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23 Abstract 

24 Metaldehyde is a molluscicide used to control slugs and snails. Despite its extensive use, 

25 very little is known about the capacity of soil microbial communities to degrade this 

26 chemical. This research provides a synopsis of the latent capacity of soil microbial 

27 communities, present in agricultural (n = 14), allotment (n = 4) and garden (n = 10) soils, to 

28 degrade metaldehyde. Extents of 14C-metaldehyde mineralisation across all soils ranged from 

29 17.7 to 60.0 %. Pre-exposure (in situ, in the field) to metaldehyde was not observed to 

30 consistently increase extents of metaldehyde mineralisation. Where soils were augmented, 

31 (ex situ, in the laboratory) with metaldehyde (28 mg kg-1), the mineralisation capacity was 

32 increased in some, but not all, soils (uplift ranged from +0.10 to +16.9 %). Results indicated 

33 that catabolic competence to degrade metaldehyde was evident in both surface (16.7 - 52.8 

34 %) and in sub-surface (30.0 - 66.4 %) soil horizons. Collectively, the results suggest that 

35 catabolic competence to degrade metaldehyde was ubiquitous across a diverse range of soil 

36 environments; that varied in texture (from sand to silty clay loam), pH (6.15 – 8.20) and soil 

37 organic matter (SOM) content (1.2 % – 52.1 %). Lighter texture soils, in general, were 

38 observed to have higher capacity to mineralise metaldehyde. Weak correlations between 

39 catabolic competence and soil pH and soil organic matter content were observed; it was 

40 noted that above a SOM threshold of 12 % metaldehyde mineralisation was always > 34 %. 

41 It was concluded that the common occurrence of metaldehyde in EU waters is unlikely the 

42 consequence of low potential for this chemical to be degraded in soil. It is more likely that 

43 application regimes (quantities/timings) and meteorological drivers facilitate the transport of 

44 metaldehyde from point of application into water resources.     

45

46 Keywords: Metaldehyde, Soil, Biodegradation, 14C-Respirometry, Land use. 

47
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48 1. Introduction 

49 Slugs, snails and other gastropods are significant pests to a range of crops, including 

50 agricultural, horticultural and garden plants (Rae et al., 2009). Metaldehyde (2,4,6,8-

51 tetramethyl-1,3,5,7-tetraoxcane) is a widely used molluscicide in agriculture and domestic 

52 settings globally (including the UK, Europe, the United States and China (EPA, 2011; Gavin 

53 et al., 2012; Ma eta., 2012; Zhongguo et al., 2013; EC, 2019)).  

54  This pesticide is normally applied to crops in autumn and winter (Environment 

55 Agency, 2009). The maximum recommended application rate of metaldehyde in the UK is 

56 currently 210 g active substance/ha (from 1st August to 31st December); 700 g active 

57 substance/ha is the maximum total dose per calendar year (Metaldehyde Stewardship Group 

58 (MSG), 2019). Similar application rates are evident across Europe; allowing a maximum of 

59 350 g active substance/ha per single treatment, with up to two treatments per year (EFSA, 

60 2010). In the United States the recommended single application rate should not exceed 2240 

61 g active substance/ha with a maximum of 6 applications per year (EPA, 2011). 

62 Bait pellets release metaldehyde, under moderately moist conditions, for approximately 10 

63 days (Puschner, 2006). Metaldehyde is relatively water soluble (190 mg L-1;PPDB, 2017) 

64 and has as low KOW value (0.12; Hall, 2010). Owing to, i) its physicochemical properties 

65 (Table 1 in Supplementary Material), ii) application times that often coincide with wetter 

66 periods (when molluscs are more prevalent, compared to dry weather conditions) and, iii) the 

67 prevailing wet autumn/winter weather in the UK and northern EU countries, metaldehyde is 

68 mobile in the environment. This mobility serves to transfer metaldehyde from soil to both 

69 ground- and surface waters. Thus, metaldehyde presence in surface water and groundwater 

70 has been reported with high frequency (Busquets et al., 2014; Hillocks, 2012). 

71 Kay and Grayson (2014) reported peak concentrations of metaldehyde in the range 

72 0.4 – 0.6 µg L-1 and highlighted that metaldehyde has been detected above the maximum 



73 allowable concentration for drinking water of 0.1 µg L-1 (Council of the European 

74 Communities, 2000) during the October – December periods, when slug pellets are typically 

75 applied. These findings agree with metaldehyde concentration trends, observed by Castle et 

76 al. (2018), who reported peak concentrations of metaldehyde in the stream water of the River 

77 Thames Catchment to vary between 0.1 and 0.35 µg L-1 during September – January 2017. 

78 The maximum concentration of 5 µg L-1 was recorded in November, and no metaldehyde 

79 concentrations above 0.1 µg L-1 were recorded during the February – August period (Castle 

80 et al., 2018). Concentrations up to 1.5 µg L-1 were reported in stream water of the same 

81 catchment by Lu et al. (2017). Metaldehyde concentrations up to 2.2 µg L-1 were reported in 

82 a UK chalk aquifer by (Bullock, 2014), with peak concentrations observed in January and 

83 February. Metaldehyde presence in the aquatic environment has been reported in other 

84 countries. Calumpang et al. (1995) reported maximum metaldehyde concentrations of 1.57 

85 mg L-1, in rice paddy water in the Philippines, following application and that concentrations 

86 fell to below the detection limit within nine days (Calumpang et al., 1995). Metaldehyde 

87 concentrations up to 6.98 μg L-1 were observed in run-off water from fish farming ponds in 

88 northern France within the Moselle River Basin (Lazartigues et al., 2012). 

89 A key factor underpinning metaldehyde fate and mitigating its transport is the latent 

90 capacity of soil microbial communities to degrade this pesticide. Yet, literature relating to 

91 microorganisms capable of metaldehyde degradation is limited to three studies. Thomas et al. 

92 (2013, 2017) reported several metaldehyde-degrading bacterial strains that were isolated 

93 from domestic soils (liquid cultures contained 100 mg L-1 metaldehyde); acinetobacter E1 

94 was reported to degraded metaldehyde present in solution at concentrations less than 1 nM 

95 (0.16 µg L-1), other acinetobacter strains were reported to be unable to degrade the pesticide. 

96 A laboratory study (EFSA, 2010), reported metaldehyde to be mineralised (50 -78 %) by soil 
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97 microbial communities under aerobic conditions; while under anaerobic conditions 

98 metaldehyde was observed to be stable. 

99 However, to date, no reports have been published that account the capacity (assessed 

100 using 14C-respirometry) of dissimilar soils from contrasting settings, to degrade metaldehyde. 

101 Thus, this current research sought to establish the level of catabolic competence of soil 

102 microbial communities to degrade metaldehyde (i.e. the competence of the microbial 

103 community to break down metaldehyde molecules into smaller units that are subsequently 

104 oxidised/mineralised to carbon dioxide). The current research considered soils obtained from 

105 three contrasting settings: agricultural fields, allotments and gardens (and both surface and 

106 sub-surface regimes). The research sought to establish intrinsic metaldehyde mineralisation 

107 potential of the microbial community within these soils and the directing influence of 

108 metaldehyde augmentation in terms of inducing metaldehyde degradation. Furthermore, it 

109 was hypothesised that soil attributes, include texture, SOM and pH would have a shaping 

110 influence upon levels of metaldehyde catabolic competence. These original lines of enquiry 

111 provide a synopsis of metaldehyde biodegradation in dissimilar soils from contrasting 

112 settings. 

113    

114 2. Materials and Methods

115 2.1. Chemicals 

116 Metaldehyde pellets (1.5% active ingredient) were manufactured by Bayer. 14C-

117 metaldehyde (UL-14C; 5.1 mCi mmol-1) was obtained from American Radiolabeled 

118 Chemicals Inc. St Louis, USA. Ultima Gold and Ultima Gold XR liquid scintillation fluids 

119 were purchased from Perkin Elmer, UK. Calcium chloride, ethanol, methanol and sodium 

120 hydroxide were supplied by Fischer Scientific, UK; and dichloromethane provided by Sigma 



121 Aldrich, UK. Mineral Basal Salt (MBS) components (namely: NaCl, (NH4)2SO4, KNO3, 

122 KH2PO4, K2HPO4 and MgSO4.7H2O) were obtained from BDH, UK.  

123

124 2.2. Soils

125 Soil was collected from three contrasting settings: agricultural fields, allotments and 

126 gardens. Soils were collected in Norfolk and Essex, UK (Table 2). Soil samples (200 g) were 

127 collected using a Dutch auger (0-10 cm for top soil; and, 40-50 cm for sub-soil samples); 

128 four auger heads were combined to produce a single composite sample at each sampling 

129 point and a given location was sampled in triplicate (within 5 m of each other). Between 

130 sampling the auger head was thoroughly cleaned (washed with water and tissue, then sprayed 

131 with 70% ethanol solution that was allowed to evaporate). Soils were transported to the 

132 laboratory and stored (4 °C) in sealed plastic bags, for no more than 2 days, prior to 

133 assessment of catabolic competence.

134 Soils were characterised in terms of their: SOM content (mass loss on ignition in a 

135 muffle furnace (450 °C) for 12 h; 10 g (n = 3)) (Ghabbour et al., 2014); pH (samples 

136 (3 g (n = 3) were combined with 30 mL of distilled water in a centrifuge tube, tubes 

137 were then shaken (reciprocal shaker (IKA Labortechnik KS501) at 100 r.p.m for 14 h 

138 and the soil water pH was measured using an electrode (Jenway) and meter (Mettler 

139 Toledo FE20 Five Easy Benchtop pH Meter), and texture (samples of soil were 

140 moistened and kneaded into a ball and texture determined following the hand-texture 

141 framework of McDonald et al. (1998)). Soil characteristics are listed in Table 2, and 

142 its expanded version could be found within the Supplementary Material.    

143

144 2.3. 14C-radiorespirometry assessment of intrinsic and induced catabolic competence 
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145 Prior to undertaking the respirometry, soils were transferred to the laboratory 

146 incubator for 24 h to bring them back to a temperature of 18 °C. Soil samples (10 g) were 

147 added to sterile Duran Schott bottles (250 mL) containing sterile MBS (30 mL) (0.3 g NaCl, 

148 0.6 g (NH4)2SO4, 0.6 g KNO3, 0.25 g KH2PO4, 0.75 g K2HPO4 and 0.15 g MgSO4.7H2O 

149 dissolved in 1 L of deionised water) (Hickman et al. (2008). To each bottle 14C-metaldehyde 

150 was added (100 Bq in 100 µL of ethanol). To capture 14CO2 generated from the 

151 mineralisation of 14C-metaldehyde, a glass scintillation vial (7 mL) containing 1M NaOH (1 

152 mL) was suspended (using a stainless-steel clip) from the top of a TeflonTM lined 

153 respirometer lid. Bottles were continuously shaken on an orbital shaker (IKA Labortechnik 

154 KS501) at 100 r.p.m and the vials were removed and replaced periodically over the 120 h (5 

155 d) assay time. Removed vials were wiped with a tissue, and Ultima Gold scintillation fluid (6 

156 mL) added. Vials were sealed, shaken and stored in the dark (for a minimum of 24 h) and 

157 then analysed by liquid scintillation counting (Perkin-Elmer TriCarb 2900TR liquid 

158 scintillation analyser; count time 10 mins). Results were corrected for background radiation 

159 using un-spiked respirometers (Reid et al., 2001). The respirometer system was previously 

160 validated by Reid et al. (2001), who reported that up to 400 µmol CO2 could be 

161 accommodated in a single trap and a 14C activity balance of 101+ 8.9 % . 

162 In order to assess the inducible capacity of soil microbial communities in response to 

163 metaldehyde augmentation the above procedure was repeated with the addition of a 

164 metaldehyde pellet to each respirometer bottle. Each pellet had a mass of 0.028 g and a 

165 metaldehyde content of 1.5 %. Thus, each respirometer was dosed with the equivalent of 28 

166 mg metaldehyde kg-1 soil. Sterile respirometers, containing MBS (30ml), were spiked with 

167 14C-metaldehyde to evaluate abiotic degradation and volatilisation of 14C-metaldehyde. All 

168 respirometer assays were run in triplicate. 

169



170 2.4. Sample codes

171 Samples have been coded to indicate: land use regime, Field (F), Allotment (A) and 

172 Garden (G); the location qualifier (1-10; see Table 2); if samples were top soil (T) or subsoil 

173 (S); if the in situ regime had metaldehyde application (p) or no metaldehyde application for 

174 at least the last 4 years (n), and; if the ex situ laboratory assay was conducted in the presence 

175 of a slug pellet (+) or its absence (-). For example, F2Tp+ corresponds to Field 2, a topsoil 

176 sample that was exposed to metaldehyde in situ and was screened for catabolic competence 

177 in the presence of a metaldehyde pellet. In presenting the data, soils have been organised 

178 with lighter (sandier) textures presented first and heavier (clay) textures presented last. 

179

180 2.5. Statistics 

181 Significant differences between intrinsic and induced mineralisation levels were 

182 established using ANOVA post hoc Tukey Tests (SPSS Statistics 22); a significance level of 

183 0.05 (95 % level of confidence). Pearson’s correlation test was applied to determine linear 

184 correlation between mineralisation and pH/SOM values, a significance level of 0.05.

185

186 3. Results 

187 3.1. Control flasks and blanks

188 Abiotic degradation/volatilisation of 14C-metaldehyde was evident at a modest level 

189 (7.8 + 3.9 %). This value was commensurate with a fugacity (Mackay, 2001) driven pseudo-

190 equilibrium (theoretical value = 9.5 %), where: the respirometer MBS media volume was 

191 30ml, the trap volume was 1 ml and the trap was changed three times over the assay period. 

192 Background 14C-radiation was negligible (0.06 % of the activity delivered in the respirometer 

193 spike). 

194
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195 3.2. Agricultural Field Soils (FT, FS)

196 Intinsic catabloic competence (i.e. in asays with no metaldehyde pellet added (-)) was 

197 ubiquitous across all agricultural field soils; mineralisation varied between 17.6 % (FT(p)7) 

198 and 31.0 % (FT(n)1) (Figure 1). 

199 In most instances soils with light texture (FT(n)1, FS(n)2, FS(n)4 – sand, FT(n)2 – 

200 loamy sand, FT(n)3 – FT(p)6 – sandy loam, FT(p)7 – silty loam), were observed to have 

201 higher intrinsic capacites to mineralise 14C-metaldehyde. Soils with heavier texture (FT(n)8, 

202 FT(p)9 and FT(p)10 – loam, FT(p)11 – sandy loam clay, FT(p)12 – silty clay loam) were 

203 observed to have lower intinsic catabloic competence (Figure 1).  

204 Similarly, induced (with pellet present (+)) catabloic competence was observed to be 

205 higher in lighter textured soils (FT(n)1 – FT(p)7) than in heavier textured soils (FT(n)8 – 

206 FT(p)12). This was also the case for the Field Subsoil samples (FS(n)2, FS(n)4 – sandy 

207 texture), where an uplift in induced mineralisation was observed (+8.9 % and +0.1 %) 

208 (Figure 1). The extent of induced mineralisation in FT (where a pellet was added to the 

209 respirometer) varied from 16.5 % (FT(n)8) to 30.3 % (FT(n)3) (Figure 1); this range was 

210 almost identical to the intrinsic catabloic competence range, suggesting that catabolism of 

211 metaldehyde was operating at its maximum capacity before the pellet was added.

212 With the exception of FT(n)1 (light sandy texture) and FT(n)8 (medium loamy 

213 texture), all agricultural soils that were not exposed to metaldehyde in situ (n) were observed 

214 to show an uplift of catabolic competnce following the addition of a metaldehyde pellet (+) 

215 (FS(n)2 – FT(n)5). Lighter FT soil textures included sand (FS(n)2, FS(n)4), loamy sand 

216 (FT(n)2), sandy loam (FT(n)3 – FT(n)5). The same outcome was observed for light soils 

217 where metaldehyde was used in situ (p) (FT(p)6 – sandy loam, FT(p)7 – silty loam). 

218 FS(n)2 was the only sample among all agricultural Field soils in which a significant 

219 difference between intrinsic and induced mineralisation was observed (P < 0.05) (+8.9 %) 



220 (Figure 1). The maximum level of observed catabolic activity did not exceed 38.9 % 

221 (induced mineralisation in FS(n)2 sample) in the Agricultural Field soils (Figure 1).

222

223 3.3. Allotment Soils (AT, AS) 

224 Intinsic (-) catabloic competence was ubiquitous across all Allotment soils; 

225 mineralisation varied between 34.3 % (AT(p)2) and 60.0 % (AS(n)1) (Figure 2). Similar to 

226 the Field soils, Allotment soils with lighter texture (sand) exhibited higher intrinsic 

227 mineralisation capacities when compared to soils with slightly heavier texture (loamy sand) 

228 (Figure 2). 

229 Relative difference between intrinsic (-) and induced (+) mineralisation in lighter 

230 textured subsoils were also higher, particularly in soil with previous in situ metaldehyde 

231 application history (p) (AS(p)2) (Figure 2). Sandy Subsoil sample (AS(n)1) with no previous 

232 metaldehyde application had the highest metaldehyde mineralisation (both induced and 

233 intrinsic). 

234 Like Field soils, Allotment soils exhibited elevated mineralisation levels in the 

235 presence the of metaldehyde (Figure 2). In the presence of metaldehyde, the extent of 

236 mineralisation varied from 35.7 % (AT(p)2) to 66.4 % (AS(n)1) (Figure 2).

237 Only in the case of AS(p)2, intrinsic and induced levels of 14C-metaldehyde 

238 mineralisation were significantly different (P < 0.05) (a +9.9 % uplift in mineralisation was 

239 observed). The maximum level of observed catabolic activity did not exceed 66.4 % (induced 

240 mineralisation in AS(n)1 sample) (Figure 2).

241

242 3.4. Garden soils (GT)

243 As observed for Field and Allotment soils, competence to degrade metaldehyde in 

244 garden soils was ubiquitous across soil types (Figure 3). In the absence of a metaldehyde 
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245 pellet, the extent of intrinsic metaldehyde mineralisation varied from 28.9 % (GT(n)7) to 

246 52.8 % (GT(n)6) (Figure 3). 

247 In general, as was the case with Field soils (Figure 3), lighter textures (sandy loam 

248 and loamy sand); GT(n)1 through GT(n)6) indicated higher levels of catabolic competence to 

249 mineralise metaldehyde when compared to heavier textures (sandy clay loam and sandy clay) 

250 (Figure 3). 

251 In the presence of metaldehyde all soils showed elevated levels of mineralisation 

252 (Figure 3); the extent of mineralisation varied from 39.9 % (GT(n)2) to 53.0 % (GT(n)6). 

253 Uplift in mineralisation, in the presence of a metaldehyde pellet (+), was greatest for soils 

254 observed to have lower intrinsic catabolic competence; conversely, where soils were 

255 observed to already have high catabolic competence only small increases (a few %) in 

256 mineralisation were observed following metaldehyde augmentation (e.g. GT(n)1 and GT(n)6; 

257 Figure 3). 

258 In several instances the augmentation resulted in significant (P < 0.05) increases in 

259 mineralisation GT(n)3, GT(n)7, GT(n)9 and GT(n)10; +14.4 %, +15.3 %, +12.8 % and +16.9 

260 %, respectively). Again, as observed for Field and Allotment soils, the maximum catabolic 

261 capacity of 50-55 % appeared to be a ceiling beyond, which catabolic capacity was not 

262 exceeded. 

263

264 4. Discussion 

265 The degradation of any pesticide depends upon its physical and chemical 

266 characteristics, e.g. aqueous solubility and inherent recalcitrance (Semple et al., 2003) and 

267 the physical, chemical and biological properties of the soil (Rao et al., 1983), such as pH, 

268 redox conditions, matrix attributes, carbon:nitrogen:phosphorus (C:N:P) elemental ratio, 

269 temperature, moisture content (Arias-Estévez et al., 2007). Presence/absence/activity of 



270 catabolic enzymes in soils affect pesticide degradation directly (Deng et al., 2016) while 

271 pesticide bioavailability/bioaccessibility indirectly influence pesticide degradation (Arias-

272 Estévez et al., 2007). Additionally, pesticide transport, biological degradation and chemical 

273 transformation processes are affected by application regime (rates/methods and timing), as 

274 well as hydrological and weather conditions (Borgesen et al., 2015). Thus, site-specific 

275 physical, chemical and biological properties control the fate and transport of pesticides in the 

276 environment and determine the variation in spatial distribution of pollutants.

277

278 4.1. Soil Microbe Response to Chemicals Inputs

279 The ability of microbial communities to respond to organic compounds (e.g. 

280 pesticides) presence/augmentation is well documented for a range of compound classes, 

281 including: several semi-volatile hydrocarbon pollutants (Kelsey and Alexander 1997; Reid et 

282 al., 2002; Springael and Top, 2004; Hickman et al., 2008), pesticides (Duah-Yentumi and 

283 Johnson, 1986; Reid et al., 2005; Bending et al., 2006; Posen et al., 2006; Trinh et al., 2012; 

284 Reid et al., 2013) and antibiotics (Islas-spinosa et al., 2012; Bennet et al., 2017). These 

285 studies confirm the capacity of microbial communities to respond to organic compound input 

286 by becoming more catabolically competent (Reid et al., 2005; Bending et al., 2006; Posen et 

287 al., 2006; Reid et al., 2013). For example, Reid et al. (2005) reported soil microbial 

288 communities, of initially low catabolic competence, to degrade the herbicide isoproturon, 

289 (mineralisation C. 5 %) to increase in their competence following the incubation of soil with 

290 a low (0.05 μg kg-1) application of the herbicide (mineralisation increased to C. 40 %). In 

291 column studies, Trinh et al. (2012) reported three phases of attenuation/degradation of these 

292 herbicides isoproturon and MCPA: an initial sorption phase, followed by an 

293 acclimatisation/adaptation phase and a final rapid degradation phase (resulting in complete 

294 removal of the herbicides). 
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295 Several studies on biodegradation of metaldehyde have been reported, for example, 

296 Thomas et al. (2013, 2017) isolated and characterised metaldehyde-degrading bacteria in 

297 domestic soils. They reported Acinobacter E1 strain to be able to degraded metaldehyde to a 

298 concentration below 1 nM. However, to date, the response of soil microbial communities, 

299 present in agricultural, allotment and garden soils, to metaldehyde augmentation has not been 

300 reported. Thus, our results confirm the potential for soil microbial communities to increase in 

301 their competence to degrade metaldehyde following exposure. In keeping with observations 

302 for other compounds, metaldehyde catabolic competence was observed to increase 

303 significantly, following slug pellet addition (in some cases increasing by a factor of 2). 

304 Largest increases in catabolic competence following metaldehyde augmentation were 

305 observed for FS(n)2 (+8.9 %), AS(p)2 (+9.9 %), GT(n)3, GT(n)7, GT(n)9 and GT(n)10 

306 (+14.4 %, +15.3 %, +12.8 % and + 16.9 %, respectively).  

307 In contrast to other pesticides, where low catabolic competence is exhibited in 

308 unexposed soils, high levels of intrinsic catabolic competence to degrade metaldehyde were 

309 observed (up to 66.0 %). Metaldehyde is a cyclic tetramer of sub-units that can depolymerise, 

310 through microbial activity, into acetaldehyde (Castle et al., 2017; Tomlin, 2003). High levels 

311 of metaldehyde degradation in the soil environment have been reported in the literature. For 

312 example, Bieri (2003) reported fast degradation rates of metaldehyde in agricultural soils in 

313 Germany; with, DT50 values ranging from 5.3 to 9.9 days. Coloso et al. (1998) reported 

314 metaldehyde concentration in pond sediment to rapidly decrease from an initial concentration 

315 of 80 mg kg-1 to 1 mg kg-1 after 15 days. Ma et al. (2012) studied metaldehyde residues in 

316 agricultural soils in China and reported metaldehyde residue of up 9 mg kg-1 to decrease 

317 below 0.3 mg kg-1 over 7 days. While Calumpang et al. (1995) reported metaldehyde 

318 concentrations in paddy soil to fall from 0.13 mg kg-1 to below the analytical detection level 

319 within 22 days. 



320 We suggest the ubiquity of high levels of catabolic competence observed in our 

321 research are likely due to the degradation of the simple metaldehyde molecule to 

322 acetaldehyde (the primary degradation product), and the subsequent degradation of 

323 acetaldehyde to acetate; this being assimilated into Krebs tricarboxylic acid (TCA) Cycle 

324 (Tomlin, 2003) and respired as carbon dioxide. 

325

326 4.2. Catabolic competence and its relationship with soil properties 

327 All soil types, drawn from all settings (Field, Allotment and Garden), were observed 

328 to exhibit significant levels of catabolic competence. As already highlighted, soil texture had 

329 a shaping influence on the extent of 14C-metaldehyde mineralisation; with sandy soils 

330 supporting, in general, higher level of catabolic competence. It is widely recognised that soil 

331 texture has a substantial influence on the soil environment. It controls soil porosity, and thus, 

332 has a directing influence on soil hydrology (Luna et al., 2017) and soil atmosphere (Pagliai et 

333 al., 2004). In turn, these drivers exert a shaping influence on soil microbial community 

334 structure (Fierer, 2017). Schroll et al. (2006) reported optimum pesticide mineralisation at a 

335 soil water potential of −0.015 MPa; pesticide mineralisation was markedly reduced when soil 

336 moisture approached soil water holding capacity. 

337 Acknowledging the considerable influence soil texture has on soil moisture 

338 conditions, it is unsurprising that levels of catabolic competence observed have been 

339 influenced by soil texture. We suggest that the higher levels of catabolic competence for 

340 metaldehyde, observed in the lighter soil textures, could be linked to a higher redox potential 

341 in these more freely drained soils (Voroney and Heck, 2015). These conditions would, 

342 putatively, support a more active microbial community with greater capacity to degrade 

343 organic substrates (including metaldehyde). In general, pesticide degradation (Fenner et al., 
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344 2013), and metaldehyde degradation specifically (EFSA, 2010), have been reported to be 

345 faster under aerobic conditions. 

346 Beyond its influence on soil, physical, hydrological and biological attributes soil 

347 texture also controls pesticide bioavailability (Gavrilescu, 2005). Numerous studies have 

348 sustained the general trend that lighter sandy soil textures assist biodegradation by 

349 maintaining high pesticide bioavailability and, in contrast, heavier clay textures tend to 

350 facilitate greater sorption and entrapment of pesticide (e.g. Reid et al., 2000; Gavrilescu, 

351 2005). Thus, heavier clay textures tend to decrease the potential for degradation though 

352 stronger sorption.  These strong interactions have been reported to preclude the opportunity 

353 for pesticides to induce catabolic competence (Reid et al., 2013). 

354 In addition to their texture, the dissimilar soils also varied in their SOM content. SOM 

355 has been reported to influence the fate, behaviour and biodegradation of pesticides (Hatzinger 

356 and Alexander, 1995). However, to date, there have been no reports accounting how soil 

357 properties (specifically, SOM and pH) influence the biodegradation of metaldehyde by soil 

358 microbial communities. To elucidate any such relationships, SOM and soil pH were 

359 correlated with 14C-metaldehyde mineralisation under intrinsic and induced regimes and 

360 across all settings (Figure 4). 

361 SOM varied (from 1.17 % to 52.14 %) across the dissimilar soil types obtained from 

362 contrasting settings (Table 2) and extent of mineralisation in these soils also varied greatly 

363 (from 16.51 % to 66.44 %). Considering all soils, 14C-metaldehyde mineralised was observed 

364 to increase with increasing SOM for both intrinsic and induced assessment (Figure 4A). 

365 While the correlations between mineralisation extent and SOM were not significant (r = 0.34, 

366 p = 0.08; intrinsic and induced mineralisation vs. SOM); the data supports the conclusions 

367 that i) beyond a SOM content of 12% metaldehyde mineralisation was consistently > 34%, 

368 and, ii) where SOM content was less than 12% metaldehyde mineralisation was observed 



369 across a very broad range (from 16.5 to 60 %) (Figure 4A). These results suggest that efforts 

370 to sustain SOM levels in soil could assist in promoting higher levels of metaldehyde 

371 degradation, and thus, reduce the opportunity for metaldehyde to transfer to water resources.

372 In one hand, SOM controls sorption of pesticides in soil (Chiou et al., 1983). Sorption 

373 is responsible for retention of pesticides in soil, preventing leaching and decreases pesticide 

374 bioavailability (Singh, 2008). While, on the other hand, SOM is the cornerstone of soil food 

375 webs, and its amount and quality underpins microbial diversity and its capacity to utilise a 

376 broad range of substrates (Neumann et al., 2014). With regards to metaldehyde, as a 

377 relatively water soluble compound (190 mg L-1) and as a labile carbon source (Bieri, 2003; 

378 EFSA, 2010), we suggest sorption onto SOM is unlikely to be a significant influence on 

379 biodegradation. It more likely that SOM has a synergistic influence on metaldehyde 

380 biodegradation as it acts as a primer for microbial activity. The higher levels of catabolic 

381 competence observed to be synonymous with SOM content of  >12% (Figure 4A) support 

382 this linkage. 

383 Where pH was correlated with mineralisation across all soil types and regimes, no 

384 relationship was observed for intrinsic mineralisation (r = 0.19, p = 0.34) (Figure 4B). A 

385 slightly positive correlation was observed between increasing pH and induced mineralisation 

386 (r = 0.44, p = 0.02) (Figure 4B). More useful, perhaps, is the observable distinction between 

387 soils of pH lower than 6.9, where mineralisation never exceed 30 %, and soils where pH was 

388 greater than 6.9, and mineralisation was more often observed to be greater than 35 % (Figure 

389 4B). Thus, while pH influence on pesticide degradation has been reported for other 

390 compounds (e.g. atrazine (Houot et al., 2000) and pirimicarb and metsulfuron-methyl (Kah et 

391 al., 2007)), it influence upon metaldehyde mineralisation was inconsistent. 

392
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393 4.3. Wider Context  

394 The results reported herein highlight soil microbial communities, in dissimilar soils 

395 under Agriculture, Allotment and Garden regimes, to all have a considerable latent capacity 

396 to degrade metaldehyde (Figures 1-3). Our results suggest that soil microbial communities 

397 across these regimes, and present in both top-soil and sub-soil, are well predisposed to 

398 degrade metaldehyde. We suggest that it is unlikely that the, at times, high levels of 

399 metaldehyde detected in water (Castle et al., 2017; Kay and Grayson, 2014) are due to low 

400 degradation capacity in the soil system. It is more likely that runoff and fast leaching of 

401 metaldehyde is the main driver underpinning the high incidence and high concentrations of 

402 metaldehyde sometimes reported in water resources (Calampung et al., 1995; Coloso et al., 

403 1998; Council of the European Communities, 2000; Bieri, 2003; Hillocks, 2012; Ma et al., 

404 2012; Busquets et al., 2014; Lu et al., 2017). 

405 With metaldehyde being applied in autumn and winter, when slug populations are 

406 higher due to wet weather (and when young crops are most vulnerable), the opportunity for 

407 metaldehyde transport is increased. The situation is further antagonised by metaldehyde 

408 having a relatively high aqueous solubility (190 mg L-1). In support of this view there is 

409 considerable evidence that pesticides applied to the soil surface can be transported rapidly, 

410 bypassing the unsaturated soil zone, to groundwater (Arias-Estévez et al., 2007; Johnson et 

411 al., 1995; Lopez-Perez et al., 2006). Indeed, metaldehyde has frequently been detected in 

412 groundwater at levels higher than the EU Drinking Water Framework Directive limit (0.1 µg 

413 L-1) (EC, 1998); in some cases, concentrations of metaldehyde of up to ten times this limit 

414 have been reported (UKWIR, 2013). 

415 Given its ubiquity in water resources, metaldehyde has been subject to scrutiny, 

416 voluntary initiatives and evolving regulation. Specifically, in the UK the Get Pelletwise 

417 campaign of the Metaldehyde Stewardship Group (MSG, formed in 2008), aimed to promote 



418 sustainable use of metaldehyde by applying principles of Integrated Pest Management and 

419 introducing guidelines for metaldehyde application (MSG, 2019). This guidance 

420 recommended, the use of the minimum amount of active compound per hectare; that soil 

421 conditions, topography and fields proximity to watercourses are factors to be considered in 

422 assessing the risk of metaldehyde loss to streams, and; that metaldehyde application is 

423 discouraged during heavy rain events and if field drains are flowing (MSG, 2019). However, 

424 metaldehyde is still regularly detected at the concentrations above the DWD limit of 0.1 µg 

425 L-1 (Castle et al., 2017; Lu et al., 2017). Thus, in order to mitigate metaldehyde transfer still 

426 further a reduction in the nominal loading of metaldehyde in pellets (e.g. from 3 % to 1.5 % 

427 active ingredient) and the development of pellets that afford stronger metaldehyde 

428 attenuation might offer further opportunity for improvements.

429 We highlight that soil itself is likely to be a significant reservoir of metaldehyde. With 

430 respect to this soil burden, the results reported herein suggest that, there is good prospect 

431 that, given time, the indigenous soil microbial communities will degrade this reservoir of 

432 metaldehyde. However, further research regarding the levels of microbial catabolic activity, 

433 specifically under lower substrate concentrations, should be undertaken. 

434

435 5. Conclusions

436 Results indicate substantial catabolic competence to degrade metaldehyde in soils 

437 with various texture (from sand to silty clay loam), pH (6.15 – 8.20) and organic matter 

438 content (1.2 – 52.1 %). Ubiquitous catabolic competence was observed in both topsoil (16.7 

439 – 52.8 %) and subsoil horizons (30.0 – 66.4 %). In general, soils with lighter texture (sand, 

440 sandy loam and loamy sand; average mineralisation 37.3 %) had higher levels of 14C-

441 metaldehyde mineralisation when compared to soils with heavier texture (sandy clay, sandy 

442 clay loam and silty clay loam; average mineralisation 33.3 %). When soils were augmented 
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443 with metaldehyde (in the laboratory) an increase in mineralisation was observed in some, but 

444 not all soils (up to 16.9 % increase in the Garden Soil GT(n)10 (sandy clay)). Overall, pH 

445 and organic matter content were weakly correlated with 14C-metaldehyde mineralisation. 

446 However, soils with higher SOM (>12%) were, in general, observed to support higher levels 

447 of metaldehyde mineralisation. It is suggested that the higher SOM status of these soils 

448 exerted a beneficial shaping influence upon soil microbial communities and their capacity to 

449 degrade metaldehyde. Collectively, results suggest that the concentrations of metaldehyde 

450 (that are at times high), detected in water, are unlikely due to insufficient microbial capacity 

451 to degrade this pesticide. It is suggested that application regime (rate and timing), the high 

452 mobility of metaldehyde and its loss to the watercourses via runoff and leaching are the 

453 driving factors underpinning the ubiquity of metaldehyde in surface and ground water 

454 resources. To reduce metaldehyde runoff to watercourses, the application timing should not 

455 coincide with wet weather conditions. The use of pellets with reduced concentrations of 

456 metaldehyde and development of the pellet products with stronger attenuation capacity could 

457 further assist in the effort to reduce metaldehyde transfer to the aquatic environment.

458
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Figure 1. Catabolic competence (14C-metaldehyde mineralisation (%) after 5 days assay time) in 
Field topsoil (FT(n)1-FT(p)12) and Field subsoil (FS(n)2, FS(n)4): soil only treatments (white bars) 
and soil with metaldehyde addition (black bars). Soil types are ordered by texture and then by 
mineralisation (%) for each texture class. Error bars are standard error of the mean (n = 3). A star 
indicates significant difference (p < 0.05) between soil only (-) and soil with metaldehyde (+) 
couplets. 

 
Figure 2. Catabolic activity (14C-metaldehyde mineralisation (%) after 5 days assay time) in 
Allotment soils (AT – Allotment topsoil, AS – Allotment subsoil): soil only treatments (white bars) 
and soil with metaldehyde addition (black bars). Soil types are ordered by texture and then by 
mineralisation (%) for each class. Error bars are standard error of the mean (n = 3). A star indicates 
significant difference (p < 0.05) between soil only (-) and soil with metaldehyde (+) couplets. 

Figure 3. Catabolic activity (14C-metaldehyde mineralisation (%) after 5 days assay time) in Garden 
soils (GT(n)1-GT(n)10): soil only treatments (white bars) and soil with metaldehyde addition (black 
bars). Soil types are ordered by texture and then by mineralisation (%) for each class. Error bars are 
standard error of the mean (n = 3). Stars indicate significant difference (p < 0.05) between soil only (-
) and soil with metaldehyde (+) couplets. 

Figure 4. Correlation of intrinsic (black), and induced (white), catabolic activity (% mineralisation) 
with: OM (A) and pH (B); for, Field soils (), Allotment soils () and Garden soils (). Errors bars 
are + 1 standard deviation (n = 3). Lines of best fit indicates correlations between intrinsic (solid) and 
induced (dashed) mineralisation capacity and SOM (A) and pH (B). 
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and soil with metaldehyde addition (black bars). Soil types are ordered by texture and then by 
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Figure 2. Catabolic activity (14C-metaldehyde mineralisation (%) after 5 days assay time) in 
Allotment soils (AT – Allotment topsoil, AS – Allotment subsoil): soil only treatments (white bars) 
and soil with metaldehyde addition (black bars). Soil types are ordered by texture and then by 
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mineralisation (%) for each class. Error bars are standard error of the mean (n = 3). A star indicates 
significant difference (p < 0.05) between soil only (-) and soil with metaldehyde (+) couplets. 

Figure 3. Catabolic activity (14C-metaldehyde mineralisation (%) after 5 days assay time) in Garden 
soils (GT(n)1-GT(n)10): soil only treatments (white bars) and soil with metaldehyde addition (black 
bars). Soil types are ordered by texture and then by mineralisation (%) for each class. Error bars are 
standard error of the mean (n = 3). Stars indicate significant difference (p < 0.05) between soil only (-
) and soil with metaldehyde (+) couplets. 

Figure 4. Correlation of intrinsic (black), and induced (white), catabolic activity (mineralisation, %) 
with: OM (A) and pH (B); for, Field soils (), Allotment soils () and Garden soils (). Errors bars 
are + 1 standard deviation (n = 3). Lines of best fit indicates correlations between intrinsic (solid) and 
induced (dashed) mineralisation capacity and SOM (A) and pH (B). 



Table 2. Field, Allotment and Garden soil properties. 

Soil Code Setting Texture Metaldehyde application OM (%) pH

FT(n)1 Field 1 Sand >4 years ago 3.49 + 0.1 6.68 + 0.23
FT(n)2 Field 2 Loamy Sand >4 years ago 3.08 + 0.2 7.55 + 0.5
FS(n)2 Field 2 Sand >4 years ago 1.82 + 0.4 7.55 + 0.2
FT(n)3 Field 3 Sandy Loam >4 years ago 2.53 + 0.1 6.57 + 0.1
FT(n)4 Field 4 Sandy Loam >4 years ago 3.85 + 0.03 6.35 + 0.1
FS(n)4 Field 4 Sand >4 years ago 2.38 + 0.1 7.21 + 0.4 
FT(n)5 Field 5 Sandy Loam >4 years ago 4.52 + 0.3 7.19 + 0.3
FT(p)6 Field 6 Sandy Loam Seasonal (ongoing) 2.79 + 0.2 8.2 + 0.1
FT(p)7 Field 7 Silty Loam Seasonal (ongoing) 3.89 + 0.1 7.24 + 0.1
FT(n)8 Field 8 Loam >4 years ago 4.02 + 0.3 6.15 + 0.1
FT(p)9 Field 9 Loam Seasonal (ongoing) 3.4 + 0.1 7.11 + 0.2
FT(p)10 Field 10 Loam Seasonal (ongoing) 2.67 + 0.1 7.73 + 0.2
FT(p)11 Field 11 Sandy Clay Loam Seasonal (ongoing) 3.96 + 0.3 6.44 + 0.02
FT(p)12 Field 12 Silty Clay Loam Seasonal (ongoing) 4.02 + 3.9 7.29 + 0.2
AT(n)1 Allotment 1 Loamy Sand No previous application 7.91 + 0.4 7.58 + 0.01
AS(n)1 Allotment 1 Sand No previous application 1.36 + 0.3 7.05 + 0.2
AT(p)2 Allotment 2 Loamy Sand Seasonal (ongoing) 5.24 + 0.1 7.44 + 0.5
AS(p)2 Allotment 2 Sand Seasonal (ongoing) 1.17 + 0.1 7.18 + 0.1
GT(n)1 Garden 1 Sandy Loam >6 years ago 52.1 + 1.0 7.1 + 0.03
GT(n)2 Garden 2 Loamy Sand >6 years ago 7.2 + 0.2 7.54 + 0.03
GT(n)3 Garden 3 Loamy Sand >6 years ago 25.3 + 0.2 6.92 + 0.02
GT(n)4 Garden 4 Loamy Sand >6 years ago 16.2 + 0.3 7.49 + 0.04
GT(n)5 Garden 5 Loamy Sand >6 years ago 11.8 + 0.5 8.02 + 0.02
GT(n)6 Garden 6 Loamy Sand >6 years ago 11.4 + 0.4 8.01 + 0.01
GT(n)7 Garden 7 Sandy Clay Loam >6 years ago 10.2 + 0.1 7.65 + 0.01
GT(n)8 Garden 8 Sandy Clay Loam >6 years ago 12.4 + 0.4 7.52 + 0.01
GT(n)9 Garden 9 Sandy Clay Loam >6 years ago 5.5 + 0.1 8.15 + 0.01
GT(n)10 Garden 10 Sandy Clay >6 years ago 8.6 + 0.3 7.7 + 0.02

Highlights

 Results indicated ubiquitous catabolic competence to degrade metaldehyde in 
dissimilar soils

 Metaldehyde catabolic competence was evident in garden, allotment and field soils

 Metaldehyde mineralisation ranged from 17.7 to 60.0 %
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 Higher levels of catabolic competence were observed in the lighter soil textures

 Pre-exposure to metaldehyde sometime, but not always, resulted in higher catabolic 
competence


