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Abstract 

Not all genetic loci follow Mendel’s rules, and the evolutionary consequences of this are not yet fully 

known. Genomic conflict involving multiple loci is a likely outcome, as restoration of Mendelian 

inheritance patterns will be selected for, and sexual conflict may also arise when sexes are 

differentially affected. Here we investigate effects of the t haplotype, an autosomal male meiotic driver 

in house mice, on genome-wide gene expression patterns in males and females. We analysed gonads, 

liver and brain in adult same-sex sibling pairs differing in genotype, allowing us to identify t-

associated differences in gene regulation. In testes, only 40% of differentially expressed genes mapped 

to the approximately 708 annotated genes comprising the t haplotype. Thus, much of the activity of the 

t haplotype occurs in trans, and as up-regulation. Sperm maturation functions were enriched among 

both cis and trans acting t haplotype genes. Within the t haplotype, we observed more down-

regulation and differential exon usage. In ovaries, liver, and brain, the majority of expression 

differences mapped to the t haplotype, and were largely independent of the differences seen in the 

testis. Overall, we found widespread transcriptional effects of this male meiotic driver in the house 

mouse genome. 

https://doi.org/10.1098/rspb.2019.1927
mailto:anna.lindholm@ieu.uzh.ch


2 

 

Introduction  

As a rule, nuclear genes in diploids have an equal 50% chance of being transmitted from the germline 

into gametes. This has important implications, as the route to increasing fitness lies in cooperating 

with other genes to increase organismal relative fitness [1]. Some loci, called meiotic drivers, adopt a 

different, selfish strategy, by distorting segregation in their favour in heterozygotes, so that the 

genomic region bearing the driver is over-represented among gametes. As a consequence, meiotic 

drivers increase in frequency through segregation distortion if they have positive, neutral, or even 

detrimental fitness effects on the organism, as long as the fitness costs are not too high. Negative 

fitness effects of drivers slow fixation or prevent it altogether, and select for counter-adaptations of the 

genome against the driver in the form of drive resistance loci. This in turn selects for evolution in the 

driver to overcome such defenses in the genome, potentially leading to an arms race between driver 

and the genome that affects multiple genes. 

Detailed studies of several systems where drive occurs in males, including the SD drive system in 

Drosophila melanogaster, SR in D. simulans, D. neotestacea and the stalk-eyed fly Teleopsis 

dalmanni, and the t haplotype in house mice, have shown that these systems have in common that one 

or more driver loci act in trans on a target locus on the homologous autosome or on the other sex 

chromosome, which causes the developmental failure of wildtype sperm [2-6]. Loci in linkage 

disequilibrium with a driver, for example within an inversion, may also be divergent from wildtype 

variants and increase in frequency by hitchhiking. With reduced recombination, Muller’s ratchet 

predicts an accumulation of deleterious mutations [7]. Selection could favour the evolution of linked 

enhancers of a driver, to improve drive, or linked loci that otherwise improve the fitness of drive 

carriers. Sexually antagonistic selection could also play a role, as meiotic drive favours transmission 

either in males or in females. In male meiotic drive, for example, drive loci are transmitted more often 

through males than females, so trait expression of driver-linked genes could be pulled away from the 

average optimum for both sexes to one closer to the optimum for males, the sex in which the driver is 

active [8, 9]. This could potentially explain shared patterns of expression of genes in ovaries and testes 

of driving X chromosome carriers in stalk-eyed flies, T. dalmanni [10]. Drive also selects for the 

evolution of unlinked suppressor loci. Thus, meiotic drive might lead not only to differences in 

expression of genes associated with the drive phenotype, but also in linked genes, sexually 

antagonistic genes, and unlinked loci throughout the genome. 

Here, we use the t haplotype in house mice to investigate genome-wide patterns of gene expression 

related to a male meiotic driver. We already have a relatively rich understanding of specific effects of 

the t haplotype. It is transmitted to about 90% of offspring when inherited from the father. Females 

transmit the t gametes in the usual 50% ratio [11, 12]. The mechanism of segregation distortion is like 

a poison-antidote system. Males heterozygous for the t haplotype (+/t) produce equal proportions of + 
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and t sperm [13], but maturing t sperm produce gene products from the transmission distortion loci 

(Tagap, Fgd2, Nme3, and Tiam2) that ultimately hyperactivate a target gene (Sperm motility kinase 

Smok) in + sperm [14-19], leaving + sperm impaired. t sperm themselves have a hypoactive version of 

the target Smok gene (Smok
Tcr

) to compensate [17]. The balance of these effects is that t sperm are 

successful when competing against damaged + sperm within the ejaculate, but are very poor in 

competition with + sperm from other males [20, 21] when females mate multiply. Sperm from +/t 

males have been found to be slower, to hyperactivate more quickly, and to be less able to enter the 

oocyte [22-26]. 

The distorter loci are situated within four large adjacent inversions on chromosome 17 that greatly 

reduce recombination and make it more likely that the complex is inherited as one intact entity [27]. A 

recent study has shown a more heterogeneous picture – some regions of the t haplotype show signs of 

recombination, while others do not [28]. However, as predicted under the mutation accumulation 

hypothesis, the t haplotype often carries a recessive lethal allele, so that t homozygotes die prenatally 

[21, 29]. Litter sizes are reduced by 40% in crossings of +/t individuals [11]. There are however, 

several different t variants, each with different recessive lethal effects, or that do not have lethal 

effects, but male-sterile effects when homozygous [12]. Detailed studies of a natural population of t 

bearing house mice have led to the discovery of other traits associated with heterozygosity at the t 

haplotype: increased longevity in females [30], and decreased activity levels in females [31], an 

increased propensity to emigrate [32], and decreased fitness in males [20, 21, 33]. 

In a previous study, Kelemen and Vicoso [28] made use of the finding of +/t individuals among a set 

of wild-caught house mice from a genome sequencing and gene expression study [34]. They analysed 

the pooled transcriptomes of 4 male +/t mice with 12 male +/+ mice from two different populations in 

France and Germany, [34]. Their main findings were that gene regulation divergence was highly 

variable across the t haplotype, with increased divergence in regions in which no recombination events 

with the wildtype chromosome could be detected, parallel with an increase in the ratio of 

nonsynonymous to synonymous SNPs in this region. They also found very few genes that were 

differentially expressed that were not within the t haplotype. 

In this study we compare the transcriptome of pairs of full sibling male and female adult house mice 

reared under standardised conditions in which one same-sex sibling is heterozygous for the t 

haplotype, while the other carries two wildtype alleles. The same laboratory population has been used 

in numerous studies of the t haplotype [11, 21, 25, 35-38] and descends from a well-studied field 

population [32, 39]. We analyse gene expression divergence in gonads, liver and brain attributable to 

the t haplotype in both males and females, making this the first study of effects of a male meiotic 

driver on female gene expression. By incorporating analysis of differential exon usage, we also 

advance on previous studies of gene regulation associated with meiotic drivers.  
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Understanding the effects of the t haplotype may be useful in contexts other than evolutionary biology, 

as it has been proposed as a conservation tool to control house mouse populations on islands [40]. The 

t haplotype could be transformed into a sex ratio driver by genetically engineering the incorporation of 

the male Sry gene, a Y-linked gene that initiates male sexual development, onto the t [40, 41]. 

Offspring inheriting the modified t would develop a male phenotype regardless of their sex 

chromosomes, thereby reducing the proportion of fertile females to all offspring produced. Strongly 

biased sex ratios can lead to population crashes [42-44]. An improved understanding of the effects of 

the t haplotype on gene expression may be useful in better predicting the fate of a t-Sry construct. 

Methods 

Animal breeding 

We maintain a laboratory population of wild house mice descended from animals wild-caught from an 

intensively studied free-living population in Illnau, Switzerland [see 11, 38, 45 for details of the source 

population, and the t haplotype]. All mice were maintained at standard conditions (22–25∘C, 40–50% 

humidity, at a 14h:10h light:dark cycle starting at 5:30 CET) in the same room. Further details are 

available in the ESM. 

We created 10 breeding pairs from unrelated +/t females and +/+ males. Each pair contributed their 

first litter to the study, over 21 days. These 10 litters generated 7 male and 8 female sibling pairs, with 

each pair consisting of one +/+ and one +/t. Five litters provided both male and female sibling pairs. 

At 23 days of age, offspring were moved to single sex cages and an ear punch taken for t haplotype 

diagnosis by PCR [46]. At five weeks of age, males were placed into single cages (Macrolon type II), 

and at 8 weeks of age were euthanised with CO2. Sister pairs were put into two single cages connected 

by a tube, to equalise per capita space available to males and females. For females, we prioritized 

standardization between paired siblings of the female oestrus cycle over age. From 8 weeks of age, we 

examined females visually for oestrus [47], checking for colour and swelling of the external genitalia, 

backed up by a vaginal smear [48] when in doubt. Females in a sibling pair were euthanised as soon as 

both were not in oestrus and appeared to be in dioestrus. Mice within pairs were processed 

sequentially during daylight hours, with one researcher extracting the brain and another gonads and 

liver. The organs were put into an RNA stabilisation buffer [49] at 10X volume of the sample, and 

stored at 4°C. After 4 hours the RNA buffer was replaced. After 24 hours the buffer was removed and 

samples frozen at -80°C. All experimental procedures were conducted blind with respect to   genotype. 

RNA isolation, sequencing and processing 

Samples were shipped on dry ice to the MPI for Evolutionary Biology in Germany for RNA isolation 

and sequencing. RNA from testis, ovaries and liver was extracted using the Ambion PureLink RNA 
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Mini Kit with Trizol and a DNase step, while RNA from whole brain was isolated using a phenol-

chloroform protocol. RNA libraries were prepared using Set A and B of the TruSeq Stranded mRNA 

Library Kit (Illumina). All samples, in total 90, were measured with the Fluoreszenz NanoDrop 

(NanoDrop 3300 Fluorospectrometer) and pooled at equimolar concentrations. The final pools were 

measured with the Agilent 2100 Bioanalyzer using the Agilent DNA 7500 Kit. The library was 

clustered to a density of approximately 180 K/mm
2
. Sequencing was performed on an Illumina 

NextSeq 500 using five HighOutput 300 cycle kits, corresponding to 5 lanes. PhiX Control library 

(Illumina) was combined with the library at 1%. 

The RNA-seq data processing consisted of the following steps. Adapter trimming of the reads was 

performed with Trimmomatic [50]. We filtered reads with an average quality below 20. Poor quality 

reads led to the omission of one testis, one male brain and one female liver sample. Read-alignment 

was performed with STAR 2.5.3a [51]. As reference we used the Ensembl genome build GRCm38, 

with the gene annotations downloaded on 2017-05-31. Gene expression values were computed with 

the function featureCounts from Rsubread [52]. The Supplementary Material details the STAR 

alignment and featureCounts options. Genes were considered as expressed in a sample if they had at 

least 10 reads assigned. All figures were generated using more general R/Bioconductor functionality 

and UpsetR [53]. 

Differential Gene Expression and Differential Exon Usage 

For the tissues we computed differential expression as gene-level differences and differential exon 

usage. In the gene-level differences we analysed the total number of reads assigned to a gene locus, 

using the generalised linear model implemented in the Bioconductor package DESeq2 [54]. 

Specifically, the design parameter we used as input for DESeq2 was Genotype+Gender+Sibling. 

These factors are available as sample descriptions in GEO under the accession GSE138839. We 

computed the contrast between +/t and +/+. The model used for DEXSeq [55] was extended to include 

exons and the genotype-exon interaction. Differential exon usage (DEU) will be significant if there is 

alternative splicing, or usage of alternative transcript start sites. If differential exon usage is detected 

for a gene, the increase or decrease of the gene’s total read counts must be interpreted with caution. 

For those genes it cannot be assumed that an increase in the gene counts is associated with an 

overexpression. Thus, we report genes only as DEU if they show next to the DEU also an increased or 

decreased global read count. The thresholds we used were the following: up-regulation: log2 ratio>0.1, 

fdr<0.1; down-regulation: log2 ratio<-0.1, fdr <0.1; differential exon usage: splicing q-value <0.1. 

We used the software VLAD [56] via the Mouse Genomic Informatics website 

(http://proto.informatics.jax.org/prototypes/vlad/) accessed 25.7.2019 to test for functional themes 

among differentially expressed gene sets. To test for enrichment of ontology terms within the t 

haplotype we had to define the set of genes associated with the t haplotype. The precise boundaries of 

http://proto.informatics.jax.org/prototypes/vlad/
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the t haplotype have not been identified [57]. Kelemen and Vicoso [28] gave approximate beginning 

and end points of the t haplotype as 5 – 40 Mb, based on increased SNP heterozygosity in a 

heterogeneous sample of +/+ and +/t mice. However, a recently discovered t haplotype distorter, 

Tiam2 [18], is located at 3.2 Mb, suggesting that this window is too small. We therefore expanded the 

window by 2 Mb in each direction (including 20 additional genes), at the risk of considering genes 

beyond the start and end points of the t haplotype as within it. We set q<0.01 to limit results to the top 

terms.  

Results 

We found in all tissues a total of 434 genes with a differential expression status between +/t and +/+ 

siblings. 198 of these genes mapped to chromosome 17, with 195 falling within our defined limit of 

the t haplotype (3–42 Mb, making up 1.4% of the mouse genome [58] and containing 708 annotated 

genes). These 195 genes were located from 5.9 – 40.9 Mb, the remaining three at 43.9, 80.5 and 86.9 

Mb, the latter two clearly outside of the t haplotype. 

We found that the t haplotype region is highly enriched for antigen processing and presentation genes, 

as the t contains 78% of all MHC protein complex genes. The t haplotype also includes 82% of all 

pheromone activity genes (via exocrine gland secreted peptide genes), and is enriched for plasma 

membrane part genes, and response to pheromone and G-protein coupled receptor activity genes, due 

to numerous vomeronasal receptor genes. It does not show depletion of any biological or molecular 

process, but in terms of cellular processes, it is deficient in intracellular parts. 

We visualized gene regulation differences between +/t and +/+ siblings as heatmaps (Figure 1, see also 

ESM Figure S1). Expression differences were observed in all tissues. In testes, expression differences, 

measured as absolute log2 ratios, were greater in the t haplotype region (mean±sd of 0.83±1.09) than 

in the rest of the genome (0.35±0.65; Wilcoxon test, Z=2883, p<0.00001; ESM Figure S2). 

Remarkably, brain tissue also showed a strong upregulation of a few t haplotype genes not 

differentially expressed in testes. This contrasts with non-t haplotype genes in the brain, which showed 

only very small changes. 

We also observed differential exon usage in all tissues, and mostly in genes mapping to the t haplotype 

(Figure 2). Examples include the t haplotype distorter genes Tagap (but notably not Tiam2), the 

responder Smok
Tcr

 locus element Rps6ka2, and spermatogenesis genes such as Dynlt1c, Dynlt1f, Tcp1, 

Tcp10a, Tcp10b, Tcp11, Tcte2, Tcte3, as well as the embryonic lethal gene Vps52. As an example of 

differential exon usage, we show in Figure S3 differences in the distribution of reads across exons 

between +/t and +/+ individuals in the chromosome 5 gene Ppp1cb, identified as showing the 

strongest differential expression between +/t and +/+ in Kelemen & Vicoso [28]. Thus, our final 

dataset scores three categories: significant differential exon usage, or significant up- or down-
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regulation. ESM Table S2 provides the differential expression status of all genes, and ESM Figure S4 

illustrates differential expression status of genes along chromosome 17. 

The testis dominated other tissues regarding the number of differentially expressed genes (Figure 2), 

but only 40% (105/263) of all differentially expressed testis genes mapped to the t haplotype. This was 

significantly less than in other tissues: in ovaries 83% (65/78, χ2
=43.6, p>0.001), in male and female 

liver combined 64% (74/116 ,χ2
=17.5, p<0.001), and in male and female brain combined, 77.0% 

(99/135, χ2
=38.5, p<0.001) of differentially expressed genes were within the t haplotype. The t 

haplotype also significantly influenced the pattern of gene expression differences. In the testis, up-

regulation was observed in 30.5% (32/105) of differentially expressed t genes, compared to 69.0% 

(108/158) of non-t haplotype genes (χ2
=34.8, p<0.001). 

We next asked whether the direction or type of expression difference in the ovary, liver and brain 

mirrored those of the testis. Usually they did not (Figure 3, see also ESM Figure S4). Many genes 

were up or down-regulated only in the testis, but in every tissue (male and female gonad, liver and 

brain) we found genes with tissue-specific changes. We also identified other genes with similar 

expression changes in multiple tissues. Remarkably, those genes were nearly always located on the t 

haplotype (Figure 3). Males and females showed independent, but also some shared regulation 

differences within tissues. A small number of genes showed up-regulation in all tissues (Rsph3a, 

Zrnd1), down-regulation in all tissues (Jmjd8) and differential exon usage in all tissues (H2-D1, 

Ppp1r11, Rnpepl1, Tcp1, Tmem181), with all these genes but Rnpepl1 located within the t haplotype.  

We also compared females and males more generally, asking how often a gene is significantly 

differentially expressed in females but not in males between +/t and +/+. In the gonads, 51 genes were 

differentially expressed in ovaries but not in testes, 26 genes in female compared to male brains, and 

36 genes in female vs male livers. One gene Zfp994 showed up-regulation in all female, but not in any 

male tissue, and one gene, Tagap, showed differential expression in all male but not in any female 

tissues. 

We then tested if differentially expressed (DE) genes from the testis showed enrichment for particular 

functions (Figure S5, ESM GO_analysis). Spermatogenesis genes were significantly enriched, with 

11% of all differentially expressed genes having this function, representing 4% of all known 

spermatogenesis genes. Some functions were up-regulated, such as syncytium formation, with 15% of 

syncytium formation genes affected. Down-regulated functions included regulation of protein 

catabolic process (5% of DE genes, 3% of genes of this function) and chylomicron remnant clearance 

(1% of DE genes, 50% of genes attached to this function). Differentially expressed genes were 

involved in endocytic recycling (2% of DE genes, 10% of endocytic recycling genes). The top 

category of enrichment of cellular process was up-regulation of genes contributing to the sperm 

flagellum (7% of DE genes, 14% of all sperm flagellum genes), followed by differential exon usage of 
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dynein complex genes (4% of DE genes, 14% of genes of this function) and protein phosphatase type 

1 complex genes, including the gene Ppp1cb (1.5% of DE genes, 23% of genes of this function). No 

molecular functions were significantly enriched. 

We next asked whether the differentially expressed genes from the t haplotype were significantly 

associated with biological functions, also using a Gene Ontology enrichment analysis. In t genes of the 

testis, we found significant enrichment and upregulation of the cytoplasmic dynein complex and 

enrichment of sperm flagellum genes (ESM Table S1, ESM GO_analysis). With the analogous 

analysis for non-t genes, we found enrichment of sperm flagellum genes, spermatogenesis, but also 

syncytium formation, GTP biosynthetic process and alcohol and steroid metabolism. 

Some functions carried over to other tissues. In the ovary, there was enrichment of gene function only 

within the t region. The dynein complex was enriched but down-regulated. Sperm flagellum genes and 

the function of membrane bound organelles were also enriched. Unlike in testis, there was enrichment 

of the MHC protein complex. In male liver, no functions were enriched, but in females some 

metabolic processes were enriched, in the non-t part of the genome. In male brain, differential 

expression of cytoplasmic dynein genes was enriched, but mainly due to differential exon usage, 

unlike in the ovary. In both male and female brain intracellular organelle was enriched.  

Discussion 

In this study of gene expression associated with the t haplotype, including analysis of differential exon 

usage, we show that most expression differences are associated with the testis, where the loci causing 

drive of the t haplotype are known to be active. Expression effects were larger within the t haplotype 

than in chromosomal regions outside of the t haplotype, in line with previous studies comparing the 

magnitude of cis and trans expression [59]. We found that 60% of genes showing expression 

differences in testes map outside of the t haplotype, suggesting a high degree of activity in trans of t 

haplotype genes. In ovaries, liver and brain, most expression changes were associated with genes of 

the t haplotype itself. Both cis and trans changes are important in adaptive evolution, but it appears 

that trans changes feature more prominently in adaptation within species, whereas cis changes play a 

larger role in divergence between species [60-62]. This is interesting in the context of the t haplotype 

because it is thought to have evolved 1-3 million years ago [63, 64] and then recently introgressed into 

Mus musculus populations, either from an isolated M. musculus lineage [12] or from another species 

[65]. This suggests that the gene expression differences outside of the testis may simply reflect a 

neutral evolution of cis-acting elements. The trans effects in the testis, on the other hand, indicate the 

direct interaction of genes from the t haplotype with other parts of the genome to regulate sperm 

maturation.  
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Activity by transcription factors in trans may explain why the vast majority of expression differences 

off the t haplotype were in activation or repression of transcription, rather than in alternative splicing, 

which also requires cis-elements [66]. Testis genes affected in trans included those conferring 

functions that seem beneficial to the driving t haplotype genes. For example, t distorter products 

encounter developing + sperm in the syncytium, thus up-regulation of syncytium formation genes may 

enhance dissemination of t distorter proteins, potentially increasing drive. The t haplotype influences 

flagellar function, decreasing sperm motility and altering movement patterns [24, 25], and it is thought 

that + sperm of the +/t male are primarily affected, with the t sperm retaining normal function [17, 67]. 

As dynein genes affect flagellar function, and spermatogenesis genes can affect many aspects of sperm 

function, activating such genes off the t haplotype could enhance drive. Protein phosphatase type 1 

complex genes were enriched in the testis. These function in signaling, in an opposite way to protein 

kinases, such as Smok, and thus could conceivably also play a role in drive. Differentially expressed 

genes involved in protein catabolism, endocytic recycling and chylomicron (small lipoprotein particle) 

clearance may contribute to general maturation pathways of the sperm that respond to the signaling 

changes induced by the t haplotype genes.  

Expression of t genes with function in the testis was generally tissue-specific, according with organ-

specific gene expression in mammals [68]. Some t genes were differentially expressed in the testis and 

also in other tissues, but most of these are likely due to the differences in cis-elements that have 

accumulated on the t haplotype. One unusual example is that of dynein complex genes, which showed 

differential exon usage in testis and male brain, but were down-regulated in ovaries, were they are 

unlikely to be useful, and were not differentially expressed in female brain. Sex- and tissue-specific 

expression of many t genes suggests that selection has finely tuned expression patterns of most t-

beneficial genes, and that sexually antagonistic selection for male beneficial gene regulation has not 

generally shaped expression profiles in females. Differential expression of t genes outside of the testis 

is not associated with an enrichment of gene ontology functions that link to phenotypic changes that 

have been observed in female +/t, including increased viability [39], decreased activity in the home 

cage [35], or altered mate choice [69], although we measured gene expression in dioestrus, rather than 

oestrus, when it is more relevant for mate choice [70]. Carboxylic acid metabolism in liver has been 

linked to sexual dimorphism in mice [71] and this function was enriched outside of the t haplotype in 

+/t female liver. In all +/t female tissues, there was up-regulation of one gene, a zinc finger protein 

gene with KRAB domain, associated with retrotransposon defense [72].  

Our success in identifying expression differences in nearly all genes in which we expected to find 

differences validates our experimental and analytical approach. In testis, many t haplotype loci 

previously investigated in the search for genes directly involved in drive showed expression 

differences in this study. Nearly half of all t haplotype genes that showed differential exon usage are 

known to be associated with differences between +/t and +/+: Tagap [14], Rps6ka2 [17], Tcte2 [73], 
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Tcte3 [74], Tcp1 [75], Tcp10a and Tcp10b [76, 77], Tcp11 [78], Dynlt1c and Dynlt1f [79], Vps52 [80], 

Fgfr1op [17], Ppp1r11 [81], Synj2 [82], and Tulp4 [83]. 19 genes showing alternative transcripts are 

left which have as yet no known function in the t haplotype, but are now new candidates: the protein 

kinase Map3k4, sperm genes Ift140, Hmga1, Slc26a8, as well as a mixed collection: Tmem181, Ube2i, 

Rsph3b, 1700010I14Rik, Rab11b, Rab11fip3, Fkbpl, Afdn, Znrd1as, Gm3448, Tbp, Rps2, and H2-D1. 

Copy number variation in the t haplotype [28] could contribute to the prevalence of alternative 

splicing among differentially expressed genes . The driving gene Tagap, for example, is present in 

four copies [14]. We found however, that differential exon usage was largely tissue-specific, and not 

across tissues. Down-regulation was seen in five well-studied t haplotype genes: Dynlt1b [84], Tagap1 

[17], Fgd2 [15], DNAh8 [85, 86]. Up-regulation of known t-haplotype active genes was rare, with 

only two cases: the maternally imprinted gene Slc22a3 [87, 88] and the sperm glycolysis gene Pgk2 

[89, 90]. We found no expression differences in the t loci Tiam2 [18], Nme3 [16], Tcp10c [91], 

Slc22a2 [87], Acat2 and Acat3 [92], Serac1 [82], and Prdm9 [93], or the classic markers T, qk, Itpr3 

(previously tf) [57]. Lack of detecting differences in Tiam2 was unexpected, given previously reported 

differential exon usage [18]. Expression differences might be due to differences between wildtype 

strains or between t variants, as shown for Fgd2 [15], possibly indicating variation in which 

transmission distortion loci function in different t variants or different genetic backgrounds. Nme3, in 

contrast, was not expected to show expression differences [16]. These genes are not typical of the 

content of the t haplotype region, as it is enriched for immune function and pheromone activity and 

pheromone response, yet none of these functions were enriched in differentially expressed genes of the 

testis, liver or brain. 

Our finding that most differentially expressed genes in the testis were not within the t haplotype region 

differs from stalk-eyed flies Teleopsis dalmanni and Drosophila neotestacea, and in a previous study 

of the t haplotype, in which most expression differences in testis were linked to the driving 

chromosome [5, 10, 28]. The differences with the latter study are likely to have been influenced by 

sampling scheme, as distant populations were pooled for that analysis [28]. Strikingly, functional 

themes among enriched transcripts in T. dalmanni and D. neotestacea show little overlap with each 

other or with this study, even though all three systems damage + sperm development. This highlights 

the varied evolutionary routes leading to male meiotic drive, but more work is needed to better 

understand the differences and commonalities between systems.  
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Figure legends 

Figure 1: Heatmaps indicating expression differences between +/t and +/+ males and females for all 

genes DE in at least one tissue, with red indicating increased expression and blue decreased expression 

in +/t. Each column indicates the comparison between a +/t mouse and its +/+ sibling, for gonads, liver 

and brain for males (blue) and females (orange). On the left of each panel, blue and orange bars 

indicate in which comparison a specific gene showed a significant gene-level expression difference: 

(a) with the green bar shows the genes located on the t haplotype, while (b) with the grey bar shows 

genes located in other genomic regions. 

Figure 2: The number of significantly DE genes per tissue and sex (with blue representing male 

tissue, and orange female tissue), grouped by up- or downregulation (indicated by up or down facing 

arrows) or DEU. Darker bars represent genes in the t haplotype region; lighter bars represent genes 

elsewhere in the genome. 

Figure 3: Shared expression patterns according to whether genes are located within the t haplotype or 

in the rest of the genome, for (a) upregulated genes, (b) downregulated genes or (c) genes with 

differential exon usage. The y-axis indicates the number of genes of each category, with the darker 

part of each bar representing genes in the t haplotype region, and the lighter part representing genes 

elsewhere in the genome. The x-axis indicates categories of shared expression. Single dots indicate 

expression differences within a category of sex and tissue, and vertical lines connect dots whenever 
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the same gene is DE in more than one category. Blue and orange organs represent male and female 

tissues, respectively. 
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Supplementary Methods, Figures and Table 

Housing conditions 

Mice were housed in Makrolon type III cages (425 mm × 266 mm × 155 mm) with animal bedding 

(Lignocel Hygienic Animal Bedding, JRS), cardboard rolls and pieces, and paper towels as nesting 

material, and provided with Kliba mouse chow (laboratory animal diet for mice and rats, no. 3430).  

At 5 weeks of age, just prior to the typical onset of male-male aggression and sexual maturity, brother 

pairs were isolated into single cages (Macrolon type II) and placed in a cage rack so that one brother 

was just above the other (in half of the pairs, the +/t male was above the +/+, otherwise reversed), with 

no other immediate neighbour. Sister pairs (differing in genotype) were put into two single cages 

connected by a tube, so that per capita space available to males and females was the same. Males and 

females were all uninjured and healthy. Each cage had bedding, two toilet paper rolls, one piece of 

cardboard and one piece of paper towel, and food and water were provided ad libitum.  

Five days per week each cage of paired mice was given mixed soiled bedding to provide standardized 

odorant input to stimulate reproductive development. 50 ml of soiled bedding was taken from three 

cages each of group-housed adult females and adult males (from mice outside the experiment), with 

both +/+ and +/t genotypes represented. The 300 ml of soiled bedding was mixed and 10 ml put into 

each cage containing focal individuals. 

RNAseq data processing additional information 

The STAR alignment options used were 

"--outFilterType BySJout --outFilterMatchNmin 30 --outFilterMismatchNmax 10 --

outFilterMismatchNoverLmax 0.05 --alignSJDBoverhangMin 1 --alignSJoverhangMin 8 --

alignIntronMax 100000 --alignMatesGapMax 100000 --outFilterMultimapNmax 50 --twopassMode 

Basic". 

The options for featureCounts were the following: min mapping quality of 10; min feature overlap of 

10bp; count multi-mapping reads yes; count only primary alignments yes; count reads if they overlap 

multiple genes yes.  
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Figure S1. Plot along chromosome 17 of differential transcript abundance between +/t and +/+ for 

each gene and tissue (male and female brain, male and female liver and ovaries and testis), with red 

indicating increased expression and blue decreased expression in +/t. Genes that are expressed without 

significant change are in dark grey, while genes with below analysis threshold reads are depicted in 

light gray. White indicates regions with no mapped reads. For this study we defined 3-42 Mb as the t 

haplotype region.  



 

Figure S2. Violin plot of expression differences between +/t and +/+ males, in absolute values of log2 

ratios, from testis for genes within the t haplotype (on t haplotype) and in the rest of the genome (off t 

haplotype).  



 

Figure S3: An example of differential exon usage in the chr 5 gene Ppp1cb from testis. The x-axis 

indicates position on the chromosome and the y-axis indicates the number of reads (shown in red for 

+/t and blue for +/+). Coloured vertical lines indicate exons.  

  



 

Figure S4. Plot along chromosome 17 of differential expression between +/t and +/+ for each gene and 

tissue (male and female brain, male and female liver and ovaries and testis). Red denotes up-

regulation, blue down-regulation and green differential exon usage. Genes that are expressed without 

significant change are in dark grey, while genes with below analysis threshold reads are depicted in 

light gray. White indicates regions with no mapped reads. Above is a cytogenetic map of chromosome 

17 showing cytobands. For this study we defined 3-42 Mb as the t haplotype region. 

  



 

 

 

Figure S5. Top 25 enriched gene ontology terms for biological processes, with ancestral nodes, for 

testis genes differing in expression between +/t and +/+ brothers. Red indicates the contribution of up-

regulated genes (testis_up), blue down-regulated genes (testis_down), and yellow genes with 

differential exon usage (testis_deu). Image generated by VLAD (Richardson and Bult 2015b). Black 

arrows indicate multiple connections between B and A, blue arrows that B is part of A. p is the p-value 

for enrichment given k, the number of differentially expressed genes annotated to the term, and K, the 

number of genes annotated to the term . 

  



Table S1. Gene function analysis of genes differentially expressed between +/t and +/+ siblings, 

according to gene location.  

 

Tissue Sex Within t Rest of genome 

Gonad M Cytoplasmic dynein complex 

Sperm flagellum 

Spermatogenesis, 

Sperm flagellum 

Syncytium formation 

GTP biosynthetic process 

Alcohol metabolic process 

Steroid metabolic process 

 F Dynein complex 

Sperm flagellum 

Membrane bound organelle 

MHC protein complex 

None 

Liver M None None 

 F None Saturated and unsaturated monocarboxylic acid 

metabolic process 

Myristol-coA and Palmitoyl-coA hydrolase 

activity,  

Brain M Cytoplasmic dynein complex 

Intracellular organelle 

None 

 F Membrane bound organelle None 
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