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Abstract. This paper reports a unique, platform-independent approach for blend recognition from CAD mesh model 

using pattern matching. About 60% of the average portion of the total facets in CAD mesh model is blended features. So, 

it becomes essential and necessary to extract these blend features for the successful accomplishment of seamless 

CAD/CAM integration. The facets of the same region have similar patterns. The focus of this paper is to recognize the 

blends using hybrid mesh segmentation based on pattern matching. Blend recognition has been carried out in three phases 

viz. preprocessing, pattern matching hybrid mesh segmentation and blend feature identification. In preprocessing, the 

adjacency relationship is set in facets of CAD mesh model, and then Artificial Neural Networks based threshold 

prediction is employed for hybrid mesh segmentation. In the second phase, pattern matching hybrid mesh segmentation is 

used for clustering the facets into patches based on distinct geometrical properties. After segmentation, each facet group 

is subjected to several conformal tests to identify the type of analytical surfaces such as a cylinder, cone, sphere, or tori. 

In the blend feature recognition phase, the rule-based reasoning is used for blend feature extraction. The proposed method 

has been implemented in VC++ and extensively tested on benchmark test cases for prismatic surfaces. The proposed 

algorithm extracts the features with coverage of more than 95 %. The innovation lies in “Facet Area” based pattern 

matching hybrid mesh segmentation and blend recognition rules. The extracted feature information can be utilized for 

downstream applications like tool path generation, computer-aided process planning, FEA, reverse engineering, and 

additive manufacturing.  
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INTRODUCTION 

Blends are the normal analytic or free-form surfaces which are coupled to analytical surfaces like planes, cylinders, 

spheres, and torus. There are many methods to create blends [1]. However, the proposed method focuses on constant 

radius blends. The blends are created by applying a blending operation on sharp edges. Blending operation is 

performed to smoothen sharp edges; improve strength; to improve safety during handling; to enhance strength by 

reducing stress concentration; to improve the aesthetic appearance and to ensure the manufacturability of part [2]. A 

typical application of blend is in Feature recognition (FR), and feature suppression. Blends often interact with each 

other, and with other features. Models need to be simplified for many reasons, including mesh generation, 

simulation, etc. [3,4].  

CAD mesh models (CMM) are generated by exporting B-rep models using Computer-Aided Design (CAD) 

software into Stereolithography (STL) format. As CAD models exchange from the native system to the target 
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system, the low-level information lost. Feature recognition is a tool to recreate the feature in the target system after 

data exchange [5]. Majority research work carried out in extracting volumetric and free-form features in the last 

three decades. However, the most FR tool works on B-rep models.  Innovative 3D design and manufacturing 

methods are mesh based [6]. A need exists to develop FR from the mesh model. STL format globally supported by 

all CAD/CAM system, which makes STL a medium of platform-independent data exchange [7]. Recognize features 

from STL model will be a unique data translator utility [8]. 

Literature reveals that about 60% of the average portion of the total facets in CAD mesh model is blended 

features [9]. So, it becomes essential and necessary to extract these blend features for the successful accomplishment 

of seamless CAD/CAM integration. Blends must be suppressed before performing Feature Recognition [10]. Most 

of the researchers use CAD models that do not have blends. Literature documents very little work on blend feature 

recognition from CMM. Blends are useful in downstream applications like blend suppression, which helps in 

recognizing volumetric features like pockets, slots, rib, etc. Blend recognition helps for cleanup operations in FEA, 

Mesh generation [11]. A demand necessitates developing an elegant technique for blend recognition from CAD 

mesh model to facilitate seamless CAD/CAM integration. 

 Above observations motivate the research work reported in this paper. The focus of this research paper is of 

blend recognition from CMM with an elegant pattern matching (PM) segmentation algorithm. The innovation lies in 

the mesh segmentation and recognition condition. 

The main contributions of this research for extracting blend features from CAD meshes are as follows: 

 Pattern matching segmentation technique dedicated to the CAD mesh. 

 Intelligent combination of a vertex based, facet-based, rule-based reasoning techniques for mesh 

segmentation. 

 Partitioning criteria used for clustering triangles is “Facet Area.” 

 Feature recognition without curvature estimation. 

 The algorithm does not need feature edges for feature extraction. 

LITERATURE REVIEW     

In the last three decades, mesh segmentation has been comprehensively studied. The objective of mesh 

segmentation is to partition the input CAD mesh model into ‘‘meaningful’’ regions [12]. Most of the mesh 

segmentation methods partitioned models based on mesh attributes like Curvature, Geodesic distance, Convexity, 

Dihedral angle, etc. Mesh segmentation comprehensively summarized by [13–18]. However, the results of 

segmentation greatly depend on the choice of mesh attributes. For mechanical engineering applications, 

segmentation partition the CAD mesh model into a distinct, mathematically analyzable regions. Mesh segmentation 

is the most favored approach for extracting surface features [19].  

The slice-based approach partitions the object by slicing. Adhikary and Gurumoorthy [20] presented an 

algorithm to recognize free-form volumetric features without segmentation from CMM. However, their algorithm 

depends on the choice of “Minimum feature dimension” and must be known in advance before feature extraction. 

Muraleedharan et al. [21] used a random cutting plane approach for feature extraction. However, their algorithm 

needs a number of cutting planes for FR and is assumed to be known. The feature must have the presence of inner 

rings. Le and Duan [18] used uniform slicing; a dimensional reduction technique which transforms 3D primitives to 

2D to get a profile curve. The primitives are detected based on profile curve analysis. However, the algorithm was 

slice thickness dependent. Slicing techniques fail to identify or separate complex interacting features, as noted by 

Adhikary and Gurumoorthy [20]. Primitive fitting clustering approach partitions the object into basic primitives [22–

24]. However, existing primitive extraction techniques rarely addressed blends from CMM. 

Many Researchers have favored, B-rep based blend features extraction. The significant contributions are from 

Venkataraman et al. [3]. There have been some efforts that recognition blend features from CMM [25]. Zhang and 

Li [26] presents a  face clustering based region segmentation algorithm using concavity and convexity of facets for 

automatic detection of features from the STL model.  However, complex features like blends are not recognized. 

Garg et al. [27] presented a blend recognition and suppression algorithm of constant radius blends. However, the 

algorithm fails if blend faces do not have planar adjacent faces around it. Sunil and Pande [8] presented a hybrid 

region based segmentation framework to recognize free from features of sheet metal parts. The criteria used to 

identify and classify features are shape properties such as face normal, dihedral angle, Gauss, and mean curvature. 

However, the approach is domain-dependent and needs a user’s interaction while detecting complex parts. Gao et al. 



[28] used the graph-based method for FR using a modified watershed algorithm. However, the algorithm has issues 

in extracting features in the model having smooth boundaries between regions.  

Literature Findings 

Literature reports, least research work has been carried out on blend recognition from CMM. Most of the researchers 

used blend recognition and suppression from the boundary representation (B-rep) model to simplify the model 

before meshing. Recognizing blend features from B-rep model is easier as compared to CMM. In the B-rep model, 

the radius of the blend is available while radius information is not directly accessible in  CMM. Most of the 

researchers used smooth edges as a clue for blend recognition from the B-rep model.  For the STL model, no smooth 

edge available directly. 

The curvature was most frequently used for Feature Recognition. However, for recognizing spherical and 

cylindrical blends, only curvature information (Gaussian curvature and absolute mean curvature) alone is not 

enough. For toroidal blend surfaces, curvature along profile circle is same, but curvature will be different at discrete 

points on the surface. Therefore only curvature estimates cannot be used for clustering the facets belonging to the 

blend surface. 

Further, Sunil and Pande [8] have attempted to recognize hole, dimple, flange, ridge, bend while Adhikary and 

Gurumoorthy [20] recognized and extracted free-form volumetric features. Muraleedharan et al. [21] identified 

holes, slots, pockets as well as interacting features CAD mesh model, but could not recognize chamfer, fillet, and 

blends. From a literature review, it is evident that most of the researchers have focused on extracting limited and 

comparatively simple features. Recognition of complex and real-world features like blends has not been addressed 

so far.  

BLEND TAXONOMY 

In this research work, the blend feature is considered as a region of interest from CMM. Real-world mechanical 

parts have blends features. The blends are created by applying blending operation on sharp edges. A blending 

operation on a convex edge removes material from the model is called round, whereas a blending operation on a 

concave edge adds material from the model is called fillet [3].  Figure 1 illustrates the blend terminology. 

 

  

FIGURE 1. Blend terminology FIGURE 2. Types of Blends. 

 

Blends are grouped into a constant radius blend, variable radius blend, and other forms. Many commercial 

CAD/CAM systems support both constant radius blend, variable radius blend. Constant radius blends are further 

classified into vertex blend, vertex toroidal blend, convex cylindrical blend, concave cylindrical blend, closed 

toroidal blend, and open toroidal blend. Figure 2 illustrates the types of blends.  



METHODOLOGY 

The proposed algorithm involves three steps viz. preprocessing, pattern matching hybrid mesh segmentation, and 

blend recognition. Figure 3 illustrates the overall strategy to extract blends from CMM, which consists of the 

following steps: 

 

 

 

FIGURE 3. The framework of the proposed Methodology 

Preprocessing 

Build Facet Adjacency 

In this research work, a valid STL model which is free from errors is taken as an input. Hence there is no need of 

model healing [8]. In preprocessing, facets adjacency is built-in imported CAD mesh model. 

Intelligent Threshold Prediction 

A significant step in PM segmentation is to set the appropriate Area Deviation Factor (ADF: threshold) at the 

beginning. It is a cumbersome task of identifying a threshold value for getting the expected results. Most of the time, 

a trial and error approach is used to determine a correct threshold [21]. Inadequate threshold value leads to over-

segmentation (multiple small patches) or under segmentation. Over-segmentation needs a post-processing merging 



step which increases processing time whereas under segmentation leads to deficient results. However, for a layman, 

setting the appropriate threshold is too complicated. Manual prediction is laborious and errors prone. Therefore, an 

automatic and intelligent prediction approach is of significance [29].  

The proposed algorithm adopts a neural network-based intelligent threshold prediction developed by Hase et al. 

[30]. Artificial Neural Networks (ANN) predicts the threshold by considering mesh quality of CAD mesh model as 

an input feature vectors. Levenberg-Marquardt back propagation (LM-BP) is used to predict the threshold. The 

artificial network model is designed with 2-250-1 configuration with back propagation; see Fig. 4.  Extensive testing 

on benchmarks test cases based on LM-BP model validates ANNs prediction and improves the accuracy and 

stability of prediction [30]. A detailed explanation of automating threshold prediction using the neural network is 

beyond the scope of this paper.  

 

 

 

FIGURE 4. Model of the multilayer feedforward LM-BP algorithm FIGURE 5. Types of the pattern. 

 

PATTERN MATCHING HYBRID MESH SEGMENTATION  

Pattern matching (PM) is a technique of measurement of similarity between two patterns. Two patterns are similar 

either of magnitude or their distance between them. The proposed algorithm decomposes CAD meshes into regions. 

We presume that adjacent facet in a region has similar patterns. Figure 5 shows that analytical regions have different 

patterns. PM hybrid mesh segmentation, clusters facets in groups.  To take advantage of intrinsic surface properties 

of the facets, the proposed method used “Facet Area” as a measurement of similarity. Figure 6 illustrates the 

framework of the proposed PM hybrid mesh segmentation methodology. 

The objective of PM hybrid mesh segmentation is to partition CMM into basic primitives like a plane, sphere, 

cylinder, and tori. It is difficult to segment CMM by using facet based region growing or vertex based region 

growing alone [31]. None of these techniques on their own gives a robust solution to recognize feature from CMM. 

A promising approach wherein intelligent blending of facet-based, vertex based, rule-based reasoning are combined. 

Vertex-based region growing technique is used to detect curved surface [31]. The facet-based growing method is 

used to detect curved and planes regions not identified via vertex based region growing  

Firstly, the STL model is partitioned into segmented regions that carry distinct geometrical properties. The PM 

hybrid approach is an intelligent blending of facet-based, vertex based, rule-based based techniques. The PM hybrid 

mesh segmentation uses hybrid region growing algorithms to cluster facets into groups. After segmentation, each 

facet group is subjected to several conformal tests to identify the type of analytical surfaces such as a cylinder, cone, 

sphere or tori. After extraction of analytical surfaces, feature boundaries are identified.  

Region growing is a technique to group facets with the matching “Facet Area” into one region. The growing 

begins with a seed vertex and then a seed facet and grows from these seeds by merging neighboring facets to one 

region that satisfy a “Mean Area.” The procedure is iterative and reiterates until no more facets are merged.  

The triangles in the clusters are subjected to several tests, to identify the type of surface it might be representing, 

such as a plane, sphere, cylinder, cone, and torus.  For cylindrical, spherical or tori surface patch identification, Hase 

et al. [31] methods are used. Once feature patches are segmented, then feature parameters are determined, and 

feature adjacency is built. 

 



 

FIGURE 6. illustrates a structure of proposed PM hybrid mesh segmentation methodology 

 

The PM Hybrid mesh segmentation leads to over-segmentation. The over segmented regions are need to be 

merged again to generate a single region. The proposed iterative region merging technique is based on geometry 

equality test. The iterative region merging technique repeatedly merged adjacent regions that have similar geometric 

property. After region merging, small cracks are observed close to the corner and at the region boundaries [32]. To 

make a watertight model, these uncollected facets are reclaimed into the surrounding identified regions (Feature) 

based on reclamation criteria. The developed hybrid mesh segmentation automatically segments CMM into 

meaningful primitives with parameters. Figure 7 illustrates examples of the cylindrical regions generated by the PM 

hybrid mesh segmentation. Figure 7(a) is the input mesh models; Fig. 7(b) illustrates the PM segmentation results 

(12 planes and 523 cylindrical patches); Fig. 7(c) shows the results of the iterative region merging process; Fig. 7(d) 

demonstrates the reclamation results and Fig. 7(e) illustrates the final region merging after reclamation (12 planes 

and 50 cylinders). Hase et al. [31] have reported a detailed description of hybrid mesh segmentation.  

 

 

FIGURE 7. Hybrid mesh segmentation process [30] 

 

 

 



BLEND RECOGNITION AND PARAMETERIZATION 

 

 

FIGURE 8. Blend type identification and classification  

 

In this research work, the rule-based reasoning approach is used for blend feature extraction from CMM. To 

extract blend features, geometrical and topological rules are applied on extracted surfaces. Figure 8 shows the 

geometrical and topological rules for blends recognition. The feature boundary (connected series of coedges) is used 

to classify blend feature. Firstly, feature boundaries are detected in extracted geometry, which is intersection border 

of two adjacent regions. The concave or convex cylindrical blend has one feature boundary whereas, the closed 

toroidal blend has two feature boundaries.  Later, cylinder convexity is set.  Cylindrical concavity or convexity is 

decided by dot product principle. A virtual vector (Vv ) is a constructed between centroid and center of the cylinder. 

If the dot product of the surface normal vector of the cylindrical surface (NF) and the virtual vector is positive, the 

surface type is concave otherwise convex (see Fig. 9). 

 

  

FIGURE 9. Cylinder Convexity FIGURE 10. Challenges for the proposed technique 

Future Challenges 

As this research work can handle only constant radius blends, future work is to recognize more complex features 

like variable radius blends, setback vertex along with feature interaction and suppression (see Fig. 10). Blends on 

nonlinear surfaces have to be addressed. As for our future work, we need to develop a deep learning approach for 

FR from CMM and develop a specific application which linked extracted feature information to downstream 

applications. 



IMPLEMENTATION AND TESTING (RESULTS) 

The proposed algorithm has been executed and tested using VC++  running on a computer with Intel Core i3 

processor, 8 GB RAM. The developed system can accept any STL file generated by AutodeskTM InventorTM 2018. 

The efficacy of the algorithm has been tested on realistic STL CMM taken from NIST repository [33]. 

Fig. 11 to Fig. 13 briefly illustrates all stages in blend feature recognition for CMM. The algorithm starts with an 

input CMM. The STL model has 9344 facets and 5362 vertices. The test case is used to verify the efficacy of the 

proposed algorithm.  

 

 

 
 

FIGURE 11. illustrates Input CMM FIGURE 12. illustrates the 

segmented mesh model 

 

FIGURE 13. illustrates extracted blend feature. 

 

 

The PM segmentation has an outcome for the test case is shown in Fig.11.The system identifies seventeen 

planar, nine cylindrical, two spherical, and seven torus surface. Figure 12 illustrates the segmented mesh model with 

each analytical surface has different colors.  

After segmentation, the algorithm classifies these analytical surfaces into blend features by applying geometrical 

and topological rules. The system identifies one vertex blend; one vertex toroidal blend; two convex cylindrical 

blend; three concave cylindrical blend; four close toroidal blend and two open toroidal blends. Figure.13 illustrates 

extracted blend feature in different colors. 

The system correctly extracts all regions and classifies them into blend features. The system takes less than one 

minutes for blend recognition. Table 1 illustrates segmented clusters and a number of their instances. Table 2 

illustrates extracted blend features and a number of their instances. 

 

 

TABLE 1. Extracted segmented clusters types 

Cluster Type Number of instances 

Plane  17 

Cylinder 9 

Sphere 2 

Torus 7 

Total 35 

TABLE 2. Extracted Blend types 

Blend Type Number of instances 

Vertex Blend 1 

Vertex Toroidal blend 1 

Convex Cylindrical blend 2 

Concave Cylindrical blend 3 

Close Toroidal blend 4 

Open Toroidal blend 2 

Total no. of Blends recognized 13 
 

 



To test the algorithms ability to recognize interacting blend features, test cases have been prepared. Using 

random color for different primitives, features can be interpreted. Figure 14 illustrates the interacting blend feature 

recognition. 

 

FIGURE 14. illustrates the interacting blend feature recognition  

Table 3 summarizes the performance measure for a proposed algorithm for the test cases shown in Fig. 14(a), 

14(c), and 14(e). The percentage coverage has been used to measure of success indicator for a hybrid mesh 

segmentation algorithm. It is a ratio of a number of features recognized to the number of features present in a CAD 

mesh model. 

 

TABLE 3. A quantitative comparison of CAD Mesh Model 

Test Cases F V S Adf NRbrm NRarm T C 

Figure 14(a) 1380 690 0.349 0.75 36 25 0.254 99.28 

Figure 14(c) 12068 6034 2.23 0.75 158 69 1.078 100 

Figure 14(e) 1726 859 0.44 0.80 61 50 0.503 99.07 

 
F: Number of Facets   V: Number of Vertex  S: STL Size (in MB)  

Adf  : Predicted Area deviation factor         C : % Coverage 

NRbrm : Number of regions before region merging      

NRarm : Number of regions after region merging  T: Overall Timing (in a second) 

CONCLUSION 

In this paper, an elegant method has been proposed and implemented for blend recognition from CMM using PM 

segmentation. The method has a perspective of becoming a generic way of FR technology for CAD meshes as it 

partitions the STL model using facets area, avoiding tedious curvature and facet edge analysis. The proposed 

approach does not depend on attributes like curvature, minimum feature dimension, number of clusters, number of 

cutting planes, the orientation of model, and thickness of the slice to extract volumetric features. The proposed 

algorithm has been tested with CAD models taken from NIST repository and found to be consistent in recognizing 

blend features such as vertex blend, vertex toroidal blend, convex cylindrical blend, concave cylindrical blend, close 

toroidal blend, and open toroidal blend. 

As the present work can handle only constant radius blends, future work is to recognize more complex features 

like variable radius blends, extrude, revolve, boss, and pockets along with feature interaction and suppression. 

Blends on nonlinear surfaces have to be addressed. As for our future work, we need to develop a deep learning 

approach for FR from CMM and develop a specific application which linked extracted feature information to 

downstream applications like CAPP, Tool path generation, FEA and reverse engineering. 
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