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Abstract

Microbes are vital for life on Earth. Within the oceans, they are the major primary
producers of oxygen and contribute greatly to the other biogeochemical cycling of the
elements which in turn influence the global climate. These microbes can be found
inhabiting the oceans throughout the world and they cover over ~70% of the surface
of the Earth.

Microbes have evolved in different environments in the oceans and in different ways.
To gain an understanding of the microbial communities in the surface oceans in the
Arctic and Atlantic oceans environmental scientists based at the University of East
Anglia, the University of Groningen and Royal Netherlands Institute for Sea Research
collected ocean samples from 68 stations along a transect of the Arctic Ocean, North
Atlantic Ocean and South Atlantic Ocean. In addition, they recorded environmental
data at the time of sampling, such as temperature and salinity. Genomic DNA from
filtered samples was sequenced using high-throughput sequencing.

This thesis contains a comprehensive analysis of this sequencing data with the aim
of understanding the composition and distribution of microbial communities in the
surface of the ocean. To this end, we designed bioinformatic pipelines in order to
analyse metatranscriptome, 18S and 16S rDNA datasets from the set of stations. In
addition, we developed a novel methodology for normalising 18S and 16S rDNA copy
numbers. This enabled us to perform additional analyses such as biodiversity, co-
occurrence and breakpoint analyses. The breakpoint analysis is the first of this type
performed for microbes in the ocean across a temperature gradient.

In our results, we observed a greater diversity of 18S and 16S rDNA taxa in the
tropical regions of the South Atlantic Ocean, versus the polar regions of the Arctic
Ocean. Moreover, in the co-occurrence analysis of the 18S and 16S rDNA datasets, we

found two community networks, one positively correlated to temperature and the other



negatively. We also performed a breakpoint analysis on our metatranscriptome, 18S
and 16S rDNA datasets and found a shift in diversity occurring in the North Atlantic
Ocean. In particular, the shift occurs in the temperate region of the North Atlantic
Ocean, between the polar Arctic Ocean and tropical South Atlantic Ocean.

These results are important because the co-occurrence analysis enables us to hy-
pothesise that different microbial communities have different preferences for tempera-
ture. Moreover, as global warming is predicted to raise the temperatures in the ocean,
our results could potentially enable forecasts of how climate change will affect these

microbial communities using climate models underpinned by genetic information.
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Chapter 1

Introduction

1.1 Marine microbes

The surface of the planet is made up of about 70% water, therefore providing the largest
habitat for life on the surface of the planet, in particular, microbes [Das et al., 2006].
Among these marine microbes inhabiting this vast marine ecosystem are prokaryote
species such as alphaproteobacteria and eukaryote species such as diatoms [Aryal et al.,
2015], [Brierley, 2017]. Phytoplankton is a class of unicellular photosynthetic organ-
isms, that is composed of a wide range of organisms of both prokaryotes and eukary-
otes, and include thousands of different species [Collins et al., 2014], [Brierley, 2017].
Diatoms are eukaryotic phytoplankton and are the most diverse of the eukaryotic phy-

toplankton as they have about 200,000 different species [Armbrust, 2009]. (Figure 1.1).

Figure 1.1: Diatoms species, starting from the left is Thalassiosira pseudonana, Emal-
wania huxleyi, Fragilariopsis cylindrus, Thalassiosira pseudonana and Fragilariopsis

cylindrus. (Photo from MOCK RESEARCH LAB, http://mocklab.com/)

Communities can be defined as a large number of species that interact with each
other in a countless number of ways [Godfray and May, 2014]. Communities of ma-

rine prokaryote and eukaryote species have co-existed throughout their evolution in

18



common habitats [Cordero and Datta, 2016], [Brussaard et al., 2016]. In the environ-
ment, two principal forces can be seen to act on these microbes - biotic, which refers
to the interactions between the microbes, and abiotic, which refers to environmental
influences such as temperature and salinity [Bijlsma and Loeschcke, 2005]. The in-
teraction within marine microbial communities occur under these biotic and abiotic
influences and therefore shape their evolution and adaptation [Brussaard et al., 2016].
The microbes have a range of interactions such as endosymbiosis (which refers to the
merging of distinct cells so one is inside the other), mutualism (which refers to the
interaction between different species that results in a mutually beneficial outcome, be
it for reproduction and/or survival), parasitism (which refers to a species that obtains
sustenance from its host) and commensalism (which refers to when one species gains
from its association with another species who is not affected in a positive or negative
manner) [Baron, 1996], [Holland and Bronstein, 2008|, [Boon et al., 2014], [Haque and
Haque, 2017].

A notable example, as outlined next, is how microbial interactions resulted in phy-
toplankton acquiring the ability to convert light into energy in order to thrive and
the subsequent diversification of phytoplankton species [Wernegreen, 2012]. Phyto-
plankton obtained their photosynthesis capabilities through the process of endosym-
biosis from a class of bacteria called cyanobacteria [Simon et al., 2009]. About 1.5
billion years ago an endosymbiosis event is hypothesized to have produced the first
photosynthetic eukaryote, a process by which a heterotrophic eukaryote engulfed a
cyanobacterium [Shemi et al., 2015]. An intracellular gene transfer occurred between
the primitive host of heterotrophic eukaryote and its symbiont cyanobacterium, after
which the heterotrophic eukaryote retained the cyanobacterium by converting it into
a plastid [Simon et al., 2009]. This primary endosymbiosis event resulted in 3 distinct
clades of unicellular algae. One of these clades is the viridiplantae, also known as the
green plastid lineage, which is thought to be the source from which all land plants and
green algae evolved. Another is the rhodophyta, also known as the red plastid lineage.
This clade includes an ancient group of marine red microalgae and seaweed. The other
clade is the glaucophyta, which is made up of a small group of freshwater algae. About
1 billion years ago, a second endosymbiosis event is hypothesized to have occurred, of

a second heterotroph engulfing and retaining a member of one of these clades. During
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this secondary endosymbiosis event, the clades rhodophyta and chlorophytes gave rise
to the dominant lineages of algae, such as stramenopiles, dinoflagellates, cryptophytes,
and haptophytes. In present-day oceans, the most abundant, diverse, and ecologically
important microbes are coccolithophores, diatoms, and dinoflagellates [Shemi et al.,
2015].

These microbial community interactions that support their evolution and adapta-
tion, are also the engines that drive the biogeochemical cycle of elements that occur in
the oceans, such as the nitrogen and carbon cycles [Brussaard et al., 2016], [Falkowski
et al., 2008]. Nitrogen is vital for life on earth and while nitrogen (Nj) is abundant in
the atmosphere, this form is inaccessible for use, therefore a conversion into ammonia
(NHj3) is required so it may be utilised and this is achieved through a process called
nitrogen fixation [Wernegreen, 2012], [Voss et al., 2013]. There are certain bacteria and
archaeal groups able to perform nitrogen fixation, and also some eukaryotic lineages
have this ability as they required it through endosymbiosis in order to live in nitrogen-
poor habitats. For example, microbial communities of cyanobacteria that live within
the eukaryote phytoplankton species called diatoms perform this nitrogen fixation by
their endosymbiosis mutualism interactions [Foster et al., 2011], [Wernegreen, 2012].

The world’s surface ocean is divided into latitudinal temperature zones, ranging
from about 30°C in the tropics to about -1.8°C in the ocean’s polar sea and ice interface,
and in the sea ice, the temperature can even be well below -1.8°C [Toseland et al., 2013].
Phytoplankton species can be found inhabiting all these temperature zones and due
to their photosynthetic capabilities can be found inhabiting the surface layers of the
ocean [Simon et al., 2009], [Aryal et al., 2015]. In the ocean, mixing occurs mainly
during storms by wind and waves, and stratification of the water column occurs as the
surface waters warm and storm-driven mixing decreases. Stratification layers consist of
warm, low nutrient and illuminated water over deeper, darker, and cooler high nutrient
water. These layers are divided by rapid changes over depth of water density, called the
pycnocline, and temperature called the thermocline [Brierley, 2017]. In the ocean, the
supply of nutrients is dependent on temperature-driven stratification and mixing of the
ocean [Toseland et al., 2013]. The growth and diversity of phytoplankton is dependent
on their optimal growth temperature and on the supply of nutrients [Toseland et al.,

2013]. Rapid phytoplankton growth episodes known as blooms are so big that they
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can even be seen from space as shown in figure 1.2 [Brierley, 2017].

Phytoplankton bloom

Figure 1.2: The Argentine Sea northeast off the coast of the Falkland Islands. The
spiralling pattern of greens and blues are phytoplankton growing on the surface of the
Argentine Sea. The image was captured with the Moderate Resolution Imaging Spec-
troradiometer (MODIS) on NASA’s Terra satellite on December 2, 2015. (Photo taken
by Jeff Schmaltz, LANCE/EOSDIS Rapid Response, NASA’s Earth Observatory)

In recent work [Collins et al., 2014], the effect of recent human activity has been
observed. In particular, the amount of carbon dioxide and bicarbonate in the world’s
oceans is increasing because of anthropogenic (pollution from human activity) carbon
dioxide and the marine ecosystems will likely be affected by this increase in the oceans
and atmosphere. This is causing ocean acidification, which is a decrease in the oceans
pH. The mean pH of the surface oceans has decreased by about 0.1 pH units since the
industrial revolution and is likely to decrease by an extra 0.3 pH units by the end of the
21st century, therefore this will result in an increase in acidity of about 150%. It is likely
that the biogeochemical cycle of elements will be affected by ocean acidification, as it
can change the community composition and can push for physiological and evolutionary
change. Additionally, since the industrial revolution, the average ocean surface water
temperature has already increased by 0.7°C and is likely to increase by an extra 3°C by
the end of the 21st century. An increase of stratification of the oceans surface water is

caused by an increase in temperature, which affects the light regime and also decreases
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the amounts of nutrient supplied from below [Collins et al., 2014].

Phytoplankton divide their cells asexually at a rapid rate in an order of hours to days
and have enormous population sizes. It is these features that enable phytoplankton
to evolve in response to changing environmental conditions on time scales of weeks,
months or years. For many years phytoplankton such as coccolithophores, diatoms,
and dinoflagellate have been used as environmental indicators, as they are abundant
in the oceans and have a substantial fossil record. Each year marine phytoplankton
are responsible for about 50% of the carbon dioxide that is fixed in the atmosphere
[Toseland et al., 2013]. Also, phytoplankton contribute to the base of the marine food
web [Sarmento et al., 2010]. Therefore it is crucial to know how these marine microbes
will respond to changing environmental conditions as this will affect the marine food
web and biogeochemical cycles [Ribeiro et al., 2013], [Collins et al., 2014]. Marine
microbes are extremely difficult to isolate from the environment and one possible reason
is that during laboratory culturing, community interactions which are important for
growth may be destroyed [Joint et al., 2010], [Kazamia et al., 2016]. We have known
for some time that standard laboratory culturing techniques can only isolate a very
small proportion of microbes [Joint et al., 2010]. Genomic data analysis of microbes
has resulted in many insights being discovered such as how they evolved to be the

biogeochemical engineers of life [Falkowski et al., 2008].

1.2 Thesis scope

We use multiple sequencing data types and develop bioinformatic approaches to assess
microbial communities in the surface ocean. This thesis is a collaboration between the
University of East Anglia (UEA), Earlham Institute (EI) and Joint Genome Institute
(JGI). Dr.Katrin Schmidt, an environmental scientist who was based at UEA, sampled
stations from a transect of the Arctic Ocean and the South Atlantic Ocean. In figure
1.3 are photos taken while Dr.Schmidt was on the expedition to collect the samples.
Dr.Willem van de Poll of the University of Groningen, Netherlands and Dr.Klaas Tim-
mermans of the Royal Netherlands Institute for sea research sampled stations from the

North Atlantic Ocean.
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Figure 1.3: Photos taken on the boat during an expedition to collect the Arctic Ocean
samples. (a) photo of the conductivity, temperature, and depth (CTD) rosette sampler
that was used to collect water. (b) two crew who are helping by positioning the CTD
in the water. (c) Dr.Schmidt working in the lab preparing the samples

The samples were sequenced with [llumina technology for metatranscriptome, meta-
genome, 18S and 16S rDNA analysis. This provided us with large amounts of sequence
data, which enabled analysis across a wide range of environmental conditions. This
could potentially enable us to forecast how climate change will affect these phyto-
plankton communities. The main challenge of this project was to develop a strategy to
analyse the huge amounts of sequence data and to develop computational tools when
necessary to extract pertinent information from the data. To address this challenge, we
developed pipelines to analyse 18S rDNA data, 16S rDNA data and metatranscriptome
data.

There have been other studies in the areas of phylogenetics and metatranscriptomics
of marine samples, for example, [Alemzadeh et al., 2014] and [Alexander et al., 2015].
However, these focus on single locations such as the Persian Gulf and Narragansett
Bay, United States of America, respectively. Most recent and most notable is the
Tara Oceans project [Bork et al., 2015]. This paper describes data taken from sample

locations from India around South Africa and over to South America into the Pacific
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Ocean [Bork et al., 2015]. These are tropical and temperate regions in the oceans and
sampled mainly in the open ocean. The novelty of our work is that we sampled close
to the coast for a transect of the Arctic Ocean down through the North Atlantic Ocean
and to Cape Town in the South Atlantic Ocean as shown in figure 3.1a. No other
study has done this before. Additionally, we developed novel analysis pipelines such
as the 18S rDNA taxonomic classification pipeline as well as our development of new
approaches to normalising 18S and 16S rDNA copy numbers in our 18S and 16S rDNA
datasets. In addition, environmental data at the time of sample collection, such as
temperature and salinity, was recorded, which we included in our analysis, including
co-occurrence analysis to identify community networks and breakpoint analysis which

have not been used in this context before.

1.3 Summary of thesis

In chapter 2 we will summarise bioinformatics tools and methods that we use for
the analysis of our 18S and 16S rDNA datasets. We will discuss these tools under
their respective headings of sequencing processing, database searching and phylogenetic
analysis, and in terms of what these are and their importance. Also, we will give a
brief background on next-generation sequencing technology.

In chapter 3 we will discuss the computational pipeline and the analysis for the 18S
and 16S rDNA datasets. We describe the sampling and preparation that was performed
by Dr.Katrin Schmidt, Dr.Klaas Timmermans and Dr.Willem van de Poll. We also
describe the sequencing and preprocessing of the 185 rDNA and 16S rDNA datasets,
and the computational pipeline of the 16S rDNA dataset that was performed by JGI.
Our contribution was the implementation of the computational pipeline for the 18S
rDNA dataset, and the analysis of 18S and 16S rDNA datasets, as well as additional
methods for the normalisation of the 18S and 16S rDNA copy number.

In chapter 4 we will discuss the computational pipeline and the analysis for the
metatranscriptomic datasets. We also describe the sequencing, preprocessing and the
computational pipeline of the metatranscriptomic dataset that was performed by JGI.
Our contribution was the implementation of the computational pipeline for the analysis

of the metatranscriptomic dataset.
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In chapter 5 we will discuss our conclusions on our analyses of the metatranscrip-
tomic, 18S and 16S rDNA datasets. We also discuss future work, such as additional
analyses to be performed on our metatranscriptomic dataset, and the analysis of asso-

ciated metagenomic datasets.
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Chapter 2

Sequencing and sequence analysis

2.1 Summary

In this chapter, we shall summarise a number of the bioinformatics tools and meth-
ods that have been used for the analysis of our 18S and 16S rDNA datasets. We also
give some background on 18S and 16S rDNA | metatranscriptomics and next-generation
sequencing technology. We discuss sequence processing, database searching and phylo-
genetic analysis, describing what they are, why they are important and the tools that

are involved in these approaches that are applied in this thesis.

2.2 Next-generation sequencing technologies

All organisms on Earth can be defined by their genome. The genome contains the bio-
logical blueprints for the construction and maintenance of that organism. For cellular
organisms, the genome is made up of deoxyribonucleic acid (DNA) but the genome of a
few viruses consist of ribonucleic acid (RNA). DNA and RNA are polymeric molecules
that consist of a chain of monomeric subunits called nucleotides. There are five chemi-
cally distinct nucleotides, for DNA, these are Adenine, Thymine, Cytosine and Guanine
and in the case of RNA, these are Adenine, Cytosine, Guanine and Uracil instead of
Thymine [Brown, 2002]. Segments of DNA that encode for proteins with function or
phenotype are called genes [Wain et al., 2002]. These protein coding genes are ex-
pressed by the process of transcription into messenger RNA (mRNA) transcripts and

these, in turn, are translated into proteins. These proteins specify the type of the
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biochemical processes that the cell is able to carry out [Brown, 2002].

Sequencing is a method for determining the DNA or RNA sequences within organ-
isms [Sanger et al., 1977], [Wang et al., 2009]. Sequencing technology has revolutionised
biological research, making possible the sequencing of entire genomes or a particular
area of interest within a genome and have facilitated the further development of fields
such as phylogenetics [Behjati and Tarpey, 2013], [van Dijk et al., 2014]. Additionally,
sequencing technology has enabled the study of the transcriptome, which is the full set
of mRNA transcripts in a cell. This consists of quantifying the types and amounts of
transcripts in a cell under varying conditions [Wang et al., 2009].

In the 1970’s, Sanger et al. developed the first generation DNA sequencing technol-
ogy known as chain termination [Sanger et al., 1977]; and Maxam and Gilbert developed
an alternative method called the chemical degradation method [Maxam and Gilbert,
1977] [Brown, 2002], [van Dijk et al., 2014]. Due to the radioisotopes and level of toxic
chemicals involved in Maxam and Gilbert’s chemical degradation method, the chain
termination method became the predominant DNA sequencing method for the next
30 years [van Dijk et al., 2014]. Since the 1990’s, Sanger sequencing biochemistry has
mostly been carried out by a capillary based method and is semi-automated [Shendure
and Ji, 2008].

Within Sanger sequencing high throughput pipelines, DNA can be prepared by
a method called targeted resequencing, which consist of Polymerase chain reaction
(PCR) amplification with primers that flank the target DNA. This results in many PCR
amplicons within a single reaction volume. Cycles of template denaturation, primer
annealing and primer extension are performed during the cycle sequencing reaction.
The primer sequence is complementary and known to the region flanking the sequence
of interest. Each round of primer extension is randomly terminated when fluorescently
labelled dideoxynucleotides (ddNTPs) are incorporated. This results in a mixture
of end labeled extension products. The product’s label on the terminating ddANTP
each corresponds to the nucleotide identity of its terminal position. The sequences of
the single stranded products in a capillary based polymer gel are determined using
high resolution electrophoresis. As they exit the capillary the fluorescent labels are
excited by a laser. Also attached is a colour detection of emission spectrum in order to

provide an output in the form of a plot called a Sanger sequencing trace. The Sanger
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sequencing trace is then converted into DNA sequence with error probabilities for each
base call [Shendure and Ji, 2008].

Though accurate, Sanger sequencing is low yielding and expensive [Reuter et al.,
2015]. By comparison, the second generation of DNA sequencing technologies often
referred to as next-generation sequencing (or NGS for short) can perform reactions
in parallel producing much more data at a lower cost [van Dijk et al., 2014]. Our
samples were sequenced with Illumina NGS [Bennett, 2004] by Joint Genome Institute
(JGI), for metatranscriptome, metagenome, 18S and 16S rDNA sequences. Illumina
HiSeq2000, for example, can produce 150-200 Gb (gigabase) of data per run and at a
cost of $0.02 per million bases [Pillai et al., 2017].

The Illumina methodology differs from Sanger sequencing in that it uses the tech-
nology of sequencing by synthesis (SBS) [Liu et al., 2012]. For Illumina, sequencing
occurs within a flow cell which contains one, two or eight separate lanes [Buermans
and den Dunnen, 2014]. Adapters which are essentially sequencing primer annealing
sequences are ligated to each of the DNA fragments [Kozarewa et al., 2009]. A li-
brary of DNA molecules with attached sequencing adapters is denatured to produce
single stands. These are passed through a flowcell and attached to the complemen-
tary oligonucleotides that are spread over the flowcell. This is followed by a procedure
called bridge amplification, which is a solid phase PCR which forms clusters of clonal
DNA fragments [Liu et al., 2012], [Heather and Chain, 2016]. SBS involves additions
of fluorescent reversible-terminator dNTPs, this results in no more nucleotides being
able to bind to the DNA molecule. Before polymerisation can advance, these must
be cleaved off thus allowing the sequencing to occur at the same time throughout.
In cycles, the altered ANTPs and DNA polymerase are passed through the flowcell
containing the primed single stranded clusters. For each cycle, the incorporating nu-
cleotide is identified with a charge coupled device (CCD) by exciting the fluorophores
with suitable lasers, before enzymatic removal of the blocking fluorescent component
and then continues to the next position [Heather and Chain, 2016].

While [llumina’s second generation technology still dominates the market, two third
generation technologies from Pacific Biosciences and Oxford Nanopore Technologies
have begun to gain traction. These technologies are both single molecule sequencers,

requiring no artificial amplification and are characterised by long reads (in the thou-
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sands or tens of thousands of bases) and a higher error rate than second generation
technologies [Liu et al., 2012], [van Dijk et al., 2014]. Nanopore sequencing technology
was first developed by David Deamer (University of California Santa Cruz), George
Church and Daniel Branton (Harvard University) [Jain et al., 2016]. A number of com-
panies have developed nanopore based sequencing technologies, but Oxford Nanopore
Technologies (ONT) is the only one thus far to bring a product to market (in 2014)
with the release of MinION.

The MinION is the smallest portable sequencing device to date, weighing 90g and
measuring 10 x 3 x 2 cm and powered from a standard USB3 port [Jain et al., 2016],
[Lu et al., 2016]. There is no charge for the device itself, with labs paying only for
consumables. It can output read lengths of tens of kilobases limited only by the length
of DNA molecules inserted into it and with a single read accuracy of 95% [Laver
et al., 2015], [Jain et al., 2016], [Carter and Hussain, 2017]. The MinION contains a
flowcell with 2048 nanopores arranged in groups of 4 under 512 current sensors. Before
sequencing, adapters are ligated to both ends of the DNA or ¢cDNA fragments which
enables the strands to be captured and loading of the processive enzyme (motor protein)
at the 5’ -end of each strand, thus ensuring unidirectional single nucleotide displacement
along the strand. The adapters increase the DNA capture rate by several thousand fold
by concentrating the DNA substrates at the membrane surface near to the nanopore.
When the DNA molecule is captured in the nanopore, the motor protein advances the
template strand through the nanopore. Once the enzyme passes through the hairpin,
this is repeated for the complementary strand. Each sensor monitors the changes in
ionic current as the DNA moves through the pore. The changes in the ionic current
are divided into distinct events to which a duration, mean amplitude, and variance
can be associated. Using probabilistic models this is interpreted computationally as a
sequence of 3 to 6 nucleotide kmers [Jain et al., 2016].

In figure 2.1 we give a high-level overview of how a typical analysis of data proceeds
in this thesis. After samples have been sequenced as outlined here in section 2.2,
sequence preprocessing takes place, which we outline in section 2.3. Once the reads
have been prepared the next step is to identify the reads by phylogenetic analysis,
which includes searching databases. We outline database searching in section 2.4 and

phylogenetic analysis in section 2.5.
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Next generation Sequencing (2.2)

Raw reads

Figure 2.1: Workflow diagram of a typical computational analysis. We begin by se-
quencing the samples (pink) on next-generation sequencing (blue) platform which re-
sults in raw reads (turquoise). The raw reads (turquoise) undergo sequencing prepro-
cessing (red) to prepare them for analysis. We conduct phylogenetic analysis (green)
which includes database searching (yellow). Finally, we perform statistical analyses

(purple)

2.3 Datasets

2.3.1 18S rDNA and 16S rDNA

Within eukaryotic and prokaryotic cells, the sites of protein synthesis are the ribosomes.
In prokaryote cells, the ribosomes are called 70 Svedberg units (S) and in eukaryote
cells, the ribosomes which are slightly larger than the prokaryote ribosomes are called
80S. Overall the structure of the ribosomes for eukaryotes and prokaryotes cells are
similar. In eukaryotes and prokaryotes, the ribosome is composed of a large subunit and
a small subunit. For prokaryote ribosome 70S, the smaller subunit referred to as 30S
consists of 16S ribosomal RNA (rRNA) and 21 proteins. The larger subunit referred
to as H0S comnsists of 23S and 5S rRNAs and 34 proteins. For eukaryotic ribosome
80S, the smaller subunit referred to as 40S consists of 185 rRNA and 30 proteins.
The larger subunit referred to as 60S consists of 28S, 5.8S, and 5S rRNAs and about
45 proteins [Cooper, 2000]. Eukaryotic and prokaryotic cells typically contain many

ribosomes and within each small ribosomal subunit a single RNA species exists of 185
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rRNA and 16S rRNA, respectively [Cooper, 2000], [Amit Roy et al., 2014].

The ribosomal DNA (rDNA) sequences encode for rRNAs, and these are tandemly
repeated [Gibbons et al., 2014]. The rDNA copy number can vary greatly among
prokaryotes and eukaryotes. For prokaryotes, the 16S rDNA copy number can vary
as much as from one to fifteen and for eukaryotes, the 185 rDNA copy number can
vary even greater from one to thousands [de Vargas et al., 2015], [Perisin et al., 2016].
The sequence that is composed of repeated rRNA gene clusters separated by intergenic
spacers (IGS) is referred to as the ribosomal gene array. For eukaryotes, each cluster
is made up of sequences of rRNA encoding highly conserved genes for 185 rRNA, 5.8S
rRNA and 28S rRNA and these are separated by internal transcribed spacers which are
referred to as I'TS1 and I'TS2, and also external transcribed spacers called 5ETS and
3ETS, which are located downstream of the 185 rRNA gene and upstream of the 28S
rRNA gene respectively [Dyomin et al., 2016], [Ferndndez-Pérez et al., 2018]. The 5S
rDNA sequence which codes for 5S rRNA is clustered in tandem arrays and is separated
by flanking DNA sequences called non-transcribed spacers (NTSs) [Ferndndez-Pérez
et al., 2018]. All these components are transcribed into a single RNA precursor, pre-
rRNA [Dyomin et al., 2016]. The ETS, ITS and NTSs sequences are lost during
maturation [Mandal, 1984], [Fernandez-Pérez et al., 2018]. For prokaryotes the rDNA
encoding the rRNA are traditionally arranged in a single operon in the order of 16S
rDNA, 23S rDNA and 5S rDNA and these are separated by ITSs. All the components
are transcribed into a single RNA precursor, which is then separated and processed by
RNases [Brewer et al., 2019].

For taxonomic classification, the small subunit rRNA gene is a standard reference
sequence, the 185 rDNA for eukaryotes and 16S rDNA for prokaryotes [Wang et al.,
2014]. The 16S and 18S rDNA molecular markers are the most popular and ideal
for phylogenetic studies [Fu and Gong, 2017]. Features that make rDNA so ideal
for phylogenetic studies, for example, are that rDNA contains highly conserved and
variable domains, it evolves slower than protein coding genes and is universal among
organisms [Johnston, 2006], [Amit Roy et al., 2014]. The 18S and 16S rDNA are
highly conserved within eukaryotes and prokaryotes, respectively [Amit Roy et al.,
2014], [Wu et al., 2015]. The 18S rDNA is about 1800bp long and 16S rDNA is

about 1550 bp long. Each of the 18S and 16S rDNA sequences contains both variable
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and conserved regions with characteristic oligonucleotide signature sequences that are
distinctive to a specific phylogenetic group [Iwen and Hinrichs, 2002], [Amit Roy et al.,
2014]. SILVA [Quast et al., 2013a] is an online web resource for databases of ribosomal
RNA (rRNA) gene sequences. SILVA contain sequences from the Bacteria, Archaea
and Eukaryota domains [Quast et al., 2013a]. The SILVA database taxonomic rank
assignments are manually curated [Balvocit and Huson, 2017]. SILVA is a popular
choice for the thousands of researchers around the world who included SILVA in their
work, such as [Lambrechts et al., 2019], in which samples were taken from the Antarctic

to study the composition of prokaryotic communities [Quast et al., 2013a].

2.3.2 Metagenomes and Metatranscriptomes

Metagenomics, the direct genetic analysis of genomes within an environmental DNA
sample, enables the novel exploration of functional gene composition and diversity of
these microbial communities [Thomas et al., 2012b]. The same holds for metatran-
scriptomics which targets the mRNA within an environmental sample, thus enabling
the investigation of taxonomic composition and the activity of biochemical functions
of microbial community [Gilbert and Hughes, 2011], [Jiang et al., 2016a]. There are
three main aims for the analysis of metatranscriptomic datasets: who is there, what are
they doing and how do different samples compare? [Huson et al., 2011]. Metatranscrip-
tomic analysis gives a new insight into microbial communities, and in particular how
these microbial communities react to changes in the environment [Gilbert and Hughes,
2011], [Narayanasamy et al., 2016]. There have been a number of advances in microbial
ecology, evolution, and diversity over the past decade, therefore a substantial number
of research laboratories are actively engaged in the field [Thomas et al., 2012b]. Even
so, there are a number of limitations, such as the small number of reference genomes,
pipelines and computational tools, thus making it challenging to analyse and interpret
metatranscriptomics datasets [Jiang et al., 2016b].

Metatranscriptomic approaches are being applied to investigate microbial commu-
nities in numerous different habitats including, for example, marine, soil and the human
gut [Yu and Zhang, 2013]. Of most relevance to this thesis, the Tara Oceans project has

sampled a large number of stations around the world’s open oceans, upon which they
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have published a number of papers including their metatranscriptomic analysis [Car-
radec et al., 2018], and in which they have characterised the changing genetic activity
in the different organisms’ size fractions across the open oceans. Another example
is [Toseland et al., 2013], which included samples from the Arctic Ocean, North At-
lantic Ocean, the North Pacific Ocean, the Equatorial Pacific and the Southern Ocean.
This analysis included environmental data, which enabled the authors/researchers to
investigate and identify that cellular resource allocation is significantly impacted by

temperature [Toseland et al., 2013].

2.3.3 Dataset applications

It has been estimated that approximately 99% of microbes in the environment can-
not be cultured under laboratory conditions. This greatly limits our understanding of
microbial diversity, genetics and community ecology [Singh et al., 2009]. Advances in
high-throughput sequencing technologies have vastly altered our ability to investigate
these unculturable microbes [Bik, 2014]. Taxonomic classification involving the 18S and
16S rDNA provides identification of the reads in a sample for eukaryote and prokaryote
species, respectively. These samples can also be compared for differences and similarity
in composition, distribution and abundance [Wang et al., 2014]. While with metatran-
scriptomics, this provides insight into microbial communities, with a particular interest
in how these microbial communities react to changes in the environment [Gilbert and
Hughes, 2011], [Narayanasamy et al., 2016].

The 18S and 16S rDNA genes have been employed for decades for taxonomic classi-
fication studies [Wang et al., 2014]. In that time there have been numerous studies such
as [Hunt et al., 2013] which employed 16S rDNA to investigate Bacterioplankton in
the surface ocean, specifically looking at the relationship between abundance and their
activity. Another example is [Stecher et al., 2016] which employed 18S rDNA to exam-
ine protist diversity in sea ice from the central Arctic Ocean. Default parameters were
chosen for these and many other studies. When constructing our 185 rDNA pipeline
we were confident that the default parameters would provide the best output as these
parameters worked well in other studies. For instance in our 18S rDNA pipeline we

employed a multiple sequence aligner called ClustalW [Thompson et al., 1994] and
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used the default parameters. Likewise in the 185 rDNA study of [Shull et al., 2001]
Clustal W was employed with default parameters to investigate the phylogenetic rela-
tionship in the suborder group of Adephaga [Shull et al., 2001]. Aligning protein coding
genes such as 18S and 16S rDNA genes which are highly conserved within eukaryotes
and prokaryotes, respectively, is not as difficult or problematic as aligning noncoding
DNA sequences [Wang et al., 2006], [Amit Roy et al., 2014], [Wu et al., 2015]. There is
a minimum amount of difficulty in producing convincing alignments of protein coding
DNA sequences when sequence divergence is low, this is because indels mostly occur in

multiples of three base pairs, and rarely within codon regions [Keightley and Johnson,

2004].

2.4 Sequence preprocessing methods

Sequence preprocessing is a common first step that usually involves quality control
(QC), as well as identifying and filtering unwanted data. One source of the unwanted
data is low quality sequences, which may occur as a result of sequencing instrument
limitations or sample preparation problems [Zhou et al., 2014]. A major step in Illumina
sequencing involves the ligation of the target DNA fragments to specific adapters for
clonal amplification [Aird et al., 2011]. Artifacts such as adapter sequences which have
not been fully removed are another source of unwanted data [Schmieder and Edwards,
2011]. Raw sequencing files can contain millions of reads and downstream analysis
is computationally intensive, the demand on computational resources is one of the
major bottlenecks for analysis [Schmieder and Edwards, 2011], [Yu and Zhang, 2013].
Unwanted data, if present, can drain resources and result in misassembly or erroneous
conclusions (see for example [Schmieder and Edwards, 2011]).

Another aspect of sequence preprocessing is merging paired end reads. Illumina
performs paired-end sequencing which can produce reads from both ends of target
DNA fragments. If the insert size is sufficiently small, the two paired-end reads can be
merged and this results in an increased overall read length that can have a significant
and favourable affect on the quality of the analysis [Mago¢ and Salzberg, 2011], [Zhang
et al., 2014]. A large number of short reads are generated from NGS technologies such

as [llumina. Short read lengths are problematic for analysis such as de novo assemblies,
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even for very deep genome coverage [Mago¢ and Salzberg, 2011]. Ilumina sequences
can produce single-end reads that range from 75 to 300 bp, and there is an increase
in error rates as the reads get longer. When paired-end reads are merged sequencing
errors can be corrected when the paired-end reads overlap and therefore potentially
give higher quality reads [Zhang et al., 2014].

There are numerous tools available for sequencing preprocessing of raw sequencing
files, such as those reviewed in [Zhou et al., 2015]. We do not describe all of the tools

that are available, but only those used in our own pipelines.

2.4.1 Adapter searching and trimming

Duk

Duk [Li et al., 2011] (which stands for Decontamination Using kmers) is a matching
tool for DNA sequences [Li et al., 2011], [DOE Joint Genome Institute, 2017]. This tool
was implemented in our 18S rDNA pipeline. Duk (otherwise known as BBDuk) is part
of a suite of bioinformatics tools called BBtools develped by the Joint Genome Institute
[DOE Joint Genome Institute, 2017]. Duk is used to screen for contamination such as
adapter sequences in raw reads after sequencing. Besides contamination removal, Duk
has a range of other applications, such as organelle genome separation and assembly
refinement [Li et al., 2011]. The matching technique used by Duk is similar to aligning
sequences, but instead of creating an alignment between sequences, Duk takes a query
sequence to search against a reference sequence for partial or total matches. Many
traditional contamination searching tools are usually performed with an alignment
technique. But since it is only necessary to know if a match is present or not, and
not which bases of a query sequence match to which position of a reference sequence,
Duk’s performance is much faster than tools that employ alignment techniques [Li
et al., 2011].

Duk uses a kmer (substring of size k) hashing method to index reference sequences
to identify matching DNA in the query sequences [Li et al., 2011], [Mapleson et al.,
2017]. Duk estimates the occurrence of the match by calculating p-values from a
Poisson distribution. In order to calculate this Duk assumes that the kmers in the

DNA sequence are randomly distributed. Assuming that there are M kmers in reference
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sequences, N kmers in the query sequence and that the kmer size is k, the probability
of having ¢ or more common kmers between the reference sequence and the query
sequence is given by the formula 1-pois(c,u), where pois is the Poisson distribution
function and u=M*N/4 * [Li et al., 2011]. An output with a high p-value implies
that the match between the query sequence and the reference sequence is probably the
result of random sequence variation, as opposed to the match event being the result of

sequence homology [Li et al., 2011].

Cutadapt

Cutadapt [Martin, 2011] is a software tool that searches and removes adapter sequences
from reads that were left on after sequencing. This tool was implemented in our 18S
rDNA pipeline. Adapter sequences are considered a form of contamination and must be
removed so only the relevant part of the read is used for further analysis. A read which
contains an adapter sequence can be trimmed or completely discarded. After trimming
if a read falls outside a specified length range, the read can be discarded [Martin, 2011].

For each read, Cutadapt begins by calculating the optimal alignments between the
read and all given adapter sequences. Cutadapt’s algorithm is called regular semi-
global alignment and it does not penalise initial or trailing gaps, thus allowing the read
and the given adapter sequence to shift freely relative to one another. The user can

Woa”
-a

tell Cutadapt to look for the adapter at the 3’ end of the molecule by giving the
parameter to provide the adapter sequence. This results in Cutadapt removing the
adapter sequence and all the nucleotides after it. The adapter sequence must begin
at the start or within the read. This is done by penalising initial gaps in the read
sequence. If the location of the adapter sequence is unknown, the user can provide
the “-b” parameter. Therefore, if the adapter sequence is overlapping the beginning
of the read, all nucleotides before the first non-adapter nucleotide are deleted. After
Cutadapt has aligned all adapters to the read, the alignment with the greatest number
of matching nucleotides between the read and adapter is taken to be the best one. An
error rate of e/l is calculated, where e is the number of errors and 1 is the length of the

matching piece between read and adapter. The read is trimmed when the error rate is

below the allowed maximum [Martin, 2011].
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2.4.2 Read merging
USEARCH merging of paired reads

USEARCH merging of paired reads [Edgar, 2010b] is a tool that merges overlapping
paired end reads into single sequences [Edgar, 2010e]. This tool was implemented in the
Joint Genome Institute (JGI) 16S rDNA pipeline. The output gives increased length
and higher quality of reads, thus improving the quality of the analysis [Zhang et al.,
2014].

USEARCH merging of paired reads is accomplished by aligning the forward and
reverse reads and also rectifying any mismatches that may have occurred during align-
ing. The reverse read is the reverse complement to the forward read. Therefore the
reverse read is positioned on the same strand as the forward read. Generally, the align-
ment between the forward and reverse reads is covered between them partially. This,
therefore, results in unaligned segments at the start of both reads. The alignment is
staggered in the event that the sequencing construct is shorter than the read length,
which results in the unaligned segments at the end of both reads rather than the start.
By default, USEARCH with the command “fastq mergepairs” will trim the unaligned
segments in the event that the alignment is staggered. When mismatches occur in the
alignment, the base call with the biggest Q (Phred) score is selected, but if both bases

have the same @ score then the forward read base is chosen [Edgar, 2010e].

FLASH

FLASH [Mago¢ and Salzberg, 2011] is a software tool that locates the correct overlap
between paired-end reads and produces a merged read of greater length than a single
read [Mago¢ and Salzberg, 2011]. This tool was implemented in our 18S rDNA pipeline.
The output of increased read length results in a significant and beneficial affect on the
quality of the analysis such as genome assembly [Mago¢ and Salzberg, 2011].
Paired-end reads are produced from both ends of the target DNA fragments. FLASH
takes each read pair separately and looks for the right overlap between the paired-end
reads. The two reads are merged when the right overlap is found, thus producing a
longer read. The new longer read is of the same length as the original target DNA frag-

ment from which the paired-end reads were generated. FLASH examines and scores
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every possible ungapped alignment overlap between paired-end reads, in order to find
the right overlap. FLASH’s scoring system accounts for the number of bases overlap-
ping between the paired-end reads, this parameter is called min-olap and the default

is set to 10 base pairs (bp) [Mago¢ and Salzberg, 2011].

2.4.3 Read clustering
CD-HIT

CD-HIT [Li and Godzik, 2006] is a tool for clustering raw sequencing data. This tool
was implemented in our 18S rDNA pipeline. Clustering is a data reduction strategy that
reduces sequence redundancy and therefore improves the performance of downstream
analysis, for example reducing storage space and computational time [Fu et al., 2012].
At first, CD-HIT was designed to cluster protein sequences to build reduced redundancy
reference databases such as UniProt, but it was later expanded to support clustering
nucleotide sequences [Li and Godzik, 2006], [Fu et al., 2012]. Since CD-HIT’s release, it
has become very popular for a large range of applications including, for example, protein
family classification, metagenomics annotation and identifying artifacts in datasets [Fu
et al., 2012].

CD-HIT implements a greedy incremental algorithm. Firstly, CD-HIT orders the
sequences by length. The longest sequence becomes the seed for the first cluster and
each remaining sequence is compared with established seeds. If there is a similarity
with any seed which meets a pre-defined cutoff, it is grouped into that cluster; else, it
begins a new cluster [Li et al., 2012]. The similarity between seeds is determined by
common word counting, by using word indexing and counting tables. This results in
filtering out the undesirable sequence alignment, which can be used to calculate exact
similarity. Therefore, a big redundant dataset can be represented by a smaller non-
redundant dataset, then each cluster can be represented by a single entry [Fu et al.,

2012].

USEARCH cluster otus

USEARCH cluster otus [Edgar, 2010b] is a tool that is employed to cluster sequences,

specifically reads from a marker gene amplicon sequencing experiment such as 16S
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rDNA [Edgar, 2010a]. This tool was implemented in the JGI 16S rDNA pipeline. As
stated above clustering is a data reduction strategy [Fu et al., 2012].

USEARCH cluster otus performs operational taxonomic unit (OTU) clustering,
with identity threshold fixed at 97% using the UPARSE-OTU algorithm [Edgar, 2010a].
The aim of the UPARSE-OTU algorithm is to find a set of OTU representative se-
quences and these must satisfy four criteria points. The criteria points are as follows,
one, all pairs of OTU sequences must possess 97% or greater pairwise sequence identity.
Two, the OTU sequence must be the most abundant within the 97% group [Edgar,
2010c]. Three, a chimeric amplicon occurs when a partially complete DNA strand an-
neals to a different template. A new template is synthesised by the primers based on the
two different biological sequences and therefore any chimeric sequences identified are
discarded [Edgar, 2010c]|, [Edgar, 2016]. Four, all non-chimeric input sequences must
match at least one OTU with 97% or greater pairwise sequence identity. UPARSE-
OTU is a greedy algorithm. The input to the UPARSE-OTU algorithm is a set of
sequences and each sequence is labelled with a number representing its abundance of
reads having a given unique sequence. The sequences are ordered in decreasing abun-
dance, as OTU centroids (representative sequences) are chosen from the more abundant
reads [Edgar, 2010c].

Every input sequence is compared to the current OTU database and using the
UPARSE-REF [Edgar, 2010d] algorithm a maximum parsimony model of the sequence
is determined [Edgar, 2010c]. There are three cases as follows, one, the UPARSE-REF
model has 97% or greater sequence identity to an existing OTU, and therefore that
input sequence becomes a member of the OTU [Edgar, 2010c]. Two, the model is
chimeric, and then the input sequence is discarded [Edgar, 2010c|]. Three, the model
is greater than 97% and possesses the highest sequence identity to any current OTU.
Therefore the input sequence is added to the database and also becomes the centroid

of a new OTU [Edgar, 2010c].

2.5 Database searching

In a typical analysis, the datasets of sequences first undergo a similarity search in order

to classify these sequences. This is achieved by comparing the sequences to public

39



databases of annotated sequences such as GenBank [NCBI Resource Coordinators,
2016] or SILVA [Quast et al., 2013b] [Bazinet and Cummings, 2012], [Yu and Zhang,
2013]. Sequence alignments are used to identify similarity between sequences [Eric
et al., 2014]. For instance, metagenomic environmental samples contain DNA sequences
from many different species and the typical aims of a metagenomic analysis are to
try to identify what species and genes are present [Thomas et al., 2012a], [Suzuki
et al., 2015]. There are a number of other fields where sequence homology searches are
common, including phylogenetic analysis [Pearson, 2013], [Suzuki et al., 2015]. A well
founded evolutionary hypothesis based on molecular sequences is dependent largely on
the ability to align sequences of nucleotides or amino acids in the same position [Barta,
1997]. There are a number of tools and databases available and we outline the tool we

used in the next section.

HMMER

HMMER [Eddy, 1996] is a tool for sequence searching, which uses probabilistic methods
known as Hidden Markov Models (HMMs) in the analysis of homologous amino acid
and nucleotide sequences with a high degree of sensitivity [Finn et al., 2011], [Ferreira
et al., 2014}, [Jiang et al., 2016b]. This tool was implemented in our 18S rDNA pipeline.
HMMER, which employs Profile Hidden Markov Models, provides a sensitive approach
for the detection of distant homologs since sequence profiles can give an improved
representation of a set of homologous sequences compared with a single sequence [Sinha
and Lynn, 2014].

There are two main stages for profile HMM homology detection; first model building
and then database searching. Building the model entails the conversion of a multiple
sequence alignment into a probabilistic model, and database searching is the scoring
of a sequence to the profile HMM [Wistrand and Sonnhammer, 2005]. As compared
to searching with a single query sequence, a previously built sequence consensus is
used. This is called a consensus profile, which gives a more flexible method for the
identification of homologs of a particular family, by highlighting the features they have
in common and by lessening the value of the divergences between the sequences [Ferreira
et al., 2014]. The profile HMM is mainly comprised of three types of states, one for

each of the labels we could assign to a nucleotide therefore corresponding to matches
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or mismatches, insertions and deletions, all with precise transitions between the three
states [Eddy, 2004], [Ferreira et al., 2014]. The most common algorithms to process
HMMs are the Forward algorithm and the Viterbi algorithm. The Forward algorithm
computes a full probability for all possible model state paths and the Viterbi algorithm
provides the best possible sequence of model states for the generation of the query
sequence. The Viterbi algorithm obtains the entire path of states, which corresponds
to an optimal alignment of the query sequence to the profile model [Ferreira et al.,
2014]. Profile HMMs have a reputation for generating good results, and therefore
are employed by a number of databases, such as Pfam [El-Gebali et al., 2019] and
Superfamily [Gough et al., 2001]. Within such databases there are a large collection
of protein families where each family is represented by a profile HMM and this is
what is commonly used to represent the family in database searches [Wistrand and

Sonnhammer, 2005].

USEARCH oligodb

USEARCH oligodb [Edgar, 2010b] is a tool that is employed to search for matches
to nucleotide sequences in a database of short nucleotide sequences. This tool was
implemented in the JGI 16S rDNA pipeline. USEARCH oligodb is typically employed
in the search of matches of primers or probes to genome sequences or to gene databases
[Edgar, 2010f]. The success of any polymerase chain reaction (PCR) based method is
greatly dependant on the correct nucleic acid sequence. The sensitivity and specificity
of primers or probes are predicted by searching a database to find sequences that
contain the ideal number of mismatches and similarity [Kalendar et al., 2017]. The
USEARCH oligodb algorithm is not heuristic, it is therefore exact. The alignments
are global, with no gaps allowed except in the case of terminal gaps in the query

sequence [Edgar, 2010f].

2.6 Phylogenetic analysis

Phylogenetic analysis is the study of the evolution of species, by examining the rela-
tionships between molecules, phenotypes and organisms [Singh et al., 2009], [Rokas,

2011]. The goal of a phylogenetic study is to establish which tree out of all possible
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trees gives the best estimate for the true evolutionary relationships of the dataset anal-
ysed according to some optimisation criterion. Unfortunately, due to computational
expense, it is not typically possible to determine the best tree amidst all possible trees
for the sequence data. This is even true for a small number of sequences, as the num-
ber of alternative trees are extraordinarily large since the number of all possible trees
grows exponentially with the number of sequences. For instance, the number of dif-
ferent phylogenetic trees that portray the evolutionary relationships of 50 sequences is
roughly the number of atoms in the known universe [Rokas, 2011].

Phylogenetic analysis is a standard and very important tool for any bioinformati-
cian, since it helps in understanding big evolutionary questions, such as the origins
and history of macromolecules, developmental systems, phenotypes, and of course
life [Rokas, 2011]. In our approach, phylogenetic analysis is achieved by cloning and
sequencing the ribosomal RNA (rRNA) genes, in particular the 16S/18S small subunit
rRNA [von Mering et al., 2007]. This can closely estimate the level of species diver-
sity and unusual organisms can also be identified by this approach [von Mering et al.,
2007], [Medlar et al., 2014]. Also, determination of the taxonomic composition of envi-
ronmental samples can provide important indicators into the underlying communities’
ecology and function [von Mering et al., 2007]. Phylogenetic analysis is also essential
to gene discovery and annotation, to prediction of gene function, and the identification
and construction of gene families [Rokas, 2011].

There are a wide numbers of tools available for phylogenetic analysis [Pavlopoulos
et al., 2010]. In the following sections we describe the tools that we used in our bioin-
formatics pipelines. These sections are ordered as in a typical phylogenetic analysis.
First sequences are aligned, then a tree is built, so that new sequences can be placed

onto this tree, and finally this tree is visualised.

2.6.1 Alignments
ClustalW

ClustalW [Thompson et al., 1994] is a heuristic multiple sequence alignment (MSA)
program. This tool was implemented in our 185 rDNA pipeline. MSAs are vital to

many areas in bioinformatics, for example in homology modelling and phylogenetic
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analysis [Capella-Gutierrez et al., 2009]. The aim of MSA is to output an arrangement
of a set of sequences, with the aim that similar sequence features are aligned together,
so that patterns can be identified that may be common among many sequences, or
changes revealed that may clarify functional and phenotypic variability. A feature
can be defined as any relevant biological information, that is, structure, function or
homology to the common ancestor [Kemena and Notredame, 2009]. The quality of
MSAs for these applications is critical for the reliability and accuracy of the analyses.
A large number of algorithms for MSA are presently available, which apply different
heuristic algorithms to find the optimal solutions to the alignment problem. 80-90%
accuracies have been reported for the best MSA algorithms, but even these algorithms
can fail at specific regions in the alignment. For large scale analysis the problem gets
worse, due to the implementation of faster algorithms that are less reliable [Capella-
Gutierrez et al., 2009].

The basic ClustalW algorithm consists of three key parts. First all pairs of sequences
are aligned separately and from this a distance matrix is calculated, thus giving the
divergence of each pair of sequences. Second, from the distance matrix and using the
Neighbor-Joining [Saitou and Nei, 1987] method a guide tree is calculated. Initially
an unrooted tree is constructed with branch lengths proportional to the approximate
divergence for each branch. By employing the mid-point method a root is placed
at a point on the tree, in which the branch lengths on either side of the root are
equal. Third, according to the branching order in the guide tree, from the leaves of
the rooted tree towards the root, the sequences are progressively aligned. A dynamic
programming algorithm at each stage of the alignment is performed with a residue
weight matrix and also penalties for opening and extending gaps. Each part is made
up of aligning two existing alignments or sequences and gaps that are introduced in
previous alignments remain unaltered. New gaps that are added at each stage get full
gap opening and extension penalties, regardless of whether or not they are added inside
an original gap location. The score at a position from one sequence or alignment and
another sequence or alignment is calculated based on the average of all the pairwise
weight matrix scores from the sets of sequences used. If any set of sequences has one
or more gaps in one of the locations being considered, this gets scored a zero if it is

a gap versus a residue. The default amino acid weight matrices used are adjusted to
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be assigned positive values. Consequently, this treatment of gaps results in the score
of a residue versus a gap ending up with the worst possible score. Therefore when the
sequences are weighted, each weight matrix value is multiplied by the weights from the

two sequences [Thompson et al., 1994].

trimAL

trimAl [Capella-Gutierrez et al., 2009] is an automated trimming tool for multiple
sequence alignment. This tool was implemented in our 18S rDNA pipeline. It has been
reported that the removal of poorly aligned regions from an alignment increases the
quality of further analyses [Capella-Gutierrez et al., 2009]. trimAl firstly reads all the
columns in the alignment and calculates a score, a gap score, a similarity score or a
consistency score for each of the columns. The score for each column is calculated on
information from that column or, if a window size is given, it relates to the average value
of the given window size columns around the position being considered. The gap score
for a given column is the fraction of sequences with no gap in that specified position.
The residue similarity score uses the mean distance score between pairs of residues,
as defined by a given scoring matrix. The consistency score is only calculated when
more than one alignment for the same set of sequences is given. The consistency score
is the level of consistency for all residue pairs located in a given column as compared
with other alignments. The alignment with the highest consistency score is trimmed
to remove the columns that are less conserved.

trimAL can proceed in two ways after all the column scores have been calculated.
A conservation threshold relates to the minimum percentage of columns, from the
initial alignment, that the user would like to have in the trimmed multiple sequence
alignment. If a score and a minimum conservation threshold are provided, trimAL will
output a trimmed alignment. This alignment will consist only of the columns with
scores greater than the score threshold. If the number falls below the conservation
threshold, in a decreasing order of scores trimAl will add more columns to the trimmed
alignment until the conservation threshold is hit. Alternatively, trimAl has three modes
for the automated selection of parameters- gappyout, strict and strictplus- these are
based on the use of gap and similarity scores. trimAl will calculate the specific score

thresholds based on the characteristics of each alignment. trimAL also has an option
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which implements a heuristic in order to decide the appropriate mode depending on

the alignment characteristics [Capella-Gutierrez et al., 2009].

2.6.2 Tree building and placing
RAxML

RAxML [Stamatakis, 2014] (Randomised Axelerated Maximum Likelihood), is a tool
for phylogenetic analysis of large datasets under maximum likelihood [Stamatakis,
2014]. This tool was implemented in our 18S rDNA pipeline. There has been a stag-
gering accumulation of genetic information from various organisms in recent years [Sta-
matakis et al., 2005]. There are a number of approaches such as maximum likelihood
and Bayesian methods which can be used to compute these relationships. Maximum
likelihood is incorporated in RAxML and is considered to represent one of the more
accurate approaches available for phylogenetic reconstruction [Stamatakis et al., 2005].

RAxML has a fast maximum likelihood tree search algorithm, and has been shown
to return trees with “good” likelihood scores [Stamatakis, 2014]. RAxML generates a
starting tree, which is built by adding sequences one at a time at random, using the
parsimony optimality criterion to identify their optimal location on the tree. Due to
the random order in which the sequences are added, this is likely to generate several
different starting trees each time a new analysis is run. This can result in a improved
exploration of the tree space. Moreover, if multiple analyses are run which use different
starting trees and all result in the same tree, this gives more confidence that this is
close to the true tree. The next step in the search strategy is the implementation of the
method called “lazy subtree rearrangement”. This means that all possible subtrees are
cut and reinserted at all possible locations of a tree. The number of branches between
the cut and insertion points must be smaller than N branches. RAxML automatically
estimates the N value for a data set or the user can give the value of N. The lazy
subtree rearrangement method is applied on the starting tree, and there after multiple
times on the currently best tree as the program continues. When RAxML reaches the
point where a better tree cannot be found, RAxML ends the search and the tree is

returned [Rokas, 2011].
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Pplacer

Pplacer [Matsen et al., 2010] is a tool for performing phylogenetic placement, thereby
assigning query sequences to taxa and providing an evolutionary understanding of the
sequence data. This tool was implemented in our 185 rDNA pipeline. Phylogenetic
placement is an alternative to the classic phylogenetic analysis for dealing with datasets
with a very large number of sequences. Pplacer assigns the unknown query sequences to
a fixed reference tree via a reference alignment according to the maximum likelihood
criterion. Since pplacer uses a fixed reference tree, there are just two tree searches
needed to precalculate the information required from the reference tree. Therefore, all
likelihood calculations are at once performed on the set of three taxon trees. Hence
the query sequence placement part of pplacer has linear time and space complexity for
the number of taxa in the reference tree.

A problem with likelihood based phylogenetic analysis is that it cannot be ap-
plied to the very large number of short reads that are produced by next-generation
sequencers [Matsen et al., 2010]. This is due to computational complexity because the
maximum likelihood phylogenetic problem is NP-hard (nondeterministic polynomial
time) and therefore it is probably not possible to find maximum likelihood trees in a
reasonable amount of time [Matsen et al., 2010}, [Papadimitriou, 2014]. Also the lack
of phylogenetic signal is a problem, because employing the classic method of maximum
likelihood phylogeny to a single alignment of shotgun reads with the full- length ref-
erence sequences can result in the inaccurate grouping of a short read because of its
position in the alignment.

Pplacer can apply the inferential strength of likelihood based methodologies, that
enables the fast placement of the large amount of short query sequences and avoid
some of the problems associated in applying phylogenetics to a very large number of
taxa. This is accomplished as the computing complexity is greatly reduced, resulting
in a program that can assign large amounts of query sequences per processor each
hour on to a fixed reference phylogeny. Pplacer performs the calculation in parallel,
because each query sequence can be processed independently and also the relationships
between the query sequences are not investigated, thus reducing exponential time to a

linear time. Short length query sequences are less of an issue for pplacer, as they are
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compared to the full length of the reference sequences [Matsen et al., 2010].

Output from pplacer is a series of assignments of every query sequence to branches
on the reference tree and a confidence score [Matsen et al., 2010], [Matsen et al., 2012].
A query sequence can be assigned to more than one branch to show placement un-
certainty for that sequence [Matsen et al., 2012]. Pplacer computes edge uncertainty
using a likelihood weight ratio, which measures the uncertainty edge by edge. It does
this by comparing the best placement locations for each of the edges. Pplacer ap-
plies expected distance between placement locations (EDPL) to overcome the difficult
situation in distinguishing between uncertainty of local (where placements are all lo-
cated in a small area of the reference tree) and global (where possible placements are
spread throughout the tree) placements. This is a problem because it depends on the
confidence scores computed on an edge by edge basis.

A naive algorithm would place the query sequence onto each edge of the tree and
execute a complete branch length optimization by carrying out the cached likelihood
vectors. However, Pplacer achieves linear time and space scaling for the size of the
reference tree because it performs an initial calculation of likelihood vectors at both
ends of each edge of the reference tree. Pplacer executes a two part search algorithm for
the query sequences to speed up placements. In particular, an initial quick evaluation
of the tree is performed, then a more complete search is made on high scoring regions
of the tree. The first part is carried out by calculating likelihood vectors for the middle
of each edge. The calculated likelihood vectors are used to rapidly sort the edges in a

rough order of fit for each query sequence [Matsen et al., 2010].

2.6.3 Visualisation
MEGAN

Earlier metagenomic projects were focused on the identification of species and their
function from individual data sets, but over the past few years there has been a grow-
ing emphasis on comparative analysis. MEGAN [Huson et al., 2007] (MEtaGenomic
ANalyzer) facilitates interactively examining, analysing and comparing multiple envi-
ronmental datasets [Huson et al., 2009]. MEGAN was implemented in our 185 rDNA

pipeline and the JGI 16S rDNA pipeline. MEGAN establishes its taxonomic classifi-
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cation based on the NCBI taxonomy. This is a hierarchically structured classification
of all species that are currently represented in NCBI databases. MEGAN performs the
taxonomic analysis by assigning each read onto different taxa in the NCBI taxonomy.
For determining gene content a sequence comparison of the query reads to one or more
databases of determined reads is performed using a comparison tool such as BLAST.
Since different projects need to use different alignment tools and databases, MEGAN
gives the users the freedom to choose which ever suits their project needs. The results
of the sequence comparison are processed by MEGAN. This entails the collection of
all matching reads to the sequences of the NCBI database and assigning a taxon ID to
each sequence based on the NCBI taxonomy.

MEGAN employs the Lowest Common Ancestor (LCA) algorithm to assign reads,
which involves assigning reads to the node representing the lowest ancestor of all high-
quality matches for the sequence. As a result, the species-specific sequences are assigned
to taxa closer to the leaves and generally conserved sequences end up being assigned
to higher order taxa that are nearer the root of the NCBI tree. A MEGAN file is
generated that consists of all the information for analysing the output and to produce
graphical and statistical outputs [Huson et al., 2011]. The end result is represented
on a rooted tree, so that each node displays different taxa, and nodes are scaled and
labelled by the number of reads that are assigned to that taxon as shown in figure
2.2 [Mitra et al., 2011].

MEGAN’s functional analysis of a microbial community can help to understand the
biochemical processes and to estimate the impact of environmental changes in the vari-
ous ecosystems [Mitra et al., 2011]. MEGAN accomplishes this by using the SEED clas-
sification of subsystems and the Kyoto Encyclopedia for Genes and Genomes (KEGG)
classification of pathways and enzymes [Huson et al., 2011]. Based on a BLAST file
imported into MEGAN, a SEED classification is determined by assigning each read
of the highest scoring gene in a BLAST comparison against a protein database to the
functional role. Different functional roles are then grouped into assigned subsystems. A
rooted tree is used to display the SEED classification, the internal nodes are the differ-
ent subsystems and the leaves are the functional roles. The tree can be multi-labelled,
which means that different leaves on the tree can have the same functional role, as they

may occur in different subsystems. The nodes of the tree display the numbers of reads

48



___ Apicomplexa ————— Aconoidasida
*Conoidasida
“Litostomatea
“Nassophorea

Oligot
“Phyllopharyngea
*Prostomatea
“Spirotrichea

iliophora

Alveolata

s 't
————Karyorelictea
“Dinophyceae

Perkinsea

Alveolata

Cryptophyta

H

Chordata ! { Actinopteri

Deuterostomia Tunicata ——— Appendicularia
L———Ascidiacea

Eumetazoa ZM El VW%‘ Ophiuroidea

*Holothuroidea
Crustacea —————Malacostraca
Protostomia [ ——*Maxillopoda
1 Lophotrochozoa ——— “Gymnolaemata
L “Bdelloidea
Hydrozoa
*Acantharea
- Cercozoa

Rhizaria

Eukaryota

“Polycystinea
“unclassified Rhizaria

Rhodophya [ Bangiophycea
[ Florideophyceae

*Rhodellophyceae

“Bacillariophyceae
Bacillariophyta :-Cascwnnd\scophyceae
“Fragilariophyceae
“Mediophyceae
“Bicosoecida
“Blastocystis
-Bolidophyceae
Cl

Cl
* Developea
D

“Oomycetes
“Pelagophyceae
“PingL
*Placididea

“PX clade

Chloroder
*Chlorophyceae
*Chlorophyta incertae sedis
[ Pedinophyceae
Chlorophyta *Mamiellophyceae

Viridiplantae prasinophytes *Prasinococcales
prasinophytes incertae sedis
*Pycnococcaceae

*Pyramimonadales

Tr
“Ulvophyceae

Figure 2.2: 18S rDNA dataset displayed on MEGAN’s taxonomy tree at the taxonomic
rank of class

assigned to each functional role. For a comparative analysis, it is possible to map a
number of datasets onto the SEED hierarchy and, also based on their SEED content,
calculate the distance matrices on the datasets. For the KEGG analysis, MEGAN aims
to match each read to a KEGG orthology (KO) accession number, taking the highest
scoring match to a reference sequence that a KO accession number is known. A KEGG
analysis window in MEGAN presents which KEGG pathways are in the dataset. The
user can examine these pathways; for example, visualising reads that are mapped to a

pathway of interest [Mitra et al., 2011].

2.7 Discussion

In this chapter, we have given a summary of 185 and 16S rDNA, metatranscriptomics,
next-generation sequencing technology and bioinformatic tools. In the next chapter, we
will describe in more detail the methodology that we developed, specifically to analyse

our 18S and 16S rDNA datasets.
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Chapter 3

18S rDNA and 16S rDNA analysis

3.1 Summary

This chapter outlines the computational pipeline and analysis of the 18S rDNA and
16S rDNA data collected in the expedition mentioned in chapter 1. As explained in the
next section, samples were collected from a range of latitudes, from the South Atlantic
Ocean, spanning the West African and European coasts up to the Arctic Ocean as
shown in figure 3.1a. Also at the time of sampling environmental data was recorded,
such as temperature and salinity as shown in figure 3.1b-f. This enabled us to study
the composition and distribution of the marine microbial communities in the upper
ocean.

Two different pipelines were implemented to taxonomically classify the 18S and
16S rDNA data. Our 18S rDNA pipeline which is outlined in section 3.3.1 is based
on pplacer. We choose pplacer for our 185 rDNA pipeline because for unknown se-
quences likelihood-based phylogenetic inference is commonly regarded to be the most
reliable classification method [Matsen et al., 2010]. While JGI's 16S rDNA pipeline
which is outlined in section 3.3.2 is based on USEARCH. USEARCH is a popular
software package for the analysis of operational taxonomic units (OTUs). USEARCH
performs a blast like mapping against a reference database such as SILVA. This works
well for microbes that are represented well in ribosomal RNA databases [Hugerth and
Andersson, 2017].

In the next section, we describe the sampling and sequencing of the 18S rDNA and

16S rDNA datasets. Then, in Section 3.3 we describe the pipelines for the 18S and
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16S analysis, as well as additional methods, after which we present the results of our
analysis in Section 3.4. In Section 3.5, we end with a discussion of the results that we

obtained.

3.2 Sampling and sequencing

3.2.1 Sampling

Samples were collected during three field expeditions across latitude ranges as shown
in figure 3.1a. The first set of samples was collected from April to May 2011 in the
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Figure 3.1: Arctic and Atlantic Ocean sampling sites and measured metadata, (a) Sites
of three expeditions, April to May 2011 in red, June to July 2012 in black and Novem-
ber to December 2012 in yellow. At each station, microbial communities were sampled
at the deep chlorophyll maximum (DCM), corresponding to 68 samples altogether. (b)
Isosurface plot of temperature (°C) measured at sampling depth. (c) Salinity (practical
salinity unit(PSU)) measured at sampling depth for all stations. (d) Dissolved silicate
(mol/L) concentrations measured at sampling depth for each station. (e) Concen-
tration of dissolved phosphate (mol/L) measured at sampling depth for each station.
(f) Nitrate and Nitrite (mol/L) concentrations measured at sampling depth for each
station. (Figure was generated with Ocean Data view, R. Schlitzer, www.odv.awi.de,
2016)(Plot generated by Dr.Katrin Schmidt)
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North Atlantic Ocean spanning the Canary Islands to Iceland, by Dr.Willem van de
Poll of the University of Groningen, Netherlands and Dr.Klaas Timmermans of the
Royal Netherlands Institute for Sea Research. The second collection of samples was
carried out from June to July 2012 by Dr.Katrin Schmidt in the Arctic Ocean, spanning
the West Spitsbergen current, east Greenland current and Norwegian Atlantic current.
The third set of samples was also collected by Dr.Schmidt from November to December
2012, spanning the Canary Islands down to Cape Town in the South Atlantic Ocean.

The samples were taken either at the chlorophyll maximum (10-110m) and/or sur-
face of the ocean (0-10m). The samples were filtered and frozen in liquid nitrogen and
stored at -80°C until further analysis. A full description of the materials and meth-
ods used for sampling can be found in [Schmidt, 2016]. Also at the time of sampling

environmental data was collected (see Appendix A.A) as shown in figure 3.1b-f.

3.2.2 Sequencing and preprocessing of the 18S rDNA and 16S
rDNA

All extracted DNA samples were sequenced and preprocessed by the Joint Genome In-
stitute (JGI) (Department of Energy, Walnut Creek, CA, USA). Amplicon sequencing
was performed with primers for the V4 region of the 16S and 185 rRNA gene on an
[lumina MiSeq instrument with a 2x300 bp read configuration [Tremblay et al., 2015].

18S sequences were preprocessed, this consisted of scanning for contamination with
the tool Duk [DOE Joint Genome Institute, 2017] and quality trimming of reads with
cutadapt [Martin, 2011]. Paired end reads were merged using FLASH [Magoc and
Salzberg, 2011] with a max mismatch set to 0.3 and min overlap set to 20. A total of
54 18S samples out of 68 passed quality control after sequencing. After read trimming,
there was an average of 142,693 read pairs per 18S sample with an average length of
367bp and 2.8 Gb of data over all samples.

16S sequences were preprocessed, this consisted of merging the overlapping read
pairs using USEARCH’s merge pairs [Edgar, 2017] with the parameter minimum num-
ber of differences (merge max diff pct) set to 15.0 into unpaired consensus sequences.
Any reads that could not be merged are discarded. JGI then applied the tool USE-

ARCH’s search oligodb with the parameters length mean (len mean) set to 292, length

52



standard deviation (len stdev) set to 20, primer trimmed max difference (primer trim
max diffs) set to 3, a list of primers and length filter max difference (len filter max
diffs) set to 2.5 to ensure the Polymerase Chain Reaction (PCR) primers were located
with the correct direction and inside the expected spacing. Reads that did not pass
this quality control step were discarded. With a max expected error rate (max exp
err rate) set to 0.02, JGI evaluated the quality score of the reads and those with too
many expected errors were discarded. Any identical sequence was de-replicated. These
are then counted and sorted alphabetically for merging with other such files later. A
total of 57 16S samples passed quality control after sequencing. There was an average
393,247 read pairs per sample and an average base length of 253bp for each sequence
with a total of 5.6 Gb.

3.3 Methods

In this section, we describe the pipelines that we developed for the 18S and 16S rDNA

analyses, as well as further analysis methods that were employed.

3.3.1 Computational pipeline for 18S rDNA analysis

We first describe the computational pipelines that we developed for taxonomically
classifying the 18S rDNA data. Also, we describe how we account for 185 rDNA copy
number variation in order to give an estimate of abundance for the species in our
dataset. An overview of the 18S rDNA classification pipeline is shown in figure 3.2.
This consists of the construction of the 18S reference database highlighted in box (a),
phylogenetic analysis highlighted in box (b), phylogenetic placement highlighted in box
(c) and normalising the 18S rDNA copy number in box (d) of the figure. Each of these

is explained in the following subsections.

Constructing the 18S reference database (box a)

We began by compiling a reference dataset of 185 rRNA gene sequences that represent
algae taxa for the construction of a phylogenetic tree. We retrieved sequences of algae
and outgroup taxa from the SILVA database [Quast et al., 2013b] and Marine Micro-

bial Eukaryote Transcriptome Sequencing Project (MMETSP) database [Keeling et al.,

23



Duk and

b D 1 min

Cutadapt
Clustered sequence Trimmed reads
Files for
analysis
5 days

Multiple Sequence Alignments Merged reads

a HMM
1 min A R hmmalign

File preparation

Trimmed alignments
18S rDNA

2 weeks dataset of
abundances

Align sequences i
Pplacer to HMM profile Lety/ile
Taxtastic reference

package

Regression
equation

NCBI
taxonomy

2 mins Take assignments with
maximum likelihood score

Al ta
igae taxonomy ol 05

Placed

Pplacer sequences Genome

sizes

Pplacer
saL
c database 1 day / file

Figure 3.2: Pipeline diagram of Pplacer 18S rDNA classification analysis. The pipeline
at various stages incorporates databases (blue), software tools (green), processed files
(grey) and runtimes (yellow). Boxes a, b, ¢ and d refer to sections in the text

2014]. For our outgroup species, these species came from marine invertebrates, plants,
fish, zooplankton and fungi, for example, Aurelia aurita, Zea mays, Salmo salar, Acartia
tonsa and Saccharomyces cerevisiae, respectively and also Homo sapiens. The inclusion
of outgroups is important for the identification of potential sources of contamination
that may have occurred during the earlier stages. The algae reference database consists
of 1636 species from the following groups: Opisthokonta, Cryptophyta, Glaucocysto-
phyceae, Rhizaria, Stramenopiles, Haptophyceae, Viridiplantae, Alveolata, Amoebozoa
and Rhodophyta as shown in figure 3.3. A full list of the algae reference database taxa
IDs can be found in Appendix A.B.

An accurate estimate of phylogeny is essential, not just for ecology but for other
areas of research such as genomics. Under certain conditions, phylogenetic methods
could return incorrect estimates [Wiens and Tiu, 2012]. A possible common scenario
is when too few taxa are included in the reference database, thus leading to such

situations as conflicting phylogenetic signals which can cause a lack of resolution and
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incongruent phylogenies [Nabhan and Sarkar, 2011], [Wiens and Tiu, 2012]. Adding
more taxa even with highly incomplete character data to the reference database can
improve phylogenetic accuracy in scenarios where the analysis was misled by a limited

number of taxa in the reference database [Wiens and Tiu, 2012].

[l Opisthokonta JJjj Cryptophyta [ Glaucocystophyceae [T Rhizaria [T Stramenopiles
(] Haptophyceae [ Viridiplantae ] Alveolata [[] Amoebozoa [Jjj Rhodophyta

Figure 3.3: The reference tree consists of 1636 species from the groups:
Opisthokonta, Cryptophyta, Glaucocystophyceae, Rhizaria, Stramenopiles, Hapto-
phyceae, Viridiplantae, Alveolata, Amoebozoa and Rhodophyta

In order to construct the algae 18S reference database, we first retrieved all eukary-
ote species from the SILVA database with a sequence length of > 1500 base pairs (bp)
and converted all base letters of U to T. Under each genus, we took the first encoun-
tered species to represent that genus. Using a custom script by Dr.Andrew Toseland,
the species of interest (as stated above) were selected from the SILVA databases, clas-
sified with NCBI taxa IDs and a sequence information file was produced that describes
each of the algae sequences by their sequence ID and NCBI species ID. The taxonomy
database from the NCBI, eukaryote sequences from the SILVA database and a list of

algal taxa including outgroups were used as input for the script. This information was
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combined with the MMETSP database, excluding duplications.

Phylogenetic analysis (box b)

As depicted in figure 3.2 box (b), we clustered the algae reference database to re-
move closely related sequences with CD-HIT [Li and Godzik, 2006] using a similarity
threshold of 97%. Then using ClustalW [Thompson et al., 1994], we aligned the algae
reference sequences of the database with the addition of the parameter iteration num-
bers set to 5. The alignment was examined by colour coding each species to their groups
and visualising in iTOL [Letunic and Bork, 2007]. We observed that a few species were
misaligning to other groups and these were then deleted using Jalview [Waterhouse
et al., 2009]. The resulting alignment was tidied up with TrimAL [Capella-Gutierrez
et al., 2009] by applying parameters to delete any positions in the alignment that con-
tain gaps in 10% or more of the sequence, except if this results in less than 60% of the
sequence remaining [Capella-Gutierrez et al., 2009]. Our algae reference phylogenetic
tree is displayed in figure 3.3. We constructed a maximum likelihood phylogenetic
reference tree and statistics file based on our algae reference alignment by employing
RAxML [Stamatakis, 2014] with a general time reversible model of nucleotide substitu-
tion along with the GAMMA model of rate heterogeneity. Based on the algae reference
multiple sequence alignment, with HMMER3 [Eddy, 2009] for the 18S rDNA gene we
created a Profile HMM (pHMM). Our pHMM differs from other pHMMs constructed
by other phylogenetic groups in that our pHMM is based on a reference database com-
posed of an update SILVA database at the time of our analysis and we included the
MMETSP database. A full description of our reference database is outlined above in

section “Constructing the 18S reference database (box a)”

Phylogenetic placement (box c)

As depicted in figure 3.2 box (c), we used the NCBI taxtastic tool [NCBI Resource
Coordinators, 2016] to create a taxtastic file, which is a description of the lineages of all
species back to the root in our algae reference database. We created this taxtastic file by
submitting the taxa IDs for each species to extract a subset of the NCBI taxonomy. A
pplacer reference package using the NCBI taxtastic tool was generated, which produced

an organized collection of all the files and taxonomic information into one directory.
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With the reference package, an SQLite database was created using pplacer’s Reference
Package PReparer (rppr). With hmmalign, we aligned the query sequences to the
reference set and created a combined Stockholm format alignment. Pplacer [Matsen
et al., 2010] was used to place the query sequences on the phylogenetic reference tree
by means of the reference alignment according to a maximum likelihood model. The
placefiles were converted to CSV with pplacer’s guppy tool. With the use of our
custom made script, we took reads that had a taxonomic assignment with a maximum
likelihood score of > 0.5 and counted the number of reads assigned to each classification.
This resulted in 6,053,291 reads that were taxonomically assigned for further analysis.

Pplacer’s reference tree is fixed, in regards to the topology and branch length. Also,
only two tree searches are necessary to precalculate the information that is required
from the reference tree. From here all the likelihood calculations are performed on a
set of three taxon trees, the number of this is linear to the number of reference taxa
in the reference database. Therefore the placement part of the pplacer algorithm has
linear time and space complexity for the number of taxa n in the reference tree [Matsen
et al., 2010]. In figure 3.2 are the runtimes highlighted in the yellow boxes for the tools
as described above that were implemented in our 18S rDNA pipeline. It took a day for
an 18S rDNA file containing an average of 142,693 read pairs with an average length
of 367bp to run with our pplacer (18S rDNA ) pipeline. We were able to perform our
pplacer pipeline even faster due to parallel computing on the Earlham Institute cluster
thus enabling us to run all 54 files within 3 days. If another similar dataset was to be
submitted to our pplacer pipeline, this new dataset would also finish in this time. If
the number of taxa in our reference database was to be altered then this would affect

the time and space complexity.

Ribosomal RNA (rRNA) gene copy number

The rRNA gene is a marker for taxonomic diversity but the relationship between am-
plicon and species abundance is indeterminate due to rDNA copy number variation
within the genomes of different species. For bacteria, the 16S rDNA copy number can
vary as much as from one to fifteen [Perisin et al., 2016]. For eukaryotes, the 185 rDNA
copy number can vary even more greatly from one to thousands [de Vargas et al., 2015].

This is a hindrance to effectively analyse our rDNA copy number datasets. In order to
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get an estimate of abundances of species in the samples, we had to normalise the data,
that is we had to adjust for the rDNA copy number.

Even though there is a 16S rDNA copy number database called the Ribosomal RNA
Operon Copy Number Database (rrnDB) [Klappenbach et al., 2001] it only contained
2,876 species in 2014. While this is a considerable amount, it compares little to the
actual number of bacteria species in the world. This was evident to us when we
attempted to apply the rrnDB database to our 16S rDNA dataset. In order to fill
in the missing copy numbers in our 16S rDNA dataset, we used averages between
closely related known taxa. We detail this in the section “Normalising 16S rDNA copy
number”.

There is no database of 185 rDNA copy number available for eukaryote species.
Previous work has explored the link between rDNA copy number and genome size
[Prokopowich et al., 2003]. We decided to build on this approach in order to get a
rough estimate of read count to 18S rDNA copy number. The regression line is an
imperfect approach, due to rDNA copy number variation within species that can exist
thus being a source of error. In the following sections, we detail our work in determining
a regression equation based on 18S rDNA copy and genome size. We also explain how
we retrieved where possible the genome sizes for our 185 rDNA dataset, and determined
the genome sizes when they were unknown, in order to apply the regression equation

to our 18S rDNA dataset.

18S rDNA copy number and genome size regression equation (box d)

In order to address the varying copy number among eukaryotes, we investigated the
gene copy number and related genome sizes of 185 species across the eukaryote micro-
bial tree [Godhe et al., 2008|, [Carlton et al., 2013], [Torres-Machorro et al., 2010},
[Oliver et al., 2007], [Moreau et al., 2012], [Boucher et al., 1991], [Hauser et al.,
2010], [Prokopowich et al., 2003], [Rodstrom, 2017], [NCBI Resource Coordinators,
2016] and [Nordberg et al., 2014]. Species with single genomes were investigated for
their 18S rDNA copy number. Outliers were found but all 185 species were included,
as we researched as many published 18S rDNA copy numbers as we could find with
known genome size, but published 18S rDNA copy numbers are very few especially in

comparison to 16S rDNA copy numbers and with known genome size.
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Figure 3.4: The graph of 18S rDNA copy number and their related genome size (Mb) for
185 species across the eukaryote tree. We investigated 18S rDNA gene copy number and
their related genome sizes. We observed a significant correlation of R? 0.5480435268
with a p-value < 2.2e-16 between genome size and 18S rDNA copy number. Based on
the logl0 transformed data a regression equation was determined, f(x)=0.66X+0.75

We performed a logl0 transform of the data of 185 18S rDNA copy number and
related genome sizes so that the data’s scale and distribution complied better to the
assumptions of a parametric statistical test. Log transformation (2’ ;=logy(x;+c) where
log, can be 2, e, or 10 and c is a small number when x;=0) is commonly used [Paliy
and Shankar, 2016]. Based on the logl0 transformed data, a significant correlation
with an R? of 0.55 and a p-value < 2.2e-16 between genome size and 18S copy number

was observed. A regression equation was determined (f(x)=0.66X+0.75) as shown in

figure 3.4.

Genome sizes for the 18S rDNA dataset to normalise the 18S rDNA copy

number (box d)

In order to apply the equation of the line to our 18S rDNA dataset, we retrieved the
genome sizes for the species in the dataset from the NCBI genome database. The
NCBI genome database consisted at the time of 2,477 eukaryote entries. Firstly, since

multiple entries of a species are in the NCBI genomes database due to different strains,
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we calculated an average genome size for each species in the database, which resulted
in 2,059 species entries.

The higher taxonomic levels for the NCBI genomes species needed to be established
so that we could calculate the average of genome sizes. For a description of the lineages
of all species back to the root in NCBI genomes database, we submitted the species
names for each entry to extract a subset of the NCBI taxonomy with the NCBI taxtastic
tool, thus producing a taxtastic file. The taxtastic file based on species from the NCBI
genomes database was used to calculate the average genome sizes for higher taxonomic
levels from the known genome size species level, with the assistance of the parent id
and taxa id layout in the taxtastic file.

Using the taxtastic file based on our algae reference database, we assigned our
algae entries a genome size from species to root from the prepared average genome
sizes NCBI genomes taxtastic file. Not all genome sizes in the algae reference database
were known. We, therefore, took the average of closely related species from the above
taxonomic level of those we could get and took that as the genome size for those that
were missing in our dataset.

As depicted in figure 3.2 box (d) the 18S rDNA dataset was normalised by assigning
their genome sizes and applying the equation of the line. A normalisation procedure
called the hits per million reads method was applied to the files, which entails scaling

the files to a common value [Robinson and Oshlack, 2010].

File preparation for 18S rDNA analysis (box d)

In our 18S rDNA dataset, we had a total abundance of 53,750,176 taxa from the
eukaryote node down to the species nodes. We employed MEGAN to cut out specific
taxonomic levels. In MEGAN, we extracted the classifications at the taxonomic rank
of species. This consisted of a file being generated for each station that contained the
species names and their assigned abundances. The files were further normalised to hits
per million.

In MEGAN, we extracted the leaves of the taxonomy tree at the rank of class and
above but excluded assignments to the eukaryote node. Firstly, this consisted of a file
being generated for each station that contained all assignments to the class nodes as

well as any assignments under their respective lineages down to species being summed
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Figure 3.5: Part of the 185 rDNA dataset displayed on MEGAN’s taxonomy tree. All
the nodes highlighted in yellow at the leaves of the tree are class nodes. Nodes at the
leaves of the tree that are not highlighted do not have a taxonomic classification of class
in their lineage. The nodes between the leaves of the tree and the eukaryotic node are
the internal nodes that are representing higher taxonomic levels such as phylum. The
colour key represent each colour on the nodes and corresponds to a sample in the 18S

rDNA dataset

up under the individual class node. These are displayed in figure 3.5 as the highlighted
nodes on the leaves of the tree.

Secondly, we included nodes that were not highlighted on the leaves of the tree,
as displayed in figure 3.5. In NCBI taxonomy there are species that do not have a
taxonomy designation at every taxonomy level. In our 18S rDNA dataset, we had
species that do not have a taxonomic rank of class and these are displayed in figure
3.5 as the leaves of the tree that are not highlighted. We took the nodes that were
not highlighted on leaves of the tree and summed them together within their respective
lineages and placed them under a new name. For example, under the phylum Rhizaria,

on the leaves of the tree, there is Cercozoa, Gromiidae and unclassified Rhizaria which
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are not highlighted. Their abundance was summed together and renamed Nc.Rhizaria,
“Ne.” standing for “No class”. The abundances assigned to Rhizaria were not included
in this calculation. The leaves of the tree as displayed in figure 3.5, made up 34% of
the total 18S rDNA dataset, as it resulted in an abundance of 18,332,601.

The internal nodes between the leaves of the tree and the eukaryote node as dis-
played in figure 3.5 was given a “U.” in front of their name, “U.” standing for “Un-
known”. This was done to highlight that while they are of course associated with the
lower lineages they are in fact considered separate, as those assignments to those nodes
could not be determined any lower. The internal nodes made up 29% of the total 18S
rDNA dataset, as it resulted in an abundance of 15,678,138.

The abundance assigned to the eukaryote node was excluded from our analysis as
these sequences could not be classified lower. This comprised of a total abundance of
19,739,437, which is 37% of the 18S rDNA dataset. The assignments to the eukaryote
node were excluded as these reads could not be classified to lower taxonomic ranks.
Our algae reference database contains an up to date SILVA database at the time of
our analysis, but still 37% of the 18S rDNA dataset is essentially unclassifiable. We
have lost valuable information that could have potentially provided more insight and
understanding into our analysis.

A file was generated for each station that contained the class nodes, “Nc.” nodes
and “U.” nodes with their respective abundances. The files were further normalised to

hits per million.

3.3.2 Computational pipeline for 16S rDNA analysis

In this section, we describe JGI's computational pipeline for taxonomically classifying
the 16S rDNA dataset. Also, we describe how we account for 16S rDNA copy number
variation in order to give an estimate of abundance for the species in our dataset.
An overview of JGI's 16S rDNA classification pipeline is shown in figure 3.6 and a

description of the pipeline is below.
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Figure 3.6: JGI’s pipeline diagram of 16S rDNA classification analysis. The pipeline
at various stages incorporates databases (blue), software tools (green) and processed
files (grey). Box a and b refer to sections in the text

JGI’s computational pipeline for taxonomical classifying the 16S rDNA

dataset (box a)

The JGI’s 16S rDNA classification pipeline consists of firstly removing samples with less
than 1000 sequences. The remaining samples and the de-replicated identical sequences
from the preprocessing step (as outlined in Section 3.2.2) are then combined and their
sequences organized by decreasing abundance. The sequences are divided out based
on the criterion as to whether they contained a cluster centroid with a minimum size
of at least 3 copies. The low abundance sequences are put aside and not used for
clustering. USEARCH’s cluster otus command is employed to incrementally cluster
the clusterable sequences. This begins at 99% identity and the radius is increased by
1% for each iteration until a OTU clustering identity of 97% is reached.

At each step, the sequences are sorted by decreasing abundance. Once clustering is
complete, USEARCH’s usearch global is used to map the low-abundance sequences to

the cluster centroids. These are added to OTU counts if they were in the prescribed
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percent identity threshold. If they do not fall within this prescribed percent identity
threshold they are discarded. USEARCH’s UTAX along with the SILVA database is
used to evaluate the clustered centroid sequences. The predicted taxonomic classifi-
cations are then filtered with a cutoff of 0.5. Any chloroplast sequences identified are
removed. The final accepted OTUs and read counts for each sample are finally placed

in a taxonomic classification file.

Cleaning the JGI’s pipeline output (box b)

The JGI output taxonomic classification file contained a matrix of the 57 station’s
names to their counts of read assignments. Also given were the taxonomic assignments
in the form of the SILVA taxonomic path from domain to the taxonomic level it was
assigned. Our SILVA taxonomic assignments had a number of issues that needed resolv-
ing before we could account for the 16S rDNA copy number variation in our datasets.
SILVA contains entries without a formal taxonomic name and these are entered in
SILVA’s database as for example “unknown”. When we had such an assignment we
moved the assignment up a taxonomic level until a taxonomic assignment with a “real”
taxonomic name was given.

In addition, SILVA taxonomic names are formatted slightly differently from NCBI
entries, for example, some entries have numbers attached. We identified such entries
in our dataset and edited the names. SILVA taxonomic names are also not updated
with NCBI entries. We identified such entries in our dataset and edited the names to
ensure they were up to date with the NCBI taxonomy. We created a custom made
script to accomplish this, to tidy up SILVA taxonomic names of any format issues,
to have “real” up to date taxonomic names for each assignment and to have a single
taxonomic name rather than a taxonomic path for each assignment. We combined any

duplicated taxonomic assignments for each station.

Normalising 16S rDNA copy number (box b)

In order to normalise the 16S copy number, the 16S copy numbers for the species in
the dataset were retrieved from the Ribosomal RNA Operon Copy Number Database
(rrnDB) [Klappenbach et al., 2001]. The rrnDB database consisted at the time of

3,021 bacterial entries. Firstly, since multiple entries of a species are in the rrnDB

64



database due to the presence of different strains, we obtained an average copy number
for each species in the rrnDB database, which resulted in 2,876 species entries. The
higher taxonomic levels for the rrnDB species needed to be established so that we could
calculate their average copy number. For a description of the lineages of all species
back to the root in the rrnDB database, we submitted the species names for each
entry to extract a subset of the NCBI taxonomy with the NCBI taxtastic tool [NCBI
Resource Coordinators, 2016], thus producing a Taxtastic file. The Taxtastic file based
on species from the rrnDB database was used to calculate the average copy number for
higher taxonomic levels from the known copy number species level, with the assistance
of the parent id and taxa id layout in the Taxtastic file. A Taxtastic file based on
16S rDNA species from our dataset was generated and we assigned our 16S species
entries a copy number from species to root from the prepared average copy number
rrnDB Taxtastic file. Not all copy numbers in the 16S rDNA dataset were known. We
therefore took the average of closely related species from the above taxonomic level of
those we could get and took that as the copy number for those that were missing in our
dataset. The 16S dataset was normalised by dividing by the assigned copy number.

The files were normalised to hits per million.

File preparation for 16S rDNA analysis (box b)

In our 16S rDNA dataset, we had a total abundance of 56,999,957 taxonomic assign-
ments to nodes from the bacteria node down to the genus nodes. We prepared the
16S rDNA taxonomic levels in the same manner as the 185 rDNA taxonomic levels as
outlined in Section 3.3.1.

We extracted the leaves of the tree that include class nodes and “Nec.” nodes with
their respective abundances. This step resulted in an abundance of 53,723,979 (94%).
Also, we extracted the internal nodes and placed “U.” in front of their names. This
resulted in an abundance of 1,627,260 (3%). The abundance assigned to the bacteria
node was excluded from our analysis and this comprised of a total of 1,648,718 (3%).
We generated a file for each station that contained the class nodes, “Nc¢.” nodes and
“U.” nodes with their respective abundances. The files were further normalised by
applying the hits per million reads method.

We extracted the classifications at the taxonomic rank of genus. This consisted of a
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file being generated for each station that contained the genus names and their assigned
abundances. The files were further normalised by applying the hits per million reads

method.

3.3.3 Further analysis methods

In this section, we describe the methodology that we used for our analysis of the 18S

and 16S rDNA datasets.

Evenness and occupancy

Alpha diversity determines the diversity of individuals in local communities [Marcon
et al., 2014]. Indices are used to describe the general properties of a community and
then this enables us to compare different regions or taxa [Morris et al., 2014]. There are
a number of alpha diversity indices available, such as the Shannon diversity (H' =- 3 P
; In(P;), where P; is the proportion of individuals belonging to species i) [MacArthur
and MacArthur, 1961] which is sensitive to the different number of species present in
a community [Morris et al., 2014], [Johnson and Burnet, 2016]. Taxonomy evenness is
the similarity in relative abundance across the sample locations [Zhang et al., 2012].
An evenness value ranges between 1 and 0, with an evenness value of 1 corresponding
to complete evenness and 0 no evenness. The occupancy refers to how many sample
sites that species occurs in.

We produced an abundance, species evenness and occupancy plot for each 18S
rDNA class level (n=>54) and 16S rDNA class level (n=57). The z-axis represents
the number of times that taxon occurs across the stations. The y-axis represents the
evenness of that taxon across stations it occurs in. Each circle represents a taxon
abundance. The size of each circle is resized by replacing the area of the circle which
represented the total abundance for that taxon with the square root of the abundance
divided by 7. The evenness and occupancy plot was calculated using a Dispersion
index, which is a variant of Pielou’s evenness [Pielou, 1966, and based on Shannon
diversity index [Payne et al., 2005].

There are multiple indices available to quantify biodiversity, but there is no consen-

sus regarding which is more appropriate and informative [Morris et al., 2014]. For our
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analysis, we choose the Shannon diversity index which is equally sensitive to rare and
abundant species [Morris et al., 2014]. We also choose the Dispersion index which is
also sensitive to samples containing rare species [Payne et al., 2005]. It is important for
us to consider both abundant and rare species in our analysis. Rare species are defined
as those with very low abundance and are not present in every sample [Chapman et al.,
2018]. Our 18S and 16S rDNA datasets contain a considerable portion of rare species,
~42% and ~40% respectively.

The presence and abundances of some species in a particular location may not
be independent of some other species [Schluter, 1984]. In this circumstance, there
would be a potential need to adjust the Shannon index to account for non-independent
species. We would then combine the non-independent species into modules instead
of considering them separately. We would then apply the combined presence and

abundance in the Shannon diversity index.

Breakpoint analysis

We performed a breakpoint analysis based on the methodology from [Castro-Insua
et al., 2016]. This approach plots beta diversity against temperature. Beta diversity is
a measure of the amount of variation in species composition for a community among
samples [Ricotta, 2017]. Beta diversity enables us to compare and contrast commu-

nities. There are a number of different indices for beta diversity. The beta diversity

b+c
2a+b+c

indices that we use in our breakpoint analysis is the Sgrensen indices (5 s =

= b%a + (Zaﬁ:bljrc) ( b%@)), where “a” is the number of species two sites have in common,
“b” is the number of unique species in the poorest site and “c” is the number of unique
species in the richest site [Baselga and Orme, 2012].

The breakpoint analysis enabled us to search for temperature breakpoints in the
18S and 16S rDNA datasets. This analysis provided insight about changes in the
biodiversity of the identified prokaryotic and eukaryotic species across the different
temperatures of the polar region in the Arctic Ocean, through the temperate region in
the North Atlantic Ocean and into the tropical region in the South Atlantic Ocean.

A breakpoint was determined and plotted for each of the 185 rDNA class level
(n=54) and 16S rRNA class level (n=>57) datasets. This was calculated by firstly

producing a presence absence matrix for each dataset. A multiple-site dissimilarity was
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performed on the presence absence matrix with beta.pair, a function from the betapart
R package and a dissimilarity index set to sorensen. These values were then plotted
against temperature, to enable us to get a range of values in which the breakpoint
might be located. We then searched through these possible breakpoints for the one
with the lowest mean squared error. In each of the 18S rDNA and 16S rDNA datasets
plots the y-axis represents the beta diversity and the z-axis represents temperature

with piecewise regression lines and breakpoints shown.

Co-occurrence analysis

We also undertook a co-occurrence analysis with weighted Gene Co-Expression Network
Analysis (WGCNA) [Langfelder et al., 2008], a method for finding modules (a WGCNA
term used to describe networks) of highly correlated individuals. The prokaryotes at the
taxonomic rank of genus and eukaryotes at the taxonomic rank of species normalised
files were combined for each station (n=50). Using the R package WGCNA on samples
of combined prokaryotes and eukaryotes we obtained modules derived from their log10-
scaled abundances.

A network can be described by its adjacency matrix. The adjacency matrix (a;;) is
calculated by first defining a co-expression similarity (s;; = |cor(x;, x;)|, where cor is
correlation, and x; and x; are gene (species) expression profiles, consisting of expression
of genes (species) i and j across a number of samples). We performed a signed co-
expression measure to keep track of the sign of positively correlated genes (species)
of the co-expression measure. Also, we transformed the co-expression similarity into a
weighted adjacency (an adjacency that keeps track of the correlation values determined
between genes (species)), as we wanted the adjacency to keep track of the connection
strength (correlation coefficient value) between the genes (species) [Langfelder et al.,
2008].

To construct a signed weighted network we first determined a soft threshold which is
a power called beta (5 >1) [Langfelder et al., 2008]. The soft threshold was determined
by using the pickSoftThreshold function, which is part of the WGCNA package, in
R [Langfelder et al., 2008]. We use the power to raise the correlation calculation
(a;; = |(1+cor(x;, x;))/2| )?) so the network is constructed with the emphasis on

high correlations at the expense of low correlations, therefore the network is more
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robust [Zhang and Horvath, 2005], [Langfelder et al., 2008]. We choose the lowest
power that results in approximate scale free topology as measured by the scale free
topology fitting index [Zhang and Horvath, 2005]. For our data, we got a power
of 11. Therefore a signed weighted adjacency measure for each pair of species was
determined by raising the absolute value of the correlation coefficient to the power of
11. A topological overlap measure (TOM) was calculated from the resulting adjacency
matrix. Hierarchical clustering was carried out on the TOM measure. This resulted in
two modules being found ((a) n=70 and (b) n=51).

Highly correlated modules are not distinct, therefore using the modules’ eigengene,
which is the first principal component of a module, to be a representative of that
module, in order to further examine the modules, to merge highly correlated (>0.75)
modules based on their eigengene [Langfelder and Horvath, 2007]. This did not result in
the two modules being merged and therefore the two modules were taken for analysis.
When incorporating environmental data, latitude values were redefined, so that the

North pole is 0°, the Equator is 90° and the South pole is 180°.

3.4 Results

3.4.1 Rarefaction curves

Samples taken from a population should be a representative of that population, but we
are unable to visually confirm the organisms we are attempting to capture. Rarefac-
tion curves are a standard tool for analysis, in order to generate a rarefaction curve,
the number of species is plotted as a function of the number of individuals sampled.
Rarefaction curves are a means of determining if sequencing depth is sufficient [Wooley
et al., 2010]. Also with rarefaction curves, we can compare the diversity among the
samples [Hughes et al., 2001]. Initially, if the curve begins with a steep slope and
then at some point, the curve begins to level off this indicates that fewer species are
being discovered in the sample. If the slope increases more gently, this indicates less
contribution of the sampling to the total number of species. Interpreting a comparison
of the diversity among the samples in the rarefaction curves plot can be achieved by

taking the highest shared sample size (x-axis) between the curves and examining the
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curves position to each others in relation to the number of leaves in taxonomy (y-axis),
the curves that are highest along the y-axis are more diverse [Wooley et al., 2010].
The rarefaction curves in figure 3.7a and 3.7b were generated using MEGAN and
are based on the taxonomic classification of 18S and 16S rDNA species and genus level,
respectively. In each rarefaction curve, the individual curves represent a single sample,
as we ran rarefaction curves on each sample and then the curves are plotted together
per dataset. The samples are coloured by region, which corresponds to the map of the
region sampling sites in figure 3.1a, where the polar Arctic Ocean samples are coloured
black, the temperate North Atlantic Ocean samples are coloured red and the tropical

South Atlantic Ocean samples are coloured yellow.

o0 200

Number of leaves in taxonomy

0 50000 100000 150000 200000 250000 300000 0 25000 50000 75000 100000 125000150000 175000200000 225000 250000275000 300000

Number sampled from leaves

Figure 3.7: (a) rarefaction curves for 185 rDNA species level (n=54) and (b) the rar-
efaction curves for 16S rDNA genus level (n=>57). In each panel the colours correspond
to the sample sites of the three expeditions, April to May 2011 in red (North Atlantic
Ocean), June to July 2012 in black (Arctic Ocean) and November to December 2012 in
yellow (South Atlantic Ocean). The rarefaction curves were generated using MEGAN

As seen in figure 3.7a for the 18S rDNA species, there is a sharp rise at first in
the curves of the samples from the Arctic Ocean coloured in black and the curves
of the samples from the South Atlantic Ocean coloured in yellow. The curves of the

samples from the North Atlantic Ocean coloured in red rise slightly less sharply at

70



first compared to the other samples from the Arctic Ocean and South Atlantic Ocean.
Then all the curves begin to rise more slowly as rarer species are added and then the
curves level off. The levelling off of all of the curves happens quite quickly, therefore
we conclude that sufficient sampling was achieved during the three expeditions.

In figure 3.7a for the 18S rDNA species, the curves for the samples from the South
Atlantic Ocean coloured in yellow contain the greatest amount of diversity. The curves
for the samples from the Arctic Ocean and North Atlantic Ocean coloured in black
and red, respectively, contain in general about an equal amount of diversity, with the
exception of several red samples which have a higher amount of diversity.

For the 16S rDNA species as shown in figure 3.7b there is an even steeper rise at
first in the curves of the samples from all three expeditions. Then all curves begin to
rise more slowly as rarer species are added before the curves level off. The levelling
off of the curves happens quite quickly. Therefore we conclude that we adequately
sampled during the three expeditions.

In figure 3.7b for the 16S rDNA species, we see a similar pattern of diversity among
the samples as we did in 3.7a for the 185 rDNA species. The curves for the samples from
the South Atlantic Ocean coloured in yellow contain the greatest amount of diversity.
The curves for the samples from the Arctic Ocean and North Atlantic Ocean coloured
in black and red, respectively, contain in general about an equal amount of diversity,

with the exception of a few red samples which have a higher amount of diversity.

3.4.2 Principal Coordinates Analysis

A clustering analysis was performed in MEGAN for each of our 18S and 16S rDNA
datasets. Principal Coordinates Analysis (PCoA) is a multidimensional scaling tech-
nique which enables us to compare a large number of samples at once. PCoA attempts
to order the objects across the axes of principal coordinates. PCoA accomplishes this
by employing a linear transformation of the distance or dissimilarities between the ob-
jects onto the plot, while also seeking to explain as much of the variance in the initial
dataset [Ramette, 2007], [Paliy and Shankar, 2016]. PCoA summarises the community
compositional differences between the samples, the principal coordinates from a PCoA

are plotted against each other and each point in the plot represents a sample. The
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relative positioning of the point represents the relationships among the variables mea-
sured in the samples [Goodrich et al., 2014], [Paliy and Shankar, 2016]. The distance
of the groups from one another cannot be quantified with a high degree of reliability as
a reflection of the dataset. This is due to the fact that PCoA summarises the dataset
in a two dimensional scatterplot, the two principal coordinates used in the plot only
explain a fraction of the variability in the dataset [Goodrich et al., 2014]. The groups
within the PCoA can be determined by using betadisper, a function from the vegan
R package, which calculates how compact the objects are by calculating the average

distance of group members to the centroid of that group [Simpson, 2006].
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Figure 3.8: Principal coordinates analysis (PCoA) of a represents the eukaryotic com-
munities (n=>54) and b, represents the prokaryotic communities (n=57) at the taxo-
nomic rank of class. In MEGAN, communities are clustered according to their similar-
ity based on Bray-Curtis distances. The samples are numbered and coloured by region;
these numbers and colours correspond to the map of the region sampling sites in figure
3.1a, where the Arctic Ocean samples are coloured black, the North Atlantic Ocean
samples are coloured red and the South Atlantic Ocean samples are coloured yellow
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Any distance or dissimilarity matrix can be used in a PCoA [Paliy and Shankar,
2016]. Multivariate analyses of ecological data are often based on a dissimilarity matrix,
such as Bray Curtis [Anderson and Santana-Garcon, 2015]. Bray Curtis accounts
for both species presence and abundances at each site [Pos et al., 2014]. A distance
matrix based on Bray Curtis (X | z; - z; | / ¥ (z; + x;), where z are the counts of
species in samples i and j) was used to calculate the distance between samples to be
plotted [Ricotta and Podani, 2017].

Displayed in figure 3.8a is the 18S rDNA (n=>54) dataset at the taxonomic rank of
class along with higher level taxonomic assignments but excluding those assigned to
the eukaryote node. Displayed in figure 3.8b is the 16S rDNA (n=>57) dataset at the
taxonomic rank of class along with higher level taxonomic assignments but excluding
those assigned to the prokaryotes node. In each PCoA plot the samples are numbered
and coloured by region; these numbers and colours correspond to the map of the region
sampling sites in figure 3.1a, where the Arctic Ocean samples are coloured black, the
North Atlantic Ocean samples are coloured red and the South Atlantic Ocean samples
are coloured yellow.

The 18S rDNA are presented in figure 3.8a with PC1 accounting for 24% of sample
variation, while PC2 accounts for 19.9% of sample variation. Overall the 185 rDNA
samples are to a reasonable extent clustering well by region, as the matching colours are
grouped together. Also for the 185 rDNA samples, there is a transition of the samples
from black to red to yellow, which coincides with how the samples are positioned by
latitude as can be seen in figure 3.1a. There are 4 samples that are outliers, these are
samples 29, 52, 34 and 37 which are shown in figure 3.8a at the bottom left side of
the plot. These samples came from the North Atlantic Ocean expedition as explained
in section 3.2.1. Dr.Willem van de Poll and Dr.Klaas Timmermans noted that at the
time of sampling a bloom may have been occurring, which could explain why these
samples are clustering differently since their composition and abundance is remarkably
different from the other samples in that region of the North Atlantic Ocean.

The 16S rDNA are shown in figure 3.8b with PC1 accounting for 51.6% of sample
variation, while PC2 accounts for 26.3% of sample variation. The 16S rDNA samples
are also to a reasonable extent clustering well by region, as the matching colours are

grouping together. The 16S rDNA samples transition from black to red to yellow in
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the shape of a horseshoe, this shape is indicative of an underlying linear gradient. Also
this transition of colour coincides with how the samples are positioned by latitude as

can be seen in figure 3.1a.

3.4.3 Heatmaps

Figure 3.9a and 3.9b display heatmaps arranged by latitude for the 18S and 16S rDNA
datasets, respectively. The numbers at the bottom of the heatmap correspond to
sample site numbers as shown in figure 3.1a. The heatmaps are arranged by placing
the most abundant taxa at the top of the plot down to the least abundant at the bottom.
Heatmaps enabled us to overview the distribution, composition and abundance of our
datasets. The heatmaps were generated on loglO-scaled abundances of the 18S and
16S rDNA datasets, using the heatmap.2 function, which is part of the gplots package,
in R.

In figure 3.9a is the 18S rDNA at the taxonomic rank of class along with higher level
taxonomic assignments but excluding those assigned to the eukaryote node. The most
abundant and constant eukaryotic taxon across the samples is the U.Stramenopiles.
The U.Stramenopiles represent Stramenopiles species that could not be identified to
the taxonomic level of class or below. Stramenopiles are a very diverse group of marine
microbes and have been found inhabiting the oceans of the world, both in open ocean
and coastal areas [Lin et al., 2012]. Therefore this is not a surprising result, that
Stramenopiles are the most abundant and constant group throughout our samples.
Also for example, in figure 3.9a, Dinophyceae abundance increases from the polar
regions of the Arctic Ocean as we move down into the tropical region of the South
Atlantic Ocean. This result is as expected, as Dinophyceae are found in the polar and
tropical regions, with a higher abundance found in the tropical regions [Okolodkov and
Dodge, 1996], [Taylor et al., 2007].

The taxonomy entries at the bottom of the heatmap from around the entry U.Rhodophyta
and below are the ones that are driving diversity. There are a greater number of taxon-
omy entries in samples from around 29 to 68 which are located in the tropical regions
compared to those samples around 1 to 28 located in the colder regions, which cor-

responds to what one would expect as the tropical regions are more diverse then the
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Figure 3.9: Panel a and b represents heatmaps of abundances arranged by latitude to
the taxonomic rank of class, a represents the 18S rDNA taxonomy and b represents
the 16S rDNA taxonomy. The taxonomy names in the dataset are displayed along the
right side. The numbers at the bottom correspond to sample locations as shown in
figure 3.1 a. The three regions of the Arctic Ocean, North Atlantic Ocean and South
Atlantic Ocean are displayed underneath their corresponding sample numbers. The
colours correspond to logl0-scaled abundances of the 18S and 16S rDNA, where red
colours are high values and blue colours are low values. The heatmaps were generated
using the heatmap.2 function, which is part of the gplots package, in R
colder regions.

In our PCoA plots in figure 3.8a at the bottom left side of the plot we identified
4 samples that are outliers, these are samples 29, 52, 34 and 37. In the heatmap in
figure 3.9a it can be seen clearly how these samples’ composition and abundance are
different from those of the surrounding samples. These samples came from the North
Atlantic Ocean expedition as explained in section 3.2.1. As noted before, Dr.Willem
van de Poll and Dr.Klaas Timmermans noted that at the time of sampling a bloom

was occurring, which could explain why these samples are clustering differently, since

their composition and abundance are remarkably different from the other samples in

75



that region of the North Atlantic Ocean.

Displayed in figure 3.9b is the 16S rDNA at the taxonomic rank of class along
with higher level taxonomic assignments but excluding those assigned to the bacteria
node. Likewise, for 16S rDNA, the top entries are the most abundant and constant
throughout our samples going down to our least abundant and constant. The most
abundant and constant taxon across our 16S rDNA samples is the Gammaproteobacte-
ria. The Gammaproteobacteria are a large class of bacteria and can be found through-
out the world’s oceans [Williams et al., 2010], [Franco et al., 2017]. Therefore it is
somewhat reassuring that Gammaproteobacteria are the most abundant and constant
group throughout our 16S rDNA samples.

Also, the taxonomy entries at the bottom of the heatmap from around the entry
U.Chlamydiae and below are the ones that are driving diversity. There are a greater
number of taxonomy entries in samples from around 1 to 13 and 48 to 68 which are
located in the polar and tropical regions, respectively. The pattern appears “n” shaped
because diversity is decreasing in taxonomy entries from the polar regions as we pass
into the temperate regions and then increasing as we pass into the tropical regions.

This pattern is different to what is shown in the 18S rDNA heatmap in figure 3.9a.

3.4.4 Evenness and occupancy

For each of the species in our 18S and 16S rDNA datasets an evenness score (J) was
calculated (J = H' /log(number of species), where H' is the Shannon diversity index)
[Morris et al., 2014]. The occupancy refers to how many sample sites that species
occurs in. A description of the methodology for the evenness and occupancy plots can
be found in Section 3.3.3.

In figure 3.10a and 3.10b, we present an evenness and occupancy plot of the 18S and
16S rDNA datasets, respectively. In figure 3.10a is the 18S rDNA at the taxonomic rank
of class along with higher level taxonomic assignments but excluding those assigned to
the eukaryote node. Displayed in figure 3.10b is the 16S rDNA at the taxonomic rank
of class along with higher level taxonomic assignments but excluding those assigned
to the prokaryotes node. The numbers in the figure 3.10a and 3.10b correspond to

taxonomy names which can be found in the Appendix A.C.
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Figure 3.10: Panels a and b represent abundance taxonomy evenness and occupancy
plots for the 18S and 16S rDNA datasets, respectively. The numbers in the plots
correspond to taxon names which can be found in the Appendix A.C. The z-axis
represents the number of times that class taxonomy occurs across the stations. The
y-axis represents the evenness of that class taxonomy across stations it occurs in. Each
circle represents a class taxonomy abundance. The size of each circle corresponds to the
total abundance for that class, calculated by taking the square root of the abundance
divided by m

The class evenness occupancy plot displayed in figure 3.10a for 18S rDNA shows
that the more then 50% of the 18S rDNA classes have an evenness value between 0.5 to
0.85. This result indicates that the majority of the 18S rDNA classes are moderately
to constantly present throughout our samples. A gradient pattern of high to low
abundance and occupancy is observed of the 185 rDNA classes. The largest abundance
is indicated by the greatest size of the circles and is located on the upper right hand
corner of the plot. As the occupancy goes from high on the right hand side of the plot
to low on the left hand side, the sizes of the circles decrease, indicating abundance also

decreases. The Stramenopiles (1), Cryptophyta (2) and Mamiellophyceae (3) are the

most abundant and widespread classes. From the 185 rDNA heatmap in figure 3.10a,
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Stramenopiles are shown to dominate communities in the polar and temperate regions
and decline only slightly in the tropical region. To a lesser degree, Cryptophyta also
dominate communities in the polar and temperate regions and decline in the tropical
region. Whereas Mamiellophyceae are more abundant in communities from the tropical
region than in the polar and temperate regions.

The class evenness occupancy plot displayed in figure 3.10b of 16S rDNA shows
the vast majority of the 16S rDNA taxonomy have an evenness value around 0.6 to
1. Therefore as we observed with the 185 rDNA species, the majority of the 16S
rDNA species are also moderately to constantly present throughout our samples. Also,
a gradient pattern of high to low abundance and occupancy is observed for the 16S
rDNA species. As the occupancy goes from high on the right hand side of the plot to
low on the left hand side, the sizes of the circles decrease, indicating abundance also
decreases. The Gammaproteobacteria (1), Alphaproteobacteria (2) and Flavobacteriia
(3) are the most abundant and widespread. From the 16S rDNA heatmap in figure
3.10b, Gammaproteobacteria are shown to dominate communities in the polar and
temperate regions and decline very slightly in the tropical region. To a lesser degree,
Flavobacteriia also dominate communities in the polar and temperate regions and
decline in the tropical region. Whereas Alphaproteobacteria are more abundant in
communities from the tropical and temperate regions than in the polar region.

Note that in panel a of figure 3.10 the 185 rDNA (n=54) for Prostomatea, Nas-
sophorea, Synurophyceae, Chlorodendrophyceae, Apicomplexa, Chrysomerophyceae,
Cephalochordata and Eleutherozoa are excluded from the analysis due to insufficient
data to calculate the Shannon index. Also for 16S rDNA (n=57) in panel b Spar-
tobacteria and Nitrospira were excluded from the analysis due to insufficient data to

calculate the Shannon index.

3.4.5 Environmental plots

In this section, we present environmental plots. These plots were generated in collab-

oration with Dr.Schmidt.
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Correlation heatmaps

In figure 3.11 panel a is the correlation heatmap for the Arctic Ocean samples, in panel
b is the correlation heatmap for the North Atlantic Ocean samples and in panel c is the
correlation heatmap for the South Atlantic Ocean samples. The correlation heatmaps
enabled us to understand the statistical relationship of each taxon to the environmental
variables. We produced the correlation heatmap with hierarchical clustering dendro-
grams on logl0-scaled abundances of the 18S and 16S rDNA using the cor function,
which is part of the WGCNA package and heatmap.2 function, which is part of the
gplots package, in R. Displayed in figure 3.11 is the 18S rDNA at the taxonomic rank
of class along with higher-level taxonomic assignments but excluding those assigned to
the eukaryote node. Displayed in figure 3.12 is the 16S rDNA at the taxonomic rank
of class along with higher-level taxonomic assignments but excluding those assigned to
the prokaryotes node.

In figure 3.11a, which represents the correlation heatmap for the 18S rDNA of
the Arctic Ocean samples, we observe that under temperature, salinity, longitude and
latitude the heatmap is divided into two parts. We also can see according to the den-
drogram on the left-hand side of the heatmap that the taxa form two large clusters.
The cluster of taxa represented on the top part of the correlation heatmap is pre-
dominantly taxa that are positively correlating with temperature, salinity, longitude
and latitude, while the cluster of taxa represented in the bottom half of the correla-
tion heatmap is predominantly taxa that are negatively correlating with temperature,
salinity, longitude and latitude. Under phosphate and silicate, there is no discernible
pattern that can be determined for either of the clusters of taxa.

In figure 3.11b, which represents the correlation heatmap for the 18S rDNA of the
North Atlantic Ocean samples, we can see according to the dendrogram on the left-
hand side of the heatmap that the taxa form three clusters. The correlation heatmap
is roughly divided into eight blocks of positively correlating and negatively correlating
variables. The cluster of taxa represented on the top part of the correlation heatmap is
predominantly taxa that are positively correlating with temperature, salinity, longitude
and latitude, and negatively correlating with phosphate and silicate. The largest cluster

of taxa represented in the middle part of the correlation heatmap is formed by two
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Figure 3.11: Correlation heatmaps of identified taxonomic classes and environmental
data, a represents the Arctic 18S rDNA classes, b represents the North Atlantic 18S
rDNA classes and ¢ represents the South Atlantic 18S rDNA classes. The class names
in the dataset are displayed along the right side and hierarchical clustering dendrogram
on the opposite side. The environmental parameters are displayed at the bottom and
hierarchical clustering dendrogram on the opposite side. The colours correspond to
the Pearson correlation coefficient, where blue indicates a positive and red a negative
correlation. The grey colour corresponds to no results, due to insufficient abundance

data across the samples. The actual coefficients and p-values are given in Appendix
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smaller clusters, each with their own preference for the environmental variables. For the
cluster of taxa at the top of the middle cluster of the correlation heatmap, the majority
of the taxa are correlating positively with temperature, salinity, longitude and latitude,
and negatively correlating with phosphate and silicate. For the cluster of taxa at the
bottom of the middle cluster of the correlation heatmap, this consists predominantly of
taxa that are negatively correlating with temperature, salinity, longitude and latitude,
and positively correlating with phosphate and silicate. The cluster of taxa represented
on the bottom part of the correlation heatmap is predominantly taxa that are negatively
correlating with temperature, salinity, longitude and latitude, and positively correlating
with phosphate and silicate.

In figure 3.11c, which represents the correlation heatmap for the 185 rDNA of the
South Atlantic Ocean samples, we can see according to the dendrogram on the left-hand
side of the heatmap that the taxa form three large clusters plus a singleton. The cluster
of taxa represented on the top part of the correlation heatmap is predominantly taxa
that are positively correlating with temperature, salinity, phosphate and silicate, while
negatively correlating with longitude and latitude. The cluster of taxa represented
in the middle of the correlation heatmap is predominantly taxa that are positively
correlating with temperature, phosphate and silicate, longitude and latitude, while
negatively correlating with salinity. The cluster of taxa represented at the bottom
of the correlation heatmap is predominantly taxa that are negatively correlating with
temperature, salinity, phosphate and silicate, while positively correlating with longitude
and latitude. The singleton at the very bottom of the correlation heatmap is correlating
negatively with phosphate, silicate, longitude and latitude, while correlating positively
with salinity and temperature.

Specifically in the example in figure 3.11a, Chlorophyceae have a slightly negative
correlation relationship with temperature and a slightly positive correlation relationship
with salinity. In figure 3.11b, Chlorophyceae have a slightly negative correlation rela-
tionship with temperature and no correlation relationship with salinity. In figure 3.11c,
Chlorophyceae have a negative correlation relationship with temperature and salinity.
These results are not what is observed elsewhere in our analysis, for example, Chloro-
phyceae are more abundant in a tropical region, according to the 18S rDNA heatmap

in figure 3.9a. It has been observed that species belonging to the group Chlorophyta,
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of which Chlorophyceae is a member, can live even in extremely hot environments such
as hot springs where temperatures can reach as high as 60°C [Mezhoud et al., 2014].
Therefore other relationships, potentially even positive correlations with temperature
and salinity, would be possible in regions such as the South Atlantic Ocean.

In figure 3.12a, which represents the correlation heatmap for the 16S rDNA of
the Arctic Ocean samples, we observe that under temperature, salinity, longitude and
latitude the heatmap is divided into two parts. We also can see according to the den-
drogram on the left-hand side of the heatmap that the taxa form two large clusters.
The cluster of taxa represented on the top part of the correlation heatmap is pre-
dominantly taxa that are positively correlating with temperature, salinity, longitude
and latitude, while the cluster of taxa represented in the bottom half of the correla-
tion heatmap is predominantly taxa that are negatively correlating with temperature,
salinity, longitude and latitude. Under phosphate and silicate, there is no discernible
pattern that can be determined for either of the clusters of taxa.

In figure 3.12b, which represents the correlation heatmap for the 16S rDNA of
the north Atlantic Ocean samples, we observe that the correlation heatmap is divided
into four parts. We also can see according to the dendrogram on the left-hand side
of the heatmap that the taxa form two large clusters. The cluster of taxa represented
on the top part of the correlation heatmap is predominantly taxa that are positively
correlating with temperature, salinity and latitude, while negatively correlating with
phosphate, silicate and longitude. The cluster of taxa represented in the bottom half of
the correlation heatmap consists predominantly of taxa that are negatively correlating
with temperature, salinity and latitude, while positively correlating with phosphate,
longitude and silicate.

In figure 3.12c¢, which represents the correlation heatmap for the 16S rDNA of the
South Atlantic Ocean samples, we can see according to the dendrogram on the left-
hand side of the heatmap that the taxa form five clusters, three small clusters and
two larger clusters. The two small clusters of taxa represented on the top part of the
correlation heatmap, are predominantly positively correlating with latitude, salinity
and temperature, while negatively correlating with longitude, silicate and phosphate.
The larger cluster of taxa represented in the middle part of the correlation heatmap,

are predominantly negatively correlating with latitude, salinity and temperature, while
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Figure 3.12: Correlation heatmaps of identified taxonomic classes and environmental
data, a represents the Arctic 16S rDNA classes, b represents the North Atlantic 16S
rDNA classes and ¢ represents the South Atlantic 16S rDNA classes. The class names
in the dataset are displayed along the right side and hierarchical clustering dendrogram
on the opposite side. The environmental parameters are displayed at the bottom and
hierarchical clustering dendrogram on the opposite side. The colours correspond to
the Pearson correlation coefficient, where blue indicates a positive and red a negative
correlation. The grey colour corresponds to no results, due to insufficient abundance
data across the samples. The actual coefficients and p-values are given in Appendix
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positively correlating with longitude, silicate and phosphate. The two small clusters
of taxa represented on the bottom part of the correlation heatmap, are predominantly
negatively correlating with latitude, salinity and temperature, while negatively corre-
lating with longitude, silicate and phosphate.

Specifically for the example in figure 3.12a, b and ¢, Nc.Cyanobacteria have a
positive correlation relationship with temperature and salinity. Cyanobacteria are
more abundant in the tropical regions, according to the 16S rDNA heatmap in fig-
ure 3.9a. Cyanobacteria can be found throughout the oceans of the world with a
higher abundance for some of the species under Cyanobacteria in the tropical regions
of the world [Flombaum et al., 2013].

Note that in figure 3.11 and figure 3.12 a number of the taxa are excluded from
the analysis due to insufficient data to calculate the correlation coefficient values.
In figure 3.11 panel a which represents the 18S rDNA from the Arctic Ocean the
taxa excluded are Actinopteri, Ascidiacea, Bangiophyceae, Gregarinasina, Gymnolae-
mata, Mammalia, Nc.Rhizaria, U.Bilateria and U.Eleutherozoa. In figure 3.11 panel
b which represents the 18S rDNA from the North Atlantic Ocean the taxa excluded
are Aconoidasida, Echinoidea, Mammalia, Mediophyceae, Nassophorea, Ophiuroidea,
Prostomatea, U.Chlorophyta and U.Ciliophora. In figure 3.11 panel ¢ which repre-
sents the 185 rDNA from the South Atlantic Ocean the taxa excluded are Chloroden-
drophyceae, Chrysomerophyceae, Coccidia, Compsopogonophyceae, Fragilariophyceae,
Holothuroidea, Malacostraca, Mammalia, Nc.Chordata, Rhodellophyceae, Synurophyceae,
U.Apicomplexa and U.Chlorophyta. In figure 3.12 panel a which represents the 16S
rDNA from the Arctic Ocean the taxa excluded are Anaerolineae, Erysipelotrichia,
Gemmatimonadetes, Halobacteria, Nitrospira, Rubrobacteria and U.Firmicutes. In fig-
ure 3.12 panel b which represents the 16S rDNA from the North Atlantic Ocean the taxa
excluded are Deinococci, Erysipelotrichia, Fusobacteriia, Gemmatimonadetes, Nega-
tivicutes, Oligosphaeria, Rubrobacteria, Solibacteres, Spartobacteria and U.Firmicutes.
In figure 3.12 panel ¢ which represents the 16S rDNA from the South Atlantic Ocean

the taxa excluded are Erysipelotrichia, Oligosphaeria, Solibacteres and Spirochaetia.
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Non-metric multidimensional scaling

In figure 3.13a and 3.13b we present the non-metric multidimensional scaling (NMDS)
plots for the 18S and 16S rDNA datasets, respectively, with environmental factors fit-
ted. The numbers correspond to sample locations as displayed in figure 3.1a. NMDS
plots allow us to visualise the distance matrix that is based on Bray-Curtis. Also,
environmental factors that significantly correlate to 18S and 16S rDNA communities
were fitted the the plot. Only environmental variables with a p-value of < 0.05 were se-
lected. We performed NMDS with the metaMDS function and fitted the environmental
variables with the envfit function, both functions are part of the vegan package, in R.
This allowed us to investigate which environmental variables are driving the diversity
of 18S and 16S rDNA communities. Figure 3.13a shows the 185 rDNA dataset at the
taxonomic rank of class along with higher level taxonomic assignments but excluding
those assigned to the eukaryote node. Similarly, figure 3.13b shows the 16S rDNA
dataset at the taxonomic rank of class along with higher level taxonomic assignments
but excluding those assigned to the bacteria node. We logl0 transformed the 18S and
16S rDNA datasets for our NMDS analysis.

In figure 3.13a which displays the 18S rDNA dataset, temperature, salinity, phos-
phate and silicate are the environmental factors fitted, each with a p-value of 0.001.
The majority of the samples cluster together, distinct from a sub-population on the
right hand side of the plot. This sub-population is composed of samples 29, 34, 37 and
52. These are the same samples that cluster separately in the ordination analysis of
the PCoA plots in figure 3.8a. In figure 3.13a, the short distance between the vectors
representing the environmental variables temperature and salinity suggests that they
are strongly positively correlated with one another. Likewise, for phosphate and sil-
icate, the represented vectors are also positioned very close together, indicating they
have a very strong positive correlation. Also given the opposing orientation of the pairs
of environmental variables of temperature and salinity to phosphate and silicate this
suggests a strong negative correlation between the two pairs. In the larger cluster, the
samples are grouped by their regions of Arctic Ocean, North Atlantic Ocean and South
Atlantic Ocean. Samples from the polar region of the Arctic Ocean correlate strongly

to phosphate and silicate, and samples from the tropical region of the South Atlantic
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Figure 3.13: Panel a, NMDS of sampled stations with each number representing one
sample of the 18S rDNA community. Significant environmental vectors for temperature
(p=0.001), salinity (p=0.001), phosphate (p=0.001) and silicate (p=0.001) were fixed.
Panel b, NMDS of sampled stations with each number representing one sample of
16S rDNA community. Significant environmental vectors for temperature (p=0.001),
salinity (p=0.001), phosphate (p=0.001) and silicate (p=0.001) were fixed. NMDS was
performed with the metaMDS function and the environmental variables were fitted
with the envfit function (permutation test, 999 permutations). Both functions are
part of the vegan package, in R. The numbers correspond to sample locations and the
colours of the numbers correspond to ocean regions, black corresponds to the Arctic
Ocean, red corresponds to the North Atlantic Ocean and yellow corresponds to the
South Atlantic Ocean as shown in figure 3.1a

Ocean correlate strongly to temperature and salinity.

In figure 3.13b, which displays the 16S rDNA dataset, temperature, salinity, phos-
phate and silicate are again the environmental factors fitted, each with a p-value of
0.001. In figure 3.13b, the distance between the vectors representing the environmental
variables temperature and salinity suggests that they are positively correlated, though
not so strongly as in the 185 rDNA dataset. Likewise, for phosphate and silicate,
the vectors are positioned even closer together, indicating they are strongly positively
correlated. Also given the position of the vector representing temperature to those of

phosphate and silicate this suggests a negative correlation, while salinity has a nega-

tive correlation to phosphate but a very weak correlation to silicate. The samples are
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grouped by their regions of Arctic Ocean, North Atlantic Ocean and South Atlantic
Ocean. Samples from the polar region of the Arctic Ocean correlate with phosphate and
silicate, while samples from the tropical region of the South Atlantic Ocean correlate

with temperature and salinity.

Alpha diversity versus temperature

We investigated alpha-diversity (Shannon index) (as explained in section 3.3.3) in re-
lation to the environmental covariates. To determine which environmental covariates
were significant in the 18S and 16S rDNA datasets, the environmental covariates were
related to the datasets’ Shannon index by fitting generalized linear models. We then
used a step-by-step backwards selection of the environmental covariates for model build-
ing and removed non-significant environmental covariates until the remaining environ-
mental covariates were significant.

For the 18S and 16S rDNA datasets, temperature was the only significant envi-
ronmental covariate with a p-value of 5.73e-2 and a p-value of 2.6e-05, respectively,
that explained significant amounts of variation in the diversity for each of the 18S
and 16S rDNA datasets. In figure 3.14a and 3.14b we present alpha diversity plotted
against temperature for 18S and 16S rDNA respectively. The y-axis represents the
alpha diversity for the stations, the z-axis represents the temperature. The numbers
in the plots correspond to sample locations, according to the map in figure 3.1a. For
each of the datasets, a significant positive correlation was observed, for the 18S rDNA
dataset a R? of 0.4 with a p-value of 1.99e-07 and for the 16S rDNA dataset a R? of
0.7 with a p-value < 2.2e-16. The alpha diversity was lower in the polar and temperate
communities and highest in the tropical communities.

This relationship is also observed in the heatmaps in figure 3.9a and 3.9b for the
18S and 16S rDNA datasets, respectively. In the heatmaps, diversity increases as we
move from the cold regions in the Arctic Ocean to the tropical regions of the Atlantic

Ocean.
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Figure 3.14: Panel a, a positive correlation of 185 rDNA diversity based on Shannon
index with temperature. Based on backward model selection temperature was the
only significant environmental covariate determined. Panel b, a positive correlation of
16S rDNA diversity, based on Shannon index with temperature. Based on backward
model selection where temperature was the only significant environmental covariate
determined. In panels a and b, the numbers correspond to sample locations and the
colours of the numbers correspond to ocean regions, black corresponds to the Arctic
Ocean, red corresponds to the North Atlantic Ocean and yellow corresponds to the
South Atlantic Ocean as shown in figure 3.1a

3.4.6 Breakpoint analysis

In our previous analysis we investigated alpha-diversity in relation to the environmen-
tal covariates and determined temperature to be the only significant environmental
covariate with a p-value of 5.73e-2 for our 185 rDNA dataset and a p-value of 2.6e-05
for our 16S rDNA dataset. We, therefore, chose to perform a breakpoint analysis in
relation to temperature alone. The breakpoint analysis enabled us to investigate how
increasing temperature affects the changing diversity of 18S and 16S rDNA across the
Arctic Ocean down to the South Atlantic Ocean.

Displayed in figure 3.15a is the 18S rDNA dataset at the taxonomic rank of class
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along with higher level taxonomic assignments but excluding those assigned to the
eukaryote node. In figure 3.15b is the 16S rDNA dataset at the taxonomic rank of
class along with higher level taxonomic assignments but excluding those assigned to
the prokaryote node. In figure 3.15a and 3.15b is the breakpoint analysis for the
18S and 16S rDNA datasets, respectively. The numbers in the plots correspond to
sample location as shown in figure 3.1a. The y-axis represents the beta diversity across

the stations, the z-axis represents the temperature and the horizontal line marks the

breakpoint.
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Figure 3.15: Panels a and b represent breakpoint analysis to the taxonomic rank of
class, a represents the 185 rDNA dataset and b represents the 16S rDNA dataset.
The numbers correspond to sample locations as shown in figure 3.1a. The breakpoint
analysis was generated using piecewise regression in R as detailed in [Castro-Insua
et al., 2016]. The y-axis represents the beta diversity across the stations. The z-axis
represents the temperature. In each plot, the horizontal line marks the breakpoint. For
the 18S rDNA dataset in panel a the breakpoint is 13.96°C with a p-value of 8.407e-
11. For the 16S rDNA dataset in panel b the breakpoint is 9.49°C with a p-value of
1.413e-4

The breakpoint for the 18S rDNA dataset was determined to be 13.96°C with a
p-value of 8.407e-11 and for the 16S rDNA dataset, the breakpoint was determined
to be 9.49°C with a p-value of 1.413e-4. In figure 3.15a and 3.15b, the left hand side

of the plots represent the lower temperatures, containing sample sites from the Arctic
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Ocean and North Atlantic Ocean. The right hand side of the plots represent the higher
temperatures and therefore contain sample sites from the North Atlantic Ocean and
South Atlantic Ocean. There is a clear shift in the diversity for both the 18S and 16S
rDNA dataset at their respective breakpoints. For both datasets of 18S and 16S rDNA,
this shift in diversity occurs around the sample sites numbered in the 20’s moving into
the 30’s, which positions the breakpoints in the North Atlantic Ocean as shown in
figure 3.1a.

But the results are inconclusive due to the sparsity of the data points within the
temperature range 9°C to 14°C, therefore we cannot conclusively determine breakpoints
to exist within the temperate region of the North Atlantic Ocean. A change in diversity
for both the 18S and 16S rDNA can be seen in the heatmaps in figure 3.9a and 3.9b.
At the sample sites moving from the 20’s to the 30’s in the heatmaps which correspond
to the temperature range 9°C to 14°C, the diversity can be seen to begin to change as
it moves through the North Atlantic Ocean. Therefore potentially breakpoints within
this region of the North Atlantic could exist but without greater sampling across this

region, and at sufficient depth, we cannot determine this from our breakpoint analysis.

3.4.7 Co-occurrence analysis

In our co-occurrence analysis using the WGCNA package in R on the logl0-scaled
abundances of 18S rDNA species level and 16S rDNA genus level, two modules (a
WGCNA term used to describe networks of highly correlating individuals) were found.
In figure 3.16 we present the correlation heatmap between the two modules’ eigengenes
and the environmental variables. The module represented as blue (n=51) has a strong
positive relationship with phosphate and a moderate positive relationship with silicate.
Also, the blue module has a strong negative relationship with temperature and mod-
erate negative relationship with salinity. The module represented as turquoise (n="70)
has a strong negative relationship with phosphate and a moderate negative relation-
ship with silicate. This turquoise module also has a strong positive relationship with
temperature and a moderate positive relationship with salinity. Both the turquoise
and the blue modules exhibit a very weak relationship with the environmental variable

nitrate/nitrite. Above all the environmental variables, both the turquoise and blue
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Figure 3.16: In the co-occurrence analysis with WGCNA on the logl0-scaled abun-
dances of 18S rDNA species level and 16S rDNA genus level, two modules were found.
Depicted is the correlation heatmap between the modules’ eigengene and environmen-
tal variables. Along the left side, the two modules are displayed in turquoise (n=70)
and blue (n=>51). The environmental variables are displayed at the bottom. The
colours correspond to the correlation values; red is positively correlated and blue is
negatively correlated. The values in each of the squares correspond to the assigned
Pearson correlation coefficient value on top and p-value in brackets below

modules have the highest correlation to temperature. Also, the modules exhibit the
opposite preference to temperature, the turquoise module has a strong positive cor-
relation to temperature, while the blue module has a strong negative correlation to
temperature.

We further examined each module’s relationship to the environmental variables as
depicted in figure 3.17. The correlation heatmap shows how each individual species
of the turquoise module a (n=70) and the blue module b (n=>51) correlate to the
environmental variables. The taxa of the turquoise module represented in figure 3.17 a
(n=70) have an overall negative relationship with phosphate and silicate and an overall
positive relationship with temperature and salinity in varying degrees. The taxa of the
blue module represented in figure 3.17 b (n=>51) have an overall positive relationship
with phosphate and silicate and an overall negative relationship with temperature and
salinity in varying degrees. Both modules exhibit a very weak relationship with the

environmental variable nitrate/nitrite.

In figure 3.18al (turquoise (n=70)) and 3.18bl (blue (n=>51)) the modules are
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Figure 3.17: In the co-occurrence analysis with WGCNA on the logl0-scaled abun-
dances of 18S rDNA species level and 16S rDNA genus level, two modules were found.
Depicted is the correlation heatmap for each of the two modules a (turquoise (n=70))
and b (blue (n=>51)) of their species logl0-scaled abundances and environmental vari-
ables. Along the left side on each of the two modules a and b are displayed the species
name and environmental variables are displayed at the bottom. The colours correspond
to the correlation values; red is positively correlated and blue is negatively correlated.
The Pearson correlation coefficient values and p-values can be found in Appendix A.F
depicted as network diagrams. The edge distance between the nodes is an indication
of the correlation strength. The numbers on the nodes correspond to the taxa names;
the list of numbers to species can be found in the Appendix A.E. Degrees of con-
nectivity refers the nodes (species) with the highest number of connections to other
nodes (species). This does not automatically indicate the most abundant species or
species that appear in all the stations. We could have connectivity between species
that are lowly abundant and appear in few stations. The top five species/nodes with
the greatest degrees of connectivity are coloured in orange. For the module in fig-

ure 3.18al the five most highly connected taxa are Erythrobacter(1), Alteromonas(2),

Roseovarius(3), Marinobacter(4) and Pelagomonas calceolata(5). For the module in
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figure 3.18b1 the five most highly connected taxa are Colwellia(1), Polaribacter(2),
Balneatrix(3), Ulvibacter(4) and Amylibacter(5).

We also depict the two modules as word clouds in figure 3.18a2 (turquoise (n=70))
and 3.18b2 (blue (n=51)). These consist of the member taxa names with the size
of a word reflecting the number of connections that taxa possess. Displayed in figure

3.18a3 (turquoise (n=70)) and b3 (blue (n=>51)) are pie charts of the modules’ taxa
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Figure 3.18: Co-occurrence analysis with WGCNA on the logl10-scaled abundances of
18S rDNA species level and 16S rDNA genus level. In panels al (turquoise (n=70))
and bl (blue (n=>51)) are the two modules that we found depicted as network dia-
grams. These were generated with Cytoscape [Shannon et al., 2003]. The edge dis-
tance indicates the correlation strength between the nodes and the top five most highly
connected nodes are coloured in orange. The numbers on the nodes correspond to the
taxa names, the list of names to numbers of the taxa can be found in the Appendix
A.E. In panels a2 (turquoise (n=70)) and b2 (blue (n=51)) the modules are depicted
as word clouds. These consist of the member species and genus names, generated
in WordCloud.com. The larger the name, the more connections that taxa has. In
panel a2, taxa Crocinitomix, Salinirepens, Bacillus, Bradyrhizobium, Rubritalea, Ar-
cobacter, Delftia, Marinicella, Nonlabens and Psychroflexus were removed as they are
unreadable due to their frequency being too low to display with the others. In panels
a3 (turquoise (n="70))and b3 (blue (n=>51)) are pie charts of the classes of the modules
taxa. The list of names of the taxa to their class can be found in the Appendix A.E
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class membership; the list of names of the taxa to their class can be found in the
Appendix A.E. Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, Pelago-
phyceae, Spirotrichea, Alveolata, Dinophyceae and Stramenopiles are the greatest con-
tributors in each module and are similarly proportionate. In figure 3.18a3 (turquoise
(n=70)), Actinobacteria and Bacilli contribute significantly but are unique to that
module. Also in figure 3.18b3 (blue (n=>51)) Chlorophyta, Dicictyochophyceae and
Haptophyceae contribute significantly and are unique to that module. These results
are consistent with what we see in the heatmaps in figure 3.9a and 3.9b. The heatmaps
show the distribution and abundance across the samples from the polar Arctic Ocean

down to the tropical South Atlantic Ocean.

3.5 Discussion

In this chapter, we have presented a phylogenetic analysis of phytoplankton 18S and
16S rDNA. We described the methodology of the phylogenetic analysis and normalised
copy number for both the 18S and 16S rDNA dataset, and their analysis with rar-
efaction curves, heatmaps, PCoA, evenness and occupancy plots, environmental plots,
breakpoint analysis and co-occurrence analysis. This was a unique large scale examina-
tion of the 18S and 16S rDNA species communities taken from a transect of the Arctic
and Atlantic oceans that was sampled in close proximity to the coast. There are sig-
nificant differences between coastal waters and the open ocean. Coastal waters have a
lower temperature and higher nutrient content in comparison to the open ocean [Tose-
land et al., 2013]. Therefore coastal waters are more productive than the open ocean
for phytoplankton, in terms of, for example, Chlorophyll a concentrations and primary
productivity [Trimborn et al., 2015]. This has therefore given us a new understanding
of how the environmental conditions affect phytoplankton species communities.
While to the best of our abilities we have extensively sampled and precisely de-
signed our experimental approaches there are limitations in our analysis. One such
limitation is that the North Atlantic Ocean samples were acquired from two other col-
laborators; Dr.Willem van de Poll of the University of Groningen, Netherlands and
Dr.Klaas Timmermans of the Royal Netherlands Institute for Sea Research. Their

sampling procedures were slightly different to those performed by Dr.Katrin Schmidt
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who performed an additional pre-filtering step with a 100m mesh to remove larger
organisms. Also another limitation is that a number of the samples from the North
Atlantic Ocean failed to pass quality control steps during sequencing. From our 18S
rDNA samples a total of 13 out of 24 samples failed from the North Atlantic Ocean
and also station 4 from the Arctic Ocean. From our 16S rDNA samples, a total of 10
samples failed out of 24 from the North Atlantic Ocean and also station 61 from the
South Atlantic Ocean. In addition, only a single sample was obtained at each station;
we did not obtain replicate samples. However, we regard these as minimal limitations
given the number of high quality samples that we obtained and the relatively close
proximity of the samples to one another.

For our analysis of the 18S and 16S rDNA datasets, we identified a gradient of in-
creasing diversity, as we moved from the cold temperatures of the Arctic Ocean down
to the tropical temperatures of the South Atlantic Ocean. These findings are what
we expected to observe, as it has been known for years that diversity is higher in the
warm tropical regions than in the cold polar regions of the world [Brown, 2014]. We
also identified a number of 18S and 16S rDNA species that were occurring continuously
throughout the samples, which included, for example, Stramoenopiles and Gammapro-
teobacteria, and these findings are consistent with previewed published works have
found [Lin et al., 2012}, [Franco et al., 2017].

We further identified in both 18S and 16S rDNA datasets, that the samples from the
polar region of the Arctic Ocean are correlated strongly to phosphate and silicate, and
samples from the tropical region of the South Atlantic Ocean are correlated strongly
to temperature and salinity. In addition, for both the 18S and 16S rDNA datasets
we found that temperature was the only significant environmental covariate for alpha
diversity. In our co-occurrence analysis with WGCNA on the 18S rDNA species level
and 16S rDNA genus level, we found two modules. The larger of the modules (turquoise
(n=70)) was found to have a strong positive correlation relationship to temperature,
indicating that this module is likely to be found in a warm climate. In contrast, the
smaller module (blue (n=51)) was found to have an overall strong negative correlation
relationship to temperature, indicating that this module is likely to be found in a cold
climate. These co-occurrence analysis results are important as we can hypothesise that

different microbial communities have different preferences for temperature. Moreover,
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as global warming is predicted to raise the temperatures in the ocean, our results
could potentially enable us to forecast how climate change will affect these microbial
communities using climate models underpinned by genetic information.

In our breakpoint analysis of the 18S and 16S rDNA datasets, we identified a
putative breakpoint of 13.96°C for the 18S rDNA dataset and 9.49°C for the 16S rDNA
dataset. This positioned the breakpoint in the North Atlantic Ocean off the coast of
France. It is interesting to note that the breakpoints were all located in the temperate
region of the North Atlantic Ocean. Therefore as you move from the cold Arctic Ocean
to the warm tropical regions in the South Atlantic Ocean there is a radical shift in the
diversity and interactions of the 18S and 16S rDNA species communities. There have
been various types of studies that have included a breakpoint analysis, such as [Campra
and Morales, 2016] which looks at surface air temperature records in southeastern Spain
over a number of years. Also, another breakpoint study is [Castro-Insua et al., 2016],
which is an analysis of various terrestrial animals such as bats and birds across latitudes
in America. They determined a number of breakpoints for each of their subject animals,
and these were found in the range of 25° to 58° latitude [Castro-Insua et al., 2016].
Our breakpoints are also located in this latitude range, as we can determine from our
metadata that the 185 rDNA breakpoint of 13.96°C is located at 59.5° latitude and
the 16S rDNA breakpoint is located at 45.5° latitude. But our results are currently
inconclusive due to the sparsity of the data points within the temperature range 9
to 14°C, therefore we cannot conclusively determine breakpoints to exist within the
temperate region of the North Atlantic Ocean. To explicitly determine breakpoints in
our 18S and 16S rDNA datasets we require further sampling to be uniformly distributed

across the entire sampling range and of sufficient sampling depth throughout.
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Chapter 4

Metatranscriptomics analysis

4.1 Summary

In the last chapter, we analysed 18S and 16S rDNA datasets from the Arctic Ocean,
North Atlantic Ocean and the South Atlantic Ocean and found a greater diversity of
microbes in the tropical regions of the South Atlantic Ocean, versus the polar regions
of the Arctic Ocean. Additionally, in our co-occurrence analysis on the 18S and 16S
rDNA datasets, we found two community networks, one positively correlated to tem-
perature and the other negatively correlated to temperature. Based on these results,
we can hypothesise that different microbial communities have different preferences for
temperature. We also performed a breakpoint analysis on our 18S and 16S rDNA
datasets and found a shift in diversity occurring in the North Atlantic Ocean. In par-
ticular, the shift occurs in the temperate region of the Ocean, between the polar Arctic
Ocean and the tropical South Atlantic Ocean.

Now we focus on the question of what are the microbes doing, and in particular
gaining an understanding of their genetic activity. Moreover, it will be of interest to
see if the different data types (16S/18S rDNA data and metatranscriptome data) are
in agreement or not. To address this question, we shall perform a metatranscriptomic
analysis. In the next section, we describe the sequencing of the metatranscriptomic
dataset. In Section 4.3 we describe our pipelines for the metatranscriptomic analysis,
as well as additional methods, then we will present the results of our analysis in Section

4.4. In Section 4.5, we end with a discussion of the results presented in this chapter.
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4.2 Sequencing and preprocessing

The samples were collected as described in chapter 3. All samples were sequenced
and preprocessed by the Joint Genome Institute (JGI) (Department of Energy, Walnut
Creek, CA, USA). Metatranscript sequencing was performed on an [llumina HiSeq-2000
instrument [Huntemann et al., 2016]. A total of 65 samples passed quality control after
sequencing with 5.7 Gb of sequence read data over all samples for analysis. Here we

describe the JGI’s computational pipeline for preprocessing the metatranscript reads.

Sequence
reads

Reads were cleaned

Silva DB

Reads were aligned against SILVA database to
remove ribosomal RNA and human reads

BBmerge

Merging overlapping paired end reads

BBNorm

Normalise dataset to achieve a flat coverage distribution

Rnnotator

Assembling the metatranscriptome

Files for

analysis

Figure 4.1: Diagram of JGI’s computational pipeline for preprocessing the metatran-
script reads. The pipeline at various stages incorporates databases (blue), BBTools
tools (green) and processed files (grey)

In figure 4.1 we provide an overview of the JGI pipeline. JGI employed their suite
of tools called BBTools [DOE Joint Genome Institute, 2017| for preprocessing the
sequences. As shown in figure 4.1, first the sequences were cleaned using a tool called
Duk [DOE Joint Genome Institute, 2017]. Duk (see Section 2.4.1) is a tool in the
BBTools suite, that performs various data quality procedures such as quality trimming
and filtering by kmer matching [DOE Joint Genome Institute, 2017]. In our dataset,

Duk identified and removed adapter sequences, and also quality trimmed the raw reads

98



to a phred score of Q10. In Duk the parameters were; kmer-trim (ktrim) was set to
r, kmer (k) was set to 25, shorter kmers (mink) set to 12, quality trimming (qtrim)
was set to r, trimming phred (trimq) set to 10, average quality below (maq) set to 10,
maximum Ns (maxns) set to 3, minimum read length (minlen) set to 50, the flag “tpe”
was set to t, so both reads are trimmed to the same length and the “tbo” flag was
set to t, so to trim adapters based on pair overlap detection. The reads were further
filtered to remove process artefacts also using Duk with the kmer (k) parameter set to
16.

BBMap [DOE Joint Genome Institute, 2017] is also a tool in the BBTools suite,
that performs other operations such as making sequence alignments of DNA and RNA
reads to a database. BBMap aligns the reads by using a multi-kmer-seed-and-extend
approach [DOE Joint Genome Institute, 2017]. To remove ribosomal RNA reads, the
reads were aligned against a trimmed version of the SILVA database using BBMap with
parameters set to; minratio (minid) set to 0.90, local alignment converter flag (local)
set to t and fast flag (fast) set to t. Also any human reads identified were removed
using BBMap [DOE Joint Genome Institute, 2017].

BBmerge [DOE Joint Genome Institute, 2017] is a tool in the BBTools suite that
performs the merging of overlapping paired end reads [DOE Joint Genome Institute,
2017]. For assembling the metatranscriptome, the reads were first merged with the tool
BBmerge, and then BBNorm was used to normalise the coverage so as to generate a
flat coverage distribution. This type of operation can speed up assembly and can even
result in an improved assembly quality [DOE Joint Genome Institute, 2017].

Finally as shown in figure 4.1, Rnnotator [Martin et al., 2010] was employed for
assembling the metatranscriptome. Rnnotator assembles the transcripts by using a de
novo assembly approach of RNA-Seq data and it accomplishes this without a reference
genome [Martin et al., 2010]. The tool BBMap was used for reference mapping, the
cleaned reads were mapped to metagenome/isolate reference(s) and the metatranscrip-

tome assembly [DOE Joint Genome Institute, 2017].
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4.3 Methods

4.3.1 Computational pipeline for taxonomic classification anal-
ysis

PhymmBL is a hybrid taxonomic classifier, that combines Phymm composition-based
taxonomic predictions and BLAST based homology results to label each of the input
sequences [Mande et al., 2012]. Phymm employs interpolated Markov models (IMMs)
which is a form of the Markov chain that uses a variable number of states to calculate
the probability of the next state. Phymm builds IMMs to characterize the variable
length oligonucleotides that are distinct for a particular phylogenetic clade, whether
it be a species, genus or a higher taxonomic level. During construction of the IMMs,
the IMM algorithm builds a probability distribution based on the observed patterns
of nucleotides that describe each species in the reference database. During classifica-
tion for each of the input sequences, each of the IMMs is used as a scoring method
by inspecting the nucleotides in the input sequence and then outputs a score that
corresponds to the probability that the input sequence was generated from the same
distribution as that used to construct the IMM. The input sequence is classified with
the clade labels that belong to the organism whose IMM produced the best score for
that input sequence. During BLAST, each input sequence is submitted as a BLASTN
query, searching against the same reference database used to generate the IMMs, and
clade labels are assigned for the best BLAST hit. The combined score of Phymm
and BLAST for PhymmBL is determined by using the function score=IMM+1.2(4-
log(E)), where IMM is the score from the best matching IMM and E is the smallest
E-value given by BLAST. It has been demonstrated by [Brady and Salzberg, 2009a]
that PhymmBL’s hybrid method outperforms Phymm and BLAST separately and also
that BLAST outperforms Phymm [Brady and Salzberg, 2009a].

The metatranscriptomic dataset was taxonomically classified using Dr.Andrew Tose-
land’s taxonomic classification pipeline as described in [Toseland et al., 2013]. This
pipeline employ’s PhymmBL [Brady and Salzberg, 2009b] which contains phytoplank-
ton in its database, and the contents of PhymmBL’s default database were reduced by

taking the first occurrence of a species under each genus. We ran the pipeline with
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Dr.Toseland’s assistance.

The PhymmBL taxonomic classification pipeline contains a representative set of 44
eukaryote organisms. This set consists of genomes and expressed sequence tags (EST)
of the major eukaryote groups with a focus on algal species. From NCBI-dbEST the
EST sequences were downloaded. Then with CD-HIT-est these EST sequences were
clustered with a 95% similarity in order to ensure non-redundancy of the sequences.
The genome sequences were downloaded from NCBI GenBank, JGI and separately four
genomes; Cyanidioschyzon merolae, Danio rerio, Homo sapiens and Strongylocentrotus
purpuratus were downloaded. These four genomes were obtained from specific locations
as outlined in Appendix B.A. Species such as Danio rerio and Homo sapiens were
included to check for contamination. Taxonomic classifications were taken from the
NCBI taxonomy [NCBI Resource Coordinators, 2016] and AlgaeBase [Guiry, M.D. &
Guiry, 2008] to produce a PhymmBL configuration file. In batch mode, the sequence
files and taxonomic details were added to PhymmBL and interpolated Markov models
(IMMs) were created for each new organism [Toseland et al., 2013].

For each sequence, PhymmBL outputs a taxonomic label of genus, family, order,
class and phylum with a confidence score between 0 and 1 [Brady and Salzberg, 2011].
For our PhymmBL results, we took a confidence score cutoff of > 0.9 at the phylum
level to order to ensure our results were as accurate as possible. For each sample,
the number of sequences under each taxon was summed up. The files were further

normalised by applying hits per million.

4.3.2 Computational pipeline for functional analysis

JGI performed the functional analysis on the metatranscriptomic dataset. A functional
analysis for a metatranscriptomic dataset is a standard pipeline but we liaised with
JGI, and they updated their pipeline based on our feedback. For example, functional
analysis results obtained using JGI’s Integrated Microbial Genomes (IMG) standard
pipeline were different to those obtained using the standard JGI pipeline. It was found
that this was due to different versions of databases being employed. This feedback
induced JGI to update their databases in their standard pipeline.

Our datasets were submitted to JGI’s IMG. JGI's annotation system is called the
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Metagenome Annotation Pipeline (MAP) (v4.15.2). JGI used HMMER 3.1b2 [Eddy,
1996] and the Pfam v30 [Finn et al., 2016] database for the functional analysis of our
metatranscriptomic dataset. There are other databases that perform similar roles but

we only discuss Pfam because that is the one we use for this thesis.

4.3.3 Further analysis

In this section, we describe the methodology that we developed for our analysis of the
metatranscriptomic dataset. From JGI's IMG, we downloaded a Pfam file for each
sample. This resulted in 7,453 Pfam functional assignments and their gene counts

across the 65 samples. The files were further normalised by applying hits per million.

Canonical Correspondence Analysis (CCA)

We used the R package VEGAN to perform a Canonical Correspondence Analysis
(CCA) between the Pfam dataset and the environmental data. CCA uses a dataset of
measured variables such as Pfam gene counts in our case, and a dataset of additional
explanatory variables such as temperature and salinity during the analysis, in order to
find the relationship between the two datasets, and therefore enable us to determine
how might the environmental variables determine the response variable values [Paliy
and Shankar, 2016].

Environmental variables such as temperature and salinity can influence microbial
communities [Hou et al., 2017]. Therefore in chapter 3 for the analysis of our 18S and
16S rDNA datasets, we used NMDS plots to visualise the distance matrix based on
Bray-Curtis [Paliy and Shankar, 2016] with environmental factors fitted that signifi-
cantly correlate to 18S and 16S rDNA communities. To analyse the metatranscriptome
data we instead performed a CCA on our Pfam protein families datasets, because not
all genes are affected by environmental variables such as housekeeping genes which are
constantly expressed [Eisenberg and Levanon, 2013]. CCA enables us to determine
what proportion of our dataset is affected by environmental variables and identify the
environmental variables that significantly explain the variation of our dataset [Paliy
and Shankar, 2016].

We log10 transformed the Pfam normalised gene counts, as explained in chapter
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3 so that the data complies better to the assumptions of a parametric statistical test
[Paliy and Shankar, 2016]. The environmental data consisted of temperature, salinity,

nitrate/nitrite, phosphate and silicate.

Co-occurrence analysis

The methodology of how we performed the co-occurrence analysis is outlined in section
3.3.3. Based on the Pfam logl0-scaled gene counts dataset the power beta (8 >1) was
determined to be 15.

The co-occurrence analysis resulted in fifteen modules being found, that included a
grey module which represents those taxa that could not be assigned to a module. The
modules were further examined to determine if any modules were highly correlated
(>0.75) to one another based on their eigengene. This resulted in two modules being

merged and therefore thirteen modules were taken for analysis.

4.4 Results

4.4.1 Taxonomic classification heatmap

In figure 4.2 we present a heatmap that we generated, arranged by latitude for the
taxonomic classified metatranscriptomic dataset at the taxonomic rank of phylum.
The numbers at the bottom correspond to sample site numbers as shown in figure
3.1a. The heatmap is arranged by placing the most abundant read counts at the
top of the plot down to the least abundant read counts at the bottom. Heatmaps
enabled us to overview the distribution, composition and abundant read counts of our
dataset. In figure 4.2 we basically observe no gradient of increasing diversity of taxa
across the samples as we move from the polar Arctic Ocean through the temperate
North Atlantic Ocean and into the tropical South Atlantic Ocean. This is in contrast
to what we observed in the heatmaps of the 18S and 16S rDNA datasets in figure
3.9a and 3.9b, respectively. In figure 4.2 the majority of the taxa display a consistent
abundance across the samples. There is variation between taxa abundance, as the
heatmap is roughly divided into four blocks of colour.

It is not meaningful to compare the read counts of the metatranscriptomic dataset
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Figure 4.2: A heatmap of the metatranscriptomic dataset taxonomically classified and
arranged by latitude versus the taxonomic rank of phylum. The taxonomy names in the
dataset are displayed along the right side. The numbers at the bottom correspond to
sample locations as shown in figure 3.1 a. The three regions of the Arctic Ocean, North
Atlantic Ocean and South Atlantic Ocean are displayed underneath their corresponding
sample numbers. The colours correspond to logl0O-scaled read counts, where purple
colours are high values and blue colours are low values. The heatmap was generated
using the heatmap.2 function, which is part of the gplots package, in R

in figure 4.2 with the abundances of the 18S and 16S rDNA datasets in figure 3.9.
This is because abundance gives an indication on the density of a species, whereas
read counts only give an indication of presence or absence. However with metagenomic
data that we will have in the near future for these sample sites, we can use this data
to compare with the abundances of the 18S and 16S rDNA datasets. We do not see
a gradient on species in the metatranscriptomic dataset as we did in the 18S and 16S
rDNA datasets because the 18S and 16S rDNA analysis targets specific genes and then
taxonomically classifies the samples against a reference database based on the SILVA

database as described in Section 3.3.1 and Section 3.3.2, respectively [Reller et al.,

2007]. In contrast the metatranscriptomic analysis employs direct cDNA sequencing of
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the sample and then taxonomically classifies it against a reference databases of genomes
and NCBI expressed sequence tags (EST) as described in Section 4.4.1 [Leimena et al.,
2013].

However, we can compare identified taxa entities between the metatranscriptomic
dataset and the 18S and 16S rDNA datasets, as a means of confirmation between the
two analyses. In figure 4.3 a and b we represent Venn diagrams, comparing the number
of taxa entities at the taxonomic rank of phylum between the 18S rDNA dataset to
the metatranscriptomic dataset and the 16S rDNA dataset to the metatranscriptomic
dataset, respectively. In figure 4.3 a, in the comparison of the 18S rDNA taxa entities
to the metatranscriptomic taxa entities we see they share 27 taxa entities such as
Dinophyta and Chlorophyta, while the 18S rDNA dataset contains 27 unique taxa
entities such as Rotifera and the metatranscriptomic dataset contains 64 unique taxa
entities such as Crenarchaeota. In figure 4.3 b, the comparison of the 16S rDNA
taxa entities to the metatranscriptomic taxa entities we see they share 18 taxa entities
such as Cyanobacteria and Proteobacteria, while the 16S rDNA dataset contains 13
unique taxa entities such as Balneolaeota and the metatranscriptomic dataset contain

56 unique taxa entities such as Ignavibacteriae.

18S rDNA

Metatranscriptome
b 16S rDNA

Metatranscriptome

Figure 4.3: Panel a and b represents Venn diagrams of the number of taxa entities in
the 18S, 16S rDNA and metatranscriptome datasets at the taxonomic rank of phylum.
Panel a is comparing the 18S rDNA dataset and metatranscriptome dataset. Panel
b is comparing the 16S rDNA dataset and metatranscriptome dataset. (Figure was
generated with http://bioinformatics.psb.ugent.be/webtools/Venn/)
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4.4.2 Rarefaction curves

The rarefaction curves in figure 4.4 are based on the Pfam protein families. These curves
were generated using the rarecurve function, which is part of the VEGAN package, in
R. The numbers displayed in the plot correspond to sample location, as shown in figure
3.1a. As outlined in section 3.4, rarefaction curves enable us to investigate if we have

sufficient data to justify the results of our analyses.
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Figure 4.4: Rarefaction curves for Pfam protein families. The numbers displayed in
the plot correspond to sample location. The x-axis represents the random subsample
size taken from the dataset and the y-axis indicates the number of unique Pfam protein
families found. The R package VEGAN using the rarecurve function was employed to
perform the rarefaction curves analysis

In figure 4.4, there is a sharp rise at first in all the curves for the 65 samples. The
majority of the curves, for example samples 47, 64 and 25, rise more slowly as more
rare species are added, and then the curves level off. There are a number of curves,
for example samples 53, 66 and 45, which level off immediately. The levelling off of all
of the curves happens quite quickly, therefore we conclude that sufficient sampling was

achieved.
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4.4.3 Principle Components Analysis (PCA)

The Principle Components Analysis (PCA) in figure 4.5 is based on the Pfam protein
families (logl0 transformed) gene counts. This PCA was generated using the prin-
comp function, which is part of the VEGAN package, in R. The numbers and colours

displayed in the plot correspond to sample location, as shown in figure 3.1a.
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Figure 4.5: A Principle Components Analysis (PCA) for the Pfam protein families
(logl0 transformed) gene counts. The samples are numbered and coloured by region;
these numbers and colours correspond to the map of the region sampling sites in figure
3.1a, where the Arctic Ocean samples are coloured black, the North Atlantic Ocean
samples are coloured red and the South Atlantic Ocean samples are coloured yellow.
The R package VEGAN using the princomp function was employed to perform the
PCA

PCA is one of the most popular methods for exploratory analyses, as it is a simple
visualization tool to summarize dataset variance [Ramette, 2007], [Paliy and Shankar,
2016]. The general principle of PCA is to calculate new synthetic variables called

principal components. Principal components are linear combinations of the initial

variables and these attempts to account for as much of the variance of the initial dataset
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as possible. The objective is to represent the objects and variables of the dataset in a
new system of coordinates. This is generally on two axes where the maximum amount
of variation from the initial dataset can be displayed [Ramette, 2007]. The largest
gradient of variability in the dataset is represented by the first principal component
axis of the PCA. The second principal component represents the second largest and so
on, till all the dataset variability has been accounted for [Paliy and Shankar, 2016].

Displayed in figure 4.5 is the Pfam protein families (log10 transformed) gene counts
for the first two principal components. In the PCA plot the samples are numbered and
coloured by region; these numbers and colours correspond to the map of the region
sampling sites in figure 3.1a, where the Arctic Ocean samples are coloured black, the
North Atlantic Ocean samples are coloured red and the South Atlantic Ocean samples
are coloured yellow.

The Pfam protein families dataset is derived from the metatranscriptomic dataset.
The functional analysis which generated the Pfam protein families dataset is outlined
in Section 4.4.2. The activity of the organisms within each sample is reflected in the
functional composition of transcripts, any changes may indicate a metabolic response
to conditions [Klingenberg and Meinicke, 2017]. Therefore the Pfam protein families
dataset represented in figure 4.5 is a based on similarity of activity level.

The Pfam protein families dataset displayed in figure 4.5 has PC1 accounting for
26.97% of sample variation, while PC2 accounts for 8.4% of sample variation. Overall
the Pfam protein families samples are to a reasonable extent clustering well by region,
as the matching colours are grouped together. Also for the Pfam protein families
samples, there is a general transition of the samples from black to red to yellow, which

coincides with how the samples are positioned by latitude as can be seen in figure 3.1a.

4.4.4 Canonical Correspondence Analysis (CCA)

In figure 4.6 we present a CCA for the Pfam protein families dataset. The numbers in
the CCA plot correspond to sample site numbers as shown in figure 3.1a. The y-axis
represents the CCA2, the z-axis represents the CCAl, and the arrows represent the
direction and the length of the vectors for the environmental variables. A CCA enables

us to find the relationship between the Pfam protein families and the environmental
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variables, and therefore enable us to determine how the environmental variables might
determine the response variable values of the Pfam protein families [Paliy and Shankar,

2016].
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Figure 4.6: A CCA for the Pfam protein families. The numbers in the plots correspond
to sample locations as given in figure 3.1a. The numbers are coloured by region, red
is for the North Atlantic Ocean, black is for the Arctic Ocean and yellow is for South
Atlantic Ocean. We used the R package VEGAN to perform a Canonical Correspon-
dence Analysis (CCA) between the Pfam dataset and the environmental data. The
y-axis represents the CCA2 and the z-axis represents the CCA1. The arrows represent
the direction and the length of the vector. Each vector represents an environmental
factor variable

CCA captured 13.3% of the total variability within the dataset. CCA1 accounts for
approximately 45.7% of the constrained variability, with CCA2 accounting for 28.9%,
CCA3 accounting for 12.8% and CCA4 accounting for 12.6%. In figure 4.6, the first
axis CCALl is associated with increasing temperature, while the second axis CCA2 is
associated with decreasing salinity, increasing nitrate/nitrite and increasing phosphate.
The samples are plotted in relation to the arrows, indicating how they are influenced
by these environmental variables. The samples from the tropical region of the South
Atlantic Ocean, plotted on the right hand side of the figure are strongly influenced by

temperature. The samples from the polar region of the Arctic Ocean, plotted on the

left hand side of the figure, are poorly influenced by temperature.
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4.4.5 Breakpoint analysis

In figure 4.7 we present a breakpoint analysis for the Pfam protein families dataset.
The breakpoint analysis was generated using piecewise regression in R as outlined in
section 3.3.3. The numbers in the plot correspond to sample location as shown in figure
3.1a. The y-axis represents the beta diversity across the stations, the z-axis represents
the temperature and the horizontal line marks the breakpoint. The breakpoint analysis
enabled us to investigate how increasing temperature affects the changing diversity of
the Pfam protein families from the polar Arctic Ocean through the temperate North

Atlantic Ocean and down to the tropical South Atlantic Ocean.
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Figure 4.7: A breakpoint analysis for the Pfam protein families. The numbers in the
plots correspond to sample locations as given in figure 3.1a. The breakpoint analysis
was generated using piecewise regression in R as outlined in section 3.3.3. The y-axis
represents the beta diversity across the stations. The z-axis represents the temperature.
In the plot, the horizontal line marks the breakpoint. The Pfam protein families
breakpoint is 18.06°C with a p-value of 1.24e-07

In figure 4.7, the left hand side of the plot represents the lower temperatures con-
taining sample sites from the Arctic Ocean and North Atlantic Ocean. As we move
across to the right hand side of the plot, which represents the higher temperatures, we
move to sample sites from the North Atlantic Ocean and South Atlantic Ocean. The

breakpoint for the Pfam protein families was determined to be 18.06°C with a p-value

of 1.24e-07. There is a clear shift in the diversity for the Pfam protein families at the
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breakpoint. This shift in diversity occurs around the samples located in the temperate
region of the North Atlantic Ocean just before we move into the tropical region of the
South Atlantic Ocean.

The location of the Pfam protein families breakpoint in the North Atlantic Ocean
is consistent with the breakpoint results for the 18S and 16S rDNA datasets. These
were also located in the North Atlantic Ocean, with breakpoints determined at 13.96°C
(p-value of 3.121e-06) and 9.49°C (p-value of 8.114¢-03), respectively (see chapter 3).

In figure 4.2 the heatmap of taxonomically classified sequences belonging to the
metatranscriptomic dataset, we observed no gradient of increasing diversity of taxa
across the samples as we move from the polar Arctic Ocean through the temperate
North Atlantic Ocean and into the tropical South Atlantic Ocean. In figure 4.7 the
breakpoint analysis which is based on the Pfam protein families dataset, we observed
changes in the diversity of the Pfam as we move across the polar Arctic Ocean through
the temperate North Atlantic Ocean and down to the tropical South Atlantic Ocean.
The Pfam protein families dataset is derived from the metatranscriptomic dataset.
The functional analysis which generated the Pfam protein families dataset is outlined
in Section 4.3.2. The activity of the organisms within each sample is reflected in the
functional composition of transcripts, any changes may indicate a metabolic response

to conditions [Klingenberg and Meinicke, 2017].

4.4.6 Co-occurrence analysis

In our co-occurrence analysis using WGCNA on the Pfam protein family (logl0 trans-
formed) gene counts, thirteen modules (networks) were found and a grey module which
represents those protein families that could not be assigned to a module. We call the
modules black (n=174), blue (n=>547), brown (n=515), cyan (n=83), green (n=403),
greenyellow (n=116), pink (n=162), purple (n=132), red (n=205), salmon (n=85),
tan (n=100), turquoise (n=768), yellow (n=264) and grey (n=7).

In figure 4.8 we present a correlation heatmap generated between each module’s
eigengene and environmental parameters. A number of modules were highly correlated,
either positively or negatively with the environmental variables. For example, for

temperature, the highly correlated modules are tan, blue, turquoise, yellow and pink.

111



-049 -023 -015 -0.16 -0.023 -0.045 -0.15  0.38
MEgreen (@e-05) (0.08) (0.2)  (02) (0.9  (©7)  (0.3)  (0.003) 1
MEred 0091 016 0062 027 0.4 0096 -0.052 -0.098
05  (02) (06 (004 (0002 (05  (0.7) 0.5)
-0.068 025 0.1 021 0092 018 0018 -0.15
MEblack (0.6) (0.05)  (0.4) 0.1) (0.5) 0.2) (0.9) 0.2)
—061 034 0.32 0.46 042  -018 = -0.66 037
MEbrown (3e-07) (0.009) (0.01) (3e-04) (9e-04) (0.2)  (le-08) (0.004) 05
MEnink -0.51 05 0.33 0.55 0.43 016 = -045  -0.2
pin (3e-05) (6e-05) (0.01) (7e-06) (8e-04) (0.2) (4e-04)  (0.1)
-027 | 069 06 049 0092 = -045 -054
MEyellow (0.04) | (1e-09) (4e-07) - (8e-05)  (0.5) (4e-04) (le-05)
055 -016 -012 -029 -0.42 022 0.61 0.24
MEcyan (6e=06)  (0.2) (0.4)  (0.03) (0.001) (0.09)  (3e=07) (0.07)
—0
ME " 0.19 0.47 0.42 0.4 0.14 0.22 004  -036
greenyeliow (02)  (le-04) (8e-04) (0.002)  (0.3) (0.1) (0.8)  (0.005)
MEt ) 012 | -0.64 -029 | -066 -049 -031 0.2 0.49
urquoise (0.4) | (4e-08) (0.02) | (9e-09) (8e-05) (0.02)  (0.1)  (le-04)
MEblue 013 | -074 -052 = -0.71 -042 -0.14 037 053
0.3) | (2e-10) (3e-05) (2e-10) (0.001) (0.3)  (0.004) (1e-05)
—-0.5
MEL 049 = -0.75  -0.46 —061 -0.086 | 0.64 0.55
an (8e-05) (5e-12) (2e-04) (3e-07)  (0.5)  (4e-08) (6e-06)
MEpurol 045  -032 -0056 -0.28 -0.064 -0.065  0.29 0.14
purple (3e-04) (0.01) (0.7)  (0.03)  (0.6) (0.6) (002 (0.3
0.43 -04  -0.047 = -046  -04  -014 043 03
MEsalmon (7e-04) (0.001) (0.7) (2e-04) (0.002) (0.3)  (8e-04) (0.02)
ME -017 = 041 0.47 0.42 024 00047 -031 -031 -1
grey (0.2)  (0.001) (2e-04) (0.001) (0.07) (1) (0.02)  (0.02)
@ @ & ) Q @ @ 2
&S L N & & &
(\\ \/'Zy‘9 ) Qek 24 2 R 23
(&) X$
N &é(\ é'\\s’b‘ Q‘Q

Figure 4.8: In the WGCNA analysis of the logl0-scaled gene counts of Pfam protein
families, thirteen modules (and a grey module) were found. In the figure, we present a
correlation heatmap for the modules. The fourteen modules are displayed as coloured
blocks labelled along the left hand side of the plot. The environmental parameters
are displayed at the bottom. The colours correspond to the correlation values, red
is positively correlated and blue is negatively correlated. The values in each of the
squares correspond to the assigned Pearson correlation coefficient value on top and
p-value in brackets below
For salinity only the tan module was highly correlated. For phosphate, the highly
correlated modules are tan, cyan and brown. For silicate, the highly correlated modules
are tan, blue and yellow. No modules correlated significantly with nitrate/nitrite.
The module tan (n=100) will be an ideal module for further analysis as it had

the highest correlation to the environmental variables of temperature, phosphate and

salinity as shown in figure 4.8.

4.5 Discussion

In this chapter, we have presented a metatranscriptomic analysis. We described the
dataset and the methodology of the metatranscriptomic analysis, including heatmaps,

rarefaction curves, canonical correspondence analysis, breakpoint analysis and co-
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occurrence analysis. This was a unique large-scale examination of the protein com-
position of the dataset, taken from a transect of the Arctic and Atlantic oceans, the
sampling of which is described in section 3.2.1. This has given us new insights into what
these marine microbial communities are probably doing in response to environmental
conditions.

From each sample metatranscriptomic, metagenomic, 18S and 16S rDNA sequenc-
ing was performed. As explained in section 3.5, only a single sample was obtained at
each station; we did not obtain replicate samples. In addition due to time constraints,
a full and extensive analysis of the metatranscriptomic dataset was not performed.
Further analysis is still required, as well as a more in-depth examination of the Pfam
proteins families co-occurrence analysis.

For our metatranscriptomic analysis, we performed a CCA on the Pfam protein
families dataset. With the CCA we captured 13.3% of the total variability in the Pfam
protein families dataset, and of this CCA1l accounts for approximately 45.74% of the
constrained variability. From the plot in figure 4.6 we identified CCA1 to have an
association with increasing temperature for about half of the samples.

We performed a breakpoint analysis on our Pfam protein families dataset and de-
termined the breakpoint to be 18.06°C with a p-value of 1.24e-07. This positions the
breakpoint in the temperate region of the North Atlantic Ocean off the coast of France
and is in agreement with our 18S and 16S rDNA datasets, as we identified breakpoint
of 13.96°C for the 18S rDNA dataset and 9.49°C for the 16S rDNA dataset. These
results indicate that as you move from the cold Arctic Ocean to the warm tropical
regions in the South Atlantic Ocean there is a radical shift in the diversity of the 18S
and 16S rDNA species communities and a radial shift in activity according to the Pfam
protein families.

In our co-occurrence analysis with WGCNA on the Pfam protein families dataset,
we found thirteen modules for further analysis. A number of modules were highly
correlated either positively or negatively with the environmental variables but the tan
module (n=100) had the highest correlations to the environmental variables (temper-
ature, phosphate and salinity). For future work we will continue the examination of
the thirteen modules, beginning with the tan module. For each environmental vari-

able temperature, phosphate and salinity, we will plot gene significance against module
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membership, to identify Pfam protein families in the tan module that have a high signif-
icance to that environmental variable and analyse them to understand their connection

to that environmental variable.
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Chapter 5

Discussion and future work

5.1 Summary

In chapter 3 we outlined the computational pipelines and analysis of the 185 rDNA
and 16S rDNA datasets that were derived from samples collected from a transect
of the Arctic Ocean, North Atlantic Ocean and South Atlantic Ocean. Firstly, this
involved constructing a computational pipeline for taxonomically classifying the 18S
rDNA dataset. Then we devised a methodology to normalise the 18S and 16S rDNA
copy number, in order to interpret the data in terms of species abundance rather than
read counts and therefore conduct various analyses that also included the environmental
data that was recorded during the expeditions.

From our analysis of the 18S rDNA and 16S rDNA datasets, we observed a greater
diversity of microbes in the tropical regions of the South Atlantic Ocean, in comparison
to the polar regions of the Arctic Ocean. From analyses that included environmen-
tal data, we identified temperature to be the driving force of diversity. Furthermore,
a breakpoint analysis was performed on our 185 and 16S rDNA datasets in which
we found a shift in diversity occurring in the temperate region of the North Atlantic
Ocean, between the polar Arctic Ocean and tropical South Atlantic Ocean. In addition,
from our co-occurrence analysis on the 18S and 16S rDNA datasets, we identified two
community networks. Each of these networks was found to have a temperature prefer-
ence, as one positively correlated to temperature and the other negatively correlated
to temperature.

In chapter 4 we outlined the computational pipeline of the metatranscriptomic
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dataset that was also derived from the samples that were collected from a transect of
the Arctic Ocean, North Atlantic Ocean and South Atlantic Ocean. We also outlined
the analyses of the Pfam protein families dataset. For our analysis of this dataset,
we performed a canonical correspondence analysis (CCA) and we observed which en-
vironmental variables and by how much they explained the variation in our dataset.
Furthermore, a breakpoint analysis was performed in which we found a shift in diver-
sity occurring in the temperate region of the North Atlantic Ocean, between the polar
Arctic Ocean and tropical South Atlantic Ocean. The Pfam protein families breakpoint
is in the same region as that of the 18S and 16S rDNA datasets as described in chapter
3. In addition, from our co-occurrence analysis on the Pfam protein families dataset

we identified thirteen networks for further analysis.

5.2 Future work

For future work on our 68 samples, we will continue the examination of our metatran-
scriptomic dataset. As mentioned in chapter 4, we performed a co-occurrence analysis
on Pfam protein families and this resulted in several modules being found. These
modules will be taken for further analysis and research. We aim to determine Pfam
protein families’ relationships with one another and how environmental factors may
be affecting these relationships. Also, we want to perform a GO enrichment analysis
which provides defined GO terms to genes. GO terms cover for the highest level cellu-
lar components, molecular functions, and biological processes, and at the lowest level,
these can be assigned to genes when relevant. Then we will perform various analyses
such as heatmaps in order to examine their composition and distribution.

Our 18S, 16S rDNA and metatranscriptomic analyses have given us new insights
into microbial communities, but studies of metatranscriptomes have found that func-
tional genes predicted from metagenomic studies are not necessarily expressed [Heintz-
Buschart et al., 2016], [Narayanasamy et al., 2016]. Ideally, we therefore need to
integrate metatranscriptomics with metagenomics analysis for a more conclusive link
between the genetic potential and the actual phenotype in situ [Narayanasamy et al.,
2016).

Bearing this in mind, from the 68 stations sampled, we have chosen 11 samples for
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metagenomic analysis. These are samples 1, 7, 18, 21, 22 and 23 which come from the
Arctic Ocean, sample 45 from the North Atlantic Ocean and samples 54, 57, 59 and 64
from the South Atlantic Ocean, as shown in figure 3.1a. These samples were selected
based on our 18S rDNA analysis as we were attempting to avoid samples that contain
large amounts of dinoflagellates, as they possess some of the largest nuclear genomes.
These samples have been sequenced by JGI. From the metagenomic analysis, this
should enable us to understand their genetic potential. These metagenomic samples
will be analysed by taxonomic classification and functional analysis. They will then be
compared to their corresponding metatranscriptomic samples.

In related work, Emma Langan, a PhD student in the Environmental Sciences de-
partment at UEA will be making an expedition to the Antarctic Ocean at the end
of December 2018, just before the ocean begins to freeze. The ship will float with
the ice during which time a number of samples will be collected periodically, thus
enabling the in situ real-time sequencing on Oxford nanopore sequencing instrument
of polar microbes. The aim of this study is to monitor polar microbes in relation
to their composition, distribution and abundance, and therefore monitor how climate
change and different oceanographic features may affect these polar microbes. This
will directly build on the results presented in this thesis since we examined the com-
position, distribution and abundance of microbes in the polar regions of the Arctic
Ocean, the temperate regions of the North Atlantic Ocean and the tropical regions of
South Atlantic Ocean. Sequencing in situ overcomes a number of common problems
for researchers such as samples degrading. Also, the sampling can be directed based
on real-time results rather than best guess of where to sample. Furthermore, if high
quality genome assemblies can be achieved from the nanopore long reads, they can be
used to produce reference genomes, which will be a great benefit to the research com-
munity as there are currently only a few phytoplankton reference genomes available.
This will also enable them to perform comparative genomic analysis between temperate
and polar species, in order to find the evolutionary mechanisms for polar adaptations.

Recently, more samples have been collected and sequenced by JGI. These samples
cover the gap in our data between Cape Town in the South Atlantic Ocean and the
Antarctic Ocean. Metatranscriptomic and metagenomic analysis will be performed

on these samples. The Antarctic Ocean has a seasonal temperature that rises above
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0°C and therefore these polar microbes experience reduced kinetic energy that imposes
constraints on cellular activity. But despite this, the Antarctic Ocean contributes high
levels of microbial primary production. For example, it has been estimated that while
the Antarctic Ocean represents only about 10% of the total surface area of the world’s
ocean, it contributes about 30% of the global ocean uptake of carbon dioxide. Also,
the Antarctic Ocean forms a significant amount of the oceanic food web [Wilkins et al.,
2013]. This study will, therefore, provide an important and interesting insight into how
these polar microbes live and function and how they compare with the microbes we
have analysed in this thesis.

An exciting possibility is that our data from our metatranscriptomic, 18S and 16S
rDNA datasets may be used to generate models by T. M. Lenton from the University
of Exeter. These models could potentially enable us to forecast how climate change

will affect these microbial communities [Toseland et al., 2013].

5.3 Conclusions

High-throughput sequencing technology has enabled us to study species that cannot
be grown in the laboratory. In the past, culturing a species was necessary in order
to study that species, but due to the advances of high-throughput sequencing we can
examine these species, study their expression and genetics and compare and contrast
multiple samples in metatranscriptomic and metagenomic analyses. However, there
are challenges with implementing these analyses.

The first difficulty we had was preparing the 185 rDNA datasets for analysis. In
the NCBI taxonomy not every species has a taxonomy designation at every rank. This
caused issues when trying to describe and analyse our data at the taxonomic rank of
class. We overcame this problem by placing those that do not have a taxonomic rank
of class into a new name to represent them at the class level. This situation occurs
because it is possible that there is currently no assignment at a particular taxonomic
rank that the species fits into or there is no agreement among scientists into which
higher taxonomy a species should be placed. The creation of a temporary name until
a permanent rank can be assigned would be one possible solution to this problem.

An important additional issue was caused by the 18S and 16S rDNA copy number.

118



The relationship between amplicon and species abundance is indeterminate due to
rDNA copy number variation within the genomes of different species [Perisin et al.,
2016]. While there is a 16S rDNA database available, it is not very large. The 18S
rDNA gene has no database available at all. NCBI could provide a solution to this, by
creating an 18S rDNA database. NCBI actively collects all kinds of information and
would be well positioned to accomplish this.

We were not able to taxonomically classify about a third of our 18S rDNA dataset.
We lost a considerable amount of information due to the fact that those species were
not in the NCBI database. The 16S rDNA species are much better represented in
databases such as SILVA. Only 3% of our 16S rDNA dataset could not be taxonomically
classified. This is changing, as there is an increase in the number of research studies
that are focusing on eukaryote species.

Another difficulty we had was due to the size of our datasets. We had difficulties
with the time it took to analyse our datasets. This was very apparent when we tried to
perform a GO enrichment analysis with the tools online such as WEGO 2.0 [Ye et al.,
2018]. While there are a number of websites available, very few take multiple files such
as in this study. It is therefore important to develop fast new bioinformatics tools to
handle large datasets.

Despite these difficulties, we thoroughly analysed the metatranscriptomic, 18S and
16S rDNA datasets. In the surface ocean, we identified temperature to be the im-
portant environmental factor that is driving marine microbial diversity and affecting
how these microbial communities interact with each other. While diversity increases
with increasing temperature, the composition of the microbial communities appear to
change once a threshold is reached. The breakpoint analyses of the 16S, 18S rDNA and
metatranscriptomic datasets identified breakpoints to be 9.49°C, 13.96°C and 18.06°C,
respectively. These breakpoints are located in the North Atlantic Ocean and this might
be the location of the threshold for the microbial communities to change. Since micro-
bial community composition on either side of the temperature threshold is different,
this may have consequences in terms of how global warming will affect these interac-
tions and therefore have implications for the biogeochemical cycle of elements. As more
data is collected and analysed and our understanding of ocean microbes improves, it

will be interesting to see how these predictions of our breakpoint analysis will work
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Appendix A

A.A DMetadata

Station Longitude Latitude Depth meter Temperature degrees celsius Salinity Nitrate.Nitrite Phosphate Silicate

1 -9.52472 79.0225 17 -1.0337 310274 0 0.47 2.48

2 -8.52472 79.07611 26 -1.5122 31.708 0.14 0.95 2.86

3 -7.67278 79.04278 20 -1.4645 31.3282 0 0.62 av

4 -4.08556 79.00056 35 -1.7398 339123  0.81 0.58 5.49

5 -4.08556 79.00056 10 -1.5083 32.9517  0.81 0.58 5.49

6 -4.78556 78.85611 20 -1.6191 322039 0.6 0.74 8.97

7 -3.22861 78.86694 15 -0.8805 32.3454 3.3 0.79 5.47

8 -2.83722 78.89667 110 3.0802 34.9887  10.44 1.05 4.46

9 -2.83722 78.89667 25 -1.3686 33.3389 0.7 0.46 3.03

10 -1.84 78.93667 16 4.3973 35.062 4.77 0.84 3.26

11 -0.55917 78.98167 10 1.3665 33.5306  0.69 0.5 3.64

12 3.73583 79.07278 10 0.0522 33.586 2.8 0.61 2.49

13 3.73583 79.07278 5 -0.3027 33.1465  2.21 0.51 3.12

14 4.1527 78.62153 15 5.87 35.05 NA NA NA

15 5.32861 78.83889 15 4.4939 35.0994  3.32 0.73 3.95

16 6.10556 79.08944 7 4.8199 35.1105 3.9 0.76 3.88

17 7.07639 79.06667 18 4.5614 35.0886  9.69 1.07 4.31

18 8.11222 78.86972 10 5.269 35.0693  0.51 0.49 2.75

19 9.23306 78.85139 25 2.3374 347579 2.93 0.94 2.16

20 11.30917 76.25389 15 5.5282 35.1514  6.26 0.83 4.08

21 9.85667 73.01889 20 6.0186 35.1528  6.55 0.88 3.9

22 8.86667 71.20083 10 7.1834 35.1344  4.83 0.77 3.62

23 7.73028 69.23028 10 9.0976 347321 246 0.46 1.52

24 7.73028 69.23028 5 8.7545 34.8661  0.86 0.49 1.68

25 6.53028 67.23028 15 8.9384 35.091 4.16 0.74 2.48

26 6.53028 67.23028 20 8.6781 35.1 2.38 0.66 2.12

27 5.41917 65.24611 20 9.24 34.93 2.85 0.6 244

28 5.41917 65.24611 5 9.75 34.94 1.58 0.59 2.35

29 -21.7407 62.8 10 7.69 35.2 13.35 0.862 6.69

30 -20.4903 61.7103 11 8.27 35.18 12.55 0.82 NA

31 -19.3398 60.6801 10 8.75 35.25 11.75 0.755 6.57

32 -18.0699 59.5 10 9.49 35.33 10.61 0.69 NA

33 -16.5201 58.0002 11 9.54 35.37 11.23 0.729 NA

34 -16.509 54.6333 10 10.79 35.45 7.79 0.488 1.59

35 -16.4972 52.6218 26 11.54 35.55 7.95 0.512 NA

36 -16.3567 49.9151 50 12.22 35.64 6.86 0.428 NA

37 -12.1104 47.5701 40 12.07 35.64 5.92 0.412 2.54

38 -12.4301 45.5298 16 13.96 35.81 0.33 0.049 2.18

39 -12.6098 44.2798 20 13.78 35.8 1.47 0.087 NA

40 -12.8799 42.3401 21 14.4 35.9 0.76 0.062 NA

41 -13.1901 40.5296 25 14.99 36.06 0.45 0.047 NA

42 -13.576 38.4205 67 15.9 36.26 0.52 0.045 NA

43 -13.94 36.5297 25 16.67 36.32 0.02 0.019 NA

44 -12.0872 37.833 80 20.63 36.44 0.426330313 0.065720386  0.478187565
45 -13.1352 34.876 80 21.78 36.65 0.269427308 0 0.292683967
46 -14.2597 34.7198 21 17.43 36.46 0.04 0.015 NA

47 -14.2601 34.7197 48 16.93 36.42 1.02 0.031 0.2926

48 -14.5898 32.8199 3 18.06 36.66 0.05 0.022 NA

49 -14.8699 31.2202 75 18.57 36.75 0.02 0.015 NA

50 -14.8704 31.2193 72 18.37 36.71 0.03 0.014 NA

51 -15.0705 30.0186 30 18.55 36.71 0.03 0.021 NA

52 -15 29 81 18.97 36.83 0.02 0.023 0.75105

53 -15.1548 28.937 90 23 36.6 0.543261784 0.076334058  0.751057865
54 -17.4585 26.049 80 24.62 36.9 0.516096977 0.066033049  0.405116155
55 -20.1823 23.69 60 25.25 36.57 1.954317104 0.194632089  0.689491487
56 -20.7015 18.755 45 26.78 36.17 6.127505044 0.331454155  1.187283885
57 -20.515 15.249 55 28.6 35.64 16.42369279 0.682339671  3.367016894
58 -18.6202 8.472 46 29.02 34.88 3.106489549 0.241043741  2.590527277
59 -13.602 2.405 80 27.1 35.61 6.458482733 0.3717252 2.064853304
60 -9.4218 -2.045 63 25.64 35.94 10.02985752 0.51653754  2.617416148
61 -7.0612 -4.668 47 24.71 35.83 11.32366081 0.55562155  3.066000484
62 -4.9043 -7.394 45 23.27 36.23 6.480985475 0.366034527  2.020429743
63 -0.3178 -13.104 75 20.66 36.5 4.395764083 0.236727944  0.826883927
64 2.9768 -17.283 30 18.82 35.97 0 0.19 2.63

65 3.7993 -18.25 43 18.77 35.99 8.005879218 0.444372737  0.85904911
66 5.9978 -20.987 30 18.52 35.62 5.951945303 0.392739675  0.065775733
67 7.1922 -22.644 40 18.48 35.7 0.502052705 0.044543045  0.43401924
68 9.9828 -26.441 30 18.2 35.2 2.283057742 0.173644994  0.688728588
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A.B 18S rDNA reference databases taxa IDs

1032745
639210
156996
157007
296670
44058
1104430
96791
89044
1117030
135473
413849
416808
262226
31296
45884
1054987
1054391
278983
1213618
178368
432302
507873
1247838
985835
614059
502092
46462
247150
1170558
693439
696972
358025
601995
693140
153251
47889
47894
358022
693421
550469
250467
692521

127567
127563
119481
342563
402028
1003327
397339
512344
396045
49980
219168
6009
219837
219841
653507
1071533
652930
223996
708628
515478
497703
33640
913975
303408
97221
265540
285082
211638
35117
279580
216975
425790
363325
142111
382377
216766
197897
860613
1173301
375585
375583
5997
993385

498767
67961
101922
221933
48970
179290
707317
710654
71746
138175
332216
44656
889457
170400
1082342
56002
51328
56009
464287
243130
1085968
173495
63592
3190
926286
204415
204408
515480
515477
44430
643632
652932
1050086
197538
329754
97102
395882
435893
641229
513281
211016
211025
1169006

650286
110372
238096
66473
632150
160611
1434936
2957
43686
217026
8030
7739
201616
248472
261852
31408
436072
143010
42008
173452
31461
197877
38533
309167
522302
536595
536601
221821
38836
67781
36881
94289
552938
578126
81603
332487
47887
324857
338344
686996
692885
754198
268522

1072577
1072585
1072581
75742
203142
1072566
237895
5875
27996
2865
476202
300409
86281
84966
88456
84969
700707
482538
162052
99158
29176
5811
94643
689363
62968
333133
294749
31383
282351
110459
110473
541018
46026
244810
5817
169156
346247
346240
497731
1173416
990236
990234
614050
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670782
651459
110316
348448
650289
650283
693284
650331
650333
651455
113556
240359
133427
66800
259926
2925
58156
73915
66791
497816
160621
2916
66465
325318
326149
685761
244960
205693
358189
1118043
158379
5992
696187
651135
47934
622439
182090
181653
641228
513283
1049793
513204
1071509

858356
210735
2923
425803
425804
1003175
387435
225107
189332
326572
510609
1162085
376358
107758
258031
39447
673113
271680
143672
414396
459342
400756
79894
410738
71001
858351
424504
66468
210733
39450
160623
1165720
327389
339968
566470
2960
467015
467023
358021
197901
1170553
482403
754193

1171960
35113
408072
5932
37092
104774
863766
5927
289478
289481
210825
5928
311390
1081457
230077
122942
1002335
1002334
278832
1002222
1002226
692909
693871
880990
35100
211662
881006
223573
274051
435890
669200
693053
35097
1071701
385028
57509
39461
394801
497729
990178
375587
990189
1229648

434030
181586
197858
223571
197862
274053
524897
524900
524895
693931
197857
394799
1004046
240170
1166918
455295
155143
168254
155140
168251
346245
703568
168244
168257
446414
1126575
172019
346241
168242
168248
151077
1170556
37474
2965
211642
159163
415605
273907
264369
1176393
1292461
1176361
5974



89957
584794
122588
160615
261834
302480
160619
261837
79898
388225
402582
388228
388232
107036
373098
66792
72554
261842
2866
393032
1132513
160617
2966
763934
340370
412152
418113
88552
95749
103983
51511
223366
350068
1176391
180940
385029
157072
101203
135477
92981
92972
92976
92966
986738
1054397

9606
60559
7604
82378
7668
206668
34765
569450
425018
97517
230730
491138
6669
202087
6661
194544
439682
178832
136180
299778
260977
231624
1234259
104782
1435206
322853
136452
1197702
314080
6087
209422
201645
201679
99915
5947
952936
33674
87102
463366
126728
42467
463364
4773
1127205
278125

1134686
101920
182762
1094580
257374
257375
326073
2786
1094582
35688
101926
2771
45157
82540
31354
35151
468936
82561
204479
204480
753684
110510
139984
362230
139907
139980
282340
101924
37198
82843
436068
82839
70838
488251
1071522
488247
278986
366611
366598
1054399
987159
1054387
366601
123356
983661

142497
173468
123987
257592
40391

40385

680465
31369

291393
367044
257542
173450
173447
159503
326253
122415
122413
35157

936613
339588
339604
257588
142502
31417

142499
142505
35173

142512
128537
142492
142489
128534
217487
139859
39464

864284
227086
552664
552666
67809

238782
238789
238793
160259
37095

257561
164319
257567
105601
257545
257551
88417
152008
239144
257547
257549
257554
28020
31421
305493
38544
88422
88412
31447
41686
196371
257575
29232
29222
29241
95361
29227
1269974
257571
197835
197840
197837
38372
467021
758568
124797
188973
188950
149084
188943
686740
45107
563755
987156
1408141

149

35206
81598
479265
504345
397053
81617
81584
81611
1074216
1074204
39628
322167
81592
197880
42024
327986
239160
931254
31455
257607
164055
81613
81600
81590
91060
81594
81587
81607
38331
31500
81615
406714
81619
013215
211022
402891
197904
527218
394493
693161
92969
687159
391043
332305
332301

332489
332491
332493
332497
332495
189623
284005
332501
332498
332500
189644
332483
536594
332484
31367

31472

42480

257814
191046
225046
31474

282360
110475
332481
189642
536593
536603
536604
536610
536616
536591
189638
536586
414913
57513

469766
40330

502090
39564

352448
463362
985833
350847
188946
999463

400980
400982
356898
152445
652658
330974
693924
99922
382958
385034
860611
423615
170499
346229
1174532
211028
1292964
1229645
181651
1229734
1292960
513210
1176324
1170544
247154
1071508
526559
717095
1170546
1170548
238901
1297756
692525
398671
414910
694303
459245
25726
587064
197894
366596
54108
74790
984054
340085

132687
864286
592675
2936
152452
9940
138849
331608
99999
311320
1004043
125641
94673
70075
1001742
1287487
9950
114681
558275
114678
99924
268526
278822
686991
71585
40806
1144346
163346
163350
163357
71594
2987
993383
375580
857030
692523
1170439
1030620
485330
40328
332299
88563
1170431
459518
1003332



536599
536597
536609
536614
173553
1261578
335259
173540
1261580
1261571
173548
173550
1261582
1261569
89212
155556
110469
121067
228269
110466
155558
228262
110471
1261574
35163
945030
159598
282366
282357
282355
110462
860634
99899
98045
98064
420600
92559
92556
98055
67593
143451
126844
707994
65357
1054395

159727
94299
282348
282353
103713
110477
159725
189624
189634
94295
189646
1206573
158647
131068
131064
131094
282363
189632
35161
76903
189640
189636
189648
189628
189652
268567
31486
67958
111861
35202
31490
209631
209632
877583
78393
136833
280858
281460
33653
127148
357350
272144
167961
1486930
98058

643655
320783
433419
1196376
177373
109050
244126
31363
122417
389187
89943
231748
871653
389190
48608
48948
1034349
464653
1034350
48942
48951
48615
464689
35170
464649
48962
871656
231757
348030
48959
1034343
348081
48975
279125
220110
299204
034455
366605
413940
413938
629711
629713
1191181
366592
515487

31496
31481
79259
498007
2801
700918
38265
131155
1070855
35153
2762
38271
38269
77922
95529
3032
478117
464988
77928
46947
437768
2898
195067
S7475
40526
193549
167772
551846
3046
3156
52028
71744
107616
1127141
1127137
278118
64708
98060
98066
2996
02241
590968
137466
216741
278979

164601
77548
92965
710656
87090
647327
327050
52035
269637
158507
132247
22685
142647
52679
69401
436124
361666
579148
55997
361668
56006
332218
47790
47788
51718
56011
1034561
361670
179866
3192
1158268
34115
3095
100933
687161
1044904
42384
114254
230409
42750
104657
159342
382380
443638
278121

150

327057
50045
50044
470007
3097
52964
104531
104533
104536
3175
51320
55999
33095
329040
337949
163323
993091
204991
1008953
44654
156110
1148060
132188
271407
165818
55410
271398
271396
302391
160063
132190
299577
170393
98068
64707
438413
536091
862249
626141
1108494
941460
210589
216777
178366
72520

42696
162320
162317
3092
183309
1035567
75803
113520
113536
113522
91193
3088
55409
91197
91196
202681
795116
183317
326141
651586
132186
875623
875621
875620
876697
145388
191687
307507
117505
82291
889455
31300
356782
159317
377434
1127223
1127220
1127211
1127108
1127133
1069743
44432
643630
015472
2885

238774
238761
70182
167538
37360
167535
933485
188971
5855
110365
2969
672928
340708
230744
251331
663229
340200
340204
283649
283647
326279
1127215
1127417
1127213
1127100
1127415
1127103
1127203
85466
310810
135480
114742
100874
492103
35217
39714
178364
707168
707170
178375
39717
27967
2876
29207
95585

60001
696133
1005899
1005901
88570
459270
5982
459237
459276
941344
459265
941345
459235
459268
63136
1170433
485360
909417
459257
485357
164621
1044902
523209
127229
188964
151026
361427
981202
361426
188939
87111
33676
12968
1127216
1128110
178372
432305
420607
3000
308878
44056
88167
1117027
210620
55587



179863
164533
52677
164532
3081
258848
76111
202684
133488
532145
247495
797674
797671
55402
798524
3080
247497
3099
247499
221620
75799
3074
797666
797637
91190
163309
163317
160069
63675
634749
190057
191674
249350
86898
142656
3012
185805
2880
27963
49246
265543
1003027
1003085
1090589
655750

41300
63684
3072
155715
188049
154508
173497
1034627
37433
152768
1293078
187458
1034482
413988
312843
306440
312849
200484
82176
1065496
312850
D7T7485
63683
480381
160068
34148
3093
1232723
415184
34116
60131
3171
284972
92126
92128
82369
308770
240564
240566
216801
216773
216790
265556
265552
1003084

3159
185965
138176
230557
44573
138169
73033
398706
189347
230559
230561
241068
63412
163314
160070
348768
43941
160076
93263
173490
173499
216028
153906
216033
63410
262505
262511
439779
1081497
1108641
220632
1081495
220631
96789
37475
96788
1104315
98049
45116
112064
243166
88149
64927
62313
3022

262509
173376
374114
173371
231078
231080
31301
445995
507620
3075
38881
120749
163307
120751
1065486
202679
577621
S77622
120745
1212498
1034818
183676
51329
926342
926344
162066
162062
162076
926348
162059
333302
162067
185010
74375
2835
73013
195974
73019
236787
479719
77034
240383
82161
82166
420584

221848
111460
221826
204410
204422
204419
34119
34121
34140
204412
162054
162063
35845
219609
219614
3140
35855
35853
35857
35859
2788
168183
3702
4081
3659
4558
33129
4577
4530
3760
3871
284941
1486889
1003075
09812
210444
327391
134680
45653
157126
38822
215586
35684
35682
172671
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195969
195967
156128
88271
631452
81844
687948
70448
41875
156133
156131
41886
539821
221441
35139
127547
418912
424526
93265
38817
2903
424539
127562
97492
156173
373042
97495
1136786
284051
259385
13221
37099
118079
44451
658122
162275
1278069
475233
1003208
1003064
1003144
1158022
265572
265563
172669

70452
561169
119497
216820
1158023
515468
432268
216617
1003029
1003039
33645
216618
426669
515488
426676
426664
186020
515470
015464
515479
1158036
015471
1003094
196633
426662
210441
196638
515462
210602
028331
210616
455043
515484
1003142
1003199
210609
374047
233771
246123
1003062
1003137
91992
3005
188541
124430

505996
S17TTH5
232859
505992
915350
196682
1115528
487668
1115533
216745
265532
186025
941921
431322
216747
216734
221720
515474
431333
216798
303458
1003069
431358
1003020
303409
265537
303462
1051708
718187
1003112
49249
449131
449130
216908
2829
90936
375454
310674
308883
66222
62316
105404
105414
38824
157128

2850
431345
431593
431588
210449
37319
1003042
431324
431370
432551
1003108
1003036
1003053
1003046
015482
1003145
2853
216749
431368
197754
265561
197753
216896
3003
202569
210618
232512
451786
29205
83371
94617
423563
425076
441170
246117
246119
243268
1034831
214821
116065
157001
258581
196139
1003033



A.C Evenness and occupancy taxonomy names to

numbers

Table A.1: Evenness and occupancy taxonomy names to

numbers

18S rDNNA taxonomy Number 16S rDNA taxonomy Number
Stramenopiles 1 Gammaproteobacteria 1
Cryptophyta 2 Alphaproteobacteria 2
Mamiellophyceae 3 Flavobacteriia 3
Rhizaria Marine Group II

Maxillopoda 5 unclassified Verrucomicrobia 5
Alveolata 6 Synechococcales 6
Dinophyceae 7 Deltaproteobacteria 7
Spirotrichea 8 Proteobacteria 8
Polycystinea 9 Candidatus Marinimicrobia 9
Coscinodiscophyceae 10 Actinobacteria 10
Amoebozoa 11 Planctomycetia 11
Ascidiacea 12 Acidimicrobiia 12
Pelagophyceae 13 Betaproteobacteria 13
Dictyochophyceae 14 Cyanobacteria 14
Bangiophyceae 15 Verrucomicrobiae 15
unclassified Alveolata 16 Saprospiria 16
Acantharea 17 Marine Group III 17
Haptophyceae 18 unclassified Thaumarchaeota 18
Cercozoa 19 Nitrosopumilales 19
Gregarinasina 20 Verrucomicrobia 20
Florideophyceae 21 Bacteroidetes 21
Fragilariophyceae 22 Oligosphaeria 22
Chlorophyceae 23 Opitutae 23
Bicosoecida 24 Oligoflexia 24
Viridiplantae 25 Planctomycetes 25
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Litostomatea
Heterotrichea
Labyrinthulomycetes
Hydrozoa
Pyramimonadales
Bacillariophyceae
Phyllopharyngea
Prasinococcales
Coccidia
Ellobiopsidae
Gymnolaemata
Appendicularia
Bilateria

PXclade

Placididea
Blastocystis
unclassified Rhizaria
Chrysophyceae
Pycnococcaceae
Oomycetes
Mediophyceae
Perkinsea
Oligohymenophorea
Karyorelictea
Developea
Protostomia
Trebouxiophyceae
Rhodophyta
Eumetazoa

Gromiidae

unclassified stramenopiles

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
o2
23
54
95

Cytophagia
Sphingobacteriia
Phycisphaerae

Chloroflexi
Gemmatimonadetes
Oscillatoriophycideae
Patescibacteria group
Chlamydiia

Bacilli

Tenericutes

Bacteroidetes Order II.Incertae sedis
Clostridia

Lentisphaerae

Chlamydiae

Nitrospinia

Acidobacteria

Archaea
Epsilonproteobacteria
Tissierellia

Halobacteria
Thermoplasmata
Bacteroidia

Balneolia

Mollicutes

Candidatus Saccharibacteria
Anaerolineae

Candidatus Hydrogenedentes
Gemmatimonadetes <class>
Nitriliruptoria

Deinococci

Negativicutes

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
o2
23
o4
95
26



Compsopogonophyceae
Ulvophyceae
eudicotyledons
Malacostraca
Aconoidasida

Actinopteri

Bdelloidea

Chlorophyta incertae sedis
Echinoidea

Mammalia

Ophiuroidea
Prasinophyceae incertae sedis
Rhodellophyceae
Pedinophyceae
Chlorophyta

Ciliophora

Holothuroidea
Pinguiophyceae
Bolidophyceae
Glaucocystophyceae

Crustacea

57
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
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Rubrobacteria
Fusobacteriia
Firmicutes
Chitinophagia
Erysipelotrichia
Chlorobi
Nitrospinae
Spirochaetia
Nostocales
Ardenticatenia

Solibacteres

57
o8
29
60
61
62
63
64
65
66
67
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A.E Co-occurrence node numbers to taxon and class

membership

Table A.8: Co-occurrence module (n=70) node numbers

to taxon and class membership

Node number Species/Genus

1 Erythrobacter

2 Alteromonas

3 Roseovarius
Marinobacter

5 Pelagomonas calceolata

6 Prochlorococcus

7 Pseudomonas

8 Synechococcus

9 Pelagibaca

10 Staphylococcus

11 Candidatus actinomarina

12 Alcanivorax

13 Croceibacter

14 Halomonas

15 Loktanella

16 Rhodococcus

17 Sphingorhabdus

18 Streptococcus

19 Coxiella

20 Hyphomonas

21 Lawsonella

22 Roseibacillus

23 Candidatus fritschea

24 Psychrobacter

25 Rhodopirellula
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Class

Alphaproteobacteria
Gammaproteobacteria
Alphaproteobacteria
Gammaproteobacteria
Pelagophyceae
Cyanobacteria
Gammaproteobacteria
Cyanobacteria
Alphaproteobacteria
Bacilli

Actinobacteria
Gammaproteobacteria
Flavobacteriia
Gammaproteobacteria
Alphaproteobacteria
Actinobacteria
Alphaproteobacteria
Bacilli
Gammaproteobacteria
Alphaproteobacteria
Actinobacteria
Verrucomicrobiae
Chlamydiia
Gammaproteobacteria

Planctomycetia



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
51
52
53
o4
95
26

Tenacibaculum
Ichthyodinium chabelardi
Acinetobacter

Hoeflea

Candidatus nitrosopelagicus
Codonellopsis americana
Euduboscquella crenulata
Halobacteriovorax
Pseudoalteromonas
Idiomarina

Jejudonia

Blastopirellula
Maricaulis

Pelagococcus subviridis
Maribacter

Caecitellus parvulus
Litoricola

Aureispira

Filamoeba nolandi
Marinomonas

Thiothrix

Sphingomonas

Oleiphilus
Pseudophaeobacter
Marinoscillum
Neptunomonas
Fluviicola

Hydra vulgaris
Oleibacter

Parabirojimia similis

Olleya
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Flavobacteriia
Alveolata
Gammaproteobacteria
Alphaproteobacteria
Thaumarchaeota
Spirotrichea
Dinophyceae
Oligoflexia
Gammaproteobacteria
Gammaproteobacteria
Flavobacteriia
Planctomycetia
Alphaproteobacteria
Pelagophyceae
Flavobacteriia
Stramenopiles
Gammaproteobacteria
Saprospiria
Amoebozoa
Gammaproteobacteria
Gammaproteobacteria
Alphaproteobacteria
Gammaproteobacteria
Alphaproteobacteria
Cytophagia
Gammaproteobacteria
Flavobacteriia
Hydrozoa
Gammaproteobacteria
Spirotrichea

Flavobacteriia



57
58
29
60
61
62
63
64
65
66
67
68
69
70

Bathycoccus prasinos

Candidatus pelagibacter

Kordia
Nitrosopumilus
Nonlabens
Psychroflexus
Arcobacter
Delftia
Marinicella
Bradyrhizobium
Rubritalea
Bacillus
Salinirepens

Crocinitomix

Mamiellophyceae
Alphaproteobacteria
Flavobacteriia
Thaumarchaeota
Flavobacteriia
Flavobacteriia
Epsilonproteobacteria
Betaproteobacteria
Gammaproteobacteria
Alphaproteobacteria
Verrucomicrobiae
Bacilli

Flavobacteriia

Flavobacteriia

Table A.9: Co-occurrence module (n=>51) node numbers

to taxon and class membership

Node number Species/Genus
1 Colwellia

2 Polaribacter

3 Balneatrix

4 Ulvibacter

5 Amylibacter

6 Lentibacter

7 Favella azorica

8 Phaeocystis cordata
9 Lentimonas

10 Sulfitobacter

11 Oceanicoccus

12 Formosa

13 Haliea
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Class

Gammaproteobacteria
Flavobacteriia
Gammaproteobacteria
Flavobacteriia
Alphaproteobacteria
Alphaproteobacteria
Spirotrichea
Haptophyceae
Verrucomicrobia
Alphaproteobacteria
Gammaproteobacteria
Flavobacteriia

Gammaproteobacteria



14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Actinocyclus actinochilus

Chroomonas cf. mesostigmatica

Arenicella

Emcibacter

[lumatobacter
Pyramimonas disomata
Aquibacter

Glaciecola
Pseudofulvibacter
Pithites vorax

Dokdonia

Mantoniella antarctica
Mesoflavibacter
Porticoccus
Sinobacterium
Schizochytrium aggregatum
Dictyocha fibula
Flavicella

Oleispira
Pseudochattonella verruculosa
Pterosperma cristatum
Prasinoderma coloniale
Pseudoscourfieldia marina
Developayella elegans
Ellobiopsis chattonii
Pseudohongiella
Francisella
Neptuniibacter

Marivita

Paraglaciecola

Aureococcus anophagefferens
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Coscinodiscophyceae
Cryptophyta
Gammaproteobacteria
Alphaproteobacteria
Acidimicrobiia
Chlorophyta
Flavobacteriia
Gammaproteobacteria
Flavobacteriia
Phyllopharyngea
Flavobacteriia
Chlorophyta
Flavobacteriia
Gammaproteobacteria
Gammaproteobacteria
Labyrinthulomycetes
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A.F Co-occurrence module correlation heatmaps
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Figure A.1: In the co-occurrence analysis with WGCNA on the logl0-scaled abun-
dances of 18S rDNA species level and 16S rDNA genus level, two modules were found.
Depicted is the correlation heatmap for the turquoise module in figure 3.17 a (n=70).
Along the left hand side is the species/genus name and environmental variables are
displayed at the bottom. The colours correspond to the correlation values, red is posi-
tively correlated and blue is negatively correlated. The Pearson correlation coefficient
values and p-values in brackets are displayed in each square
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Figure A.2: In the co-occurrence analysis with WGCNA on the logl0-scaled abun-
dances of 18S rDNA species level and 16S rDNA genus level, two modules were found.
Depicted is the correlation heatmap for the blue module in figure 3.17 b (n=>51). Along

the left hand side is the

species/genus name and environmental variables are displayed

at the bottom. The colours correspond to the correlation values, red is positively cor-
related and blue is negatively correlated. The Pearson correlation coefficient values
and p-values in brackets are displayed in each square
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Appendix B

B.A PhymmBL four genomes locations online

Cyanidioschyzon merolae from Cyanidioschyzon merolae Genome Project http://merolae.biol

.s.u-tokyo.ac.jp/download,;
Danio rerio from UCSC http://genome.ucsc.edu/cgi-bin/hgGateway?db=danRer5;

Homo sapiens from Genome Reference Consortium http://hgdownload.cse.ucsc.edu/golden

Path/hg19/chromosomes/

Strongylocentrotus purpuratus from Sea Urchin Genome Project http://www.hgsc.bem.

tmc.edu/projectspecies-o-Strongylocentrotus.
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