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Abstract 23 

Although environmental DNA shed from an organism is now widely used for species detection 24 

in a wide variety of contexts, mobilizing environmental DNA for management requires 25 

estimation of population size and trends in addition to assessing presence or absence. However, 26 

the efficacy of environmental-DNA-based indices of abundance for long-term population 27 

monitoring have not yet been assessed. Here we report on the relationship between six years of 28 

mark-recapture population estimates for eulachon (Thaleichthys pacificus) and ‘eDNA rates,’ 29 

which are calculated from the product of stream flow and DNA concentration. Eulachon are a 30 

culturally and biologically important anadromous fish that have significantly declined in the 31 

southern part of their range but were historically rendered into oil and traded. Both the peak 32 

eDNA rate and the area under the curve of the daily eDNA rate were highly predictive of the 33 

mark-recapture population estimate, explaining 84.96% and 92.53% of the deviance respectively.  34 

Even in the absence of flow correction, the peak of the daily eDNA concentration explained an 35 

astonishing 89.53% while the area under the curve explained 90.74% of the deviance. These 36 

results support the use of eDNA to monitor eulachon population trends and represent a >80% 37 

cost savings over mark-recapture, which could be further increased with automated water 38 

sampling, reduced replication, and focused temporal sampling. Due to its logistical ease and 39 

affordability, eDNA sampling can facilitate monitoring a larger number of rivers and in remote 40 

locations where mark-recapture is infeasible. 41 

  42 
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Introduction 43 

While the environmental DNA shed from an organism is now widely used for species 44 

detection in a wide variety of contexts (Barnes & Turner, 2016; Rees, Maddison, Middleditch, 45 

Patmore, & Gough, 2014; Jerde, Mahon, Chadderton, & Lodge, 2011; Laramie, Pilliod, & 46 

Goldberg, 2015; Mächler, Deiner, Steinmann, & Altermatt, 2014; Rees et al., 2014; Takahara, 47 

Minamoto, Yamanaka, Doi, & Kawabata, 2012), mobilizing environmental DNA for 48 

management requires estimation of population size and trends in addition to assessing presence 49 

or absence. Recent research suggests that eDNA quantified with real-time quantitative 50 

polymerase chain reaction (PCR) or digital-droplet PCR can provide a proxy for actual 51 

abundance in controlled experiments (Rees, Maddison, Middleditch, Patmore, & Gough, 2014), 52 

in ponds (Lacoursière-Roussel, Côté, Leclerc, & Bernatchez, 2016; Takahara et al., 2012)  in 53 

streams (Doi et al., 2015; Levi et al., 2019; Lodge et al., 2012; Tillotson et al., 2018; Wilcox et 54 

al., 2016) and in marine bays (Plough et al., 2018). However, the efficacy of environmental DNA 55 

based indices of abundance in natural settings have produced mixed results (Yates, Fraser, & 56 

Derry, 2019) and have not yet been assessed in a management context for long-term population 57 

monitoring. 58 

Anadromous fish enter freshwater systems to spawn, often in large number, providing the 59 

opportunity to quantify the size of the spawning population with environmental DNA to inform 60 

management and population trends. While recent research has suggested that daily eDNA counts 61 

correlate well with the enumeration of daily immigrating adult salmon or daily outmigration of 62 

salmon smolts (Levi et al., 2019), a more important question is whether total run sizes can be 63 

accurately predicted for long interannual population monitoring programs. The use of eDNA to 64 
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monitor interannual populations increases the utility of this technology as a management tool 65 

that could expand the spatial and temporal scale of current fisheries monitoring programs. 66 

Owing to their short run time and large spawning aggregations, Eulachon (Thaleichthys 67 

pacificus), a lipid-rich, anadromous smelt of the family Osmeridae (Mecklenburg et al. 2002), 68 

make an ideal case study to test eDNA for long-term population monitoring of anadromous fish. 69 

Adult eulachon have an average size of 18 to 22 cm (Spangler, 2002). The historic range of 70 

eulachon stretched from southern California to the Bering Sea in southwest Alaska (Hart, 1973). 71 

The majority of eulachon populations have been declining since the 1990s (Hay & Mccarter, 72 

2000). In 2010, the National Marine Fisheries Service (NMFS) listed the southern distinct 73 

population segment in Washington, Oregon, and California as Threatened under the Endangered 74 

Species Act (NOAA, 2010). Because there is no commercial eulachon fishery in northern 75 

Southeast Alaska, there is no harvest regulation or management, agency oversight, or monitoring 76 

of population trends. While some eulachon population declines have been well documented (Hay 77 

& Mccarter, 2000), the status of most eulachon populations is either unknown or anecdotal. 78 

In Southeast Alaska, eulachon are the first anadromous fish to return after the long 79 

winter, and as a result, are a key resource for indigenous communites and for wildlife. For the 80 

Northwest Coast native people, eulachon are a culturally significant staple food source that is 81 

consumed fresh, dried, or smoked, and are frequently rendered into oil (Betts, 1994). 82 

Historically, eulachon oil was the most important trade item on a network of ‘grease trails’ 83 

between coastal and interior peoples, and it is still used and traded (Betts, 1994; Moody & 84 

Pitcher, 2010). Eulachon spawn just prior to the breeding season of many consumers, including 85 

marine mammals, thus providing a high-energy prey resource at an energetically demanding time 86 

(Sigler, Womble, & Vollenweider, 2004). The eulachon spawning aggregation draws enormous 87 
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congregations of seabirds, bald eagles (Haliaeetus leucocephalus), Steller sea lions (Eumetopias 88 

jubatus), harbor seals (Phoca vitulina), and humpback whales (Megaptera novaeangliae) among 89 

many other smaller predators and scavengers. A lack of eulachon population information 90 

coupled with the cultural and subsistence value of the species led to the development of an 91 

indigenous-led eulachon monitoring program in northern Southeast Alaska. In 2010 the Chilkoot 92 

Indian Association and the Takshanuk Watershed Council initiated a modified Lincoln-Petersen 93 

(Chapman, 1951, Lincoln, 1930; Petersen, 1896) mark-recapture population estimate on the 94 

Chilkoot River near Haines, Alaska at the northern end of southeast Alaska (Fig. 1). This 95 

program was successful in gathering baseline eulachon population data where none existed 96 

previously; however, monitoring is challenging and expensive (~$20,000 annually), limiting the 97 

feasibility of conducting long-term monitoring and limiting the possible geographic scope of 98 

monitoring. In an effort to develop a more cost-effective monitoring method, in 2014 we began 99 

pairing the mark-recapture program with daily water sampling to evaluate the efficacy of 100 

environmental DNA (eDNA) to produce an index of eulachon abundance.  101 

Here we compare six years (2014-2019) of mark-recapture eulachon abundance estimates 102 

with eulachon eDNA quantification to test whether long-term, affordable, indigenous-led 103 

monitoring of eulachon populations could be effectively achieved with environmental DNA. 104 

This method could facilitate intertribal cooperation for affordable monitoring of a culturally 105 

important subsistence and economic resource on a regional scale. Such regional monitoring is 106 

particularly important for eulachon, which exhibit low site-fidelity and thus regional broad-scale 107 

population structure (Flannery, Spangler, Norcross, Lewis, & Wenburg, 2013) such that a true 108 

population decline can only be verified by monitoring multiple river systems. 109 

 110 
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Methods  111 

Study System 112 

The Chilkoot River near Haines, Alaska has long been a culturally and ecologically 113 

important river.  The lower Chilkoot River flows 1.5 km from Chilkoot Lake to the ocean at the 114 

terminus of a large fjord. The Chilkoot Tlingit village and fishcamp was historically located 115 

along the banks of the Chilkoot River, which is still utilized for eulachon fishing and processing 116 

today (Betts, 1994; Olds, 2016). Eulachon typically spawn in the lower reaches of the Chilkoot 117 

River (Hay & Mccarter, 2000) where mostly indigenous harvesters capture large quantities for 118 

smoking, frying, and rendering into oil in pits.  119 

The Chilkoot Indian Association initiated a eulachon mark-recapture study to develop the 120 

first population baseline for the Chilkoot River, which is now the longest eulachon population 121 

dataset in Southeast Alaska (Alaska Department of Fish and Game Aquatic Resources Permit: 122 

SF-2014-027, SF2015-066, SF2016-113, SF2017-062, SF2018-072).  This effort was initiated 123 

because anecdotal observation suggested that the run size and timing on the Chilkoot River 124 

differed from traditional knowledge, and because the decline of the southern distinct population 125 

segment of eulachon was substantial enough to warrant threatened status under the Endangered 126 

Species Act (NOAA, 2010). The Endangered Species Act listing of eulachon led to concern by 127 

Chilkoot Indian Association tribal members that a decline in northern Southeast Alaska, where a 128 

strong subsistence fishery remained, would go undocumented, and thus un-remediated, without 129 

quantification of the current run size (Olds, 2016).  130 

Mark-Recapture 131 

At the mouth of the Chilkoot River, eulachon were captured using a modified fyke net 132 

trap and dip nets. The initial captured eulachon (M group) were transferred in small groups to 133 
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plastic dishpans where they could be easily handled to clip off the adipose fin using retina 134 

scissors and returned to the river. To avoid excessive increases in temperature and to reduce the 135 

possibility of disease transmission, the water in the dishpans was changed between each group 136 

and the dishpans were rinsed with river water. To allow time for the marked fish to mix with the 137 

unmarked fish, the recapture group was captured approximately 0.75 km upstream of the trap 138 

location (C and R group) (Fig 1). Eulachon in the second capture group were collected by field 139 

crews wading through the river with dip nets making sure to sample all portions of the river and 140 

with the help of subsistence harvesters when their catch was from within the recapture reach. The 141 

captured fish were examined for a clipped adipose fin before releasing. To avoid repetitive 142 

sampling of the same fish, field crews started at a downstream point and worked their way 143 

upstream. Eulachon are thought to be semelparous (spawning only once), which negates 144 

recapturing fish marked in a previous year (Clarke, Lewis, Telmer, & Shrimpton, 2007). A 145 

modified Lincoln-Peterson estimator equation (Chapman, 1951) was used 𝑁 = ("#$)(&#$)
'#$

− 1 146 

where N = total population size, M = marked initially, C = total in second sample, and R = 147 

marked recaptures. The standard error was calculated using the equation 𝑆𝐸 =148 

'[(𝑀 + 1)(𝐶 + 1)(𝑀 − 𝑅)(𝐶 − 𝑅)]/[(𝑅 + 1)((𝑅 + 2)]. The 95% confidence interval was 149 

calculated as 𝐶𝐼 = 𝑁 ± (1.96)(𝑆𝐸). Mark-recapture data were collected from 2010 through 150 

2019, excluding 2013 where a lapse in funding prohibited collection.  151 

Environmental DNA  152 

We collected daily water samples for eulachon eDNA quantification just below the mark-153 

recapture trap location near the mouth of the Chilkoot River (Fig. 1) from 2014 through 2019. 154 

The samples were taken as close to low tide as was feasible to avoid either DNA intrusion from 155 

the estuary and/or dilution with an influx of tidal flow. Three replicate 1 L water samples were 156 
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collected from the same location each sampling day in sterile Whirl Pak bags starting in early to 157 

mid-April and continuing for at least one week beyond the end of the mark-recapture study 158 

duration (Table 2). The exception to this was 5 days in 2019 for which field crews mistakenly 159 

filtered only 750 ml. We multiplied DNA concentrations from these days by 1.33 to account for 160 

the reduced volume. We sampled for 8, 11, 19, 13, 17, and 25 days during each run from 2014 161 

through 2019, respectively, based on the duration of the run. 162 

Each sample was transported from the field to the Takshanuk Watershed Council office 163 

immediately after collection and was filtered through a Nalgene 47mm 0.45 micron cellulose 164 

nitrate filter using either a peristaltic pump (Proactive Alexis peristaltic pump) or vacuum pump 165 

(Gast model DOA-P704-AA) with a three-sample manifold. Filters were stored immediately in 166 

100% ethanol within 2 mL cryovials and refrigerated until shipped to Oregon State University 167 

for extraction. Filters were removed from ethanol and air-dried overnight in sterile, disposable 168 

weight boats in a hepafiltered and UV-irradiated cabinet within a PCR-free laboratory to avoid 169 

contamination. DNA was then extracted using the Qiagen DNeasy Blood and Tissue kit modified 170 

to include a >48 hour soak in ATL buffer, which was found to produce higher and more 171 

consistent yields. DNA was eluted in a total volume of 100 µl.  172 

DNA Quantification 173 

We developed a species-specific quantitative PCR assay for eulachon targeting a 187-bp 174 

region of the Cytochrome oxidase I (COI) region of the mitochondrial genome based on 175 

observed sequence divergence among Osmeridae fish species in the Pacific Northwest region of 176 

North America including longfin smelt (Spirinchus thaleichthys), capelin (Mallotus villosus), and 177 

rainbow smelt (Osmerus mordax). Specifically, we ensured at least 2 bp mismatch on the 178 

forward primer and at least 3 bp mismatches on the probe to the other Osmeridae fishes. The 179 



 9 

reverse primer contained a 2 bp mismatch to longfin smelt, a 3 bp mismatch to capelin, and a 1bp 180 

mismatch to rainbow smelt. We tested our primers in vitro against longfin smelt tissue to ensure 181 

no nonspecific binding, and in natura on water samples from a diversity of rivers in southeast 182 

Alaska (Chilkoot, Chilkat, Taiya, Ferebee, Katzehin, Auke, Berners, Lace, Antler, Mendenhall) 183 

and Oregon (Columbia, Cowlitz) outside of the eulachon run to ensure no nonspecific binding to 184 

non-Osmeridae fishes. 185 

The probe was labeled with a 5’ FAM fluorescent marker and a minor-groove-binding 186 

non-fluorescent quencher on the 3’ end. Primer3 software (Untergasser et al. 2012) was used to 187 

select the following primers:  Euc_COI_R (5'- CTCCCTCCTTCCTTCTCCTT-3’), Euc_COI_R 188 

(5'- GGTCTGGTACTGGGAAATGG-3’) and the internal probe Euc_COI_I (5’-189 

6FAM*AGCGGGAGCCGGGACTGGCT*MGBNFQ).  190 

A Bio-Rad QX200 AutoDG Droplet Digital PCR system (Hercules, CA. USA) at the 191 

Oregon State University Center for Genome Research and Biocomputing was used to quantify 192 

DNA concentrations in duplicate PCR reactions. A 22 µl reaction was carried out containing 193 

(final concentrations) 1 x ddPCR Supermix for probes (no dUTP), 900 nM of both forward and 194 

reverse primers, 250 nM internal probe and 4 µl of DNA extract. Droplets were then generated 195 

using the QX200 AutoDG system, resulting in a final reaction volume of 40 ul. Cycling 196 

consisted of 95 °C for 10 mins, followed by 45 cycles of 94 °C for 30 secs, and 60 °C for 1 min, 197 

ending with 96 °C for 10 mins, allowing for a ramp rate of 2 °C/sec between steps.  PCR setup 198 

occurred in a hepafiltered and UV-irradiated cabinet within a PCR-free laboratory to avoid 199 

contamination. After the reaction, the droplets were read on a Droplet Reader and analyzed with 200 

QuantaSoft Analysis Pro software (version 1.0.596). We included extraction blanks every 35 201 

samples, and every ddPCR plate included two no-template controls (DI water), and positive 202 
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controls (eulachon tissue extracts). We did not observe false positives of eulachon in negative 203 

controls nor false negatives of eulachon tissue or water samples when eulachon were observed in 204 

the river. 205 

The concentration of eDNA is a function of both the amount of eDNA shed into the river 206 

and dilution of eDNA due to increased stream flow. To calculate the flow-corrected eDNA rate, 207 

we multiplied each day’s ddPCR DNA concentration 7)*+,-.
/0

8 against the day’s stream flow 208 

)/1,)	3--4
.-)

. We refer to this as an eDNA rate because once the volume units cancel the result is 209 

proportional to DNA copies/second (Levi et al. 2019). Stream flow measurements were taken 210 

each day that an eDNA sample was collected immediately following the collection of the eDNA 211 

sample. To measure streamflow, we used a rating curve developed by the Alaska Department of 212 

Fish and Game for the Chilkoot River. To validate this rating curve, a stream flow measurement 213 

was taken at the beginning of each field season on the Chilkoot following the USGS velocity-214 

area method using a type AA current meter (Turnipseed & Sauer, 2010). Following the initial 215 

calibration of the rating curve, the daily river height was measured in feet off of an established 216 

benchmark using surveying equipment, which was then transformed into a river discharge based 217 

on the rating curve (Sowa, 2015).  218 

Analysis 219 

We evaluated the flow-corrected eDNA rate as an index of eulachon abundance based on 220 

two metrics. First, we use the maximum eDNA rate (i.e. size of peak). Second, we used area 221 

under the curve of the eDNA rate throughout the duration of the run. In each case, the daily 222 

eDNA concentration was the average of 6 replicates (2 ddPCR within 3 replicate water samples). 223 

DNA concentration particularly in cases of multimodal runs, the area under the curve was 224 

expected to provide a more accurate representation of the overall biomass. We computed the area 225 
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under the curve with the AUC function in the DescTools package version 0.99.27 (Signorell, 226 

2019) in RStudio version 1.1.383 (RStudio Team, 2015). We additionally assessed the need for 227 

flow correction by evaluating the relationship between uncorrected eDNA concentrations using 228 

the same two metrics and mark-recapture population estimates. We used quasipoisson regression 229 

to model the mark-recapture population estimates as a function of the natural log of the two 230 

measures of eDNA rate and the uncorrected eDNA concentration.  231 

 232 

Results 233 

Mark-Recapture 234 

The mark-recapture population estimate was initiated in 2010 and continued annually 235 

through 2019, excluding 2013 due to funding constraints. Eulachon exhibited substantial 236 

population fluctuations with a potential 5-6-year cyclic pattern for large returns (Fig. 2). The 237 

average eulachon population estimate for the mark-recapture method from 2010-2019 (excluding 238 

2013) was 8.4 million, with a maximum of 26.7 million in 2019 (±1,840,573), and a minimum of 239 

319,568 in 2015 (±158,934) (Table 1). Eulachon arrival in the Chilkoot River was documented 240 

as early as April 20th (2016) and as late as May 6th (2017), with run durations lasting between 4 241 

(2015) and 13 days (2019). 242 

Two notable anomalies occurred during the mark-recapture study period. In 2016 the run 243 

consisted of multiple pulses with what appeared to be a definitive end of the run that was 244 

followed by a final pulse of fish five days later. This final pulse of fish was not recorded as part 245 

of the mark-recapture estimate but was captured in the eDNA data. Additionally, the 2015 run 246 

was the smallest return of fish observed during our study period, but anecdotal reports suggested 247 

that other rivers in Northern Southeast Alaska received unusually large runs.  248 



 12 

 249 

 250 

Environmental DNA  251 

During eulachon runs, all ddPCR replicates of all technical replicates amplified with the 252 

exception of the period that appeared in the field to be prior to any obvious eulachon entry in 253 

which we either observed no amplification or very low copy number amplification of one 254 

replicate but not both. eDNA concentrations varied substantially from near zero to a high of 255 

328000 copies / µL during the peak of the run in 2017. The product of streamflow and eDNA 256 

concentration, which we refer to as ‘flow-corrected eDNA rate’ (Fig. 3, see also Levi et al. 257 

2019), was highly predictive of the eulachon population estimate generated through the mark-258 

recapture method. The natural log of the eDNA peak was significantly related to, and explained 259 

84.96% of the deviance in, the mark-recapture population estimate (β=0.533, 95% CI [0.271, 260 

0.898], p = 0.027), despite a multimodal eulachon run in 2016 that contained three distinct peaks. 261 

The area under the curve eDNA rate explained 92.53% of the deviance in the mark-recapture 262 

population estimate (β=0.502, 95% CI [0.338, 0.697], p = 0.005) (Fig. 4). The peak eDNA 263 

concentration without flow correction explained 89.53% of the deviance in the mark-recapture 264 

population estimate (β=0.503, 95% CI [0.310, 0.742], p = 0.01). The area under the curve even 265 

without flow correction still explained 90.74% of the deviance in the mark-recapture population 266 

estimate (β=0.443, 95% CI [0.292, 0.620], p = 0.006) (Fig. 4). The quasipoisson regression 267 

models using either the flow-corrected eDNA rate peak (i.e. maximum of flow x DNA 268 

concentration) or the area under the curve as a single predictor produced highly representative 269 

predictions of mark-recapture population estimates (Fig. 5). 270 

Discussion  271 
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The utility of eDNA for the detection of organisms has been widely documented 272 

(Ficetola, Miaud, Pompanon, & Taberlet, 2008; Rees et al., 2014; Wilcox et al., 2016). Recently, 273 

the next generation of eDNA science has evaluated the efficacy of quantifying the abundance of 274 

species using eDNA (Doi et al., 2015; Levi et al., 2019; Takahara et al., 2012; Tillotson et al., 275 

2018).  However, the expansion of eDNA beyond academic settings and into species 276 

management and monitoring is just beginning. eDNA methods may be particularly promising for 277 

the management of neglected species such as eulachon. This is true even if eDNA provides less 278 

accurate or precise results than do traditional methods, because lower quality data from more 279 

streams could result in more robust management decision-making than higher quality data from 280 

just a few streams (Dowling et al., 2008). This is  particularly important for a fish that exhibits 281 

low site fidelity, such as eulachon (Flannery et al., 2013), where a decline in one stream may not 282 

signal a decline in the overall population, and regional population trends can be more 283 

informative of the health of the overall population.  In addition, for many taxa, especially those 284 

that are data poor and do not have agency oversight, knowing population trends is just as 285 

important as precisely enumerating abundance. However, our results suggest that this tradeoff of 286 

abundance estimates vs. rough population trends is largely inconsequential; both the flow-287 

corrected and non-flow-corrected eDNA rate was predictive of the eulachon mark-recapture 288 

population estimates at a small fraction of the cost. Further, eDNA was predictive of mark-289 

recapture population estimates even without flow-correction (Fig. 4D), which suggests the 290 

possibility that eDNA-based quantitation of eulachon could be implemented in systems where 291 

flow measurements cannot be obtained.  292 

Unlike the mark-recapture method, which produced a single population estimate for the 293 

eulachon run, the eulachon eDNA rate captured within-run phenology as eulachon abundance 294 
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varied in the Chilkoot River above the sampling location. eDNA was very effective at 295 

quantifying run timing and was particularly effective at demonstrating that the 2016 eulachon 296 

run was multimodal with three distinct pulses of eulachon that were separated by 4-5 days of 297 

inactivity (Fig. 3). The third pulse in 2016 was not represented in the mark-recapture estimate 298 

because field personnel had assumed that the run had terminated, but, due to the minimal labor 299 

required for eDNA sampling, we continued sampling and were able to capture the full 2016 run 300 

with eDNA.  301 

 Many species are monitored due to their commercial or ecological importance, but when 302 

those species are also culturally important, the people linked to them become their stewards.  303 

Good stewardship requires good information. The results presented here demonstrate the 304 

potential of eDNA for indigenous-led wildlife resource monitoring and management.  This study 305 

itself came about because the Chilkoot Indian Association had initiated mark-recapture 306 

monitoring and saw the potential of eDNA. A primary benefit of using eDNA is the vastly 307 

reduced cost of monitoring under-funded species, such as eulachon. The mark-recapture study on 308 

the Chilkoot River costs approximately $28,000 per year; largely because two five-person crews 309 

are needed to properly implement the mark-recapture method.  The use of eDNA at the current 310 

Oregon State University rate of $42/sample for 3 samples/day for ~13 days is $3,000. Further 311 

cost savings would be accrued by reducing sampling prior to and after the run, when DNA 312 

concentrations are low, and instead focusing measurement during the ~1 week of active 313 

spawning, because both the peak eDNA concentration and area under the curve eDNA metrics 314 

are invariant to sampling additional days with very low DNA concentrations. The economic 315 

viability of eDNA could be further increased with automated water samplers, currently in 316 

development, and/or through the participation of citizen scientists. The latter is possible because 317 
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the process of eDNA collection is easy to learn and is thus suitable for a wide range of citizen-318 

science programs, including indigenous-led monitoring (Biggs et al., 2015; Wilken, 2018). 319 

An additional benefit of eDNA methods is that mark-recapture estimation is not 320 

logistically feasible on all rivers. The Chilkoot poses a unique set of characteristics – single 321 

channel, road accessible, and with a relatively distinct upper limit to spawning activity. Many 322 

rivers in Southeast Alaska where eulachon spawn are glacially-fed, with wide, braided river 323 

mouths that are in remote, road-less areas. A mark-recapture method at these locations would be 324 

logistically challenging, in large part due to a large field-crew requirement. The appeal of eDNA 325 

is the ability to simply collect and filter a water sample to derive an index of abundance, which 326 

can be done by a single person in under one hour. The use of eDNA allows population data to be 327 

gathered on rivers that otherwise would not be possible, which is vital in monitoring a population 328 

that exhibits only a regional genetic population structure. The use of affordable and logistically 329 

feasible eDNA methods could facilitate regional studies of eulachon population size, run timing, 330 

and synchrony among rivers, which would allow for inference on regional population trends, 331 

environmental drivers of population dynamics, and environmental drivers of spawning river 332 

selection (Bryant, 2009). 333 

Measurement of eDNA concentrations at a point in space and time represents a simple 334 

sampling process of mtDNA molecule counts per unit reaction volume, which can be modelled 335 

by a Poisson distribution assuming that eDNA is well mixed. The maximum likelihood estimate 336 

of the actual concentration of eDNA, l, is equal to the sample mean of the N replicate eDNA 337 

concentrations, and the variance around this estimate is equal to the sample mean of the eDNA 338 

concentrations divided by N. Thus, the variance of the estimated ‘true’ eDNA concentration 339 

declines quickly with the number of replicates from a maximum equal to the mean. In contrast, 340 
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mark-recapture analysis is a relatively complex statistical sampling process with a variance 341 

around the population estimate of ([(𝑀 + 1)(𝐶 + 1)(𝑀 − 𝑅)(𝐶 − 𝑅)]/[(𝑅 + 1)((𝑅 + 2)]), 342 

which can be much larger than the mean population estimate (Table 1; SE2 can be thousands of 343 

times larger than N) if the number of recaptured individuals, R, is small relative to the number of 344 

marked individuals, M, or the number captured in the second session, C (Chapman, 1951). Thus, 345 

although eDNA concentrations are not in the useful units of individual animals, they can be 346 

estimated precisely with limited replication, but the same is not true for mark-recapture 347 

population estimates.  348 

Of course, while the observation error of eDNA concentrations in water samples may be 349 

low, the process error linking eDNA concentrations to fish abundance can be quite high due to 350 

the complexity of eDNA transport and degradation, variance in eDNA production among 351 

individuals and through time, the random spatial location of organisms relative to the sampling 352 

site, and more challenging stream morphologies among other complexities. Additionally, 353 

anadromous fish that spawn over a longer duration are likely to require that eDNA receive flow-354 

correction due to higher rates of seasonal flow variability than that exhibited during the brief 355 

eulachon run (Levi et al., 2019).  Systems in which anadromous fish experience mortality and 356 

remain in freshwater could artificially inflate the eDNA signal, which could introduce substantial 357 

noise if the proportion of decaying fish varied inter-annually. Broadly, the utility of eDNA for 358 

monitoring other forage species is an area for future research, but the method we outline here 359 

would be most applicable when it is possible to sample an emphemeral spawning aggregation. In 360 

contrast, anadromous fish that progress upstream require approximately daily sampling to predict 361 

the daily entry of fish because the eDNA signal attenuates as fish progress far from the sampling 362 

site (Levi et al., 2019). Importantly, it is unknown whether our model correlating eulachon run 363 



 17 

size with flow-corrected eDNA will be transferable to other rivers. This is unlikely to be the case 364 

when rivers have different morphologies, such as braided floodplains with pockets of eulachon 365 

spawning throughout. In such circumstances, a within-river index of abundance might be 366 

achieved by monitoring several braids where eulachon congregate, or perhaps the estuary where 367 

mixing of water might homogenize the sample. 368 

Although there is substantial process error linking eDNA concentrations to fish 369 

abundance, mark-recapture presents its own suite of problems. For example, the demographic-370 

closure assumptions of mark-recapture estimators are difficult to meet with an anadromous fish 371 

that quickly enters and leaves the river (Pollock, 2018). The Chilkoot River mark-recapture study 372 

lasts for the duration of the run (typically 4-8 days), beginning on the first day that fish are 373 

observed in the river (typically late April) and ending once recapture sampling has exhausted all 374 

new fish into the system (i.e. when recaptures are identifying double-marked fish). During this 375 

time, new fish immigrate into the river while subsistence fishing activities actively remove fish, 376 

thus violating closure. However, mark-recapture population estimates can be robust to moderate 377 

violations of closure (Kendall, 1999). In this study, the closed-population assumption is thought 378 

to be reasonably met because (1) initial marking efforts remained relatively constant and 379 

continued until no new fish appear to be entering the system (i.e. approximately all individuals 380 

were potentially subject to marking), (2) there was an equal probability of capture of marked and 381 

unmarked fish by subsistence harvesters, and (3) we secured participation of subsistence 382 

harvesters to search their catch for marked fish from within the recapture reach. Additionally, it 383 

is assumed that eulachon are effectively semelparous (Clarke et al., 2007), and although some 384 

individuals may spawn twice in a lifetime the frequency of iteroparity is thought to be rare 385 

(Willson, Armstrong, Hermans, & Koski, 2006).  Nevertheless, in some years our mark recapture 386 
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population estimates are likely biased. For example, 2016 was multimodal, which challenged the 387 

mark-recapture protocol. In addition, 2019 featured an unusually long eulachon run, which likely 388 

included continued entry of eulachon into the river. This could have biased the mark-recapture 389 

population estimate high by reducing the proportion of recaptured fish. Similarly,  2017 was a 390 

very large but short duration run such that closure assumptions were easier to meet during the 391 

short marking and recapture period. Thus violations of closure may have differentially 392 

influenced our mark-recapture estimates and led to larger negative residuals in 2017 and positive 393 

residuals in 2019 (Fig. 4). This variation in the duration of the eulachon run is also likely to 394 

influence inference by eDNA because the area under the curve is sensitive to the duration of the 395 

run and the peak is sensitive to the maximum quantity of fish in the aggregation. 396 

 We have demonstrated that eDNA provides reliable quantification of anadromous 397 

eulachon abundance. eDNA is thus a promising tool that can be mobilized by managers, citizen 398 

scientists, or indigenous communities to affordably monitor noncommercial species that are 399 

neglected by agencies but are culturally and/or economically important. An important potential 400 

benefit of eDNA is that it democratizes biodiversity information and management. Ultimately, 401 

the reason to collect ecosystem information is to inform the political argument over resource 402 

allocation, and this information needs to be high-quality, third-party-verifiable, granular, timely, 403 

and understandable (Dietz et al. 2003). eDNA estimates of eulachon fish populations meet these 404 

criteria. 405 
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Tables 550 
Table 1. Annual eulachon population estimates for the Chilkoot River using a modified Lincoln-551 
Peterson equation (excluding 2013). eDNA monitoring began in 2014.  552 
 553 

Measurement 2010 2011 2012 2014 2015 2016 2017 2018 2019 
M = Marked 
Initially-adipose 
clipped 

8,017 49,814 27,525 24,084 306 9,384 33,681 30,542 70,127 

C = Total in 
second sample 
captured above 
weir 

20,210 143,444 48,376 19,886 3,122 8,865 47,654 18,636 80,859 

R = Marked 
recaptures above 
weir with clip 

72 568 186 140 2 45 126 64 210 

N1 = Population 
Estimate 

2.2 
Million 

12.6 
Million 

7.1 
Million 

3.4 
Million 

319,586 1.8 
Million 

12.6 
Million 

8.7 
Million 

26.7 
Million 

SE2 = Standard 
Error 

256,415 521,961 516,583 283,226 158,934 262,518 1,113,520 1,074,932 1,840,573 

CI3 = 95% 
Confidence 
Interval 

1.7 to 
2.7 
Million 

11.5 to 
13.6 
Million 

6.1 to 
8.1 
Million 

2.9 to 
3.9 
Million 

8,074 
to 
631,098  

2.3  to 
1.3 
Million 

10.5 to 
14.8 
Million 

6.6 to 
10.9 
Million 

23.2 to 
30.4 
Million 

 554 
 555 
 556 
 557 
 558 
Table 2: Annual field effort for the mark-recapture study and number of eDNA sample days, 559 
water samples, and ddPCR replicates.  560 

Year Start Date End Date 

Number of 
Mark-

Recapture 
field days 

Number of 
eDNA 
sample 
days 

Number of 
water 

samples 

Number of 
ddPCR 

replicates 

2010 4/23/2010 4/27/2010 5 NA NA NA 
2011 4/27/2011 5/8/2011 12 NA NA NA 
2012 5/2/2012 5/7/2012 6 NA NA NA 
2014 5/5/2014 5/9/2014 5 8 24 48 
2015 4/26/2015 4/29/2015 4 11 33 66 
2016 4/20/2016 4/24/2016 4 19 57 114 
2017 4/28/2017 5/5/2017 8 13 39 78 
2018 5/6/2018 5/11/2018 6 17 51 102 
2019 4/25/2019 5/7/2019 13 25 75 150 

 561 
 562 
  563 
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Figure 1. The Chilkoot River (A) is located in northern Southeast Alaska. The study area is 564 
located in the approximately 1.75 km section of river between the outlet of Chilkoot Lake and 565 
where the river meets the estuary (B). Three 1L water samples were collected at low tide just 566 
below the initial capture location, where (C) the adipose fin of eulachon captured in the trap was 567 
clipped into a “shark fin” for easy identification. The beginning of the recapture reach is located 568 
approximately 0.75 km upstream of the initial capture location, although eulachon are not 569 
exclusively recaptured within this reach. (D) Crews dip net or cast net to capture eulachon. (E) 570 
Depicts the Chilkoot River during a large eulachon run.  571 
 572 

573 
  574 
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Figure 2 Results of mark-recapture population estimate for eulachon on the Chilkoot River using 575 
a modified Lincoln-Petersen method. Error bars represent one standard error.  576 
 577 

  578 
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Figure 3. Daily results of the Chilkoot River flow-corrected eDNA rate (copies/nl * discharge in 579 
cubic-feet/sec.) in 2014-2016 (A), 2017-2019 (B). The boxplots illustrate the variability among 580 
the three daily water samples, each quantified in two ddPCR replicates. The lower and upper 581 
portions of the box correspond to the 25th and 75th quartile respectively around the median (line). 582 
Whiskers extend to the most extreme data points up to 1.5 times the interquartile range. 583 
Variability increased with the mean such that boxplots at low flow-corrected eDNA rates are 584 
very small and appear as points. 585 
 586 
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Figure 4. Results of quasipoisson regression models relating log-transformed mark-recapture 589 
population estimate to (A) the size of the peak flow-corrected eDNA rate (p = 0.027, 84.96% 590 
Deviance explained), (B) the area under the curve of the flow-corrected eDNA rate (p = 0.005, 591 
92.53% Deviance explained), (C) the size of the peak uncorrected eDNA concentration (p = 592 
0.01, 89.53% Deviance explained), and (D) the area under the curve of the uncorrected eDNA 593 
concentration (p = 0.006, 90.74% Deviance explained). Gray shading denotes 95% confidence 594 
interval. 595 
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Figure 5. Mark recapture population estimate of eulachon runs (black dots) from 2014 to 2019 597 
and the predicted number of eulachon based on the peak (A) or area under the curve (B) of the 598 
flow-corrected eDNA rate and the peak (C) and area under the curve (D) of the non-flow 599 
corrected eDNA concentration in the quasipoisson regression model (blue dashed lines). Gray 600 
shading denotes the 95% confidence interval. 601 
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