietal, cortex (Buxbaum et al., 2014). 

 Approaches to functional connectivity that utilise Dynamic Causal Modelling 

(DCM) are well suited to deepen our understanding of how the visual streams 

interact to support tool-use (e.g., Chen, Snow, Culham & Goodale, 2017). This 

technique can reveal the direction of communication between the LOTC and IPS that 

has already been established by traditional functional connectivity measures when 

viewing tools (Bracci et al., 2012; Garcea & Mahon, 2014) or if simply at rest 

(Hutchison, Culham, Everling, Flanagan & Gallivan, 2014; also see Hutchison, 

Culham, Flanagan, Everling & Gallivan, 2015). The datasets collected here enable 

such an investigation where it could be examined, for example, if left hand-selective 

cortex (but not body-, object- or tool-selective cortex) in the LOTC exerts an 

influence on activity in IPS-Hand during tool grasping. This predicted finding would 

be in line with recent functional connectivity evidence revealing that another area 

selective to pictures of the body in occipital cortex (i.e., the Extrastriate Body Area), 

but not object-selective area LO, connects with parietal areas during object-directed 

action (e.g., grasping/reaching; Hutchison & Gallivan, 2018). In fact, DCM also 

enables testing of sophisticated architectures that could answer questions related to 
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additional models such as whether activation in left anterior temporal cortex 

influences ventral visual stream activity in a bidirectional manner (as proposed by 

hub-and-spoke theory; Lambon Ralph, Jefferies, Patterson & Rogers, 2017) or if 

ventral visual stream activity influences left SMG processing for the resolution of 

affordance competition (as proposed by the two-action systems model; Buxbaum, 

2017). 

 As a final point, results here also question the long-standing interpretation 

that visual form agnosia patient D.F.’s inability to grasp visually presented tools by 

their handle is primarily due to her ventral visual stream damage (Carey, Harvey & 

Milner, 1996; see Dual visual stream theory: section 1.3. and Introduction: section 

2.1.). The assumption that the ventral visual stream was responsible for her tool 

grasping deficit is not so clear-cut given that the dorsal visual stream was shown 

here carry information about how to grasp a tool for its subsequent use. This point is 

worth considering given that more recent examinations of D.F.’s aetiology have 

revealed cortical thinning in the parieto-occipital cortex (Bridge, Thomas, Minini, 

Cavina-Pratesi, Milner & Parker, 2013; also see Whitwell, Milner & Goodale, 2014) 

as well as misreaching deficits conventionally taken as evidence of optic ataxia (i.e., 

a disorder commonly associated with the dorsal visual stream; Hesse, Ball & 

Schenk, 2012; Hesse, Ball & Schenk, 2014; Rossit et al., 2018). A motion-capture 

paradigm like that presented in Project 2 paired with TMS to either the LOTC or IPS 

would be appropriate for studying this issue as it could indicate whether one, or both, 

of these visual streams have a causal role in tool grasping (see Tonin, 2018 and 

Cohen, Cross, Tunik, Grafton & Culham, 2009 for related approaches during 

pantomimed grasping). Though perhaps less feasible, testing whether optic ataxia 

patients suffer from D.F.’s reported tool-grasping deficit could also highlight 
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whether dorsal visual stream damage is responsible for this behaviour, and thus 

causally linked to humans’ unique ability to use tools.  

5.3.2. Two-action systems model 
  
 Another key aim of my thesis was to test the claim that the ventro-dorsal 

stream supports tool-use through its processing of manipulation knowledge (i.e., 

multisensory and motor memories about objects; Binkofski & Buxbaum, 2013; 

Buxbaum, 2017). Generally, the finding that left LOTC-Hand decoded the typicality 

of tool grasping actions is highly consistent with this because, in its most recent 

account, the two-action systems model describes how ‘the posterior temporal lobe 

encodes information about hand-tool relationships’ (Buxbaum, 2017). 

 However, it is the left pMTG area that is usually taken as evidence in favour 

of the ventro-dorsal stream’s role in tool-use (e.g., Martin et al., 1995; Martin et al., 

1996; Chao et al., 1990; Damasio et al., 2001) and this area was not found to house 

such abstract tool-related representations even after being carefully isolated in the 

ROI MVPA approaches. Surprisingly, these projects also failed to find that the IPL, 

another traditionally described ventro-dorsal stream area, coded the relationship 

between the hand and tool, despite a wealth of previous research implicating this 

area for similar tool knowledge retrieval or tool-action tasks (for review see 

Vingerhoets, 2014). Further work is needed to test the possibility that it is 

particularly taxing tool-use tasks (i.e., beyond grasping a tool) that recruits these 

brain areas because the pMTG was, like here, not identified if participants simply 

demonstrated tool-use (Valyear et al., 2012), but has been when actually using a tool 

on a real object (Brandi et al., 2014; also see Randerath et al., 2010 for evidence of 

different left hemisphere brain lesions associated with tool grasping and tool-use 

deficits). In light of the results here (i.e., typicality representations in LOTC-Hand 
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specifically), such new investigations would benefit from carefully dissociating 

characteristic ventro-dorsal stream areas (e.g., pMTG, SMG) from other category-

selective parts of temporal cortex (e.g., Valyear & Culham, 2010; Perini et al., 

2014). 

 In line with the reasoning-based approach (e.g., Osiurak, 2014), the largely 

null evidence throughout canonical ventro-dorsal stream areas might reflect the 

possibility that these areas are normally implicated in the study of tool-use because 

of their involvement in reasoning about the physical properties of objects: since tool-

use was not required in the grasping paradigm, no technical/mechanical reasoning 

was necessary, thus, explaining the lack of successful decoding from these areas. 

Taken this way, the findings fit with the three-action pathways model’s (Osiurak, 

Rossetti & Badets, 2017) claim that it is the ventral visual stream that stores 

contextual relationships between hands and objects (e.g., LOTC-Hand) while the 

ventro-dorsal stream is needed to understand mechanical actions (e.g., SMG, 

pMTG). 

 Supporting this possibility, after a careful examination of the brain regions 

sensitive to the understanding of physical laws (e.g., the outward direction of 

colliding objects), Fischer, Mikhael, Tenebaum & Kanwisher (2016) remarked that 

the implicated areas were similar to those normally identified during tool-use and 

motor planning (e.g., bilateral SPL and left IPL; also see Schwettmann, Fischer, 

Tenebaum & Kanwisher, 2018 and Frey, Hansen & Marchal, 2015). Likewise, much 

of the left frontoparietal network usually linked to tool knowledge, has recently been 

shown to be recruited when processing movement-related information regardless of 

whether they were semantically linked to stimuli considered to be tools (e.g., a saw), 

non-tools (e.g., windmill) or animals (e.g., flapping wings; Borghesani, Riello, 
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Gesierich, Brentari, Monti & Gorno-Tempini, 2019). Nevertheless, whether the 

ventro-dorsal stream is truly agnostic to learnt knowledge, as is argued by the 

reasoning-based approach (e.g., Osiurak, 2014), is yet to be determined (see for 

example Leshinskaya & Caramazza, 2015); after all, tool-use could be supported by 

abilities that draw on learnt knowledge as well as online reasoning (see Buxbaum, 

2017) and might be expected given the extensive connectivity between the left IPL 

across the brain (Zhang & Li, 2014).  

 Hybrid models that discuss how tool-use is not only based on learnt 

knowledge but can also be adapted in the case of novel contexts will continue to be 

informative (see for example Mizelle & Wheaton, 2010 and Fausto & Valentina, 

2017). In terms of their verification, tasks already designed to tap in to the 

generation of hypothetical novel tool-related uses (e.g., Tobia & Madan, 2017; 

Benedek et al., 2018) should be adapted for compatibility with real action-based 

fMRI experiments. Likewise, tool selection tasks will be critical (e.g., choosing 

between a pair of knives where one is too flimsy for a required slicing) since they 

can uncover whether ventro-dorsal areas contain representations about other physical 

properties (e.g., rigidity; see Yildirim, Wu, Kanwisher & Tenebaum, 2019) that 

would be important for successful tool-use.  

 As a last point, the same regions were never found to code both the typicality 

of an action as well as other abstract information about tools (e.g., tool identity or 

tool function). This fits with the view that there is segregated processing of 

knowledge about how to manipulate a tool and functional knowledge (e.g., Ochipa, 

Rothi, & Heilman, 1989; Buxbaum et al., 2000). Rather interestingly, however, left 

anterior temporal cortex was found to code typicality (also see Chen, Garcea & 

Mahon, 2016 for similar evidence during pantomime actions) despite the ATL 
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normally being shown to be dedicated to processing the function of a seen tool, 

rather than how it should be manipulated (e.g., Ishibashi et al., 2011; Lambon Ralph 

et al., 2008; also see Clarke & Tyler, 2014). Perhaps the lack of tool function coding 

here reflects the small number of tools used and should be addressed with larger 

stimulus sets in the future; but as it stands, this evidence suggests that even the 

segregation of processing between manipulation- and function-related knowledge in 

that ATL is not clear-cut (also see Campanella & Shallice, 2011). The significance 

of this point lies in the fact that, while the SMG and pMTG have commonly been 

shown to contain information about both types of knowledge (e.g., Gallivan et al., 

2013; Martin et al., 2016; Chen et al. 2016; Watson & Buxbaum, 2015), the ATL 

previously seemed to abide by this segregation as it processes knowledge about tool 

function (e.g., Laura-Grotto, Piccini & Shallice, 1997) that dissociates from that linked 

to their manipulation (e.g., Martin, et al., 2016; Ishibashi et al., 2011; Lambon Ralph et 

al., 2008).  

5.3.3. Theory of affordances 
 
 Originally, the concept of affordances was used to capture the relationship 

between an object and actor where objects are perceived in terms of the actions that 

they afford (Gibson, 1979), but most neuroimaging studies on this topic present 2D 

pictures of objects that afford no genuine possibility for action (though see Gallivan 

et al., 2009, 2011). Project 1 found that a number of left and right hemisphere brain 

regions coded the typicality of a grasp for real 3D tools (see Fig. 5.1.) even though 

participants were simply required to arbitrarily grasp the instructed side of the object. 

Likewise, the fact that various regions also coded tool identity and function (e.g., left 

PMd, SMG) in Project 1 and/or 3 further supports this point as there was no explicit 

need to process these properties either. In fact, throughout all projects, most 
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participants were entirely naïve about the focus on typicality or tools as the 

experiments were simply described to concern the grasping of 3D objects. 

 This coding of typicality across both hemispheres fits well with the priming 

study by Valyear et al., (2012) showing that responses in select parieto-frontal areas 

(e.g., left aIPS, right SPL) when demonstrating well learnt tool-use (e.g., cutting with 

a knife) were suppressed if the same tool had been viewed earlier in the same trial. In 

that study, the control task was to perform a newly learnt tool-use demonstration 

whereas in the projects here the control task was to grasp non-tool objects on their 

different sides. Thus, with these different control tasks, these studies provide 

converging evidence that the functional action afforded by tools (e.g., grasp a knife 

by the handle) may be automatically processed (particularly around the left IPS that 

was implicated here and by Valyear et al., 2012), even in absence of an intention to 

use these objects.  

 Such a conclusion would be strengthened by behavioural evidence showing 

that this neural activity indeed reflects the preparation of these learnt motor 

programs. In a modified behavioural-version of the priming experiment just 

highlighted, Valyear, Chapman, Gallivan, Mark & Culham (2011) have 

complementarily identified faster RTs when participants grasped tools for use 

(relative to moving) if the viewed prime and grasped tool matched in terms of their 

identity (see their experiment 1). A similar RT advantage for actions consistent with 

the tools functional affordance was not, however, observed in Project 2 here (i.e., 

RTs were equal between typical and atypical grasping; for further discussion of this 

discrepancy see Typicality & hand kinematics; section 3.4.2.). Additional work 

therefore seems necessary to highlight whether perceiving a tool really reflects 

automatic motor planning with a focus on clarifying whether the fMRI repetition 
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suppression reported by Valyear et al., (2012) co-occurs with faster RTs (e.g., as 

shown during other non-tool action related paradigms; Valyear & Frey, 2015) or that 

these effects are abolished following interference to their processing by using TMS 

(e.g., as shown for affordances evoked by images; Xu, Humphreys, Mevorach & 

Heinke, 2017). 

 Evidence merging these neural and behavioural approaches will be critical 

for supporting various models building on the principle of affordances to suggest 

that the representation of skilled actions depend on the same mechanics contributing 

to both action comprehension and production, including the common coding 

hypothesis (Hommel et al., 2001; Prinz, 1997; also see Johnson-Frey, 2004), 

affordance matching hypothesis (Bach, Nicholson & Hudson, 2014) and affordance 

competition hypothesis (Cisek, 2007; also see Buxbaum, 2017). For example, MR-

compatible motion-capture equipment could enable the test of whether the 

distinctive grasp kinematics linked to atypical tool grasping (see bottom right of Fig. 

5.2.) correlates with decoding accuracies of typicality in hand-selective cortex. Such 

a finding would go some way in suggesting that motor control is influenced by 

action comprehension because these movements involve the specific avoidance of 

responding to affordances (see Typicality & hand kinematics; section 3.4.2.). This 

approach would even enable a clear test of the earlier made hypothesis that hand-

selective regions have a role in generating and/or monitoring hand actions. 

 Even separate neuroimaging and behavioural approaches that make use of 

previously examined tasks would be useful in clarifying whether tool-related actions 

are automatically planned when perceiving a tool. For example, the neural (e.g., 

decoding of typicality) and behavioural (e.g., slower RT and MT for tools than non-

tools) should be expected to disappear under circumstance previously described to 
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violate affordances such as when the tool is broken (see Buccino et al., 2009 and 

Wulff & Humphreys, 2015) or if the afforded action cannot physically be realised 

(e.g., with an arthritic or immobilised hand; see Kuhn, Werner, Lindenberger & 

Verrel, 2014 and Bassolino, Bove, Jacono, Fadiga & Pozzo, 2012). Innovative 

designs (e.g., virtual reality) may even allow the incorporation of other factors 

known to influence affordance processing such as that of reachability (e.g., 

presenting extrapersonal space; see Gallivan et al., 2009; 2011) or danger (e.g., 

presenting painful objects; see Garrido-Vasquez & Schubo, 2014) by overcoming the 

fact that movements in such experiments would be impossible or unethical. 

5.3.4. The tool processing network 
 
 A final major aim of my thesis was to assess which of the regions in the tool 

processing network carry information relevant to performing learnt tool-related 

actions. In comparison to relevant pantomiming work which also involved 

performing learnt actions about tools (e.g., Tonin, 2018; Garcea et al., 2019; 

Buchwald et al., 2018), the performance of multivariate decoding when using 

activity patterns during real actions appeared rather poor. In fact, if considering the 

tool-selective ROIs (e.g., PMd, PMv, SMG, pMTG, LOTC-Tool, IPS-Tool), there 

was no evidence (after controlling for multiple comparisons) that these areas showed 

above-chance decoding for abstract principles related to grasping tools (i.e., tool-

function, tool-identity, object category, typicality). 

 Importantly, these findings may be influenced by the fact that the ROIs here 

were visually defined based on contrasts when viewing different categories of 2D 

pictures. Indeed, this may help explain why even low-level kinematic property (e.g., 

grasp direction and object size) were only rarely decoded (e.g., sometimes from 

premotor ROIs; see Fig. 2.5A. and Fig. 4.4.) despite parieto-frontal cortex ROIs 
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(e.g., IPS, premotor cortex) defined based on action-related contrasts (e.g., all 

actions > baseline) previously being shown to code such properties during 

movement execution and planning (e.g., Gallivan et al., 2011; 2016). Fitting this 

explanation, the searchlight MVPA approach did identify markedly more areas for 

low-level action properties (e.g., object size; see Fig. 2.6B. and top right Fig. 4.5.). 

As a consequence, the results here showing that 2D tool-selective ROIs were notably 

poor at reflecting action properties regardless of whether they were about abstract 

tool properties or simple movement kinematics (also see Valyear et al., 2007; but see 

Gallivan et al., 2013), imply that proxy tasks involving 2D tool perception may not 

be best suited for inferring about the brain areas need to perform tool-related actions 

(for similar views about stimulus format in general; see Snow et al., 2011; Kithu, 

Saccone, Crewther, Goodale & Chouinard, 2019). 

 This said, the searchlight analysis still could have implicated abstract 

representations (e.g., tool identity, tool function) in the IPL and frontal cortex (e.g., 

PMd, PMv) as has been the case for other pantomiming studies (e.g., Chen et al., 

2017; Ogawa & Imai, 2016), but even this only occurred in select frontal cortex 

(e.g., IFG). Nevertheless, the pantomime of tool-use requires cognitive processes not 

necessarily needed for real tool use (e.g., Sperber, Chistensen, Ilg, Giese & Karnath, 

2018; Lewis, 2006) which may explain why others have similarly found (e.g., 

Jacobs, Danielmeier & Frey, 2010) no neural differences between hand and tool-

related actions if required to actually use a tool. Unfortunately, due to other 

important differences between this paradigm and pantomiming experiments (e.g., 

stimulus format: Macdonald & Culham (2015) also failed to find affordance effects 

during fMRI when viewing real 3D tools too) further study that separately controls 
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for these factors (i.e., pantomiming and stimulus format) are required to tease apart 

which factors led to the sparse decoding effects here.  

 Nonetheless, the only perceptual ROIs that reliably decoded typicality were 

those based on 2D pictures of hands. Perhaps it is these regions, rather than tool-

selective ROIs, that may be particularly important for tool-related actions (but see 

Gallivan et al., 2013). Indeed, based on their evidence that activity responses are 

higher for hands than tools in the IPS and LOTC, Bracci, Cavina-Pratesi, Connolly 

& Ietswaart (2016) have recently suggested ‘that the purported well-accepted 

definition of a “tool” network should now be refined to take into account that these 

areas respond first and foremost to hands’. As previously noted, perhaps these 

regions were implicated in particular here because these experiments examined hand, 

rather than tool, movements, but further study is required to test this (for a 

suggestion on how see Hand-selective cortex and learnt actions: section 2.4.1.). 

  Interestingly, some patches of the tool processing network, aside from the 

LOTC and IPS, are known to include other areas selective to the pictures of hands 

(see meta-analysis in Grosbras, Beaton & Eickhoff, 2012). Though their properties 

remain hugely unexplored, those in the hand-tool overlapping area in the left Ventral 

Temporo-Occipital Cortex (VOTC) have received slightly more attention: Bracci et 

al., (2016) showed that this area primarily encodes the category of a pictured object 

(i.e., animacy) which is different from the properties encoded in hand-tool selective 

parts of the left IPS (i.e., action-related properties) and LOTC (i.e., category- and 

action-related properties). Therefore, given the insensitivity of this area in the left 

VOTC to action-related properties (i.e., hand and tool responses did not cluster 

together), it could be predicted that VOTC-Hand would not display the same results 

as in LOTC-Hand and IPS-Hand here. As a whole then, it may be that hand-selective 
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cortex (atleast in the LOTC and IPS) is particularly important for hand-based tool 

actions, whilst the role of the tool-processing network requires further investigation 

(e.g., with tool-, rather than hand-related movements). 

 A final aspect often discussed regarding the tool-processing network is its left 

hemisphere lateralisation (e.g., does it follow the lateralisation of language 

representations; see Kroliczak, Piper & Frey, 2011). Only studies that experimentally 

manipulate the acting hand are able to ascertain whether left lateralisation occurs 

irrespective of the hand used (Brandi et al., 2014; Kroliczak & Frey, 2009). 

Nevertheless, the lateralisation of some areas here does fit with prior research since 

left anterior temporal cortex has shown similar results during semantic categorisation 

(e.g., Brambati, Benoit, Monetta, Belleville & Joubert, 2010) as well as the fact that 

apraxics with left hemisphere damage are impaired when using either side 

(Goldenberg et al., 2003). Even connectivity measures of LO are known to be much 

more extensive from a seed in the left, relative to the right, hemisphere (Hutchison & 

Gallivan, 2018). Regarding the right hemisphere activation found here (e.g., pSTS) 

other innovative paradigms have found bilateral activation (e.g., SPL, SMG) such as 

during real (Brandi et al., 2014) or virtual reality-based tool-use tasks (Rallis, 

Fercho, Bosch & Baugh, 2018).  

5.4. Wider implications 
  
 Thus far, I have focused on cognitive neuroscience models of human 

behaviour and brain function. Nonetheless, implications can also be drawn from 

these findings further afield, most evidently in clinical (see Clinical implications: 

section 5.4.1.) and robotic domains (see Robotics implications: section 5.4.2.). 

5.4.1. Clinical implications  
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 Apraxic impairments following left hemisphere stroke have been estimated to 

occur in 30-50% of patients (see Geusgens, Heugten, Cooijmans, Jolles & van den 

Heuvel, 2007) with such symptoms (e.g., difficulty performing pantomimed and/or 

real tool-use; Goldenberg, 2013) having long lasting consequences (e.g., 

Donkervoort, Dekker & Deelman, 2006; Hanna-Pladdy, Heilman & Foundas, 2003). 

Various approaches to rehabilitation are being developed (for review see 

Worthington, 2016) including those that rely on occupational health programmes 

(e.g., using pictures showing the correct order of task performance or natural action 

therapy; van Heugten, Dekker, Deelman, van Dijk, Stehmann-Saris & Kinebanian, 

1998; Buchman et al., 2019) as well as those related to neural modulation techniques 

(e.g., transcranial direct current stimulation [tDCS]; Bianchi, Cosseddu, Cotelli et al., 

2015). However, further evidence is required to show that any of these approaches 

provide effective rehabilitation that transfers to activities of daily life (Buxbaum, 

Haaland, Hallet, Wheaton, Heilman, Rodriguez & Rothi, 2008; Park, 2017; 

Buxbaum & Randerath, 2018). 

 Usually, impairments related to the actual performance/pantomiming of tool-

use are specifically linked to left inferior frontal (e.g., IFG) and parietal lesions (e.g., 

IPL; Goldenberg & Spatt, 2009; Dressing, Nitschke et al., 2016). Yet, here even 

temporal areas (e.g., left LOTC-Hand and anterior temporal cortex as well as right 

pSTS) were found to be sensitive to the first step of actual tool-use, that is, grasping 

the object by its handle. Thus, extending other evidence that temporal lesions impair 

abilities to retrieve knowledge about the purpose of a tool (e.g., Hodges et al., 2000), 

the findings here suggest that these areas are also important for carrying out such 

behaviour.  
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 Finding such a link between temporal cortex and tool grasping is highly 

consistent with lesion symptom mapping evidence showing that deficits specific to 

the grasping of tools, rather than those related to tool-use, is associated with damage 

to occipito-temporal cortex (Randerath et al., 2010). Skilled motor performance of 

the left hand (e.g., lifting objects with a spoon) in ideomotor apraxia patients has 

already been shown to improve following tDCS delivered to the left PPC (Bolognini, 

Convento et al., 2015). The results here indicate that, perhaps, temporal areas may 

also be useful sites for such therapy, atleast for problems with tool grasping. This fits 

with the view that different patterns of apraxic performance emerge from lesions to 

different areas across the tool-processing network (e.g., Goldeberg & Spatt, 2009; 

Manuel, Radman, Mesot et al., 2012) as well as the position that rehabilitation 

procedures can be improved based on a better understanding of the neuroanatomical 

correlates of human tool-use (Randerath & Buxbaum, 2018). 

5.4.2. Robotics implications  
 
 Designing and implementing Brain Machine Interfaces (BMI) lies at the 

forefront of the wider implications related to movement-related neuroscience. A 

clear goal being to successfully utilise movement-based neural signals to control a 

machine, such as a Cognitive Neural Prosthetic (CNP) for a person with a 

sensorimotor disability. Consisting of an array of electrodes, a decoding algorithm, 

and an external device controlled by the processed signal (Andersen, Burdick, 

Musallam, Pesaran & Cham, 2004), CNPs could feasibly be controlled by signals 

related to a range of cognitive processes including intention, motor imagery, decision 

making, forward estimation, executive function, attention and multi-effector 

movement planning (for review see Andersen, Hwang & Mulliken, 2010). 
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 Most forms of BMIs or CNPs rely on activity from primary motor cortex 

(e.g., Carmena et al., 2003; Fetz, 1969; Serruya et al., 2002) which is rather sensible 

given that this region is a main source of cortical output to the spinal cord during 

reach-to-grasp movements (e.g., Saleh, Takahashi & Hatsopoulos, 2012; Mollazadeh 

et al., 2011). However, as recognised before (e.g., Kobler et al., 2019), other regions 

known to be critical for carrying out these actions (e.g., posterior parietal cortex; 

Begliomini et al., 2014), will likely generate useful activity decodable by these 

technologies. In fact, Andersen & Buneo (2002) highlighted that, since different 

areas of the sensory-motor pathway provide different types of information, multi-

area-based prosthetics will be vital for more sophisticated machinery.  

 Therefore, in the case of technology that would be able to facilitate human-

like tool-use (e.g., performing a grasp that is use-appropriate) the results here 

indicating that this property is decodable in a part of the IPS clearly highlights the 

posterior parietal cortex as a site for such endeavours. This evidence is particularly 

important since most research of BMI decoding models are based on non-human 

primate models (Andersen, Hwang & Mulliken, 2010), yet these animals lack the 

sophisticated cognitive capacities that humans do when engaging tools.  

5.5. Limitations to interpretation 
 
 Different to the limitation sections in previous experimental chapters, this 

section focuses on broader limitations that impact my interpretations. These stem 

from the fact that I used MVPA throughout Projects 1 and 3 (see Multivariate 

approaches: section 5.5.1.) and how I have interpreted the decoding of typicality 

(see Representing the typicality of a grasp: section 5.5.2.). 

5.5.1. Multivariate approaches 
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 The decision to use an MVPA technique throughout my thesis was 

influenced by the findings that voxel-wise analysis and MVPA differ in their 

sensitivity to psychological or physical dimensions underlying task processing (e.g., 

Davis et al., 2015; for a recent example see Fuelscher et al., 2019; though see 

Bhandari, Gagne & Badre, 2017). Based on this justification, many highly relevant 

fMRI studies have also focused exclusively on multivariate approaches (e.g., Wurm 

& Lingnau, 2015; Chen, Garcea & Mahon, 2015; Bracci, Peelen & Caramazza, 

2018; Buchwald et al., 2018) including many of those examining real object-directed 

actions (e.g., Ariani, Wurm & Lingnau, 2015; Gallivan et al., 2013; Gallivan, 

McLean, Flanagan & Culham, 2013; Gallivan, Chapman, McLean, Flanagan & 

Culham, 2013). In fact, this strategy is now widely, and often solely, adopted across 

many research domains (e.g., working memory, arithmetic, language; Pinheiro-

Chagas, Piazza & Dehaene, 2019; Albers, Kok, Toni, Dijkerman & de Lange, 2013; 

Sheikh, Carreiras & Soto, 2019), regardless of the neuroimaging technique used 

(e.g., MEG, EEG; Kaiser, Azzalini & Peelen, 2018; Mai, Grootswagers & Carlson, 

2019). This may even be reflected in my results given that, the results here uniquely 

implicated left anterior temporal cortex, while this area was not identified by other 

highly relevant studies which did not utilise MVPA (i.e., Vayear et al., 2012; Brandi 

et al., 2014). 

 However, valuable insights about the preferential responses of an area are 

only available to univariate analyses (e.g., Naselaris & Kay, 2016). To use a relevant 

example, Valyear & Culham’s (2010) activation measures found preferential 

responses in the bilateral LOTC and left pMTG when participants viewed typical, 

relative to atypical, grasping. The MVPA techniques used in my thesis cannot make 

this same inference, instead showing that the activity patterns in, for example, left 
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LOTC-Hand could be used to decode between the performance of these two 

movement types (a point that is particularly useful to BMI development; see 

Robotics implications: section 5.4.2.). Presenting both MVPA and activation 

measures will be useful in the future (for the introduction of such an approach see 

Leone, Heed, Toni & Medendorp, 2014), though it should be highlighted that simply 

identifying brain regions where uni-and multi-variate findings converge/deviate 

cannot offer conclusions about the nature of the neural code and instead requires 

further computational testing (see Davis, LaRocque, Mumford, Norman, Wagner & 

Poldrack, 2014). 

 A final important point concerns what exactly does above-chance decoding 

mean about the qualities of a brain region? Commonly, decoding is described to 

reflect a neural representation of the related phenomena (e.g., a representation of 

how to appropriately grasp a tool) and is simply based on a pattern of BOLD signals 

across a series of voxels. I have been careful not to state that the information 

decoded from patterns of neural activity is necessarily what information those 

patterns represent (i.e., the decoder’s dictum; see Ritchie et al., 2017) - for example, 

successful decoding of typicality does not mean that the brain explicitly reads out 

this information in a similar way (e.g., where one movement is considered more or 

less typical than another). Instead successful decoding is treated to mean that 

information was available in the latent neural patterns, and, as such, the given brain 

region is sensitive to differences between the experimental conditions (e.g., grasping 

an object in a way that appropriate for its learnt use or not). Understanding what a 

representation is remains a key question in cognitive science (e.g., Ritchie, Kaplan, 

& Klein, 2017; Shay, Chen, Garcea & Mahon, 2018) and combining classifier 

analyses with other behavioural measures (e.g., ratings [Bracci & Op de Beeck, 
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2016] or hand kinematics [as in Project 2]) using representational dissimilarity 

matrices can further capture their nature (e.g., their geometry; Kriegeskorte & Kievit, 

2013) as well as if the brain is likely to read-out information in the way that is 

experimentally operationalised (Grootswagers, Cichy & Carlson, 2018).  

5.5.2. Representing the typicality of a grasp 
 
 When participants grasped the tools by their handles versus their heads, I 

have used the term typicality to capture this difference where the former movements 

were considered to be typical to the learnt use of tools. However, this kind of 

manipulation has been referred to in various ways. Valyear & Culham (2010) have 

described how related findings reflect a ‘sensitivity to learned contextual and/or 

semantic associations’, while a related study describing these findings (Kumar, 

Humphreys & Yoon, 2012) specifically wrote how they relate to ‘grasp typicality’. 

Johnson-Frey et al., (2003) described how this experimental manipulation could 

‘determine whether these responses were modulated by familiarity’ and Mizelle, 

Kelly & Wheaton (2013) described how these types of movements can be used to 

study ‘correct’ or ‘incorrect’ movements (though in this case tools were presented 

with receptive target objects). Regardless of the particular description used, my view 

is that this approach can tap into the processing relevant for understanding which 

brain regions are sensitive to learnt knowledge about tool-use. 

 Nevertheless, I also appreciate that typicality, as I have referred to it, can 

dissociated from familiarity because knowing how a tool should be typically grasped 

is possible even if unfamiliar with that particular object (e.g., understanding the 

typical way chopsticks are held despite having never used them). An explanation 

based on familiarity, rather than typicality, could be relevant for some of the findings 

here. For example, interpreting the successful decoding between handle and blade 
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grasping in the left anterior temporal cortex would fit with other results showing that 

activity in this area is modulated by the familiarity of a face (e.g., Gainotti, 2007; 

Snowden, Thompson & Neary, 2012). To return to the decoder’s dictum, it could be 

that the information read out by the brain is actually related to familiarity, rather than 

typicality, per se. Worth highlighting, the non-tools used in these projects were able 

to control for familiarity to some extent (i.e., despite the tools resembling familiar 

kitchen utensils, all stimuli were in fact novel), but further study with equally 

familiar objects (e.g., a set of tools, a set of non-tools that have been trained for use 

and a final set of non-tools not trained for use; for further discussion on tool training 

interventions see Future directions: section 5.6.) would be required to tease apart 

these largely interrelated explanations of familiarity and typicality (e.g., if results are 

specifically explainable by familiarity then effects should be replicated for the tool, 

but not either of the non-tool sets). 

5.6. Future directions 
 
 The role of knowledge, as well as the process of learning, is clearly critical to 

tool-use (e.g., Mizelle & Wheaton, 2010; Johnson-Frey, 2004), as emphasised from 

the outset (see What is a tool: section 1.2.), where I considered tools to be objects 

associated with learnt action routines and functions (e.g., Johnson-Frey, 2007; 

Mahon, Milleville, Negri, Rumiati, Caramazza & Martin, 2007; Mruczek, von Loga 

& Kastner, 2013). Even proponents of the reasoning-based approach concur that the 

ventral visual stream stores functional knowledge about tools (e.g., Osiurak, Rossetti 

& Badets, 2017). A better understanding of how these object-associations are learnt 

would advance the neuroscience that underpins human tool-use. 

 Tool training paradigms (e.g., Weisberg et al., 2007; also see Roy & Park, 

2010) where, between neuroimaging sessions, participants learn to use a set of novel 
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objects as tools, offer an effective way to tap into this learning process. When 

viewing a tool whose function has been learnt through visual training, activity 

increases have been observed in areas like the left pMTG (Weisberg et al., 2007; 

Bellebaum, Tettamanti et al., 2013) whereas learning-related changes for objects that 

have been manipulated, or atleast watched be manipulated, is linked more strongly to 

activity changes in the left IPL (Bellebaum, Tettamanti et al., 2013; Ruther, Brown, 

Klepp & Belle, 2014; for similar evidence during learnt knot-tying see Cross, Cohen, 

Hamilton, Ramsey, Wolford & Grafton, 2012). Generally, modality and task type 

(e.g., visual, auditory, sensorimotor, haptics) is well known to influence object 

representations during learning (e.g., Oliver, Geiger, Lewandowsk & Thompson-

Schill, 2009; Butler & James, 2013; Song, Hu, Li, Li & Liu, 2010; van der Linden, 

Wegman & Fernandez, 2014; van der Linden, van Turennout & Fernandez, 2011; 

Clarke, Pell & Ranganath & Tyler, 2016; Chrysikou, Casasanto & Thompson-Schill, 

2017), but it remains unexplored how interventions would affect neural activity 

related to actual tool manipulation during neuroimaging. For example, do visual and 

manipulation training interventions equally lead to typicality representations in hand-

selective cortex during grasping, or are these generated more efficiently through 

manipulation training (e.g., as is the case in the IPL for learning about object 

category; Bellebaum, Tettamanti et al., 2013; Ruther, Brown, Klepp & Belle, 2014). 

In fact, such paradigms can even overcome the limitation that tools and non-tools 

have low level differences (see for example Object category affects hand kinematics: 

section 3.4.1.) because identical stimuli are used pre- and post-training. 

 Ambitiously, it would also be useful to track the neural characteristics of this 

learning process over development, as has been the case for responses to other 

stimulus categories (e.g., Pelphrey, Lopez & Morris, 2009; Peelen, Glaser, 
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Vuilleumier & Eliez, 2009; Cohen, Dilks, Koldewyn et al., 2019; Ashby & Maddox 

2005). While face-, scene- and body-selective activity has been reported to occur in 

an adult-like fashion from as early as 4-6 months of age (Deen et al., 2017), it is 

unclear when this is the case for tool-selective activity. If there is overlap between 

the ages by when there is maturing of skills related to physical object reasoning (e.g., 

Remigereau, Roy, Costini, Osiurak, Jarry & Le Gall, 2016) and tool-use (e.g., van 

Leeuwen, Smitsman & van Leeuwen, 1994; Barrett, Davis & Needham, 2007), then 

this would correspond with the view that neural processing during tool-use is largely 

supported by technical reasoning abilities (Oisurak, Rossetti & Badets, 2017).  

 Lastly, by combining the novel tool grasping paradigm here with 

neuroimaging measures other than fMRI, it would become possible to better 

understand the temporal nature of these representations about typicality. Recent EEG 

studies have characterised small, yet reliable, time-course differences when 

reasoning about object attributes (e.g., their typically associated actions [Lee, Huang, 

Federmeier & Buxbaum, 2018] or locations [Kaiser, Moeskops & Cichy, 2018]) 

which may also be detectable during real tool manipulation. Relative to fMRI, such 

techniques would also be easier to implement with cutting-edge motion-capture 

techniques (e.g., cyber glove; see Agashe & Contreras-Vidal, 2013; Roda-Sales, 

Vergara, Sancho-Bru, Gracia-Ibanez & Jarque-Bou, 2019) in order to combine 

neuroimaging and behavioural measures within the same session (see Limitations: 

section 3.4.3.), thus, allowing critical links to be drawn between brain and behaviour 

(see Fig. 5.2.). 

5.7. Concluding remarks 
 
 A major goal in cognitive neuroscience is to understand how knowledge 

about objects is represented and organised in the brain. For objects described to be 
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tools, these representations are linked to our knowledge of their associated actions 

and functions. By utilising state-of-the-art brain decoding techniques during a novel 

tool grasping paradigm, I have shown that the left hand-selective areas of the dorsal 

and ventral visual pathways, as well as left anterior temporal cortex and right 

parietal/temporal cortex, carried information about whether a grasp was consistent 

with the way the tool would be held for subsequent use (i.e., by the handle; Project 

1). Likewise, various somatomotor areas across both hemispheres (e.g., left PMd, 

SMG, right PHG) were found to code the identity and/or function of the tools being 

grasped (Project 1) or simply viewed (Project 3). 

 These findings in the ventral and dorsal visual pathways conform to a major 

prediction by the DVST (Milner & Goodale, 1995; 2006) that both visual streams 

support tool-use; however, they also question the traditional view that it is the 

ventral, rather than dorsal, visual stream that is sensitive to the learnt aspects of tool-

use. As for accounts that identify an additional ventro-dorsal stream (e.g., two-action 

systems model [Binkofski & Buxbaum, 2013]; reasoning-based approach [Osiurak 

& Badets, 2014]), the results revealed that its canonical areas (i.e., left SMG and 

pMTG) are not sensitive to stored knowledge about how to grasp a tool, possibly 

implying that these areas have roles in technical reasoning processes (Osiurak & 

Badets, 2014]) or, for the SMG, affordance competition resolution (Buxbaum, 2017). 

Since the grasping paradigm never required an intention to use the tools, or even 

process their identities, the findings also reflect the view that object affordances are 

automatically perceived (Gibson, 1979). Finally, with regard to the tool processing 

network identified by many neuroimaging experiments that contrast pictures of tools 

with other categories of objects, none of these regions were found to be specifically 

sensitive to the performance (Project 1) or planning (Project 3) of use-appropriate 
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tool grasping. Instead, these findings were restricted to hand-selective areas of the 

left LOTC and IPS, which, remarkably, even overlapped with the tool-selective areas 

in these same areas. Based on distinct hand kinematic findings during motion-

capture of the same typical and atypical tool grasping movements (Project 2), I 

suspect that these hand-selective regions play an important role in motor control 

which links them to humans’ intelligent use of tools. 
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Appendix 

Appendix A - Somatosensory Cortex decoding in fMRI 

Project 1 

 To test whether the decoding accuracies that were found to be significantly 

above chance for typicality (i.e., decoding typical versus atypical tool grasping), but 

not for the control classification of reach direction (i.e., decoding right versus left 

non-tool grasping) in fMRI project 1 could be attributed to somatosensory 

differences that occur in the tool, but not non-tool, conditions, I repeated these 

analyses with an ROI in the primary somatosensory cortex (SSc). The SSc ROIs 

(mean Talairach coordinates: x = -47 y = -26 z = 49) were defined using functional 

activations for each participant from the real action experiment with a contrast that 

avoided circularity (all actions > baseline; Fabbri et al., 2014) and by selecting the 

peak voxel in the postcentral gyrus and sulcus (Fabbri et al., 2016). Decoding 

accuracies were significantly higher than chance in the SSc for both typicality (57%, 

t(18) = 3.04, p = 0.004, d = 0.7 [chance 50%]) and reach direction (57%, t(18) = 

3.45, p = 0.001, d = 0.79 [chance 50%]; Appendix A: Fig. 1.).  

 

 

 

  



How the brain grasps tools 

 

 

276 

 
 

 

 

 

 

 

 

 

Appendix A: Fig. 1. Decoding accuracies when classifying typicality and reach 

direction in somatosensory cortex ROIs. Error bars represent SEM. 

 

 If decoding of typicality in the left LOTC-Hand and IPS-Hand during the 

first project was driven purely by differences in somatosensation (e.g., tool handles 

are different than tool heads) then the same results should be expected in 

somatosensory cortex. However, this was not the case, highlighting that a 

somatosensory explanation could not fully account for the results discussed in 

Project 1 (Chapter 2). 
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Appendix B - Data-driven selection of stimuli for fMRI 

Project 2 

 To choose which of the two stimuli should be used in the second fMRI 

project I used an exploratory univariate approach to visually check which 

combination of two stimuli led to the greater activation within the temporal lobe 

when contrasting grasping tools typically with grasping tools atypically and the non-

tools by either side (see contrast in Appendix B: Fig. 1.). Activation was clearly 

stronger in the case of the pizzacutter and knife tools (see section A of Appendix B: 

Fig. 1.) than when either of these objects was paired with the spoon (see section B 

and C of Fig. 1.: Appendix B). The decision to focus on the temporal lobe was based 

on the view that the ventral visual stream is highly theoretically relevant to tool 

based interactions (see Dual Visual Stream Theory: section 1.4.) and the interesting 

findings in Project 1 showing that the left anterior temporal cortex also represents 

this information (see section 2.4.2.).  
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Appendix B: Fig. 1. A random effects general linear model was applied to the 

dataset from the real action experiment in the first project. Individual regressors were 

assigned for each of the exemplars per the two grasping conditions (e.g., knife 

typical, knife atypical, knife non-tool left, knife non-tool right etc.) and convolved 

with a two gamma Boynton hemodynamic response function (HRF). A boxcar HRF 

was aligned to the onset of the stimulus block with the same duration as block 

length. The OFF-block epochs and the baseline epochs at the beginning and end of 

the experiment were excluded from the model, and therefore, all regression 

coefficients (betas) were defined relative to this baseline activity. Finally, the results 

for the contrast used to determine the activity that was stronger for tool typical 

grasping is displayed above when using different combinations of the stimuli 

including the knife and pizzacutter (A), spoon and knife (B) and spoon and 

pizzacutter (C). 
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Appendix C - Volume by Volume decoding in Localiser 

ROIs in fMRI Project 2 

 To assess if another plan-related decoding was possible from an epoch other 

than volumes 12 and 13 (i.e., as were chosen in Project 3), I repeated the same ROI 

MVPA analysis in a volume by volume fashion (Appendix C: Fig. 1.). 
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Appendix C: Fig. 1. Volume by volume decoding in left hemisphere localiser ROIs.   
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Appendix C: Fig. 1. (Continued). 
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Appendix D - Motor ROI decoding in fMRI Project 2 
 

 Results for the decoding of left hemisphere ROIs based on all actions > 

baseline are presented here in order to try and replicate commonly decoding effects 

found in human studies examining representational content of pre-movement activity 

patterns (e.g., Gallivan et al. 2011). I defined these and repeated the same decoding 

analyses as in fMRI project 2. This was in order to validate the MVPA approach I 

had taken since there was very little evidence of any succesful decoding during the 

plan epoch from visually defined ROIs (i.e., from the Bodies, Objects, Tools and 

Hands fMRI localiser). The percentage signal change plots of the ROIs are presented 

in Appendix D: Fig. 1. and the decoding results in Appendix D: Fig. 2. 

 The chosen regions were functionally defined based on the same GLM as 

presented in Appendice B (except with three times the regressors for each of the 

preview, plan and go phases), with a contrast avoiding circularity (Plan & Go all 

actions > Preview) using the following anatomical guidelines:  

- Motor Cortex (Mc) – defined by selecting voxels around the left “hand knob” 

landmark in the central sulcus (Yousry et al., 1997) (mean [standard deviation] 

Talairach coordinates: x = -36 [6] y = -27 [5] z = 55 [7]). 

Somatosensory Cortex (SSc) - defined by selecting the peak voxel in the postcentral 

gyrus and sulcus (Fabbri et al., 2016) (mean Talairach coordinates: x = -37 [7] y = -

35 [5] z = 45 [6]). 

Anterior Intraparietal Sulcus (aIPS) - defined by selecting voxels at the junction the 

IPS and post-central sulcus (Culham et al., 2003) (mean Talairach coordinates: x = -

37 [5] y = -38 [5] z = 33 [5]).  
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Posterior Intraparietal Sulcus (pIPS) - defined by selecting activity at the caudal end 

of the IPS (Beurze et al., 2009) (mean Talairach coordinates: x = -28 [4] y = -69 [6] 

z = 44 [4]). 

Superior Parieto-Occipital Cortex (SPOC) – defined by selecting voxels located 

medially and directly anterior to the parieto-occipital sulcus (Gallivan et al., 2009) 

(mean Talairach coordinates: -8 [5] -83 [5] 32 [6]). 

 See Chapter 4 for discussion of the results. 
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Appendix D: Fig. 1. Percentage signal change in motor ROIs. Grey bars represent 

the preview, plan and go epochs (see section 4.2. for further details). 
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Appendix D: Fig. 2. Decoding results in motor ROIs. All of the classifications 

performed are described in section 4.2. However, uniquely here, I performed an 

additional left versus right classification that collapsed across object category (white 
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bars) to closely match previous studies (this is all left versus right trials except the 

pizzacutter tool to remove the grip change). 

 


