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Abstract 16 

Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known 17 

for more than one hundred years as a process by which the biogeochemical N-cycle is balanced. To study this process, 18 

we develop an individual-based model called INDISIM-Denitrification. The model embeds a thermodynamic model for 19 

bacterial yield prediction inside the individual-based model INDISIM and is designed to simulate in aerobic and anaerobic 20 

conditions the cell growth kinetics of denitrifying bacteria. INDISIM-Denitrification simulates a bioreactor that contains 21 

a culture medium with succinate as a carbon source, ammonium as nitrogen source and various electron acceptors. To 22 

implement INDISIM-Denitrification, the individual-based model INDISIM was used to give sub-models for nutrient 23 

uptake, stirring and reproduction cycle. Using a thermodynamic approach, the denitrification pathway, cellular 24 

maintenance and individual mass degradation were modelled using microbial metabolic reactions. These equations are 25 

the basis of the sub-models for metabolic maintenance, individual mass synthesis and reducing internal cytotoxic 26 

products. The model was implemented in the open-access platform NetLogo. INDISIM-Denitrification is validated using 27 

a set of experimental data of two denitrifying bacteria in two different experimental conditions. This provides an 28 

interactive tool to study the denitrification process carried out by any denitrifying bacterium since INDISIM-29 

Denitrification allows changes in the microbial empirical formula and in the energy-transfer-efficiency used to represent 30 

the metabolic pathways involved in the denitrification process. The simulator can be obtained from the authors on request. 31 

 32 

Keywords: denitrification, bacterial yield prediction, individual-based model, Thermodynamic Electron Equivalents 33 

Model, NetLogo, INDISIM. 34 
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1. Introduction  36 

For the past decades, scientists have experienced huge interest in crossing the frontiers between different disciplines such 37 

as mathematics, biology, chemistry, thermodynamics and modelling, among others. Thus, this is a study of microbial 38 

metabolism in the framework of non-equilibrium thermodynamics and individual-based modelling, both concepts being 39 

applied to bacterial denitrification systems evolving in a bioreactor. 40 

Denitrification is the dissimilatory reduction of nitrate (NO3-) to (mainly) dinitrogen gas (N2) by bacteria. Hence, one or 41 

both of the ionic nitrogen oxides, NO3- and nitrite (NO2-), can be reduced to the gaseous oxides, nitric oxide (NO) and 42 

nitrous oxide (N2O), which consequently may also be reduced to N2 [1, 2]. A complete denitrification pathway is defined 43 

as the assemblage of four subsequent reactions: NO3- ® NO2- ® NO ® N2O ® N2 [1, 3].  44 

Denitrification has been described, studied and investigated over the last one hundred years [4] at many levels, ranging 45 

through gene expression of the enzymes involved in the process [5–10], describing microbial metabolic pathways [11–46 

14], measuring global N-oxides flux [15–17], evaluating the impact of metal concentrations in the soil on the expression 47 

of enzymes in different species of denitrifying bacteria [18–20], contributing to wastewater treatments as well as other 48 

biological systems [21, 22], within mathematical modeling [23–28] and, in individual-based models [29–32].  49 

Interest in denitrification is motivated by several key factors. First, it is a fundamental process in wastewater treatment to 50 

reduce NO3- excess and stimulate carbon removal in anoxic conditions [33]. Second, it contributes to nitrous N2O and/or 51 

NO emissions when denitrifying bacteria do not complete the metabolic pathway implicated, which is involved in 52 

atmospheric phenomena like global warming and ozone damage [34, 35]. Third, it is the mechanism by which the global 53 

nitrogen cycle is balanced [36].  54 

Denitrification is a process driven by bacteria species with a genetic capacity for denitrification; they are classified as 55 

facultative aerobes. The denitrification pathway is common among several microbial species: Pseudomonas, 56 

Achomobacter (Alcaligenes) [37], Paracoccus, Thiobacillus, Bacillus, Halobacterium, Chromobacterium, 57 

Hyphomicrobium, in addition to some species of Moraxella that are also able to denitrify [22, 36]. Most of them are 58 

commonly found in soils, sediments, surface and ground waters, and wastewater treatment plants [33]. Denitrifying 59 

bacteria are able to use N-oxides as electron acceptors (e-acceptors) instead of oxygen (O2), by electron transport chains 60 

similar to the ones used in aerobic respiration [6]. This means that they shift to NO3- or NO2- or NO or N2O respiration 61 

when O2 becomes limiting [22].  62 

There are a wide range of environmental factors that control the complex regulatory network involved in bacterial 63 

denitrification. These include low O2 concentration and the availability of e-acceptors (NO3-, NO2-, NO, N2O) and C-64 

sources as electron donors (e-donors) in the local environment where the bacteria develop [1]. Further, there is some 65 
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evidence that the denitrifying bacteria have the ability to reduce their own biomass to avoid accumulation of cytotoxic 66 

intermediate products (N2O and/or NO) and complete the denitrification pathway and maximize energy conservation [11, 67 

22]. In addition, if any of the key factors that control the denitrification pathway provoke an interruption of the process, 68 

then cytotoxic gases (N2O and/or NO) are released to the medium. This can be viewed as a negative environmental 69 

consequence of denitrification since NO participates in photochemical reactions to produce tropospheric ozone, a 70 

greenhouse gas. The soil emissions of NO to the atmosphere have been measured and modeled in order to control its 71 

production [15, 23]. N2O is a potent greenhouse gas and dominant ozone-depleting substance [9, 18, 19, 36]. Further, 72 

these gases have bacterial cytotoxic properties [5, 20] such as essential cellular cofactor inactivation of B12-dependent 73 

enzymes [7, 38], loss of cell division and viability [1, 4]. 74 

To study and analyze a microbial system, it is crucial to recognize the structured nature of each cell and the segregation 75 

of the culture into individual units that may differ from each other [39]. Therefore, it is crucial to carefully select the 76 

modeling approach. 77 

The modelling approach traditionally used in biological fields, is an approach to understanding population level, where 78 

the population parameters are time-dependent and modified directly using the model’s equations [40]. Models built at a 79 

population level of description are a particular type of System-based Model (SBM) [41]. They consider variables that 80 

characterize the population and the set of laws governing it. These rules are usually formalized with differential equations, 81 

which are ultimately based on assumptions regarding the behavior of the individuals. SBMs consist in defining the 82 

relevant variables of the system and proposing a set of rules governing them, applying these rules, i.e. solving the 83 

equations, and assessing the validity of the model through the comparison of its results with experimental observations 84 

[42]. Some of the applications of these models are predictive microbiology in food and control of fermentation processes 85 

[43], optimization of microbial cultures and antibiotics production in the pharmaceutical industry [44], waste control and 86 

water treatment [21], or the study of microbial ecology and evolution of population diversity in wild and artificial 87 

ecosystems [33]. Population models are based on assumptions about the individual behavior of microbes, and they 88 

therefore also raise new questions regarding microbial physiology and cellular models [45, 46]. 89 

Individual-based modeling is implemented and used in many scientific contexts, such as biological, chemical, 90 

biotechnological, ecological, among others [40, 47]. In this type of modeling, the interactions of the agents (individuals 91 

and/or collective entities) with their environment are simulated and the population-level behavior is an emergent property 92 

[48]. The IBM of microbes is called the “microbial individual-based model” (µIBM) [49]. Such models provide some 93 

advantages over the population-level approaches commonly used to model microbes’ processes since: (a) they describe 94 

the system evolution as a whole by establishing behavior-rules for the microbes and their relations; (b) they can reproduce 95 

system variability because they admit the introduction of randomness and specific characteristics for the microbes; (c) 96 
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they take into account the individual adaptive behavior to the local environmental conditions; (d) they have the capability 97 

to resolve population heterogeneity (intra-population variability) to deal with complete life cycles, and (e) they represent 98 

the individual adaptive behavior to deal with internal and external conditions that changing over the time [48, 50, 51]. 99 

Also IBMs have the ability to link mechanisms at the individual level to population level behavior (emergence), and they 100 

are very convenient to tackle the inapplicability of the continuum hypothesis [46, 52].Therefore, the individuals and their 101 

internal differences and actions are better represented with a µIBM, in which the population behavior is the consequence 102 

of a set of microbes growing and interacting with the local environment [42, 47, 49, 52–54]. However, the potential of 103 

IBMs has a cost. They are more complicated structurally than analytical models, they must be implemented and executed 104 

in computers with determinate computing capabilities (modelling large-scale systems), the lack of individual-based data 105 

is sometimes crucial for their progress, besides they present some difficulties at the time of analysis, understanding and 106 

communicating [55]. To mitigate some of these problems there has been established the ODD protocol which stands for 107 

Overview, Design and Details as the universal way used by the scientific community for presenting and describing their 108 

IBMs [40, 47, 48, 56]. The use of specific programming environments to implement these computational models 109 

facilitates their use [55, 57], which along with computer processing tools and statistical analysis of data provides 110 

parameter estimation and the corresponding sensitivity analysis. These facilities make the methodology of discrete 111 

modelling based on the individual a valid and attractive option for study of microbial systems, increasing its presence in 112 

academic [58–61] and scientific fields [56, 62–65]. 113 

INDISIM is an individual-based discrete simulation model developed to study bacterial cultures [66]. This model has 114 

been used as the core for other models such as INDISIM-SOM [67, 68] and INDISIM-SOM-NL [69], INDISIM-YEAST 115 

[70], INDISIM-COMP [71], and INDISIM-Saccha [53] to model: the  soil organic matter dynamics, yeast fermentation, 116 

multi-species composting, and the dynamics of Saccharomyces cerevisiae in anaerobic cultures, respectively. 117 

Commonly, the biomass volumetric productivity and the macro-molecular composition of the cells are studied with 118 

regards to the potential production of the cells in response to their environment within the cultivation system [72]. 119 

According to the principles of the thermodynamics of non-equilibrium systems, a microorganism keeps alive by taking 120 

energy from its environment to maintain its structures and functions [73].  121 

Taking into account this perspective, in the past few decades, several approaches in bio-thermodynamics, non-equilibrium 122 

thermodynamics, and network thermodynamics have been developed and reported to study and describe a macroscopic 123 

growth model for biomass yield prediction and cellular bioenergetics [22, 72, 74–88]. These approaches can be useful in 124 

the calculation of: (a) the complete growth stoichiometry, (b) the maintenance coefficients and maximal growth yields, 125 

(c) the limit to growth yield posed by the second thermodynamic law, (d) the chemical-oxygen-demand-based growth 126 

yields, and (e) the maximal product yields in aerobic and anaerobic metabolism. Therefore, these thermodynamic 127 
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approaches aim to represent all reactions that occur in the microorganisms using a set of microbial metabolic reactions 128 

(MMRs) [30, 31] 129 

Using INDISIM [66] as a core model, we developed a model called INDISIM-Paracoccus [31] which is the first µIBM 130 

to use thermodynamics concepts to write the MMRs for cellular maintenance and individual mass production. It was 131 

designed to investigate the order of preference in the use of various e-acceptors in the denitrification process driven by 132 

Paracoccus denitrificans. With that model, we were able to fix the sequence order of the reduction of NO3- semi reactions 133 

along the denitrification and obtained a set of model parameter values to get a reasonably good fit of the simulation 134 

outputs to experimental data. INDISIM-Paracoccus had two main limitations, one was that it is only useful for one species 135 

of bacteria, the P. denitrificans, while there are many other bacteria that are able to denitrify. The second limitation was 136 

that some of the simulation outputs related to the cytotoxic gas nitrous oxide in the electron-donor limited and electron-137 

acceptor limited experiments were not predicted accurately enough when compared with experimental data [32]. This 138 

current work aims to improve INDISIM-Paracoccus in order to overcome these limitations and provide it with a greater 139 

use and predictive capacity.  140 

We develop an µIBM that is called INDISIM-Denitrification (Fig. 1) to deal with the dynamics of any denitrifying 141 

bacterium in aerobic and anaerobic conditions, including a thermodynamic model based on bioenergetics efficiency to 142 

describe the microbial metabolism. In particular, (a) we select the common pathways expressed in any denitrifying 143 

bacterium and represent them using a thermodynamic approach as a set of MMRs (which are central to the formulation 144 

of the metabolic sub-models inside of the µIBM developed), (b) we include into these MMRs the elemental composition 145 

of the microbial cells using a generic empirical formula that considers the molar relationship between the four main 146 

elements (C, H, O and N), (c) we design and parameterize behavior-rules plausible for any denitrifying bacterium with 147 

three main metabolic purposes: cellular maintenance, mass synthesis and individual mass degradation to reduce internal 148 

cytotoxic products; (d) we simulate a bioreactor that contains a culture medium where denitrifying bacteria develop and 149 

grow; (e) we implement the model on the open-access platform NetLogo presenting an µIBM simulator; and (f) we test 150 

the adequacy of the model using a set of experimental data for the denitrifying bacteria P. denitrificans and 151 

Achromobacter xylosoxidans published by Felgate et al. (2012). The use of a broader set of experimental data of two 152 

different denitrifying bacteria P. denitrificans and A. xylosoxidans leads to a better agreement to P. denitrificans data than 153 

previously obtained and open the possibility to deal with a new bacterium (A. xylosoxidans). 154 
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2. Materials and methods 155 

2.1 Thermodynamic approach  156 

The Thermodynamic Electron Equivalents Model (TEEM) is designed for bacterial yield prediction [22, 74, 81, 88–90]. 157 

TEEM is based on terms of the Gibbs free energy involved in the overall metabolic process and in how the energy between 158 

catabolism and anabolism is coupled using a term of energy-transfer-efficiency (e). TEEM has two versions, the first one, 159 

TEEM1 [22] considers a realistic formulation of the anabolic reaction taking into account different N-sources such as 160 

NH4+, NO3-, NO2- and N2, and a complete explanation of e between catabolism and anabolism. The second version, 161 

TEEM2 [74] complements TEEM1 because it considers oxygenase reactions involved and the aerobic heterotrophic 162 

oxidation of C1 organic compounds. 163 

For the use of any version of TEEM, first, we need to identify the e-donor(s) (usually the C-source) and the e-acceptor(s) 164 

and write reduction-half-reactions for each one of them. Second, it is necessary to establish the N-source for biomass 165 

synthesis and the empirical chemical formula that will represent the cells. 166 

According to TEEM, to write the energy equation (Re) which represents the microbial catabolism, we need to combine 167 

the reduction-half-reaction of an e-donor (Rd) with the reduction-half-reaction of an e-acceptor (Ra). Once the catabolic 168 

process is represented by the Re equation, it is necessary to write the reaction for the cellular synthesis (Rs) that will 169 

represent the microbial anabolism. To do this, we need to combine the reduction-half-reaction of Rd with the cell synthesis 170 

half-reaction (Rc). For Rc we have to write and balance a hypothetical half-reaction that consider as reactants: The N-171 

source (NH4+, NO3-, NO2- or N2), CO2 and HCO3-, and as products: water and the microbial mass represented by an 172 

empirical chemical formula of cells (CnHaObNc). This empirical chemical formula considers only the four basic elements: 173 

Carbon (n), Hydrogen (a), Oxygen (b) and Nitrogen (c). To estimate the Gibbs free energy of this half-reaction (Rc), 174 

TEEM uses a value of 3.33 KJ per gram cells [88] which is related to one generic microbial cell composition (C5H7O2N). 175 

To couple the energy from catabolism to anabolism, TEEM establishes a relation with the electrons involved. The 176 

electrons that come from the e-donor are divided in two parts, a fraction (feo) is transferred to the e-acceptor to generate 177 

energy (catabolism) and another fraction (fso) is transferred to the N-source for cell synthesis (anabolism). TEEM 178 

calculates the relationship between feo and fso using: (a) Gibbs standard free energy of Rd, Ra and Rc, (b) other Gibbs 179 

standard free energy terms related to C1 carbon source and oxygenase’s enzymes, and (c) a term for energy-transfer 180 

efficiency (e). This term is included because TEEM assumes that a fraction of thermodynamic free energy is lost at each 181 

transfer energy between catabolism and anabolism. TEEM’s developer [22, 74] used an extensive amount of information 182 

provided by several authors, Heijnen and Van Dijken, 1992; VanBriesen and Rittmann, 2000; VanBriesen, 2002; Xiao 183 

and VanBriesen, 2008, to calibrate and determine the best-fit energy-transfer-efficiency (e) for the TEEM model. 184 
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Therefore, using TEEM we can get the complete chemical and energetic stoichiometry of microbial growth represented 185 

by a MMR. In this study, we will represent metabolic pathways as a set of MMRs using TEEM2 and use them as the 186 

basis of the behavior-rules (such as individual cellular maintenance or individual mass synthesis or individual mass 187 

degradation to reduce cytotoxic products) for each bacteria of the virtual system, and we assume the e value as an 188 

individual value [30]. 189 

2.2 Experimental data  190 

To study into a bioreactor the denitrification process, the experimental assays were designed to breed and develop bacteria 191 

in a bioreactor under two different conditions: one first stage in a batch culture (from 0 to 24 h) during the aerobic phase, 192 

and the second one in a continuous culture (from 24 to 120 h) during the anaerobic phase. Under these bioreactors 193 

procedures two experiments were performed with two different bacterial species by Felgate et al. (2012): (a) the reservoir 194 

medium feed contained 20 mM NO3-, 5 mM succinate and 10 mM NH4+ which was designed to achieve an e-donor limited 195 

with e-acceptor sufficient during the steady state and is designed as succinate-limited/NO3--sufficient (Experiment E1), 196 

and (b) the reservoir medium feed contained 5 mM NO3-, 20 mM succinate and 10 mM NH4+ to achieve an e-donor 197 

sufficient with e-acceptor limited during the steady state and is designed as succinate-sufficient/NO3--limited (Experiment 198 

E2). The data for the time evolutions of dry mass (biomass), NO3-, NO2- and N2O were collected from 0 to 120 h, according 199 

to the experimental procedure presented in Felgate et al. (2012) that utilizes two different denitrifying bacteria, the P. 200 

denitrificans and A. xylosoxidans. With INDISIM-Denitrification we will carry on virtual experiments to reproduce the 201 

behavior of both bacteria growing in both media.  202 

2.3 Programming environment  203 

INDISIM-Denitrification is implemented in the widely used, free and open source platform NetLogo (Fig. 2), a multi-204 

agent programming language to modeling environment for simulating natural phenomena [57]. This provides full access 205 

to the simulation model, including a graphical user interface and the model's source code. Given NetLogo's rather flat 206 

learning curve and comprehensive documentation [40], users without extensive modeling experience can also modify the 207 

code and, thus, investigate alternative mechanisms or adapt certain processes according to other approaches (e.g. 208 

introducing variations in the biomass empirical chemical formula of bacteria). 209 

2.4 Model analysis 210 

To assess the validity of the model, after the first visual techniques with subjective assessment, we carried out numerical 211 

validation techniques that provide a quantification of the difference (or similarity) between observed and simulated values. 212 

The goal is to find ranges of values for the model parameters’ that make it possible to roughly reproduce the evolution of 213 



9 

 

a set of focus variables observed in the two trials using the experimental data for the two bacteria, P. denitrificans and A. 214 

xylosoxidans [18].  215 

In order to compare the simulation results with the experimental data we used the geometric reliability index (GRI) values, 216 

a statistical method to determine the reliability of a model [93]. This index can deal with precise notions of model 217 

accuracy; therefore, its value indicates how closely the simulation results match the experimental ones. For models with 218 

simulation results reasonably close to experimental observations this GRI shows a resulting factor of 1 to 3, with 1 219 

corresponding to 100% accuracy. The interpretation of GRI is that the simulation is accurate within a multiplicative factor, 220 

e.g. with a GRI value equal to 1.32, this means that the simulated values fall between 1/1.32 and 1.32 times the 221 

corresponding experimental values [94]. 222 

The combination of the use of multiple deviance measures with visual inspection in the exploratory data analysis can help 223 

to identify deficiencies and capabilities of the model developed. To assess whether a certain combination of model 224 

parameter values leads to acceptable model output, we include the GRI calculation within the main code of the simulator 225 

for the evolution of four variables: microbial biomass (dry mass), NO3-, NO2- and N2O, controlled for each one of the two 226 

scenarios (Experiments E1 and E2) and for the two denitrifying bacteria tested (P. denitrificans and A. xylosoxidans). 227 

The software tool “BehaviorSpace” incorporated in NetLogo was used for running simulation experiments varying 228 

parameters values and writing model outputs data to files to be statistically analyzed. Each simulation is replicated three 229 

times. 230 

3. Results and discussion 231 

INDISIM-Denitrification model was developed to reproduce a bioreactor experimental protocol for the denitrification 232 

process carried out by denitrifying bacteria growing in batch and continuous culture, in aerobic and anaerobic growing 233 

conditions. To describe our model we use the ODD protocol (“Overview, Design concepts, and Details”), which helps to 234 

ensure that the model description is complete [40, 47, 95]. The complete and detailed description of this model can be 235 

found in the Supplementary material ‘ODD of the model INDISIM-Denitrification’. In this section only, the new features 236 

of the model in relation to INDISIM-Paracoccus are highlighted. 237 

3.1. Microbial metabolic reactions 238 

The reduction of cytotoxic products as a result of anaerobic metabolism through the individual-mass degradation has been 239 

added to individual metabolism, joint with the cellular maintenance and the individual-mass synthesis (Supplementary 240 

material). It seems feasible that in natural conditions when the level of cytotoxic compounds in the media is high then the 241 

microorganisms follow different biological strategies to survive. We have assumed and modelled that the individual can 242 
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use its own mass as an e-donor and the NO and/or N2O as e-acceptor to keep the levels of those products below toxic 243 

concentrations. We consider a degradation coefficient (h-1) to stablish the amount of individual mass that is used to reduce 244 

cytotoxic products, its value is depending on the bacterial species. The individual mass decreases according to this 245 

quantity. 246 

To raise the model to a wider number of bacterial species capable to denitrify, we considered the microbial biomass 247 

composition represented by the elemental formula of CnHaObNc , being the sub index the elemental molar relation. The 248 

molar relation can be modified in the computational model by the user according to the microorganism to simulate and 249 

in consequence the thermodynamic calculations using TEEM2 have been generalized.  250 

To derive the MMRs required for the individual behavior-rule for cellular maintenance, it is necessary to model the energy 251 

reactions for aerobic and anaerobic metabolism. We considered the reaction between succinate (which is always the e-252 

donor) and O2 (as e-acceptor) for the aerobic phase, while for the anaerobic phase; the e-acceptor is an N-oxide. We used 253 

the inorganic half-reactions for Rd and various Ra shown in Rittmann and McCarty, (2001) to write the energy reactions 254 

(Re) shown in Table 1. With these energy reactions and an appropriate maintenance requirement (gCdonor gCmic-1 h-1), 255 

we designed the individual rule for cellular maintenance. 256 

For individual-mass synthesis, it is necessary to model the metabolic pathways for aerobic and anaerobic conditions for 257 

a general denitrifying bacterium and they are translated into a set of MMRs. To incorporate this in the model we took a 258 

rough approximation to the microbial biomass represented by an empirical chemical formula of cells (CnHaObNc), which 259 

is written only with the molar relationship of the four main elements, n for carbon, a for hydrogen, b for oxygen and c for 260 

nitrogen. We consider that the microorganism increases its individual-mass when it executes any of the reactions 261 

described as a set of MMRs (Table 2), in aerobic phase executes aerobic respiration (Reaction I) and dissimilatory nitrate 262 

reduction IV (Reaction II), and in anaerobic phase executes denitrification (Reactions III to VI) [12]. To formulate these 263 

reactions and calculate the corresponding stoichiometric coefficients we used the TEEM methodology [74]. In all 264 

reactions succinate is the universal Rd and C-source, NH4+ is the universal N-source (Rc) for cell synthesis and the 265 

nutrients used as Ra are different, in aerobic conditions they are O2 and NO3- and in anaerobic conditions they are NO3-, 266 

NO2-, NO and N2O (Table 2). 267 

For the individual mass degradation, to reduce internal cytotoxic products, we write the half-reaction where the biomass 268 

is an e-donor which can be coupled with e-acceptor half-reaction to write the stoichiometry reaction (Table 3). With 269 

TEEM2 methodology all reactions, for cellular maintenance (Table 1), for individual-mass synthesis (Table 2) and for 270 

individual mass degradation (Table 3) are balanced for mass and energy. 271 
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3.2 Parametrization and sensitivity analysis  272 

INDISIM-Denitrification has the capability to work with any denitrifying bacterium. To test the performance of 273 

INDISIM-Denitrification we used experimental data published for two different denitrifying bacteria, P. denitrificans and 274 

A. xylosoxidans, and compared them with the simulation results obtained with the NetLogo implementation of our model. 275 

To set up the thermodynamic model, we first used the empirical chemical formula (C3H5.4O1.45N0.75) for the denitrifying 276 

bacterium P. denitrificans published by van Verseveld et al., (1983, 1979, 1977). Taking into account the coefficients n, 277 

a, b and c, the molar relationship between carbon, hydrogen, oxygen and nitrogen, are 3, 5.4, 1.45 and 0.75, respectively, 278 

and the information provided by Table 2 and Table 3. The stoichiometric coefficients for each MMR related to individual-279 

mass synthesis (Table 4) and to individual-mass degradation to reduce cytotoxic products (Table 5) were obtained 280 

applying TEEM2 [30, 46] with an assigned e value in the range proposed for McCarty (1971, 2007) and Rittmann and 281 

McCarty (2001) (see supplementary material to detailed calculations).  282 

To represent the microbial biomass of A. xylosoxidans through an empirical chemical formula we adopted C5H9O2.5N [26, 283 

80, 83] and used the information provided by Table 2 and Table 3, the stoichiometric coefficients for each MMRs related 284 

to individual-mass synthesis (Table 6) and to individual-mass degradation to reduce cytotoxic products (Table 7) were 285 

obtained operating with TEEM2 [46], using a different assigned ε value for each reaction in the range proposed by 286 

McCarty (2007) and Xiao and VanBriesen (2008).  287 

The model implementation in NetLogo allows the user to quickly and easily change many parameter’s values involved, 288 

and specifically, in this new simulator:  289 

(a) The molar relationship between the elements of the biomass empirical formula (C, H, O and N), with which the 290 

NetLogo simulator immediately recalculates all of the stoichiometric coefficients for the set of MMRs.  291 

(b) The bacteria size, allowing the spherical equivalent diameter (expressed in μm) for the smallest and largest bacteria, 292 

where in all cases the bacterium is considered to be spherical shape. In the case of P. denitrificans the smallest individual 293 

represents a bacterium with a diameter of ~ 0.5 μm and the largest one a bacterium with a diameter of ~ 0.9 μm. In the 294 

case of A. xylosoxidans the smallest individual represents a bacterium with a spherical equivalent diameter of ~ 0.63 μm 295 

and the largest one a bacterium with a spherical equivalent diameter of ~ 1.40 μm.  296 

(c) The maximum population growth rate (μmax which is expressed in h-1), a parameter which is used to estimate the 297 

individual maximum uptake-rates (ui) which are calculated adding the maintenance and growth requirements according 298 

the stoichiometric coefficients of the MMRs. van Verseveld et al. (1983) reported for P. denitrificans a growth rate value 299 

equal to 0.418 h-1, which was obtained in the change from a culture growing in anaerobic NO3--limited conditions to 300 

aerobic succinate-limited conditions. In the case of A. xylosoxidans a value equal to 0.25 h-1 is reported, which was 301 

obtained when the bacterium grew over 6-carbon compounds in aerobic conditions [99]. With this information, the 302 
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simulator recalculates the maximum uptake reference value to all nutrients considered in the virtual system. Using these 303 

values and performing calculations with the stoichiometric coefficients of each MMRs adjusted by TEEM2 (Table 4 and 304 

Table 6), we obtained the maximum uptake-rate for each nutrient and bacteria. Taking into account the maximum uptake-305 

rate for each nutrient and bacteria, we established the values for the sensitivity analysis performed for this parameter 306 

(Table 8 and Table 9).  307 

(d) The maintenance coefficient (gCdonor gCmic-1 h-1), a parameter which is used in the aerobic and anaerobic growth 308 

phases of the denitrifying bacteria. In the case of cellular maintenance, Gras et al. (2011) consider an appropriate 309 

maintenance requirement for soil heterotrophic microorganisms of 0.002 (gCdonor gCmic-1 h-1), which was assumed in 310 

INDISIM-Paracoccus [31] for the aerobic phase. This is different in the implementation of INDISIM-Denitrification, due 311 

to that the model considering a unique parameter for the cellular maintenance coefficient (gCdonor gCmic-1 h-1) in both 312 

aerobic and anaerobic phase.  313 

(e) The mass degradation coefficient (h-1), another individual parameter related to the individual mass, which was 314 

introduced for the anaerobic phase only. In Table 10 we show the tested values for cellular maintenance and individual 315 

mass degradation parameters: these ranges of values will be the same for both bacteria. 316 

To start the calibration and sensitivity analysis process, we combined the values from Table 8 and Table 9 using a full 317 

factorial design for each species of bacteria and each virtual experiment (E1, E2), and after that, we combined the values 318 

from Table 10 in a full factorial design for the cellular maintenance and mass degradation coefficients. 319 

To assess whether a certain combination of model parameter values leads to acceptable model output, we calculated GRI 320 

value for four variables: microbial biomass (drymass), NO3, NO2- and N2O, controlled for both scenarios (Experiments 321 

E1 and E2) and for both denitrifying bacteria P. denitrificans and A. Xylosoxidans.  322 

The simulation and experimental mean values of the three replications performed are presented with their corresponding 323 

standard errors in the following graphical representations. We established multiple fitting criteria using the model’s 324 

parameters: uptake-rate for all nutrients involved, cellular maintenance rate and, mass degradation coefficient, with the 325 

experimental data of Felgate et al. (2012). The essential idea is to find a value or a range of values for these parameters 326 

that make it possible to roughly reproduce the evolution of a set of patterns observed in the two experiments and for both 327 

bacteria species. All full factorial designs were executed using the tool “BehaviorSpace” included in NetLogo, a task that 328 

was facilitated due to the simulator including in its code the complete experimental data set to calculate GRI. Each 329 

simulation result was compared to the experimental values and the GRI for each one was calculated. We selected the 330 

combination of the parameters with minimum GRI value to declare the best fit of INDISM-Denitrification. 331 
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3.3 Simulation outputs 332 

In order to verify our model implementation, we checked several features to ensure its accurate quantification of the 333 

conceptual model. For instance, one of the main checks was to verify that the simulator accomplished mass-balances for 334 

C and N, which ensures that the chemical reactions and the bioreactor inputs/outputs are accurately implemented, and the 335 

simulator works as is expected. We also tested that the individuals were able to carry out all of the reactions in different 336 

media compositions. In addition, we systematically investigated internal model logic and behaviors by collecting global 337 

and individual data through the simulation, which were numerically and visually tested (Fig. 2). 338 

The outputs of the model (Fig. 2) are: (a) the concentration (mmol·l-1 or umol·l-1) of each culture medium component 339 

(succinate, NH4+, O2, NO3- CO2, HCO3-, NO2-, NO, N2O and N2), (b) microbial biomass (mg·ml-1), (c) the population 340 

mass distribution, (d) a graphical view to show the frequency of use of each metabolic reaction, (e) all MMRs written 341 

using TEEM for any denitrifying bacteria, and (f) GRI´s values for the time evolution of system variables, microbial 342 

biomass (dry mass), NO3-, NO2- and N2O. The outputs of the model that are compared with experimental data are shown 343 

in the figures 3 to 6, in these figures the experimental data are drawn with means of the replicates and their standard 344 

errors, and the simulation results are drawn with a sequence of dots, each dot represents the mean of the replicates of the 345 

model in each step time. 346 

3.3.1 Simulations for P. denitrificans 347 

INDISIM-Denitrification was used to simulate the growth and behavior of the P. denitrificans in a bioreactor which works 348 

in aerobic conditions (batch culture) and in anaerobic conditions (continuous culture) in accordance with the experiments 349 

E1 and E2 and experimental protocols published by Felgate et al. (2012). The set of individual and environmental 350 

parameter values that generate model outputs with acceptable GRI coefficient are shown in Table 11. In figure 3 and 351 

figure 4, we present the outputs assessed for the bacterium P. denitrificans, namely the drymass, NO3-, NO2- and N2O 352 

time evolutions for the two experiments succinate-limited/NO3--sufficient – E1 (Fig. 3) and succinate-sufficient/NO3--353 

limited – E2 (Fig. 4) with the GRI score obtained in the statistical analysis. 354 

According to the magnitude of the GRI coefficient, the results of the simulated experiment E1, succinate-limited/NO3--355 

sufficient, are accurate to the experimental results for drymass, NO3-, NO2- and N2O evolutions. The experimental data 356 

suggest that the culture achieved the steady state 40 hours from the start; the effect of moving from aerobic to anaerobic 357 

phase, is appreciable on the GRI values for NO2- (Fig. 3-C) and N2O time evolution (Fig. 3-D), the highest values obtained 358 

are for E1, but still adequate. Furthermore, we consider that the results on figures 3-C and 3-D are due to the stochastic 359 

nature of the parameter related with the behavior-rule of the individual-mass degradation to reduce cytotoxic products are 360 

executed, observing these results we confirm that our model has the necessary stochasticity that an IBM must have. 361 
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The lowest value obtained for GRI corresponds to the drymass temporal evolution (Fig. 3-A), which confirms that the 362 

thermodynamic approach used to represent the metabolic pathways was properly selected. 363 

The results obtained for the simulated experiment E2, succinate-sufficient/NO3--limited, are close to the experimental 364 

result for drymass evolution (Fig. 4-A). On the other hand, the GRI scores for NO3-, NO2- and N2O evolutions in E2 (Fig. 365 

4-B, Fig. 4-C and Fig. 4-D) are outside of the required GRI range, which suggests a rough adequacy of the model in the 366 

experiment e-donor-sufficient/e-acceptor-limited.  367 

An explanation for this fact is that the amount of e-donor is able to reduce whole amount of e-acceptor of the system. 368 

This explains the fact that the temporal evolutions of NO2- and N2O (Fig. 4-C and Fig. 4-D) in the anaerobic conditions 369 

hit zero, increasing the value of the GRI.  370 

The simulated data for the drymass evolution in experiment E1 and E2 has the lowest GRI values. These results reinforce 371 

the idea that the contribution of TEEM2 to write the metabolic reactions is crucial in a model based on individuals and 372 

moreover that the metabolism is a central part of it. Also, it suggests that the formula C3H5.4O1.45N0.75 used to represent 373 

the biomass of P. denitrificans provides an acceptable agreement between the simulated and experimental system 374 

variables. 375 

The system variables outputs for P. denitrificans with INDISIM-Denitrification simulator improve the GRI value, from 376 

12.94 (INDISIM-Paracoccus) to 2.02 (INDISIM-Denitrification), for the N2O time evolution for the experiment with e-377 

donor limited (Fig. 3-D) in relation to the results presented in our previous work [31]. In light of this results it seems 378 

plausible that the individual-mass degradation could be an interesting individual strategy to reduce the accumulation of 379 

cytotoxic products in the surrounding media as has been pointed out by some authors [22]. 380 

In addition to those temporal evolutions which are compared to the experimental values through GRI values, INDISM-381 

Denitrification gives the outputs (graphical and numerical) for other nutrients and metabolic products involved in the 382 

denitrification process, such as succinate, NH4+, O2, NO, N2, CO2 and HCO3- (Fig. 2). These chemical compounds do not 383 

have the corresponding experimental temporal evolutions in the data set presented by Felgate et al. (2012), therefore it is 384 

not possible to calculate the GRI values for them. However, INDISIM-Denitrification provides the user with these data 385 

and thus, it makes possible a comparison when new experimental data become available.  386 

3.3.2 Simulations for A. xylosoxidans  387 

We took new experimental data published by Felgate et al. (2012), and not previously used, into account for comparing 388 

the adequacy of the simulations with INDISIM-Denitrification for A. xylosidans, to evaluate the goodness of the model, 389 

and to assess the improvements introduced to achieve the objectives of this work. Simulations were run with the empirical 390 

chemical formula C5H9O2.5N, which is commonly used to represent the biomass composition of A. xylosoxidans. The 391 
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individual and environmental parameter values that caused model outputs with acceptable GRI coefficient are shown in 392 

Table 12. 393 

In Figure 5 and Figure 6, the outputs assessed for the bacterium A. xylosoxidans are shown, namely the drymass, NO3-, 394 

NO2- and N2O evolutions for the two experiments, experiment E1 with succinate-limited/NO3--sufficient (Fig. 5) and 395 

experiment E2 with succinate-sufficient/NO3--limited (Fig. 6), where the GRI scores obtained in the statistical analysis 396 

performed are included. According to the GRI values for the experiment e-donor limited (Fig. 5), the simulation results 397 

obtained with INDISIM-Denitrification for the bacterium A. xylosoxidans showed an acceptable behavior, because all of 398 

the values were in the acceptable range of GRI (from 1 to 3). The highest GRI value was obtained in the temporal evolution 399 

of NO2- (Fig. 5-C). 400 

The acceptable range for GRI was only achieved in the drymass and NO3- evolution (Fig. 6-A and Fig. 6-B) for the 401 

experiment e-donor sufficient (E2). This model’s behavior is a key point for future upgrades of this INDISIM branch 402 

because it could be necessary to include a new behavior-rule at the individual level to regulate the model’s response when 403 

the e-acceptor is limited (e-donor sufficient). 404 

4. Conclusions and final remarks 405 

Considering the GRI values obtained for the temporal evolutions variables tested, INDISIM-Denitrification provides 406 

acceptable results for the experiments where the e-donor is limited, specifically for denitrifying bacterium P. denitrificans: 407 

(a) biomass, from 1.22 (INDISIM-Paracoccus) to 1.08 (INDISIM-Denitrification), (b) nitrate, from 1.26 (INDISIM-408 

Paracoccus) to 1.23 (INDISIM-Denitrification), (c) nitrite, from 2.05 (INDISIM-Paracoccus) to 1.97 (INDISIM-409 

Denitrification), and (d) nitrous oxide, from 12.94 (INDISIM-Paracoccus) to 2.02 (INDISIM-Denitrification) (Fig. 3 and 410 

Fig. 5). We consider that one of the reasons is due to TEEM being designed for bacterial yield prediction in microbial 411 

systems when the C-source is a limiting factor, e.g. the wastewater treatments [22]. 412 

One of the novelties of INDISIM-Denitrification simulator is that it offers a greater versatility in relation to the previous 413 

version (INDISIM-Paracoccus), because it can be used to work with any other bacteria in a pure culture. It is also possible 414 

to simulate a functional denitrifying group when the user works with mixed cultures and use mean molar coefficient for 415 

microbial biomass (n,a,b,c) defining a representative empirical formula for bacterial population. In consequence, all the 416 

stoichiometric coefficients for the set of MMRs for each metabolic pathway are automatically recalculated. Following 417 

the principle that all individuals could achieve the maximum growth rate, μmax if the user changes this value, the individual 418 

maximum uptake-rate values are recalculated for all nutrients involved in metabolism, according to the stoichiometric 419 

coefficients of the MMRs related with individual mass synthesis. Since these improvements in the parameter calculations 420 

are incorporated in the code, the calibration for other denitrifying populations is easier. Therefore, the INDISIM-421 
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Denitrification simulator allows the user to interact in a much more extensive way with significant biological parameters 422 

of the metabolic part of the bacteria, giving different values to parameters that can condition the growth dynamics, and 423 

which are notable for the denitrification results. 424 

The model has been improved since we have assumed that individuals cannot live and develop in the same way in a 425 

favorable environment as in a hostile environment. From the moment in which an accumulation of cytotoxic products 426 

occurs in the medium, the individual develops a strategy to survive and it has an energy or mass cost. We have assumed 427 

that the individual consumes its own biomass to reduce some of the N-oxides which are toxic and we have implemented 428 

this sub model as a part of the metabolism. This assumption has given much better results in the calibration of the model 429 

in relation to the INDISIM-Paracoccus, specifically for the evolution of NO and N2O for both bacteria in the experiment 430 

succinate-limited/NO3--sufficient, since accumulation did not occur in the simulated system just as in the experimental 431 

tests. So, we can conclude that our assumption or hypothesis is consistent and reflects how individuals maintain their 432 

viability in the presence of cytotoxic products. 433 

The implementation of INDISIM-Denitrification in NetLogo offers easy access to the computer code for future and 434 

specific adaptations to the user interested in diverse academic and research applications. In particular, it facilitates the 435 

exploration of the effects of bacterial metabolic behavior on denitrification dynamics and allows users to test their own 436 

(virtual or measured) parameter values or to compare the model output to their own observations.  437 

Based on results, it appears that INDISIM-Denitrification is a useful tool to model any denitrifying bacterium in batch 438 

and continuous cultures under different oxygen concentration to simulate aerobic or anaerobic metabolism. In this study, 439 

homogeneous, laboratory chemostat data, typically showing low spatial heterogeneity, have been used. Nevertheless, the 440 

developed model allows us to include the heterogeneous dynamics into the system. This heterogeneity is not only related 441 

with aerobic and anaerobic conditions, it is also reflected at the individual level with the behavior rules and alternatives 442 

in the use of metabolic pathways. For instance, the heterogeneity at individual level can be revealed using biomass 443 

distributions of the bacteria (or other distributions of cellular contents) and controlling which reactions are more often 444 

used than others by the microbes during the temporal evolution of the system (Figure 2). Nowadays, this perspective on 445 

the biological heterogeneity in individual behavior has been assumed and treated in other applications [100–102] in order 446 

to advance our understanding of microbial systems. Using highly controlled experimental conditions has offered the 447 

possibility to focus on the individual behavior rules (exception made of the bacterial movement) that are now validated 448 

and ready, in the near future, to deal with other medium conditions. 449 

TEEM2, one of the thermodynamic models based on bioenergetics growth efficiency, also appears to be a useful tool for 450 

modeling the individual metabolism in the INDISIM-Denitrification model. In contrast to other modeling approaches, it 451 

allows the user to embed thermodynamic properties into individual cells, which can simulate the behavior of the bacterial 452 



17 

 

population more realistically than the continuous and traditional population-based approaches.  453 

With µIBM as the INDISIM-Denitrification it should be possible to investigate the theory for the coupling energy between 454 

catabolism and the anabolism, which is the principal assumption in the TEEM2 because it considers that thermodynamic 455 

free energy is lost at each transfer by including a term for this efficiency (e). TEEM2 considers e value constant, but there 456 

is no clear reason why it should do this. Therefore, experiments could be developed with some specific environmental 457 

conditions where the same metabolic pathway would be adjusted with different values of e, The use of IBMs allow to 458 

model individuals that can change their (e) value according to the local environmental conditions. This will be an 459 

interesting contribution because some authors consider that e value is not constant in the metabolic process [76, 77].  460 

The development and application of μIBM with some intracellular detail and complexity is the key advantage of our new 461 

model for studying the different steps of denitrification carried out by a denitrifying bacterium. Exploring model behavior 462 

via its input parameters and assessing alternative sub-models provides a way to progress with the development of a 463 

simulator able to control factors that contribute to our understanding of how major or minor N2O generation is a 464 

consequence of this denitrified metabolic individual activity. 465 

In a broader context, and in connection with other models where the process of nitrification can be significant, this model 466 

can give insights into the representation of microbial activity existing in diverse environments, as for instance, in organic 467 

matter transformations. For instance, the mineralization and nitrification processes involved in those transformations are 468 

mainly driven by bacteria (and other microbes), and consequently, the standpoint used in this denitrifying model can be 469 

adapted or incorporated to represent these processes [68, 69]. The cycles of carbon and nitrogen require the integration 470 

of these interacting processes. The challenges associated with the distribution and activity of microorganisms at a 471 

microscale, for instance, in soils, is being investigated both from experimental data with advanced and innovative 472 

techniques and with the use of models and simulations [103]. Insights of the microscale heterogeneity of the spatial 473 

distribution of organic matter connected with microbial activity need spatially explicit modelling approaches. In the recent 474 

past computer simulations focusing on the microscale are resulting in some additions to our understanding of such 475 

complex environments [104–106]. The denitrifying model achieved in this study would highly benefit those spatially 476 

explicit models, because it can be treated as a module in order to build the backbone of a more ambitious biophysical 477 

model for transformations of organic matter. 478 
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Table	1.	Microbial	metabolic	reactions	(Energy	Reactions	-	Re)	for	cellular	maintenance	in	aerobic	
(I)	and	anaerobic	phase	(from	II	to	V).	Re	=	Ra	–	Rd	according	to	TEEM2	[22,	74].	

		I	 (C4H4O4)2-	+	3.5	O2	=	2	CO2	+	2	HCO3-	+	H2O	

		II	 (C4H4O4)2-	+	7	NO3-	=	7	NO2-	+	2	CO2	+	2	HCO3-	+	H2O	

		III	 (C4H4O4)2-	+	14	NO2-	+	14	H+	=	14	NO	+	2	CO2	+	2	HCO3-	+	8	H2O	

		IV	 (C4H4O4)2-	+	14	NO	=	7	N2O	+	2	CO2	+	2	HCO3-	+	H2O	

		V	 (C4H4O4)2-	+	7	N2O	=	7	N2	+	2	CO2	+	2	HCO3-	+	H2O	
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Table	 2.	 Microbial	 metabolic	 reactions	 for	 individual-mass	 synthesis	 in	 aerobic(a)	 and	 anaerobic(b)	
conditions	 for	 any	denitrifying	 bacteria	when	 succinate	 is	 C-source,	NH4+	 is	N-source	 and	different	 e-
acceptors	involved	in	common	denitrification	pathway.	(R	=	feo	Ra	+	fso	Rc	–	Rd)	according	to	TEEM2	[22,	
74].		
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CnHaObNc	 is	the	general	empirical	chemical	 formula	of	cells,	where	the	coefficients	n,	a,	b	and	c	are	the	
molar	relationship	between	the	elements:	carbon,	hydrogen,	oxygen	and	nitrogen,	respectively.	Also,	𝑑 =
(4𝑛 + 𝑎 − 2𝑏 − 3𝑐).	 feo	and	 fso	are	 the	portion	of	electrons	 for	 coupling	energy	between	catabolic	and	
anabolic	 process	 according	 to	TEEM2	 [22,	 74].	NH4+	 is	 the	N-source	 for	 biomass	 synthesis.	When	 the	
coefficient	 is	evaluated	 if	 the	result	 is	positive	 indicates	“reaction	reactant”	and	 if	 is	negative	 indicates	
“reaction	product”.	
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Table	3.	Microbial	Metabolic	Reactions	for	individual	mass	degradation	to	reduce	cytotoxic	products	
NO	or	N2O	in	anaerobic	phase	according	to	TEEM2	[22,	74].	
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CnHaObNc	is	the	general	empirical	chemical	formula	of	cells,	where	the	coefficients	n,	a,	b	and	c	are	the	
molar	relationship	between	the	elements:	carbon,	hydrogen,	oxygen	and	nitrogen,	respectively.	Also,	
𝑑 = (4𝑛 + 𝑎 − 2𝑏 − 3𝑐).	When	the	coefficient	is	evaluated	if	the	result	is	positive	indicates	“reaction	
reactant”	and	if	is	negative	indicates	“reaction	product”.	
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Table	4.	Microbial	metabolic	reactions	that	represent	aerobic(a)	and	anaerobic(b)	pathways	for	the	
denitrifying	 bacterium	 Paracoccus	 denitrificans	 for	 individual-mass	 synthesis	 using	 different	
values	 of	 energy-transfer-efficiency	 (ε)	 according	 to	 TEEM2	 [74]	 used	 for	 test	 INDISIM-
Denitrification	model	[46].	

I(a)	
(C4H4O4)2-	+	0.66	NH4+	+	0.79	O2	=		

																																									0.89	C3H5,4O1,45N0,75	+	0.01	CO2	+	1.34	HCO3-+	0.27	H2O		
ε=0.84	

II(a)	
(C4H4O4)2-	+	0.08	NH4+	+	0.52	NO3-	+	1.05	H+	+	0.18	H2O	=		

																																																																		0.80	C3H5,4O1,45N0,75	+	0.20	CO2	+	1.4	HCO3-		
ε=0.90	

III(b)	
(C4H4O4)2-	+	0.30	NH4+	+	4.56	NO3-	=		

																					4.56	NO2-	+	0.4	C3H5,4O1,45N0,75	+	1.10	CO2	+	1.70	HCO3-	+	0.67	H2O	
ε=0.41	

IV(b)	
(C4H4O4)2-	+	0.57	NH4+	+	4.67	NO2-	+	4.67	H+	=		

																					4.67	NO	+	0.76	C3H5,4O1,45N0,75	+	0.30	CO2	+	1.43	HCO3-	+	2.71	H2O	
ε=0.84	

V(b)	
(C4H4O4)2-	+	0.58	NH4+	+	4.60	NO	=		

																			2.30	N2O	+0.77	C3H5,4O1,45N0,75	+	0.27	CO2	+	1.42	HCO3-	+	0.37	H2O		
ε=0.56	

VI(b)	
(C4H4O4)2-	+	0.58	NH4+	+	2.29	N2O	=		

																						2.29	N2	+	0.77	C3H5,4O1,45N0,75	+	0.27	CO2	+	1.42	HCO3-	+	0.37	H2O	
ε=0.53	

I(a)	represents	the	pathway:	Aerobic	respiration,	II(a)	represents	the	pathway:	Nitrate	Reduction	
-	Dissimilatory	in	aerobic	phase,	and	gathering	the	reactions	III(b),	IV(b),	V(b)	and	VI(b)	the	pathway:	
Nitrate	Reduction	–	Denitrification,	all	of	them	are	represented	according	to	Caspi	et	al.,	(2012);	
Knowles,	(1982)	and	Zumft,	(1997).	
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Table	 5.	 Microbial	 metabolic	 reactions	 for	 individual	 mass	 degradation	 to	 reduce	 cytotoxic	
products	 NO	 and/or	 N2O	 in	 anaerobic	 phase.	 For	 the	 denitrifying	 bacterium	 Paracoccus	
denitrificans,	used	for	test	INDISIM-Denitrification	model	[46].	

NO	
C3H5,4O1,45N0,75	+	12.25	NO	=		

																																														6.125	N2O	+	0.75	NH4+	+	2.25	CO2	+	0.75	HCO3-+	0.825	H2O	

N2O	
C3H5,4O1,45N0,75	+	6.125	N2O	=		

																																																6.125	N2	+	0.75	NH4+	+	2.25	CO2	+	0.75	HCO3-	+	0.825	H2O	
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Table	6.	Microbial	metabolic	reactions	that	represent	aerobic(a)	and	anaerobic(b)	pathways	for	the	
denitrifying	bacterium	Achromobacter	xyloxidans,	 for	 individual-mass	synthesis	using	different	
values	 of	 energy-transfer-efficiency	 (ε)	 according	 to	 TEEM2	 [74]	 used	 for	 test	 INDISIM-
Denitrification	model	[46].	

I(a)	
(C4H4O4)2-	+	0.50	NH4+	+	0.89	O2	=	

																																																			0.50	C5H9O2.5N	+	0.01	CO2	+	1.50	HCO3-	+	0.01	H2O	
ε	=	0.76	

II(a)	
(C4H4O4)2-	+	0.52	H2O	+	0.77	NO3-	+	1.54	H+	=		

																																																	0.37	C5H9O2.5N	+	0.51	CO2	+	1.63	HCO3-	+	0.40	NH4+	
ε	=	0.65	

III(b)	
(C4H4O4)2-	+	0.24	NH4+	+	4.49	NO3-	=		

																										4.49	NO2-	+	0.24	C5H9O2.5N	+	1.05	CO2	+	1.76	HCO3-	+	0.52	H2O	
ε	=	0.41	

IV(b)	
(C4H4O4)2-	+	0.45	NH4+	+	4.54	NO2-	+	4.54	H+	=		

																													4.54	NO	+	0.45	C5H9O2.5N	+	0.20	CO2	+	1.55	HCO3-	+	2.37	H2O	
ε	=	0.84	

V(b)	
(C4H4O4)2-	+	0.50	NH4+	+	3.53	NO	=		

																								1.77	N2O	+	0.50	C5H9O2.5N	+	0.01	CO2	+	1.50	HCO3-	+	0.003	H2O	
ε	=	0.66	

VI(b)	
(C4H4O4)2-	+	0.24	NH4+	+	4.50	N2O	=		

																														4.50	N2	+	0.24	C5H9O2.5N	+	1.05	CO2	+	1.76	HCO3-	+	0.52	H2O	
ε	=	0.27	

I(a)	represents	the	pathway:	Aerobic	respiration,	II(a)	represents	the	pathway:	Nitrate	Reduction	-	
Dissimilatory	in	aerobic	phase,	and	gathering	the	reactions	III(b),	IV(b),	V(b)	and	VI(b)	the	pathway:	
Nitrate	Reduction	–	Denitrification,	all	of	them	are	represented	according	to	Caspi	et	al.,	(2012);	
Knowles,	(1982)	and	Zumft,	(1997).	
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Table	7.	Microbial	metabolic	reactions	 for	 individual	mass	degradation	 to	reduce	cytotoxic	
products	NO	and/or	N2O	in	anaerobic	phase.	For	the	denitrifying	bacterium	Achromobacter	
xyloxidans,	used	for	test	INDISIM-Denitrification	model	[46].	

NO	 C5H9O2.5N	+	21	NO	=	10.5	N2O	+	NH4+	+	4	CO2	+	HCO3-	+	2	H2O	

N2O	 C5H9O2.5N	+	10.5	N2O	=	10.5	N2	+	NH4+	+	4	CO2	+	HCO3-	+	2	H2O	
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Table	8.	Uptake-rate	(ui)	parameter´s	values	with	units	(molnutrient·C-molmic-1·h-1)	for	the	
sensitivity	 analysis	 of	 the	 uptake-rate	 (ui)	 parameter	 for	 denitrifying	 bacterium	 P.	
denitrificans	used	for	test	INDISIM-Denitrification	model	[46].	

Nutrient	

Uptake-rate	
(molnutrient·C-molmic-1·h-1)	

Testing	values	

Low	(L)	 Medium	(M)	 High	(H)	

Succinate	 0.051	 0.102	 0.204	a	

Ammonium	 ------	 ------	 0.105	a	

Oxygen	 ------	 ------	 0.125	a	

Nitrate-a	(aerobic)	 0.000911	 0.00911	 0.0911	a	

Nitrate-x	(anaerobic)	 0.00398	 0.0398	 0.398	a,b	

Nitrite	 0.00214	 0.0214	 0.214	a,b	

Nitric	Oxide	 0.00209	 0.0209	 0.209	a,b	

Nitrous	Oxide	 0.00104	 0.0104	 0.104	a,b	

The	values	(a)	are	the	result	of	performing	calculations	between	the	maximum	growth	
rate	(µmax	=	0.418	h-1,	van	Verseveld	et	al.,	1983)	and	the	stoichiometric	coefficients	of	
each	metabolic	reaction	adjusted	by	TEEM2	(Table	4).	The	values	(b)	are	the	result	of	
dividing	 each	high	uptake-rate	 by	4	due	 to	 the	maximum	growth	 rate	 being	 achieved	
when	the	four	reactions	(III(b),	IV(b),	V(b)	and	VI(b))	are	carried	out	by	the	bacterium.	
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Table	9.	Uptake-rate	(ui)	parameter´s	values	with	units	(molnutrient·C-molmic-1·h-1)	used	in	
the	sensitivity	analysis	of	this	parameter	for	denitrifying	bacterium	A.	xylosoxidans	used	
for	test	INDISIM-Denitrification	model	[46].	

Nutrient	

Uptake-rate	
(molnutrient·C-molmic-1·h-1)	

Testing	values	

Low	(L)	 Medium	(M)	 High	(H)	

Succinate	 0.036	 0.072	 0.144	a	

Ammonium	 ------	 ------	 0.050	a	

Oxygen	 ------	 ------	 0.089	a	

Nitrate-a	(aerobic)	 0.001031	 0.01031	 0.1031	a	

Nitrate-x	(anaerobic)	 0.00235	 0.0235	 0.235	a,b	

Nitrite	 0.00126	 0.0126	 0.126	a,b	

Nitric	Oxide	 0.00089	 0.0089	 0.089	a,b	

Nitrous	Oxide	 0.00236	 0.0236	 0.236	a,b	

The	values	(a)	are	the	result	of	performing	calculations	between	the	maximum	growth	
rate	 (µmax	=	0.250	h-1,	Nielsen	et	 al.,	 2006)	and	 the	 stoichiometric	 coefficients	of	 each	
metabolic	reaction	adjusted	by	TEEM2	(Table	6).	The	values	(b)	are	the	result	of	dividing	
each	high	uptake-rate	by	4	due	to	the	maximum	growth	rate	being	achieved	when	the	
four	reactions	(III(b),	IV(b),	V(b)	and	VI(b))	are	carried	out	by	the	bacterium.	
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 738 

Table	 10.	 Values	 used	 in	 the	 sensitivity	 analysis	 performed	 with	 the	 parameter	 for	
cellular	maintenance	and	 individual	mass	degradation	 coefficient,	 for	 two	denitrifying	
bacteria	 (P.	 denitrificans and A. xylosoxidans)	 used	 for	 test	 INDISIM-Denitrification	
model	[46].	

Cellular	maintenance	

(gCdonor·gCmic-1·h-1)	
2.0x10-3	(a)	 4.0x10-3	 2.0x10-2	 4.0x10-2	

Mass	degradation	

(h-1)	
2.2x10-2	(a)	 4.0x10-2	 6.0x10-2	 8.5x10-2	

(a)	Reference	value	obtained	from	initial	model	calibration.	
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Table	11.	INDISIM-Denitrification	model	parameters	values	for	P.	denitrificans	[46].	

Nutrient	
Culture	medium	initial	
concentration	[mM]	
Felgate	et	al.	(2012)	

Availability	coefficient	–	ai	(h-1)	
fixed	according	to	Dab	

Uptake-rate	–	ui		–	
(molnutrient·C-molmic-1·h-1)	

Succinate	 5	c	–	20	d	 0.28	a,b	 0.204	a,b	

Ammonium	 10	c,d	 0.84	a,b	 0.105	a,b	

Oxygen	 0.236	c,d	 0.79	a,b	 0.125	a	

Nitrate-a	(aerobic)	

4.9983	d	–	21.6095	c	 0.63	a,b	

0.00911	a	

Nitrate-x	
(anaerobic)	 0.039	b	

Nitrite	 0.0255	c	–	0.0112	d	 0.78	a,b	 0.214	b	

Nitric	Oxide	 ------	 1.00	a,b	 0.209	b	

Nitrous	Oxide	 0.003	c	–	0.000028	d	 0.50	a,b	 0.104	b	

Other	bacterial	parameters	

Parameter	 Calibrated	value	 Reference	

Cellular	maintenance	coefficient	

(gCdonor·gCmic-1·h-1)	
0.0020	a,b	 Gras	et	al.	(2011)	

Mass	degradation	coefficient	(h-1)	 0.022	 Calibrated	

Mass	split	
0.50	

(15%	coefficient	of	variation)	
Derived	from	[66]	

Small	bacterium	size	(µm)	 0.5	a,b	
Holt	et	al.	(1994)	

Big	bacterium	size	(µm)	 0.9	a,b	

Minimum	bacterium	size	at	
reproduction	

75%	of	big	bacterium	size	

(15%	coefficient	of	variation)	
Derived	from	[68]	and	[66]	

Phase:	(a)	Aerobic,	(b)	Anaerobic.	Experiment:	(c)	Succinate-limited/NO3--sufficient,	(d)	Succinate-sufficient/NO3-
-limited.		
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Table	12.	INDISIM-Denitrification	model	parameters	values	for	A	xylosoxidans	[46].	

Nutrient	
Culture	medium	initial	
concentration	[mM]	
Felgate	et	al.	(2012)	

Availability	coefficient	–	ai		
(h-1)	fixed	according	to	Dab	

Uptake-rate	–	ui		–	
(molnutrient·C-molmic-1·h-1)	

Succinate	 5	c	–	20	d	 0.28	a,b	 0.144	a,b	

Ammonium	 10	c,d	 0.84	a,b	 0.050	a,b	

Oxygen	 0.236	c,d	 0.79	a,b	 0.089	a	

Nitrate-a	(aerobic)	

5.1538	d	–	21.7469	c	 0.63	a,b	

0.01031	a	

Nitrate-x	
(anaerobic)	 0.235	b	

Nitrite	 0.00765	c	–	0.36863	d	 0.77	a,b	 0.00126	b	

Nitric	Oxide	 ------	 1.00	a,b	 0.0089	b	

Nitrous	Oxide	 0.00001818	c	–	
0.00006263	d	 0.50	a,b	 0.236	b	

Other	bacterial	parameters	

Parameter	 Calibrated	value	 Reference	

Cellular	maintenance	coefficient	

(gCdonor·gCmic-1·h-1)	
0.0020	a,b	 Gras	et	al.	(2011)	

Mass	degradation	coefficient	(h-1)	 0.085	 Calibrated	

Mass	split	
0.50	

(15%	coefficient	of	
variation)	

Derived	from	[66]	

Smallest	bacterium	size	(µm)*	 0.63	a,b	
Holt	et	al.	(1994)	

Big	Biggest	bacterium	size	(µm)*	 1.40	a,b	

Minimum	bacterium	size	at	
reproduction	

75%	of	big	bacterium	size	

(15%	coefficient	of	
variation)	

Derived	from	[68]	and	[66]	

Phase:	 (a)	 Aerobic,	 (b)	 Anaerobic.	 Experiment:	 (c)	 Succinate-limited/NO3--sufficient,	 (d)	 Succinate-
sufficient/NO3--limited.	(*)	This	size	refers	to	a	spherical	equivalent	diameter.	

741 



	

Figure	 1.	 Schematic	 diagram	 of	 the	
INDISIM-Denitrification	model	[46].	
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Figure	 2.	 A	 screenshot	 of	 the	 user	 interface	 of	 INDISIM-
Denitrification	 simulator	 in	 NetLogo.	 The	 sliders	 allow	
initial	values,	simulated	time	and	the	models´	parameters	
to	be	varied.	Observations	are	provided	with	monitors	and	
plots	of	the	modelled	compounds	over	time.	Bacteria	Mass	
distributions	and	the	number	of	times	that	each	metabolic	
reaction	has	been	used	by	bacteria	are	also	presented	 in	
the	 simulator	 interface	with	TEEM2	 results	when	 the	C-
source	 is	 succinate,	 NH4+	 is	 the	 N-source	 and	 the	 e-
acceptors	are	O2	and	N-oxides	using	an	empirical	chemical	
formula	of	any	denitrifying	bacteria.	
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Figure	 3.	 INDISIM-Denitrification	 simulation	 results	 using	 the	 empirical	 chemical	 formula	 of	
Paracoccus	 denitrificans	 (dots	 and	 continuous	 line)	 and	 experimental	 values	 (squares)	 are	
presented	 with	 their	 standard	 error	 [18]	 for	 the	 experiment	 E1:	 succinate-limited/NO3--
sufficient.	Temporal	evolution	of	biomass	(A),	nitrate	(B),	nitrite	(C)	and	nitrous	oxide	(D)	in	
aerobic	and	anaerobic	phases.	The	simulation	results	are	compared	with	the	experimental	values	
through	GRI	(Geometric	Reliability	Index).		
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Figure	4.	INDISIM-Denitrification	simulation	results	using	the	empirical	chemical	formula	of	
Paracoccus	 denitrificans	 (dots	 and	 continuous	 line)	 and	 experimental	 values	 (squares)	 are	
presented	with	 their	 standard	 error	 [18]	 for	 the	 experiment	 E2:	 succinate-sufficient/NO3--	
limited.	Temporal	evolution	of	biomass	(A),	nitrate	(B),	nitrite	(C)	and	nitrous	oxide	(D)	 in	
aerobic	 and	 anaerobic	 phases.	 The	 simulation	 results	 are	 compared	with	 the	 experimental	
values	through	GRI	(Geometric	Reliability	Index).	
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Figure	5.	INDISIM-Denitrification	simulation	results	using	the	empirical	chemical	formula	of	
Achromobacter	xylosoxidans	(dots	and	continuous	 line)	and	experimental	values	(squares)	
are	presented	with	their	standard	error	[18]	for	the	experiment	E1:	succinate-limited/NO3--
sufficient.	Temporal	evolution	of	biomass	(A),	nitrate	(B),	nitrite	(C)	and	nitrous	oxide	(D)	in	
aerobic	 and	 anaerobic	 phases.	 The	 simulation	 results	 are	 compared	with	 the	 experimental	
values	through	GRI	(Geometric	Reliability	Index).	
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Figure	6.	INDISIM-Denitrification	simulation	results	using	the	empirical	chemical	formula	of	
Achromobacter	xylosoxidans	(dots	and	continuous	 line)	and	experimental	values	(squares)	
are	presented	with	their	standard	error	[18]	for	the	experiment	E2:	succinate-sufficient/NO3--	
limited.	Temporal	evolution	of	biomass	(A),	nitrate	(B),	nitrite	(C)	and	nitrous	oxide	(D)	 in	
aerobic	 and	 anaerobic	 phases.	 The	 simulation	 results	 are	 compared	with	 the	 experimental	
values	through	GRI	(Geometric	Reliability	Index).	
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Supplementary Material  748 

Section I. Cellular maintenance 749 

Before biomass synthesis, each individual in INDISIM-Denitrification model executes a behavior-rule for cellular 750 

maintenance. For example to fit the individual behavior-rule for the first reaction in the anaerobic phase we employ an 751 

appropriate maintenance requirement for heterotrophic microorganisms of 0.002 gCdonor·gCmicrobial-1·h-1 proposed by 752 

Gras et al., (2011), and the energy reaction (Re) between succinate and nitrate: 753 

Step 1. Write inorganic and organic half-reactions for e-donor and e-acceptor. 754 

E-donor (succinate) half-reaction (Rd): 755 

1/7 CO2 + 1/7 HCO3- + H+ + e- ® 1/14 (C4H4O4)2- + 3/7 H2O    756 

E-acceptor (nitrate) half-reaction (Ra): 757 

½ NO3- + H+ + e- ® ½ NO2- + ½ H2O  758 

Step 2. According to [2] following the equation (Re = Ra – Rd) a balanced stoichiometric equation can be written for this 759 

energy reaction as follows. 760 

Ra 0.50 NO3- + H+ + e-  ® 0.50 NO2- + 0.50 H2O 

– Rd 0.0714 (C4H4O4)2- + 0.4285 H2O ® 0.1428 CO2 + 0.1428 HCO3- +  H+ + e- 

Re 0.0714 (C4H4O4)2- + 0.50 NO3-  ® 0.50 NO2- + 0.1428 CO2 + 0.1428 HCO3- + 0.0715 H2O 

Re is the balanced chemical equation for the energy reaction to fit the individual behavior-rule for aerobic maintenance 761 

in INDISIM-Denitrification model. 762 

Step 3. Computation of specific maintenance requirements for the first reaction in anaerobic phase each step time using 763 

the elementary cell composition for P. denitrificans (C3H5.4N0.75O1.45) proposed by [3, 4]. 764 

0.002 �����������
�����������∙ 

× e	¢]£	¤¥jj¦gh§c
Um�����������

× l¨�����������
e	¢]£	©¦]¢h\\

× ª.ªmlll	 
\§c«	§¦¢c

= 0.000125	 ¢]£	¤¥jj¦gh§c
¢]£	©¦]¢h\\	∙\§c«	§¦¢c

  765 

0.000125	 ¢]£	¤¥jj¦gh§c
¢]£	©¦]¢h\\	∙\§c«	§¦¢c

× 0.50	𝑚𝑜𝑙	𝑁𝑂3
−

0.0714	𝑚𝑜𝑙	𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒
= 	0.000875	 𝑚𝑜𝑙	𝑁𝑂3

−

¢]£	©¦]¢h\\	∙\§c«	§¦¢c
  766 

Step 4. Maintenance requirements computation, for the first reaction in anaerobic phase each step, according to the 767 

individual mass. Consider an individual who has a diameter of 0.9 μm (individual mass of 6 pmol approximately). 768 

0.000125	 ¢]£	¤¥jj¦gh§c
¢]£	©¦]¢h\\	∙\§c«	§¦¢c

× 	6	𝑝𝑚𝑜𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0.00075	𝑝𝑚𝑜𝑙	𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒  769 

0.000875	 «¢]£	¶·¸¹

«¢]£	©¦]¢h\\	∙\§c«	§¦¢c
	× 	6	𝑝𝑚𝑜𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0.00525	𝑝𝑚𝑜𝑙	𝑁𝑂lY  770 

Then the individual compares these quantities to the corresponding uptakes and picks the lowest values to execute the 771 

energy reaction. First establish which is the reactant limiting, with this information run the reaction and finally update the 772 
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corresponding uptakes. 773 
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Section II. Biomass generation 775 

Example of calculations for anaerobic nitric oxide reduction with succinate as e-donor and C-source, ammonium as N-776 

source and nitric oxide as e-acceptor with e = 0.56, to fit the individual behavior-rule for biomass generation in INDISIM-777 

Denitrification model for the reaction (NO ® N2O) in metabolic pathway 3. 778 

Step 1. Write inorganic and organic half-reactions and their Gibb’s standard free energy at pH = 7.0 according to Rittmann 779 

and McCarty (2001) for e-donor, e-acceptor and cell synthesis reaction with ammonium as N-source. 780 

E-donor (succinate) ½ reaction (Rd): 781 

1/7 CO2 + 1/7 HCO3- + H+ + e- ® 1/14 (C4H4O4)2- + 3/7 H2O   ∆Gdo (kJ/eeq) = 29.090 782 

E-acceptor (nitric oxide) ½ reaction (Ra): 783 

H+ + NO + e- ® ½ N2O + ½ H2O   ∆Gao (kJ/eeq) = - 115.829 784 

Cell ½ reaction (Rc) with ammonium as N-source: 785 

1/5 CO2 + 1/20 NH4+ + 1/20 HCO3- + H+ + e- ® 1/20 C5H7O2N + 9/20 H2O  ∆Gpco (kJ/eeq) = 18.80 786 

Step 2. Adjust the cell ½ reaction (Rc) to P. denitrificans elementary cell composition C3H5.4N0.75O1.45 (van Verseveld et 787 

al., 1979, 1983) following the methodology proposed by Rittmann and McCarty (2001). Where, n = 3, a = 5.4, b = 0.75 788 

and c = 1.45. 789 

Z
𝑛 − 𝑐

4𝑛 + 𝑎 − 2𝑏 − 3𝑐`𝐶𝑂X +	Z
𝑐

4𝑛 + 𝑎 − 2𝑏 − 3𝑐`𝑁𝐻U
b + Z

𝑐
4𝑛 + 𝑎 − 2𝑏 − 3𝑐`𝐻𝐶𝑂l

Y +	𝐻b +	𝑒Y 	790 

→	R
1

4𝑛 + 𝑎 − 2𝑏 − 3𝑐S 𝐶g𝐻h𝑂i𝑁j +	R
2𝑛 − 𝑏 + 𝑐

4𝑛 + 𝑎 − 2𝑏 − 3𝑐S𝐻X𝑂 791 

9/49 CO2 + 3/49 NH4+ + 3/49 HCO3- + H+ + e- ® 4/49 C3H5.4O1.45N0.75 + 106/245 H2O 792 

18.80	
𝑘𝐽
𝑒𝑞𝑞 ×

20	𝑒𝑞𝑞
1	𝑚𝑜𝑙	𝐶¾𝐻k𝑂X𝑁

×
1	𝑚𝑜𝑙	𝐶¾𝐻k𝑂X𝑁
113.11	𝑔¢¦jÀ]i¦h£

×
75.17	𝑔¢¦jÀ]i¦h£

1	𝑚𝑜𝑙	𝐶l𝐻¾.U𝑂e.U¾𝑁ª.k¾
×
1	𝑚𝑜𝑙	𝐶l𝐻¾.U𝑂e.U¾𝑁ª.k¾

49
4Á 	𝑒𝑞𝑞

= 20.398	
𝑘𝐽
𝑒𝑞𝑞 793 

For P. denitrificans elementary cell composition the cell ½ reaction (Rc) with ammonium as N-source with Gibb’s 794 

standard free energy at pH = 7.0 is 795 

9/49 CO2 + 3/49 NH4+ + 3/49 HCO3- + H+ + e-  

                ® 4/49 C3H5,4O1,45N0,75 + 106/245 H2O 
∆Gpco (kJ/eeq) = 20.398 

Step 3. Degree of reduction computation for e-donor and cells: 796 

𝛾f = 	
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠	𝑑𝑜𝑛𝑜𝑟
𝐶𝑎𝑟𝑏𝑜𝑛	𝑑𝑜𝑛𝑜𝑟 = 	

14
4 = 3.5 797 

𝛾Ä = 	
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛	𝑐𝑒𝑙𝑙𝑠
𝐶𝑎𝑟𝑏𝑜𝑛	𝑐𝑒𝑙𝑙𝑠 = 	

49
4Á

3 = 4.083 798 

Step 4. Computation of fso, feo and Yc/c according to McCarty (2007). 799 
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𝐴 = −	
∆𝐺\
𝜀∆𝐺c

= 	
É∆𝐺Êh −	∆𝐺fË

𝜀¢ +	
É∆𝐺¦g −	∆𝐺ÊhË

𝜀g +	
∆𝐺«j
𝜀

𝜀 Z∆𝐺h −	∆𝐺f −	
𝑞
𝑝 ∆𝐺ÄÌ`

= 	
𝑓c]

𝑓\]
 800 

∆Gin = 30.90 kJ/eqq. Since no oxygenase is involved, q = 0. Since succinate is not a C1 compound, ∆Gfa = 0 and m = n.  801 

Since (∆Gin - ∆Gd) > 0 ® (30.9 – 29.09) > 0, n = 1, m = 1. Using e = 0.41, and if standard conditions apply. 802 

𝐴 =	−
(0 − 	29.09)

0.56e +	(30.90 − 	0)0.56e +	20.3980.56
0.56(−115.829 − 	29.09 − 	0) = 	0.489 803 

𝑓\ª = 	
1

1 + 𝐴 =	
1

1 + 0.489 = 0.672 804 

𝑓c] = 𝐴 ∙ 𝑓\] = 	0.489	 × 	0.672 = 		0.328 805 

𝑌�
�Á
= 	
𝛾f
𝛾Ä
𝑓\] = 	

3.5
4.083 × 0.672 = 0.576		 Î

𝑚𝑜𝑙	𝐶jc££\
𝑚𝑜𝑙	𝐶\¥jj¦gh§c

Ï 806 

Step 5. A balanced stoichiometric equation can then be written. The overall reaction R is equal to R = feoRa + fsoRc – Rd 807 

according to Rittmann and McCarty (2001) and the coefficients present on Table III for one mole of succinate we can 808 

write. 809 

R 
1 (C4H4O4)2- + 0.576 NH4+ + 4.596 NO  

                              ® 0.768 C3H5,4O1,45N0,75 + 2.298 N2O + 0.273 CO2 + 1.424 HCO3- + 0.367 H2O 

R is the balanced chemical equation using the Thermodynamic Electron Equivalents Model second version to fit the 810 

individual behavior-rule for biomass generation in INDISIM-Denitrification model for metabolic pathway (NO ® N2O). 811 

  812 
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Section III. Individual mass degradation to reduce cytotoxic products 813 

To develop the new individual behaviour-rule to reduce the concentration of cytotoxic products (NO and/or N2O), the 814 

individual mass will be used by the bacterium as e-donor when the C-source is a limiting substrate in the media. To obtain 815 

this new metabolic process in the context of IBM, the bacterial biomass of each individual diminishes; the biomass half-816 

reaction acts as e-donor and is combined with the e-acceptor half-reaction, and the MMR that represents the individual 817 

mass degradation reaction can be written.  818 

For instance, we take the bacterium P. denitrificans to show how to write this reaction. 819 

Step 1. Considering the elementary cell composition for P. denitrificans (C3H5.4N0.75O1.45) [3, 4], the general biomass 820 

half-reaction equation [2] may be written as: 821 

4/49 C3H5.4O1.45N0.75 + 106/245 H2O ® 9/49 CO2 + 3/49 HCO3- + 3/49 NH4+ + H+ + e 822 

This reaction is the e-donor half-reaction (Rd) which considers the individual mass as electron source, breaking it down 823 

into CO2, HCO3- and NH4+. These electrons will be transferred to the e-acceptor. 824 

Step 2. It is necessary to write the half-reactions for the e-acceptors considered, as follows: 825 

NO + H+ + e-  ® ½ N2O + ½ H2O  826 

½ N2O + H+ + e-  ® ½ N2 + ½ H2O 827 

Step 3. Following TEEM’s methodology a balanced stoichiometric reaction can be written to represent the individual 828 

mass degradation to reduce cytotoxic products. 829 

Ra NO + H+ + e-  ® ½ N2O + ½ H2O 

– Rd 4/49 C3H5.4O1.45N0.75 + 106/245 H2O ® 9/49 CO2 + 3/49 HCO3- + 3/49 NH4+ + H+ + e- 

Rg 4/49 C3H5.4O1.45N0.75  + NO ® 9/49 CO2 + 3/49 HCO3- + ½ N2O + 3/49 NH4+ + 33/490 H2O 

Therefore, Rg is the microbial metabolic reaction using TEEM to represent the individual mass degradation to reduce NO 830 

which will be a cytotoxic product. 831 

Step 4. To write Rg in a standard way, we divide all of the stoichiometric coefficients by the e-donor coefficient (biomass). 832 

Taking into account this methodology and using different e-acceptors and the empirical cell composition of each 833 

bacterium, we can write the individual mass degradation reactions for both. 834 

  835 
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Section IV. INDISIM-Denitrification model description 836 

To describe our model we use the ODD protocol (“Overview, Design concepts, and Details”), which helps to ensure that 837 

the model description is complete [6–8].  838 

1 Purpose 839 

To develop a computational model for the denitrification process carried out by denitrifying bacteria growing in batch 840 

and continuous culture, in aerobic and anaerobic growing conditions, and to reproduce a bioreactor experimental protocol. 841 

To carry out the sensitivity analyses for the individual uptake parameters, the cellular maintenance, the individual mass 842 

degradation coefficient for different culture media compositions. 843 

2 Entities, State Variables, and Scales  844 

The INDISIM-Denitrification model has two types of entities: individuals and square patches of culture medium. Each 845 

individual represents a denitrifying bacterium and is identified by a number, its individual variables are: location (XY 846 

grid cell coordinates of where it is), mass (molar units), reproduction mass (molar units), internal metabolic product 847 

amounts (molar units) and counters for each metabolic reaction and reproduction cycle. To assign the initial mass, the 848 

model assumes that each bacterium has spherical shape with a minimum and maximum diameter (μm) which is defined 849 

by the user. The individual mass is then deduced from cell volume by assuming the microbial mass density equal to 1.1 850 

g·cm-3, which has been used in previous INDISIM models [1].  851 

A two-dimensional lattice of 25x25 grid cells represents the bioreactor that contains the culture medium; each cell 852 

represents 1 nl, so that the total bioreactor volume is 625 nl. 853 
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Each spatial cell has a position identifier in XY coordinates, and the variables are: total amount (molar units) of each 854 

nutrient, succinate, NH4+, O2, NO3-, and metabolic products, NO2-, NO, N2O, N2 and CO2. All microbial and culture 855 

medium processes are discretized in time steps. One time step represents 5 min; for the current work the simulations were 856 

run for 1440 time steps (120 h) and normally with all of the fixed parameters one simulation takes 6 or 7 minutes (using 857 

a desktop PC) and when you change all of the parameters of the model, for example, in the sensitivity analysis, one run 858 

could takes 6-7 hours (using a desktop PC). The model variable outputs are: (a) the concentration of nutrients and 859 

metabolic products (mM or µM) and dry biomass (mg·ml-1) in a text file, (b) a histogram to show the biomass distribution, 860 

(c) a plot to show the frequency of use of each metabolic reaction, (d) all MMRs written using TEEM for any denitrifying 861 

bacteria, and (e) numerical values of calculated GRI for four time evolutions: microbial biomass (dry mass), NO3-, NO2- 862 

and N2O. 863 

3 Process Overview and Scheduling 864 

The initial system configuration has three main aspects to consider: (a) thermodynamics setup, in which the empirical 865 

chemical formula of the denitrifying bacterium is required and established by the user. All the MMRs for cellular 866 

maintenance, individual-mass synthesis and individual-mass degradation to reduce cytotoxic products following the 867 

TEEM methodology are written, (b) culture medium setup; the grid cells setup its values according to the experimental 868 

protocols published by Felgate et al. (2012) and considering the experiment (E1 or E2) under study, and (c) microbial 869 

population setup; the initial population setup its values considering the Felgate et al. (2012) population values, the bacteria 870 

size, which is defined by the user and the empirical chemical formula for the denitrifying bacterium under study. 871 

At each time step all of the individuals are controlled using a set of time-dependent variables for each bacterium. All 872 

individuals have the opportunity to perform the following processes: nutrient uptake, cellular maintenance, individual 873 

mass synthesis, individual mass degradation to reduce internal cytotoxic products, and bipartition. 874 

Culture medium processes are different depending on the management bioreactor protocol, but in any case, the culture 875 

medium is homogenized after some time steps to simulate chemostat agitation. At the beginning of the simulation the 876 

bioreactor works as a batch culture with oxygen saturated conditions (236 μM), and the user can choose at what time to 877 

end this phase, and switch to continuous culture in anaerobic conditions, with certain dilution rate that force the input and 878 

output of culture media (with nutrients in the input and metabolic products and microorganisms in the output) according 879 

to the dilution rate fixed by the user. For each time step the time-dependent variables of individuals and culture medium 880 

are recalculated and the state variables changes are immediately assigned generating an asynchronous update, and then 881 

the graphics and digital outputs are updated. Figure 1 shows the INDISIM-Denitrification schematic diagram.  882 
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4 Design Concepts  883 

4.1 Basic Principles 884 

The individual behavior-rules are: (a) nutrient uptake, (b) cellular maintenance, (c) growth when a microorganism 885 

executes any of the metabolic reactions adjusted by TEEM (Table II), (d) individual mass degradation to reduce internal 886 

cytotoxic products, and (e) cell division following binary fission. The system actions are those conducted by the general 887 

chemostat procedures when it works as a batch culture with constant oxygenation or a continuous culture with a dilution 888 

rate. 889 

4.2 Emergence 890 

Model outputs are the result of the interaction between individuals and the culture medium. The model is not forced to 891 

reproduce the biomass evolution, nutrient depletion, metabolic and/or denitrification products generation, or other 892 

patterns that appear at the system level.  893 

4.3 Adaptation 894 

All the individuals follow the same behavior-rules. Individuals act one after another, not in parallel. Hence, after one 895 

individual carries out all of its actions the composition of the spatial cell where it lives changes and the next individual is 896 

run within a different medium composition. In consequence, the metabolic pathway that it might follow could be different. 897 

Before starting the individual actions, it is required to check the O2 dissolved concentration in the culture medium: if the 898 

O2 dissolved in the spatial cell is lower than a threshold value (O2-MIN) the bacterium uses the anaerobic metabolism and 899 

otherwise it uses the aerobic metabolism. After that, the individual can perform cellular maintenance and mass synthesis 900 

to growth in aerobic or anaerobic phase. The last metabolic action is to respond to the internal concentrations of cytotoxic 901 

gases (NO and/or N2O). This individual rule is executed only in the anaerobic phase and when the internal amount of the 902 

e-donor (C-source); is not enough to execute the next reaction in the denitrification pathway and the internal amount of 903 

cytotoxic products (NO and/or N2O) are accessible in the bacterial cell. Then, the individual can degrade its own mass 904 

and reduce it according to the MMRs presented in Table III. At the end of time-step the individual check whether to 905 

divide or not, depending on whether or not it has reached the minimum reproduction mass. 906 
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NetLogo platform uses an explicit time scheme and a runtime approach that is not naturally parallelizable. Each time step, 907 

NetLogo agents act sequentially following a randomly chosen order. Under these circumstances, the most immediate 908 

updating scheme is the asynchronous implementation of the model, although a synchronous scheme is also achievable. 909 

The asynchronous scheme has been considered as a good approximation of real continuous time [10–12]. The reader 910 

should notice that the implementation of the model using a synchronous or asynchronous scheme could lead different 911 

model outputs and diverse types of discrepancies with the reality being represented. This should be specifically taken into 912 

account if the model is transferred or extended to other modeling frameworks. 913 

4.4 Interaction 914 

The denitrifying bacterium is the only bacteria species in the virtual bioreactor. The microorganisms interact with the 915 

culture medium; therefore, there is an indirect interaction in which nutrient competition takes place among the bacteria 916 

that share the same spatial cell.  917 

4.5 Collective 918 

Simulated microorganisms do not form aggregates; each individual acts uniquely. 919 

4.6 Stochasticity 920 

The reproduction threshold biomass for each bacterium is determined using a normal distribution, which has also been 921 

used to generate the initial population biomasses. For the physical separation of the two bacteria the original mass is split 922 

into two new bacteria with masses according to a value from normal random distribution. At each time step, each 923 

individual nutrient uptake capacity for each nutrient is establish from a normal random distribution with the mean value 924 

and a standard deviation of 5% of this value. The dilution rate for each input-output is obtained by using the normal 925 

random distribution with mean value d = 0.05 h-1 and standard deviation 0.0025, in order to represent the experimental 926 

error. When the individual used the behavior-rule to reduce internal cytotoxic products, we consider that the bacterium 927 

could determine the portion of its own biomass that will be degraded to reduce cytotoxic products according to a value 928 

from the normal random distribution with mean value given by the mass degradation coefficient, with units (h-1), and 929 

standard deviation of 5% of this value. The initial culture medium composition and O2-MIN threshold value are established 930 

from normal distributions with mean values determined by the experimental procedure [9] and standard deviations of 5% 931 

of these values. When the simulation starts, each bacterium has a position randomly assigned in culture medium and this 932 

position randomly changes at some time steps. 933 
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4.7 Observation 934 

The graphical and numerical outputs of the model are (a) the concentration (mmol·l-1 or umol·l-1) of each culture medium 935 

component (succinate, NH4+, O2, NO3- CO2, HCO3-, NO2-, NO, N2O and N2), (b) microbial biomass (mg·ml-1), the 936 

population mass distribution, (c) a graphical view to show the frequency of use of each metabolic reaction, (d) all MMRs 937 

written using TEEM for any denitrifying bacteria, and (e) GRI´s values for four time evolutions: microbial biomass (dry 938 

mass), NO3-, NO2- and N2O.  939 

At each time step (the user can obtain all simulated data in output file with extension “.txt”). 940 

5 Initialization 941 

The user can adjust: (a) the culture medium composition (mmol·l-1) of succinate, NH4+, O2 and NO3-, (b) O2-MIN value 942 

which is in the range of 0.01 to 0.31 mM O2, (c) dilution rate (h-1), (d) initial amount of viable microorganisms (bacteria), 943 

(e) total simulation time (h), (f) the equivalent step time (min), (g) time (h) for shutdown O2 input flow, (h) the general 944 

maintenance energy requirement (gCdonor·gCmic-1·h-1), (i) the mass degradation coefficient (h-1), (j) sizes for the smallest 945 

and biggest microorganism (μm), (k) the coefficients for the molar relationship between the elements carbon, hydrogen, 946 

oxygen and nitrogen to establish the empirical chemical formula of the denitrifying bacteria, and (l) the μmax value (h-1) 947 

as reference to establish the maximum individual uptake. 948 

6 Individual Sub models 949 

The bipartition reproduction process is a sub model that is taken from INDISIM, the generic and core bacterial model 950 

(Ginovart et al., 2002). Thus, we only describe the individual sub-models that we designed particularly for the INDISIM-951 

Denitrification model.  952 

Uptake:  953 

Each nutrient uptake depends on the maximum uptake capacity of the individual to capture nutrients through the cell 954 

membrane-associated proteins [13] and on the nutrient availability in the medium. Individual uptake is assumed to be 955 

proportional to the individual mass and to the uptake rate (ui being i the nutrient), which represents the amount of nutrient 956 

that could be captured per unit of time, and mass (molnutrient·molCmic-1·h-1).  957 
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Following the INDISIM framework (Gras et al., 2011) the maximum population growth rate (μmax) has been used to 958 

estimate the maximum individual uptakes. Using this value and performing calculations with the stoichiometric 959 

coefficients of each metabolic reaction adjusted by TEEM, we obtained the maximum uptake rate for each nutrient. The 960 

nutrient availability (ai) is the fraction of each nutrient (i) in a spatial cell that is accessible per unit of time (h-1) and for 961 

the individual. This parameter is directly related to the nutrient characteristics. In order to give values to this parameter, 962 

ai, we use Fick’s law binary diffusion coefficients (Dab) in water as a reference [14]. Therefore, we assumed that the 963 

nutrient with maximum Dab has the highest availability; the other availability values are assigned proportionally. To 964 

determine the individual nutrient uptake at each time step, each bacterium compares its maximum uptake capacities with 965 

the nutrient available and takes the lowest value.  966 

Maintenance:  967 

it is necessary that each bacterium achieve some energetic requirements to ensure its viability. The maintenance 968 

requirements are proportional to individual’s mass. Gras et al., (2011) consider an appropriate maintenance requirement 969 

for soil heterotrophic microorganisms of 0.002 gCdonor·gCmic-1·h-1, which was assumed for aerobic and anaerobic phases, 970 

the stoichiometric coefficients are calculated according with the energy reactions (Table I).  971 

When the individual carries out its maintenance, the CO2 and the reduced e-acceptors are expelled to the culture medium 972 

except the NO2- which is added to its corresponding intake and being able to be used in the same time step. In anaerobic 973 

phase the first individual option is to accomplish the maintenance requirement carrying out the energy reaction with 974 

succinate and NO3-, if the bacterium cannot reach its maintenance requirements, it can try it with succinate and another 975 

e-acceptor, following the reaction sequence shown in Table I. 976 

 After the maintenance, if the remaining succinate uptaken and the quantity of some e-acceptors are higher than zero, the 977 

individual can perform individual mass synthesis.  978 

Mass synthesis and metabolic products:  979 
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With the nutrient intakes updated and after the maintenance, the individual can generate its own mass following the 980 

sequence reactions presented in Table II. Using the stoichiometric coefficients of each metabolic reaction (Table II). Each 981 

bacterium divides the amount of each nutrient up-taken by its respective stoichiometric coefficient and selects the smallest 982 

value (the limiting nutrient). This information provides the demands of each one of the nutrients, the creation of new mass 983 

and metabolic products generation. The CO2 produced is released to the culture medium and the amounts of N-oxides 984 

generated are added to its corresponding intakes. After this, if there are remaining amounts of e-donor and some e-acceptor 985 

intakes, the microbe can perform the next metabolic reaction.  986 

Mass degradation:  987 

if there are internal quantities of the cytotoxic gases NO and/or N2O and the C-source quantity is not enough to execute 988 

a metabolic reaction, the microbe executes the mass degradation behavior-rule. It first establishes the amount of its mass 989 

that will be used to reduce internal cytotoxic products based on the mass degradation coefficient (h-1), and with this 990 

quantity established, the cytotoxic product is reduced following the reactions coefficients (Table III), the individual mass 991 

is reduced, and the remaining unused intakes are expelled to the medium.  992 

The sub models related to the bioreactor’s procedure are:  993 

Agitation:  994 

Nutrients and metabolic products are redistributed in the culture medium and microorganism positions change randomly.  995 

Input flow: 996 

The bioreactor is filled with fresh medium (succinate, NH4+ and NO3-) with a composition equal to the initial one. A 997 

dilution rate is defined as a fraction (volume) of the culture media removed and filled by unit of time. 998 

 Output flow:  999 

According to the dilution rate a fraction of the media in the bioreactor is removed and the same fraction of individuals 1000 

are randomly removed.  1001 
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