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The problem of realizing finite metric spaces in terms of weighted graphs has many 
applications. For example, the mathematical and computational properties of metrics that 
can be realized by trees have been well-studied and such research has laid the foundation 
of the reconstruction of phylogenetic trees from evolutionary distances. However, as 
trees may be too restrictive to accurately represent real-world data or phenomena, it is 
important to understand the relationship between more general graphs and distances. In 
this paper, we introduce a new type of metric called a cactus metric, that is, a metric that 
can be realized by a cactus graph. We show that, just as with tree metrics, a cactus metric 
has a unique optimal realization. In addition, we describe an algorithm that can recognize 
whether or not a metric is a cactus metric and, if so, compute its optimal realization in 
O (n3) time, where n is the number of points in the space.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The metric realization problem, which is the problem of 
representing a finite metric space by a weighted graph, has 
many applications, most notably in the reconstruction of 
evolutionary trees. Although any finite metric space can be 
realized by a weighted complete graph, there can be dif-
ferent graphs that induce the same metric. In [8], Hakimi 
and Yau first considered “optimal” realizations of finite 
metric spaces, which are realizations of least total weight. 
Although every finite metric space has an optimal realiza-
tion [6,12], the problem of finding an optimal realization is 
NP-hard in general [1,17] and the optimal solution is not 
necessarily unique [1,6].
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A well-known special case of optimal realizations is 
provided by tree metrics, namely, those metrics that can 
be realized by some edge-weighted tree. For any tree met-
ric on a finite set X , its optimal realization is an X-tree 
(i.e., a tree in which some vertices are labeled by X) and 
is uniquely determined [8]. In addition, there exist optimal 
polynomial-time algorithms for computing the tree real-
ization from a tree metric [3–5]. However, not much is 
known about the properties of optimal realizations of met-
rics induced by graphs that are more general than trees. 
Developing our understanding in this direction could be 
useful, as trees can sometimes be too restrictive for realiz-
ing metrics arising in real-world applications [11].

In this paper, we generalize the concept of a tree met-
ric by introducing a new type of metric called a “cac-
tus metric1” which can be realized by an edge-weighted 
“X-cactus”, where a cactus is a connected graph in which 

1 This concept was first introduced in [9].
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Fig. 1. An example of an X-cactus with a label-set X = {x1, . . . , x16}, 
where the weight of each edge is proportional to its length. The vertices 
labeled by an element of X are shown in black. The white circles are ver-
tices that are not in X .

each edge belongs to at most one cycle. An example of 
an X-cactus is presented in Fig. 1. Note that cacti have 
some nice properties in common with trees. For instance, 
every cactus is planar and the number of vertices in an 
X-cactus is O (|X |) as with X-trees, which means that cac-
tus metrics are easy to visualize. In particular, they provide 
a special case of an open problem in discrete geometry 
from Matoušek [13]. Besides these observations, in this pa-
per we prove that, just as with tree metrics, any cactus 
metric has a unique optimal realization. We also describe 
a polynomial time algorithm for deciding whether or not 
an arbitrary metric is a cactus metric, which also computes 
its optimal realization in case it is.

2. Preliminaries

A metric on a set S is defined to be a function d : S ×
S →R≥0 with the property that d equals zero if and only 
if the two elements in S are identical, is symmetric, and 
satisfies the triangle inequality.

All graphs considered here are finite, connected, sim-
ple, undirected graphs in which the edges have positive 
weights. For any graph G , V (G) and E(G) represent the 
vertex-set and edge-set of G , respectively. For any vertex 
v of a graph G , the number of edges of G that have v as 
an endvertex is denoted by deg(v). For any graph G and 
any subset S of V (G), we let dG denote the metric on S
induced by taking shortest paths in G between elements 
in S .

Throughout this paper, we use the symbol X to repre-
sent a finite set with |X | ≥ 2, which is sometimes called a 
label-set. For any metric d on X , a realization of (X, d) is 
a graph G such that X is a subset of V (G) and d(x, y) =
dG(x, y) holds for each x, y ∈ X , where we shall always as-
sume that each vertex v of G with deg(v) ≤ 2 has a label 
in X [12]. A realization is minimal if the removal of an ar-
bitrary edge of G yields a graph that does not realize d. It 
is optimal if the sum of its edge weights is minimum over 
all possible realizations (note that optimal realizations are 
minimal but the converse does not hold). Any finite met-
ric space has at least one optimal realization [12, Theorem 
2.2].

We now state a theorem concerning optimal realiza-
tions which will be useful in our proofs. For a graph G , 
each maximal biconnected subgraph of G is called a block
of G and each vertex of G shared by two or more blocks of 
G is called a cutvertex of G . Notice that if a graph consists 
of a single block, then it has no cutvertex.

Theorem 1 ([12], Theorem 5.9). Let G be a minimal realization 
of a finite metric space (X, d), let G1, . . . , Gk be the blocks of G, 
let Mi be the union of the vertices of X in Gi together with the 
cutvertices of G in Gi , and let di be the metric induced by G on 
Mi . Then, if every Gi is an optimal realization of (Mi, di), then G
is also optimal. If every Gi , besides being optimal, is also unique, 
then G is optimal and unique too.

We now turn to two special classes of metrics, that 
is, tree metrics and cyclelike metrics. A metric d on X is 
called a tree metric if there exists an X-tree that realizes 
(X, d), where an X-tree is a tree T with the property that 
each vertex v of T with deg(v) ≤ 2 is contained in X [14].

Theorem 2 ([8]). If d is a tree metric on a finite set X, then there 
exists an X-tree that is a unique optimal realization of (X, d).

Given a metric d on X with |X | ≥ 4, we say that d is 
cyclelike if there is a minimal realization for d that is a 
cycle. This type of metric was discussed in e.g., [2,12,15]. 
The following result will also be useful.

Theorem 3 ([12], Theorem 4.4). Suppose d is a cyclelike met-
ric on a finite set X and a cycle C is a minimal realization of 
(X, d) with V (C) = X = {v1, v2, . . . , vm}, m ≥ 4, and E(C) =
{{vi, vi+1} : 1 ≤ i ≤ m}, where the indices are taken modulo 
m. Then, C is an optimal realization of (X, d) if and only if

d(vi−1, vi) + d(vi, vi+1) = d(vi−1, vi+1)

holds for all i. In this case, C is the unique optimal realization of 
(X, d).

3. The uniqueness of optimal realizations of cactus 
metrics

As mentioned above a cactus is a connected graph in 
which each edge belongs to at most one cycle. We de-
fine an X-cactus to be a cactus G with the property that 
each vertex v of G with deg(v) ≤ 2 is contained in X (see 
Fig. 1). Note that the maximum number of cycles in an 
X-cactus is |X | − 2 (which can be proved by induction on 
|X |). In addition, we say that a metric d on a finite set X
is a cactus metric if there exists an edge-weighted X-cactus 
that realizes (X, d).

Given an edge-weighted cycle C = v1, . . . , vm that is a 
realization of its corresponding metric dC , we call a vertex 
vi ∈ V (C) slack if d(vi−1, vi) + d(vi, vi+1) > d(vi−1, vi+1). 
The following lemma is a direct consequence of Theorem 3.

Lemma 4. Under the premise of Theorem 3, C is an optimal re-
alization of (X, d) if and only if C has no slack vertex.

We now use the lemma to prove the following general-
ization of Theorem 2, using the concept of “compactifica-
tion” [8,15,16].
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Fig. 2. An illustration of compactification that is described in the proof of Theorem 5, where we highlight each slack vertex by a square. Compactification 
of v3 in the left graph yields the graph in the middle panel, which still contains a slack vertex v4. If we further apply the same operation to v4, then we 
obtain the graph on the right which has no slack vertex.
Theorem 5. If d is a cactus metric on a finite set X, then there 
exists an X-cactus that is a unique optimal realization of (X, d).

Proof. Let G be an X-cactus that is a minimal realization 
of (X, d). Without loss of generality, we assume that each 
cycle of G has at least four vertices (since we can always 
replace a 3-cycle with a tree in such a way that the ob-
tained graph is a realization). If there is no cycle in G
containing a slack vertex, then the assertion immediately 
follows from Theorems 1, 3 and Lemma 4.

So, assume that there is a cycle C = v1, . . . , vm in G
that has consecutive edges {vi−1, vi}, {vi, vi+1} with �i :=
{dG(vi−1, vi) + dG(vi, vi+1) − dG (vi−1, vi+1)}/2 > 0. As we 
will now explain, we apply a “compactification” opera-
tion to the slack vertex vi (see also Fig. 2). For notational 
convenience, let �i−1 := {dG (vi−1, vi) + dG(vi−1, vi+1) −
dG(vi, vi+1)}/2 and �i+1 := {dG(vi+1, vi) +dG (vi−1, vi+1) −
dG(vi, vi−1)}/2. Compactification of vi refers to convert-
ing G into the graph G ′ with V (G ′) := V (G) ∪ {v ′

i} and 
E(G ′) := (E(G) \{{vi−1, vi}, {vi, vi+1}}) ∪{{vi−1, v ′

i}, {vi, v ′
i},{vi+1, v ′

i}}, where for each j ∈ {i − 1, i, i + 1}, the edge 
{v j, v ′

i} has weight � j . As can be easily verified, G ′ is 
an X-cactus that is a minimal realization of (X, d) with 
a strictly smaller number of slack vertices than G . Thus, 
as |V (G)| is finite, by applying the same operation repeat-
edly and suppressing all unlabeled vertices of degree two 
(if any arise), we will eventually obtain an X-cactus that 
realizes (X, d) without a slack vertex, which must be the 
unique optimal realization of (X, d). �

It is interesting to see that for cactus metrics, we do not 
need to perform too many “compactifications” for each cy-
cle in the above proof in light of the following observation.

Proposition 6. If the premise of Theorem 3 holds, then C has at 
most two slack vertices. In the case when there exist precisely 
two slack vertices, they are adjacent in C.

Proof. Let V (C) = {v1, . . . , vm} as in Theorem 3. Suppose 
C has at least two slack vertices and assume that vi is a 
slack vertex, in other words, that d(vi−1, vi) +d(vi, vi+1) >
d(vi−1, vi+1) holds. As the path in C from vi−1 to vi+1
that does not contain vi is the shortest path between vi−1
and vi+1, it follows that any v ∈ V (C) \ {vi−1, vi, vi+1} is 
not slack. Now, suppose vi−1 is a slack vertex. Then using a 
similar argument by considering the shortest path between 
vi−2 and vi , it follows that vi+1 is not slack. So the only 
slack vertices are vi and vi−1. The same argument applies 
to the case when vi+1 is a slack vertex. �
4. A polynomial time algorithm for finding the optimal 
cactus realization

In this section we describe an algorithm, which for a 
metric d on X , produces the unique optimal realization for 
d that is an X-cactus or a message that there is no such 
realization in O (|X |3) time. This should be compared to 
tree metrics for which the same process can be carried out 
in O (|X |2) time [4,5].

We begin by considering cyclelike metrics. Note that 
the characterization given in Theorem 3 for when a real-
ization of a cyclelike metric is optimal is not sufficient to 
characterize cyclelike metrics, as pointed out in [15]. Even 
so we have the following result (which is related to Theo-
rem 4.1 in [2]):

Lemma 7. Given a metric d on X, we can determine if there is 
an edge-weighted cycle C that is an optimal realization of (X, d)

and, if so, compute C in O (|X |2) time.

Proof. We describe an algorithm that takes an arbitrary 
metric d on X as input, which in case d has an optimal 
realization that is a cycle computes this cycle, and stops if 
this is not the case:

1) Start by finding a pair {v0, v1} of distinct elements in 
X such that d(v0, v1) ≤ d(p, q) holds for any {p, q} ∈ (X

2

) \
{{v0, v1}}, and then set e1 := {v0, v1} and w1 := d(v0, v1). 
2) For each j ∈ {2, . . . , |X | − 1}, find all vertices x ∈ X \
{v0, . . . , v j−1} with d(v j−2, v j−1) +d(v j−1, x) = d(v j−2, x). 
Among these vertices, we let v j be the unique vertex x
that minimizes d(v j−1, x). If such a vertex does not exist, 
or if such a vertex does exist but it is not unique, then 
stop; else set e j := {v j−1, v j} and w j := d(v j−1, v j). 3) Set 
e|X | := {v |X |−1, v0} and w |X | := d(v |X |−1, v0). 4) Check if 
the cycle C defined by V (C) := X and E(C) := {e1, . . . , e|X |}
together with the weight w j of each edge e j ∈ E(C) is a 
minimal realization of (X, d). If not then stop, else output 
the weighted cycle C .

If this algorithm returns a cycle C that realizes (X, d), 
then C satisfies the equation in Theorem 3 and so C is the 
optimal realization of (X, d). Conversely, if there is a cycle 
C that is an optimal realization of (X, d), then C is unique. 
In this case, the above algorithm correctly constructs C as 
follows. The algorithm initializes by finding two vertices 
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of X that are closest together. Since an optimal realiza-
tion that is a cycle is minimal, it must be the case that 
these two vertices are connected by an edge. In Step 2, the 
algorithm iteratively extends the existing path by seeking 
for the neighbour of v j−1, which is one of the endver-
tices of the path. Observe that the two conditions in Step 2 
uniquely determine this neighbour: the first condition en-
sures that a shortest path between v j−2 and v j contains 
v j−1; the second condition correctly identifies the neigh-
bour of v j−1 by making sure that the distance between 
it and v j−1 is shortest. In Step 3, we join the two end-
vertices of the path by an edge to form the cycle C . Note 
that in this step, we run the risk of making a realization 
of (X, d) that is a path into a realization of (X, d) that is a 
cycle that is not minimal. Due to this, and also to ensure 
we have the correct solution, we check that the cycle is a 
minimal realization of (X, d) in Step 4.

To give the running time of the algorithm, observe that 
Step 1 takes O (|X |2) time as we search for a minimum el-
ement from a set of size 

(|X |
2

)
. In Step 2, we iterate over a 

‘for loop’ at most |X | times. Within the ‘for loop’ we iterate 
over at most |X | elements to find the vertices that sat-
isfy the first condition. Then, we iterate over those vertices 
to find a minimum element from at most |X | elements. 
Hence, each ‘for loop’ takes O (|X |) time; it follows then 
that Step 2 takes O (|X |2) time. Step 3 takes constant time, 
as we simply add a weighted edge to the graph. Since 
one can obtain the metric induced by a cycle in at most 
O (|X |2) time, Step 4 can be performed in at most O (|X |2)
time. As each step of the algorithm can be done in O (|X |2)
time, the whole algorithm requires O (|X |2) time. �
Theorem 8. Given a metric d on X, we can determine if d is 
a cactus metric and if so construct its optimal realization in 
O (|X |3) time.

Proof. In [10, Algorithm 2] Hertz and Varone give a poly-
nomial time algorithm for decomposing an arbitrary met-
ric space (X, d) into finite metric spaces (Mi, di), 1 ≤ i ≤
k, with |Mi | ≤ |X |, such that any optimal realization of 
(Mi, di) must consist of a single block, and such that an 
optimal realization for d can be constructed by piecing to-
gether the optimal realizations for the (Mi, di). They also 
observe [10, p. 174] that this decomposition can be com-
puted in O (|X |3) time using results in [7] (see also [7, 
p. 160]). In addition, by the arguments in [7, Lemma 3.1], 
it follows that k is O (|X |).

Assume that we have decomposed (X, d) into
{(Mi, di)}i∈{1,...,k} by using the aforementioned preprocess-
ing algorithm. In case |Mi | = 2, its optimal realization 
is obviously a tree. Recalling the argument in the proof 
of Theorem 5, we know that |Mi | 	= 3 holds for each 
i ∈ {1, . . . , k}. For each (Mi, di) with |Mi | ≥ 4, by using the 
algorithm in Lemma 7, we can check if (Mi, di) has an op-
timal realization that is a cycle or not, and if so construct 
the cycle in O (|Mi |2) time (and hence O (|X |2) time suf-
fices). If there is some i ∈ {1, . . . , k} such that |Mi | ≥ 4 and 
(Mi, di) does not have an optimal realization that is a cy-
cle, then d is not a cactus metric, else d is a cactus metric, 
and we can construct the cactus by piecing together the 
optimal realizations for the (Mi, di). Using the aforemen-
tioned fact that k is O (|X |), we conclude that the overall 
time complexity is O (|X |3). �
5. Discussion and future work

It may be worth investigating as to whether there is a 
more direct and efficient algorithm than the one given in 
Theorem 8 for recognizing and/or realizing cactus metrics 
that use structural properties of cactus graphs. More gen-
erally, we could investigate optimal realizations for metrics 
that can be realized by graphs G in which every block 
Gi = (V i, Ei) satisfies |Ei | − |V i | + 1 ≤ k, and such that ev-
ery vertex in G with degree at most 2 is contained in X . 
Here, we note that in case k = 0, G is an X-tree, and in 
case k = 1, G is an X-cactus. However, even in case k = 2, 
there may be infinitely many optimal realizations (e.g. the 
metric given in [1, Fig. 15]). So it might be interesting to 
first understand for k ≥ 2 which of these metrics have a 
unique optimal realization, whether such metrics can be 
recognized in polynomial time, and whether there exists 
a polynomial time algorithm for computing some optimal 
realization.
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