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Abstract

Individuals within populations vary enormously in mortality risk and longevity, but the causes

of this variation remain poorly understood. A potentially important and phylogenetically

widespread source of such variation is maternal age at breeding, which typically has nega-

tive effects on offspring longevity. Here, we show that paternal age can affect offspring lon-

gevity as strongly as maternal age does and that breeding age effects can interact over 2

generations in both matrilines and patrilines. We manipulated maternal and paternal ages at

breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether

breeding age effects can be modulated by the environment, we also manipulated larval diet

and male competitive environment in the first generation. We found separate and interactive

effects of parental and grand-parental ages at breeding on descendants’ mortality rate and

life span in both matrilines and patrilines. These breeding age effects were not modulated

by grand-parental larval diet quality or competitive environment. Our findings suggest that

variation in maternal and paternal ages at breeding could contribute substantially to intra-

population variation in mortality and longevity.

Introduction

In many species, offspring of older mothers have a reduced mean life span, a phenomenon

known as the ‘Lansing’ effect [1] or maternal age effect. Maternal age effects have been

observed in a great variety of organisms, including yeast, plants, nematodes, rotifers, insects,

birds, and mammals [2–6]. Although most studies have focused on offspring life span, some

studies show that maternal age at breeding can also affect offspring juvenile viability and adult

reproductive performance [7–11]. A few studies have also reported effects of paternal age at

breeding on offspring performance [2,5,6]. Parental age effects represent a potentially impor-

tant source of variation in individual mortality risk, longevity, and fitness, but many aspects of

these effects remain poorly understood.
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Parental age effects could be caused by the accumulation of mutations in the germline [12].

In humans, mutations accumulate at a constant rate in the male germline and at an accelerat-

ing rate in the female germline [13]. Parental age effects could also be mediated by nongenetic

factors. Recent studies on mice, monkeys, and humans have shown that patterns of DNA

methylation across the genome change with age—a pattern known as the ‘epigenetic clock’

[14–18], and some of these altered epigenetic factors could be transmitted across generations

[19–23]. Older parents could also transmit altered microRNAs or other factors such as pro-

teins to offspring via the gametes [24,25]. For example, in mice, the transmission of proteins in

the egg cytoplasm is thought to mediate maternal age effects on offspring [26], and more

recent evidence suggests a role for sperm microRNAs in paternal effects [27–31]. Although

such effects are best characterised in mammals, age-related changes in gamete quality also

occur in arthropods, and such effects could contribute to parental age effects. For example, in

the parasitoid wasp Eupelmus vuilletti, increasing maternal age is associated with reduced egg

size and altered egg composition [32]. Likewise, in Daphnia pulex, maternal age is associated

with changes in egg provisioning, with effects on offspring longevity and life history [33]. The

transmission of dysregulated epigenetic or cytoplasmic factors from old-breeding parents to

their offspring could mediate parental age effects in many species [34].

Maternal and paternal effects are likely to be mediated by different factors and can have dis-

tinct effects on offspring [35,36]. However, relatively few studies have tested experimentally

for effects of paternal age at breeding, and even fewer studies have directly compared the

effects of maternal and paternal age at breeding on offspring performance. Experimental evi-

dence in mice shows that offspring of older fathers have a reduced life span and suggests that

this effect could be mediated by epigenetic (DNA methylation) changes within sperm of gene

promoters involved in evolutionarily conserved pathways of life span regulation [37]. In Dro-
sophila melanogaster, both maternal and paternal age effects have been reported [5]. Similar

effects may occur in other species (including humans), although much of the evidence is corre-

lational. For example, in the wandering albatross, paternal but not maternal age affected juve-

nile survival of offspring [11]. A recent long-term study on a natural population of house

sparrows showed that paternal breeding has a similar effect size on life span and reproductive

success to female breeding age and that these effects are transferred to offspring in a sex-spe-

cific manner [6]. In humans, advanced paternal age at breeding is associated with reduced

sperm quality and testicular functions, and such effects appear to be mediated by both epige-

netic changes and genetic mutations [38]. Advanced paternal age is also associated with

reduced performance on standardised tests in children, whereas the effect of maternal age was

more complex [39]. Likewise, parental age, and the difference between maternal and paternal

ages, are associated with risk of autism spectrum disorder [40].

Parental age effects could interact with environmental factors such as diet and stress [8,41].

For example, a restricted maternal diet mitigated the effects of advanced maternal age at breed-

ing on offspring longevity in rotifers [42]. In mice, a fat-restricted maternal diet did not influ-

ence maternal age effects [16], but maternal age effects were mitigated by rapamycin [43]. In

the butterfly Pieris brassicae, effects of parental age at breeding on offspring performance were

influenced by stress [2]. However, the role of environment in modulating effects of parental

age remains largely unexplored.

Perhaps the most important gap in understanding of parental age effects is the potential for

such effects to accumulate and interact over multiple generations. In Drospohila serrata, off-

spring juvenile viability decreased with increasing maternal and grand-maternal ages at breed-

ing [8], but it remains unclear whether such cumulative effects can occur in partrilines or in

other species. If such multigenerational effects are widespread, they could make an important
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contribution to variation in mortality and longevity and, potentially, play a role in the evolu-

tion of ageing [5,34].

Here, we examined 3 aspects of parental age effects that have received little attention in pre-

vious research by (1) comparing the effects of both male and female age at breeding on descen-

dants, (2) testing for interactions of age at breeding with key environmental factors (diet and

competitive environment), and (3) investigating the potential for effects of age at breeding to

accumulate over generations. We addressed these questions in the neriid fly Telostylinus angu-
sticollis (Enderlein), a species endemic to New South Wales and Southern Queensland, Austra-

lia. Both larval and adult nutrition affect mortality rate and life span in this species [44,45].

Larval access to dietary protein has a nonlinear effect on adult longevity [44], but high overall

macronutrient (protein and carbohydrate) abundance at the larval stage accelerates larval

growth and development while also promoting rapid ageing in males [46,47]. Adult protein

restriction extends life [45] and can interact with larval diet to influence reproductive ageing

[48]. However, effects of parental age at breeding on offspring performance have not been

investigated previously in this species.

We reared individuals of the grand-parental (F1) generation on either a high-nutrient or

low-nutrient larval diet and then allowed adult females and males from these larval diet treat-

ments to breed at 15 and 35 days of age. Neriid males fight other males for access to territories

and females, and such male-male interactions could affect male ageing [47]. We therefore

investigated the potential for male-male interactions to affect paternal age effects by manipu-

lating F1 male competitive environment. Female and male offspring (F2) were reared on a stan-

dard larval diet (with a nutrient concentration intermediate between the high-nutrient and

low-nutrient diets) and then allowed to breed at 15-day age intervals between ages 15 and 60

days. We quantified the adult longevity of grand-offspring (F3) and used these data to test for

effects of grand-parental ages at breeding, grand-parental environment, and parental ages at

breeding on grand-offspring life span, mortality rate, and actuarial ageing rate.

Results

Life span

F3 individuals (grand-offspring) from both matrilines and patrilines suffered similar negative

effects of F1 (grand-parental) and F2 (parental) ages at breeding on life span (Table 1; Figs 1

and 2). F3 individuals descended from old-breeding grandmothers and grandfathers had

37.8% and 39.8% shorter lifespans, respectively, than F3 individuals descended from young-

breeding grandmothers and grandfathers. There was no effect of F1 larval diet on F3 life span

in either matrilines or patrilines, nor an F1 larval diet × F1 age interaction. There were also no

main or interactive effects of F1 male competitive environment within patrilines (S3 Table).

However, we detected an F1 × F2 age interaction within both matrilines and patrilines,

whereby the negative effect of F1 age at breeding was diminished as F2 age at breeding

increased (Fig 2). Within matrilines, we also detected an interaction of F1 age at breeding and

F3 sex, whereby the negative effect of grandmothers’ age at breeding was stronger for F3 males

than for F3 females. In patrilines, we also detected an F2 age × F2 sex interaction, such that F3

life span declined more steeply with increasing paternal (F2 male) age than with increasing

maternal (F2 female) age. S1 Fig shows the combined effects of F1 and F2 breeding ages, F1

competitive environment (patrilines only), and F1 larval diet on F3 life span. Results were qual-

itatively similar for models including development time and body size (S4 Table). Overall, by

comparison with previously published life span estimates for this species when maintained as

individually housed virgin adults (e.g., male median = 37 d, female median = 36 d; [49]), the

median lifespans of F3 individuals descended from young-breeding parents and grandparents

Breeding age effects longevity and mortality over multiple generations in matrilines and patrilines.
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are similar (male median = 25, female median = 36), whereas the median lifespans of F3 indi-

viduals descended from old-breeding parents and grandparents are substantially lower (male

median = 10, female median = 15).

Mortality rate

Consistent with our results for life span, we found that baseline mortality rate (Gompertz bo

parameter) of F3 individuals from both matrilines and patrilines was affected positively and

Fig 1. Effects of grand-parental (F1) breeding age and larval diet on grand-offspring (F3) life span in patrilines and matrilines. The violin plot outline illustrates

kernel probability density (width represents proportion of data located there). Within violin plots are box plots with median and interquartile range to illustrate data

distribution. Underlying data can be found in the Dryad Repository: https://doi.org/10.5061/dryad.2rbnzs7hw.

https://doi.org/10.1371/journal.pbio.3000556.g001

Table 1. Tests of effects based on linear mixed models of F3 life span for patrilines and matrilines. Significant effects are highlighted in bold. Negative effects of F1 and

F2 age indicate that old grandparents and parents produced F3 individuals with reduced lifespans, negative effects of larval diet indicate that low-nutrient larval diet has a

negative effect on F3 life span, and negative effects of sex indicate that the life span of male descendants was lower than that of females. Effect sizes represent marginal R2.

Conditional whole-model R2 values were 47.72% for the patriline model and 54.78% for the matriline model.

Effects on F3 life span Patrilines Matrilines

Fixed effects: Estimate SE F Χ2 P Effect size (%) Estimate SE F Χ2 P Effect size (%)

(Intercept) 81.958 6.956 − 138.809 <0.001 − 91.294 6.624 − 189.944 <0.001 −
F1 larval diet −8.504 4.619 2.620 3.389 0.066 0.258 −6.437 4.182 1.700 2.369 0.124 2.97

F1 age −22.325 5.247 20.227 18.106 <0.001 30.8 −20.256 4.414 25.154 21.058 <0.001 35.38

F2 sex 8.321 5.374 1.316 2.397 0.122 5.26 1.566 4.980 0.428 0.099 0.753 0.030

F2 age −0.948 0.155 40.983 37.404 <0.001 15.45 −1.177 0.157 46.448 56.317 <0.001 35.62

F3 sex −17.846 4.359 16.712 16.759 <0.001 10.75 −32.761 4.551 45.070 51.818 <0.001 39.55

F1 age × F2 age 0.266 0.112 5.606 5.606 0.018 10.85 0.254 0.102 6.249 6.249 0.012 11.33

F1 larval diet × F1 age 3.482 3.460 1.013 1.013 0.314 1.31 0.793 2.518 0.099 0.099 0.753 0.0511

F1 larval diet × F2 sex −1.533 3.011 0.259 0.259 0.611 0.181 −1.068 2.605 0.168 0.168 0.682 0.090

F1 age × F2 sex −0.438 3.222 0.019 0.019 0.892 0.0151 −1.022 2.621 0.152 0.152 0.697 0.100

F2 sex × F2 age −0.205 0.103 3.957 3.957 0.047 4.29 −0.153 0.092 2.758 2.758 0.097 2.9

F1 age × F3 sex 3.796 2.732 1.931 1.931 0.165 1.55 5.361 2.362 5.150 5.150 0.023 2.99

F2 sex × F3 sex −3.549 2.614 1.843 1.843 0.175 0.899 4.209 2.420 3.026 3.026 0.082 1.64

F2 age × F3 sex 0.120 0.079 2.351 2.351 0.125 2.44 0.425 0.080 28.587 28.587 <0.001 25.33

F1 larval diet × F3 sex 4.482 2.494 3.230 3.230 0.072 1.94 3.741 2.384 2.463 2.463 0.117 1.21

https://doi.org/10.1371/journal.pbio.3000556.t001
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similarly by F1 age at breeding but not affected by F1 larval diet (Fig 3). Individuals descended

from grandparents that bred at age 35 d had higher baseline mortality rates, regardless of F1

larval diet treatment (High condition Old [HO]; Low condition Old [LO]; patrilines b0 HO =

−3.5, b0 LO = −3.6; matrilines b0 HO = −3.8, b0 LO = −3.7) than individuals descended from

grandparents that bred at age 15 d (High condition Young [HY]; Low condition Young [LY];

patrilines b0 HY = −4.4, b0 LY = −4.2; matrilines b0 HY = −4.6, b0 LY = −4.4). An effect of F1 age

at breeding on the baseline mortality rate was supported by Kullback-Leibler discrepancy cali-

bration (KLDC) values, which exceeded 0.98 for all comparisons of b0 parameters for F3

descendants of young-breeding versus old-breeding F1 individuals within and across larval

diet treatments in both patrilines and matrilines (S6 and S8 Tables).

Grand-parental and parental breeding ages interacted in their effects on F3 baseline mortal-

ity rates (b0), particularly within patrilines (Fig 4). F3 individuals descended from young

grandparents (F1) experienced increasingly high baseline mortality as parental (F2) age at

breeding increased, and this effect was especially strong in patrilines (S10 and S11 Tables). By

contrast, for F3 individuals descended from old-breeding grandparents, there were no consis-

tent effects of parental age at breeding.

For actuarial ageing rates (Gompertz b1 parameter), evidence of treatment effects was

weaker, and patterns were less consistent. Individuals descended from grandparents that bred

at age 35 days had similar actuarial ageing rates, regardless of F1 larval diet treatment (patri-

lines b1 HO = 0.032, b1 LO = 0.036; matrilines b1 HO = 0.031, b1 LO = 0.029), to individuals

descended from grandparents that bred at age 15 d (patrilines b1 HY = 0.032, b1 LY = 0.029;

matrilines b1 HY = 0.035, b1 LY = 0.034). In matrilines, KLDC values were<0.85 for all compar-

isons of b1 parameters for F3 descendants of young-breeding versus old-breeding F1 females

(S8 Table). In patrilines, KLDC values marginally exceeded 0.85 for some comparisons of F3

descendants of young-breeding versus old-breeding F1 males within and across larval diet

treatments, but the effect of F1 age at breeding on b1 was not consistent across larval diet

Fig 2. Interaction between effects of grand-parental and parental breeding ages on grand-offspring life span in

patrilines and matrilines. Black lines represent the lifespans of F3 descendants of F1 individuals paired at 15 days of

age, and red lines represent the lifespans of F3 descendants of F1 individuals paired at 35 days of age. Bars represent

SEM. Underlying data can be found in the Dryad Repository: https://doi.org/10.5061/dryad.2rbnzs7hw. F1, grand-

parental generation; F3, grand-offspring.

https://doi.org/10.1371/journal.pbio.3000556.g002
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treatments (S7 Table). There was little evidence that grand-parental and parental ages at breed-

ing interacted in their effects on actuarial ageing rate (b1) in either matrilines or patrilines (Fig

4). Wider confidence limits for life span and age-dependent mortality rates for descendants of

old-breeding F1 males reflect reduced sample size resulting from mortality between 15 and 35

days of age. For all other KLDC values of group comparisons refer to S2–S5 Figs and S9–S13

Tables.

Discussion

A recent model suggests that negative effects of parental age on offspring performance can

readily evolve [50], but many aspects of such effects have received little attention in empirical

research. Our results show that paternal age effects can be similar in magnitude to maternal

age effects. The magnitude of the grand-maternal and grand-paternal effects detected in our

study is comparable to longevity changes observed in multigenerational selection experiments

in Drosophila melanogaster [51,52]. Our mortality rate analyses suggest that decreased life

span of grand-offspring of older grandparents and parents results largely from elevated base-

line mortality rather than from a higher rate of increase in mortality rate with age (i.e., actuar-

ial ageing). Actuarial ageing could result from the accumulation of somatic damage with age

[53]. Previous studies of T. angusticollis showed that males reared on a high-nutrient larval

diet accumulated damage more rapidly with age than males reared on a low-nutrient larval

diet [46] and exhibited more rapid actuarial and reproductive ageing [47]. Here, we show that

declining offspring longevity and increasing offspring mortality rate represent additional man-

ifestations of ageing in T. angusticollis males and females. However, breeding age effects on off-

spring life span and mortality were unaffected by grand-parental larval diet. Interestingly,

although we found largely similar effects of grand-paternal versus grand-maternal and paternal

versus maternal ages at breeding on offspring baseline mortality rate, we also found some evi-

dence of effects on actuarial ageing rate in patrilines but not in matrilines. These differences

suggest that male and female breeding age effects could be mediated by different factors and

could have different effects on offspring life history.

Our findings suggest that the effect of ancestors’ age at breeding could contribute substan-

tially to within-population variation in longevity. However, the importance of these effects in

natural populations remains unclear. T. angusticollis has a much shorter mean life span in the

wild than in the laboratory, and wild males also exhibit very rapid actuarial ageing [49]. The

short average life span and rapid ageing observed in natural populations of this species is con-

sistent with findings for other insects in the wild [54–56]. Given the very high background

mortality rate experienced by T. angusticollis in the wild, it is possible that longevity of flies in

natural populations is not strongly affected by parental age effects. However, it is also possible

that maternal and paternal age effects are accelerated along with the overall rate of ageing in

wild populations as a result of environmental stresses such as parasites and temperature fluctu-

ations. If so, then parental age effects could have a substantial effect on fitness in natural popu-

lations, despite a short life expectancy. It is also possible that offspring of old-breeding parents

or grandparents might respond by increasing their early-life reproductive effort, thereby partly

mitigating the effects of reduced life span. For example, in Daphnia pulex, older mothers pro-

duce offspring with shortened life spans but these offspring achieve increased early-life

Fig 3. Effects of grand-parental larval diet and breeding age on estimated age-specific survival and mortality rates for grand-offspring of patrilines and matrilines

as fitted by the simple Gompertz mortality model. b0 is the baseline mortality rate (scale) parameter, and b1 is the rate of actuarial ageing (shape) parameter. Posterior

distributions are shown for b0 and b1 in the left panels. Panels on the right illustrate how these estimates translate to survival and mortality rates over time. The shaded

areas in the survival plots represent 95% confidence intervals. Underlying data can be found in the Dryad Repository: https://doi.org/10.5061/dryad.2rbnzs7hw. F1,

grand-parental generation; F3, grand-offspring.

https://doi.org/10.1371/journal.pbio.3000556.g003
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reproductive output [33]. We found little evidence that age at breeding effects on life span

were mediated by body size or development time, because inclusion of these traits as covariates

in life span models did not qualitatively alter the results.

Fig 4. Effects of F1 breeding age and F2 breeding age on estimated age-specific survival and mortality rates for grand-offspring of patrilines and matrilines as

fitted by the simple Gompertz mortality model. b0 is the baseline mortality rate (scale) parameter, and b1 is the rate of actuarial ageing (shape) parameter. Posterior

distributions are shown for b0 and b1 in the left panels. Panels on the right illustrate how these estimates translate to survival and mortality rates over time. Shaded areas

in the survival plots represent 95% confidence intervals. Underlying data can be found in the Dryad Repository: https://doi.org/10.5061/dryad.2rbnzs7hw. F1, grand-

parental generation; F2, female and male offspring; F3, grand-offspring.

https://doi.org/10.1371/journal.pbio.3000556.g004
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The grand-parental and parental age effects that we observed could be mediated by the

accumulation of germline mutations with age. Because male and female germline cells develop

differently in animals, including flies [57–59], the male and female germlines could accumulate

mutations at different rates [60,61]. In particular, the rate of age-dependent mutation accumu-

lation is likely to reflect the number of germline cell divisions, and it has long been thought

that males transmit more germline mutations because the male germline undergoes a larger

number of cell divisions [62]. Interestingly, however, in Drosophila, the number of germline

cell divisions is larger in females than in males at young ages but larger in males than in

females at old ages [63]. This suggests that mutation-mediated maternal and paternal age

effects could differ in relative magnitudes as a function of male and female age. If T. angusticol-
lis exhibits a similar pattern of germline cell division to Drosophila, this could explain the

somewhat stronger negative effect of grand-paternal age at breeding on grand-offspring life

span, relative to the effect of grand-maternal age at breeding (Fig 1).

The rate of cell proliferation in the female germline also increases on a protein-rich diet in

D. melanogaster [64], and dietary protein strongly stimulates female fecundity in T. angusticol-
lis as well [45]. A protein-rich adult diet could therefore be expected to accentuate negative

maternal breeding age effects on offspring performance and could also accentuate paternal

breeding age effects if cell division in the male germline is also enhanced on a high-protein

diet. Germline mutation rate can also be affected by investment in DNA repair, and D. melano-
gaster reared on low-nutrient food as larvae have lower rates of repair that result in increased

germline mutation rate [65]. However, we found little evidence of effects of F1 larval diet on

grand-offspring mortality and survival (Figs 2 and 4). Likewise, we did not detect an effect of

male competitive environment (opportunity for combat interactions) or any interaction

between this treatment and grand-paternal breeding age. This finding is consistent with the

lack of any effect of male combat on male reproductive ageing [47] and suggests that agonistic

interactions with other males do not affect the maintenance of the male germline.

A different (but nonexclusive) explanation for our findings is age-dependent transmission

of epigenetic or cytoplasmic factors through the female and male germlines. DNA (cytosine)

methylation contributes to the regulation of gene expression in many organisms [66], but flies

have little cytosine methylation and its role in this group remains unclear [67–70]. In D. mela-
nogaster, DNA methylation is largely limited to the early stages of embryogenesis [71,72], but 2

studies suggest that DNA methylation can also persist in the germline [73,74]. In mammals,

DNA methylation patterns undergo changes with age throughout the genome [75,76]. Such

age-related changes in methylation (known as the ‘epigenetic clock’) could mediate parental

age effects, because some DNA methylation patterns can be transmitted to offspring via both

sperm and eggs (for a review, see the work by Ho and Burggren [77]). It is not known whether

a DNA methylation ‘clock’ also occurs in flies.

Other epigenetic or cytoplasmic factors that change with age could also mediate the

observed age-at-breeding effects. There is evidence of age-related cellular changes in the male

and female germline. For example, as Drosophila males age, germline stem cells (GSCs) divide

less frequently because of misorientation of centromeres [78]. Similarly, GSC division in

female Drosophila declines with age, and this is accompanied by an increased rate of cell death

in developing eggs [79]. RNA-mediated transmission of shortened telomeres could mediate

breeding age effects in flies and other animals. Shortened telomeres are associated with cellular

senescence in some taxa [80], and telomere length can be affected by noncoding telomeric

repeat-containing RNAs (TERRA), which are transcriptionally active in Drosophila [81]. TER-

RAs are present in animal (including human) oocytes [82], and in female Drosophila, they

affect blastoderm formation [83]. Other types of noncoding RNAs could also be involved. Flies

maintain chromosome length through retrotranscription [84], which requires complex and
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specific chromatin structures [85]. Retrotransposon proliferation can promote mutagenesis

[86]. RNA interference (RNAi) mechanisms control the silencing of retrotransposons in germ-

line cells [87,88], and parental age effects could be mediated by the transmission of such small

noncoding RNAs, with effects on chromatin states and gene expression in embryos [23]. Early

development in Drosophila is thought to be governed by maternally inherited RNAs and pro-

teins [89], but less is known about the effects of male-derived RNAs on offspring development.

Although T. angusticollis males do not transmit nutritional nuptial gifts during copulation

[90], males probably transfer a variety of microRNAs in the ejaculate. The complement of sem-

inal and egg microRNAs could change with male and female age and affect embryo

development.

Another possibility is that flies change their investment in gametes in response to the age or

mating experience of their partner. A female may decrease investment per offspring when

mated to an older male, whereas a male may reduce the quality or quantity of accessory gland

proteins or sperm produced when mated with an older female, resulting in negative effects of

parental age on offspring performance. Such responses to mate quality have been reported in

Drosophila and other insects [91–94] and might be mediated through cuticular hydrocarbons

(CHCs) that are known to change with age in flies [95,96]. In our experiment, increasing age

was also associated with increasing mating experience. Individuals of both sexes might alter

their investment in offspring based on their partner’s mating experience, because previously

mated males might transfer smaller or lower-quality ejaculates. For example, male mating

experience was negatively correlated to nuptial gift quality and sperm number in a bush cricket

[97], and female reproductive output was lower when mated with sexually experienced males

than when mating with virgin males across 25 species of Lepioptera [98]. Although T. angusti-
collis males appear to be able to replenish their ejaculate reserves very rapidly, the effects of age

and mating experience cannot be decoupled statistically in our data and require further

investigation.

We quantified effects of ancestors’ age at breeding in flies (F3) maintained as virgins in indi-

vidual containers and supplied with ad libitum food and water. Housing T. angusticollis indi-

viduals in isolation and as virgins tends to increase their longevity (e.g., the work by Adler and

Bonduriansky [99]), whereas ad libitum availability of dietary protein tends to reduce adult

longevity [45]. Although our results suggest that larval diet and male competitive environment

do not interact strongly with breeding age in affecting longevity of descendants, further work

is required to determine whether housing, reproduction, or adult diet of descendants can

interact with effects of parental and grand-parental ages at breeding.

Some individuals failed to produce viable offspring or did not survive to breed at older ages,

and we cannot exclude the possibility that differential mortality or reproductive success biased

the composition of our treatment groups. In particular, because T. angusticollis males reared

on a nutrient-rich larval diet tend to exhibit an elevated adult mortality rate relative to males

reared on a nutrient-poor larval diet [47], fewer F1 focal males from the rich-diet treatment

survived to breed at age 35 days, resulting in a smaller sample size for that treatment combina-

tion. This resulted in somewhat wider confidence limits for life span and actuarial ageing rate

for the F3 descendants of those males, but we cannot exclude the possibility that the elevated F1

mortality was also associated with differential natural selection on males reared on nutrient-

rich versus nutrient-poor larval diets.

The interactive effects of grand-parental and parental ages at breeding that we observed

suggest that the factors mediating these effects are stable across at least 2 generations. Priest

and colleagues [5] suggested that parental age effects could play a role in the evolution of age-

ing by contributing to age-related decline in performance and generating selection for earlier

reproduction. Bonduriansky and Day [34] argued that if such effects can accumulate over
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generations, an environmental change that brings about delayed breeding or causes a more

rapid decline in offspring performance with parental age could result in a progressive decline

in performance over several generations, resulting in phenotypic changes that resemble the

evolution of accelerated ageing. Our results support these ideas by providing experimental evi-

dence that parental age effects can have large effects on descendants’ longevity, can occur in

both matrilines and patrilines and across contrasting environments, and can be transmitted

over at least 2 generations. Further work is needed to understand the context-dependence and

fitness consequences of such effects in natural populations.

Materials and methods

Source of experimental flies

Experiments were performed using a lab-reared stock of T. angusticollis that originated from

individuals collected from Fred Hollows Reserve, Randwick, NSW, Australia (33˚54044.04@S

151˚14052.14@E). This stock was maintained as a large, outbred population with overlapping

generations and periodically supplemented with wild-caught individuals from the same source

population to maintain genetic diversity.

Larval rearing and diet manipulation

All larvae were reared in climate chambers at 25˚ C ± 2˚C with a 12:12 photoperiod and moist-

ened with deionised water every 2 days. We manipulated the quantity of resources available to

larvae during development by rearing flies on either a high-nutrient, standard-nutrient, or

low-nutrient larval diet. Diets were based on the work by Sentinella and colleagues [100] and

were selected to generate considerable body size differences between treatment groups while

minimising larval mortality and to preserve the protein to carbohydrate ratio of approximately

1:3 across diets. All diets consisted of a base of 170 g of cocopeat moistened with 600 mL of

reverse osmosis-purified water. The high-nutrient larval diet consisted of 32.8 g of protein

(Nature’s Way soy protein isolate; Pharm-a-Care, Warriewood, Australia) and 89 g of brown

sugar (Woolworths Essentials Bonsucro brand); the standard larval diet consisted of 10.9 g of

protein and 29.7 g sugar; the low-nutrient larval diet consisted of 5.5 g of protein and 14.8 g

sugar. These nutrients were mixed into the cocopeat and water using a hand-held blender and

frozen at −20˚C until the day of use. Males and females of the F1 generation were reared on

either a high- or low-nutrient larval diet and standardised for larval density (40 eggs per 200 g

of larval food). All larvae of the F2 and F3 generations were reared on a standard larval diet (see

the work by Adler and colleagues [45] for further details). Following the first adult emergence

from each larval container, adult flies were collected for 10 days, and the rest were discarded.

F1 adult housing and competitive environment

F1 males were subjected to a “low” or “high” competition environment. Each adult focal male

was paired with a competitor male reared on a standard larval diet inside an enclosure contain-

ing a petri dish with larval medium (which stimulates territory defence behaviours in T. angu-
sticollis males). Males in the “high” competition environment were able to move freely around

the arena and engage in combat interactions with the competitor male, whereas males in the

“low” competition environment were separated by mesh so that they could perceive the com-

petitor’s chemical and perhaps visual cues but have no physical contact. All focal F1 females

were kept in a similar housing as the “low” competitive environment males where each focal

female was paired with a female reared on a standard larval diet. All housing containers had a
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layer of moistened cocopeat on the bottom, and dishes of oviposition medium (on which adult

flies also feed) to stimulate ovary development in females.

F1 adult male and female age-at-breeding manipulation

The age at breeding was manipulated for F1 focal individuals by pairing at ‘young’ (15 ± 1 days

old) and ‘old’ (35 ± 1 days old) ages with an opposite-sex individual reared on the standard lar-

val diet and standardised for age (15 ± 1 days old). These ages were selected because, in T.

angusticollis, adults become fully reproductively mature by 10 to 15 days of age under labora-

tory conditions, whereas median longevity of individually housed, captive flies is 37 days for

males and 36 days for females, and mortality rate begins to increase rapidly in both sexes after

30 days of age [49]. Thus, at 15 days old, both sexes are considered to be at their prime,

whereas, at 35 days old, both sexes are well past their prime. Each focal F1 adult was thus paired

twice, each time with a different mate, to produce broods of F2 offspring at ‘young’ and ‘old’

ages (Fig 5). Mating pairs were kept in 60 mL glass vials under standardised light and tempera-

ture (approximately 23˚C) for 1 hour, and females were then placed into 250 mL enclosures

with mesh coverings and a moistened cocopeat substrate and were allowed to oviposit for 96 h

into a petri dish containing oviposition medium. After 48 h, a fresh oviposition dish was pro-

vided. A total of 20 eggs were sampled randomly from each female and transferred to 100 g of

standard larval medium.

F2 adult male and female age-at-breeding manipulation

One F2 male and one F2 female focal individual were randomly sampled for breeding from

each F1 larval container. Thus, where possible, each F1 focal individual contributed one F2 off-

spring of each sex from a reproductive bout at 15 days of age and one F2 offspring of each sex

from a reproductive bout at 35 days of age. Each F2 focal individual was paired with a partner

of the opposite sex (raised on a standard diet and 15 ± 1 days old on the day of pairing) at 4

ages (where possible): 15 d, 30 d, 45 d, and 60 d. The flies were allowed 1 hour to mate, after

which eggs were collected from each female and maintained as described above.

F3 rearing and quantification of life span

From each reproductive bout of each F2 individual, one male and female of the F3 generation

were obtained (where possible) and housed individually in a 120 mL container fitted with a

feeding tube containing a sugar-yeast mixture and drinking tube containing water (with both

food and water provided ad libitum), and a substrate of moistened cocopeat to maintain

humidity. F3 housing containers were maintained at ambient room temperature (23˚C ± 4˚C)

and checked daily for mortality until all individuals had died. To minimise spatial effects, con-

tainers were randomly moved to different locations every 2 days.

For all focal individuals, development time and body size were also recorded to investigate

their possible roles in mediating treatment effects on life span and mortality rate (refer to S1

and S2 Tables for summary statistics). All F1 and F2 focal individuals were frozen at −20˚C

after their final reproductive bout (or prior natural death before day 60), and all F3 individuals

were frozen after natural death. For all focal F1, F2, and F3 individuals, egg to adult develop-

ment time was recorded as time from oviposition to adult emergence in days (± 1 day). Thorax

length is a reliable proxy for body size in this species [101] and was measured for each F1, F2,

and F3 focal individual from images taken using a Leica MS5 stereoscope equipped with a

Leica DFC420 digital microscope camera. Measurements were made using FIJI open source

software [102].
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Life span analysis

We investigated treatment effects on F3 life span using R 3.3.2 [103] and the package “lme4”

[104]. These analyses facilitate hypothesis testing by making it possible to test interactions

within mixed-effects models. Because the life span of every individual was known, no censor-

ing was required. Gaussian linear mixed models (LMM) were used, and all analyses were car-

ried out separately for matrilines (i.e., descendants of F1 females) and patrilines (i.e.,

descendants of F1 males). Any effects of F1 age at breeding, larval diet, or male competitive

Fig 5. Experimental design: Patrilines (a) consist of descendants of F1 males, whereas matrilines (b) consist of

descendants of F1 females. F1 individuals were reared on either a high- or low-nutrient larval diet. Adult F1 males

were also maintained in high- or low-competition social environments (S4 Table). F1 males and females were then

mated at 15 days or 35 days of age, and all offspring (F2) were reared on a standard larval diet. From each F1 breeding

bout, 1 male and 1 female of the F2 generation were paired with a standard mate at 15-day intervals up to 60 days of

age. Grand-offspring (F3) were all reared on standard larval diet and housed individually until death. Sample sizes

(number of F1 or F2 focal individuals that produced offspring and number of F3 individuals for which longevity was

quantified) are shown for each combination of treatment and sex. F1, grand-parental generation; F2, female and male

offspring; F3, grand-offspring.

https://doi.org/10.1371/journal.pbio.3000556.g005
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environment therefore represent grand-maternal effects within matrilines and grand-paternal

effects within patrilines. Within both matrilines and patrilines, we tested for effects of F2 age at

breeding for both female parents (maternal age effects) and male parents (paternal age effects)

and compared effects on F3 males and females (i.e., effect of F3 sex). For the patriline data set,

F1 male competitive environment and its two-way interactions were tested by a likelihood

ratio test (LRT) and were found to have no effect on any dependent variables. The patriline

models were then refitted without F1 competitive environment. This resulted in identical

model structure for patrilines and matrilines, facilitating comparison of matrilineal and patri-

lineal results. Qualitatively identical results are obtained without F1 competitive environment

as a predictor in the patriline models (S3 Table).

Our final models thus included F1 (grand-parental) larval diet and age at breeding, F2

parental age at breeding, F2 sex and F3 sex as fixed effects. F2 breeding age was fitted as a con-

tinuous predictor, whereas the other factors were fitted as categorical predictors. F1 and F2

individual ID, replicate F1 larval container, and emergence date were included as random

effects. We also fitted models with F1, F2, and F3 body sizes and development times as fixed

covariates in order to determine whether these traits mediate treatment effects on F3 life span

(S4 Table). Treatment effects on F3 body size and development time were also tested using

similar models to those described above, and results of those analyses are shown in S6 and S7

Figs, S14 and S15 Tables, and discussed in S1 Text. Estimates and F-ratios were obtained using

the packages “lme4” [104] and “lmerTest” [105], whereas p-values were obtained via “Type 3”

likelihood ratio tests using the package “car”. To examine the relative effect size of each predic-

tor, we also quantified marginal R2, which is variance explained by fixed factors, and condi-

tional whole model R2 that includes variation explained by random factors from our LMM

using the methods developed in [106].

Mortality rate analysis

To gain a better understanding of treatment effects on F3 life span, we also investigated effects

on F3 mortality rates. We used the Bayesian Survival Trajectory Analysis, implemented with

the package “BaSTA” [107]. BaSTA utilises a Bayesian approach based on Markov Chain

Monte Carlo (MCMC) estimation of age-specific mortality rate distributions. Our data are

uncensored, and the date of adult emergence is known for all individuals, allowing us to obtain

reliable population estimates of the mortality distribution [108]. In order to find the mortality

rate distribution that best fits our data, we first used the package “flexsurv” [109] on a com-

bined data set comprising both patrilines and matrilines. We compared the simple and Make-

ham versions of the Gompertz and Weibull models, as well as the logistic and exponential

models, using the Akaike Information Criterion (AIC). This analysis showed that a simple

Gompertz distribution provided the best fit to our data (S5 Table). Mortality rate was therefore

modeled as

mbðxjbÞ ¼ eb0þb1x :

Survival probability was modeled as

Sb xjbð Þ ¼ exp
eb0

b1

ð1 � eb1xÞ

� �

:

The Gompertz mortality rate function includes a scale parameter, b0 (often called the “base-

line mortality rate”), and a shape parameter, b1, that describes the dependency of mortality on

age (x) and is often interpreted as the rate of actuarial ageing, which reflects the rate of increase

in mortality rate with age [110–113].
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We used BaSTA to estimate and compare parameters of the simple Gompertz model for

our experimental treatment groups. We performed 4 parallel BaSTA simulations, each pro-

ceeding for 2,200,000 iterations, with a burn-in of 200,000 chains, and took an MCMC chain

sample every 4,000 iterations. Our models generated parameter estimates that converged with

low serial autocorrelations (<5%) and robust posterior distributions of bo and b1 (N = 2,000),

allowing for robust comparisons between treatment groups.

We compared parameter estimates for various treatment groups based on differences

between their posterior distributions, using the KLDC implemented in BaSTA. Values near

0.5 suggest nominal differences between distributions, whereas values close to 1 indicate a size-

able divergence. KLDC thresholds can vary depending on interpretation and can range

between 0.65 and 1 [114–116]. We considered a relatively conservative KLDC value >0.85 to

indicate a difference between the posterior distributions of the treatment groups being com-

pared. We report Gompertz bo parameter estimates on a log scale and refer to F1 treatment

combinations as HO, HY, LO, and LY.

Data are deposited in the Dryad repository: https://doi.org/10.5061/dryad.2rbnzs7hw [117].

Supporting information

S1 Fig. Combined effects of F1, F2 breeding ages and F1 larval diet quality on mean F3 life

span. Black lines represent F3 individuals descended from F1 males and females bred at a

young age (15 days old) and red lines signify individuals descended from old (35 days old)

grandparents. In patrilines only, individuals descended from F1 males that were subjected to

either a high or low competitive environment are represented by a solid or dotted line, respec-

tively. F3 grand-offspring of F1 grandparents reared on a high-nutrient larval diet are repre-

sented by a circle, and low-nutrient larval diest is represented by a triangle. All points

represent means. Bars represent SEM. Underlying data can be found in the Dryad Repository:

https://doi.org/10.5061/dryad.2rbnzs7hw. F1, grand-parental generation; F2, female and male

offspring; F3, grand-offspring.

(TIF)

S2 Fig. Values of the KLDC for patrilines, comparing parameter posterior distributions

between treatment groups. Underlying data can be found in the Dryad Repository: https://

doi.org/10.5061/dryad.2rbnzs7hw. HO, High Nutrient Old Breeding treatment; HY, High

Nutrient Young Breeding treatment; KLDC, Kullback-Leibler discrepancy calibration; LO,

Low Nutrient Old Breeding treatment; LY, Low Nutrient Young Breeding treatment.

(TIF)

S3 Fig. Values of the KLDC for matrilines, comparing parameter posterior distributions

between our treatment groups. Underlying data can be found in the Dryad Repository:

https://doi.org/10.5061/dryad.2rbnzs7hw. HO, High Nutrient Old Breeding treatment; HY,

High Nutrient Young Breeding treatment; KLDC, Kullback-Leibler discrepancy calibration;

LO, Low Nutrient Old Breeding treatment; LY, Low Nutrient Young Breeding treatment.

(TIF)

S4 Fig. Values of the KLDC for patrilines, comparing parameter posterior distributions

between treatment groups. Underlying data can be found in the Dryad Repository: https://

doi.org/10.5061/dryad.2rbnzs7hw. F1, grand-parental generation; F2, female and male off-

spring; KLDC, Kullback-Leibler discrepancy calibration; OO, Old F1 breeding age Old F2

breeding age; OY, Old F1 breeding age Young F2 breeding age; YO, Young F1 breeding age

Old F2 breeding age treatment; YVO, Young F1 breeding age Very old F2 breeding age; YY,
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Young F1 breeding age Young F2 breeding age.

(TIF)

S5 Fig. Values of the KLDC for matrilines, comparing parameter posterior distributions

between our treatment groups. Underlying data can be found in the Dryad Repository:

https://doi.org/10.5061/dryad.2rbnzs7hw. F1, grand-parental generation; F2, female and male

offspring; KLDC, Kullback-Leibler discrepancy calibration; OO, Old F1 breeding age Old F2

breeding age; OY, Old F1 breeding age Young F2 breeding age; YO, Young F1 breeding age

Old F2 breeding age treatment; YVO, Young F1 breeding age Very old F2 breeding age; YY,

Young F1 breeding age Young F2 breeding age.

(TIF)

S6 Fig. Effects of F2 breeding age and F2 sex on F3 body size in patrilines. Solid grey lines

represent F3 individuals descended from F2 females and solid black lines represent F3 individu-

als descended from F2 males. Bars represent SEM. Underlying data can be found in the Dryad

Repository: https://doi.org/10.5061/dryad.2rbnzs7hw. F2, female and male offspring; F3,

grand-offspring.

(TIF)

S7 Fig. Effects of F1 larval diet and age at breeding on F3 body size in patrilines and matri-

lines. Solid grey lines represent effects of F1 individuals reared on reared on a poor larval diet,

and solid black lines represent the effects of F1 individuals reared on a rich larval diet. Bars rep-

resent SEM. Underlying data can be found in the Dryad Repository: https://doi.org/10.5061/

dryad.2rbnzs7hw. F1, grand-parental generation; F3, grand-offspring.

(TIF)

S1 Table. Factorial summary of mean F3 life span, development time, and thorax length

for patrilines. F3, grand-offspring.

(XLSX)

S2 Table. Factorial summary of mean F3 life span, development time, and thorax length

for matrilines. F3, grand-offspring.

(XLSX)

S3 Table. Linear mixed-effects models of F3 life span for patrilines including F1 competi-

tive environment. Negative effects for F1 larval diet indicate that grandparents reared on a

high-nutrient larval diet produced grand-offspring with a relatively longer life span than

descendants of grandparents reared on a low-nutrient larval diet. Negative effects of F1 and F2

age indicate that old grandparents and parents produced F3 individuals with reduced lifespans,

negative effects of larval diet indicate that low-nutrient larval diet has a negative effect on F3

life span, and negative effects of sex indicate that the life span of male descendants was lower

than that of females. Significance codes: p = 0.0001 ‘���’, p = 0.001 ‘��’, p = 0.01 ‘�’, p = 0.05 ‘.’,

p = 0.1. F1, grand-parental generation; F2, female and male offspring; F3, grand-offspring

(XLSX)

S4 Table. Linear mixed-effects models of F3 life span for patrilines and matrilines, with

thorax length and development time of all focal individuals included as covariates. Nega-

tive effects for F1 larval diet indicate that grandparents reared on a high-nutrient larval diet

produced grand-offspring with a relatively longer life span than descendants of grandparents

reared on a low-nutrient larval diet. Negative effects of F1 and F2 age indicate that old grand-

parents and parents produced F3 individuals with reduced lifespans, negative effects of larval

diet indicate that low-nutrient larval diet has a negative effect on F3 life span, and negative
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