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Abstract— Serious Mental Illnesses (SMIs) including
schizophrenia and bipolar disorder are long term conditions
which place major burdens on health and social care services.
Locomotor activity is altered in many cases of SMI, and so
in the long term wearable activity trackers could potentially
aid in the early detection of SMI relapse, allowing early
and targeted intervention. To move towards this goal, in this
paper we use accelerometer activity tracking data collected
from the UK Biobank to classify people as being either in a
self-reported SMI group or an age and gender matched control
group. Using an ensemble dense neural network algorithm
we exploited hourly and average derived features from the
wearable activity data and the created model obtained an
accuracy of 91.3%.

I. INTRODUCTION

Serious Mental Illnesses (SMIs) including schizophrenia
and bipolar disorder are long term conditions which place
major burdens on health and social care services, often
coupled with significant reduction in quality of life for the
individual over a long term. Up to 40% of those discharged
after hospital treatment for schizophrenia may relapse within
1 year [1].

To help reduce this rate there has long been an interest
in creating smartphone based mHealth tools for helping
with the management of SMIs. An example is ClinTouch,
an Ecological Momentary Assessment (EMA) smartphone
app [2], [3] which prompts the user to answer a structured set
of questions multiple times per day about their thoughts and
feelings. Response histories are available within the app and
are also uploaded to a central server for remote monitoring
by healthcare professionals, allowing potential changes in
behaviour to be detected, and care planned and targeted as
a result.

Today, non-invasive body-worn sensors such as accelerom-
eters and gyroscopes can also help to measure a wide range
of behavioral factors to inform this process. Indeed, impaired
motor function is often found during episodes of SMI [4].
For example, people with bipolar disorder or schizophrenia
can be significantly more sedentary than age- and gender-
matched healthy controls [5]. Further examples of the use
of such passive sensing for behavioural monitoring are
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presented in [4], [5] which indicate that passively collected
behavioral data, using wearables, presents a potentially scal-
able and at present underutilized opportunity to help with the
care of people with SMI.

However, long term wearable monitoring has only recently
become available and prospective controlled trials of wear-
ables with people with SMI can be very time consuming to
perform, as participants go through different periods of re-
lapse and remission, and the wanted state may not be present
during the monitoring period. In this paper we investigate
making use of activity tracking (accelerometer) data from the
UK Biobank [6], giving a large cross-sectional population to
investigate. Within this large dataset, 63 participants self-
identified as having an SMI, and we investigate whether
machine learning can be applied to the activity data from
this population to classify the individuals separately from
a matched control population also selected from the UK
Biobank. Our classification scheme is based upon an ensem-
ble of dense neural networks to obtain better performance
compared to using a single dense neural network.

The rest of the paper is organized as follows. Section II
introduces the UK Biobank data selection procedure for the
classification scenario of this paper. Section III presents our
proposed ensemble dense neural network learning architec-
ture, with results presented and discussed in Section IV.
Finally conclusions are drawn in Section V.

II. UK BIOBANK DATA SELECTION

A. UK Biobank overview

The UK Biobank is a very large scale open ac-
cess database of a wide range genomic and bio-signal
records, coming from more than 500,000 people for
some data fields. The public showcase of the data avail-
able is online at http://biobank.ctsu.ox.ac.uk/
showcase/label.cgi. In this paper we make use of
the physical activity dataset (obtained through UK biobank
application number 33693), which was collected from ap-
proximately 100,000 people wearing an Activity AX3 3-
axis accelerometer device [8] for a week. During this time
participants undertook their normal daily activities and the
raw data is unlabelled. All data was sampled at 100 Hz, and
both the raw data (in units of g) and a number of derived
features (as described below) are available.

Also available is a web based questionnaire for these
participants, giving information regarding the presence and
absence of any mental health condition, including present
and past depression, bipolar affective disorder, generalized
anxiety disorder, harm behaviour, and subjective wellbeing.



Fig. 1. Illustration of daily activity pattern for one participant. Images generated with toolbox provided by [7]. The colour code identifies moderate
activities, sleep, walking and sedentary patterns. (a) Participant from SMI group. (b) Participant from control group.

Fig. 2. List of the accelerometer features used in this study and the
associated UK Biobank data fields.

The outcomes of these questions are encoded in the Biobank
(data field ID 21054) in sixteen fields and allows us to use the
raw unlabelled activity dataset in a supervised classification
experiment to group participants between SMI and control
groups.

B. Accelerometry features

An example of the accelerometery signals available in the
dataset, processed using the open source toolbox from [7]
to threshold the amount of activity into sedentary, moderate,
and similar levels of activity, is shown in Fig. 1. In addition
to the raw data a number of derived features based upon
averaging are available including: daily acceleration averages
(7 measurements); per hour average acceleration (24 mea-
surements); no-wear time (5 different metrics); categorically
encoded age and gender (5 different metrics); overall weekly
acceleration average and standard deviation (2 features). The
list of all of the features we used, and the associated UK
Biobank data fields, is given in Fig. 2. As different features
have different value ranges we have used a StandardScaler
normalization applied to the raw data to avoid any potential
model bias due to larger values in any individual feature.

C. SMI group and control group identification

As reported in [9], there are 137 participants who self-
indicated any form of mental health condition. Here we
make use of the responses to questionnaire A3 and A4 (UK
biobank data field 20544-0.1 and 20544-0.2) for which 63
participants (21 female, 42 male) were identified as having
an SMI, and use this cohort as our SMI group.

For the control group, potentially a very large number of
participants could be used (all of the remaining participants)
but this is computationally impractical for the current work,
and it is likely that some participants with undisclosed or
un-diagnosed SMI would be present in such a control group.
Moreover, it would give an extremely imbalanced data set for
the machine learning analysis. Here we overcome this by
using a one-sided Selection with synthetic Minority Over-
sampling Technique (SMOTE) technique [10] to resample
the data present. We randomly selected an age and gender
matched group of 200 participants from the Biobank to form
the control group (86 female, 114 male), giving a dataset of
a good size, which is also of a practical size to work with
for initial machine learning development.

III. ACTIVITY BASED SMI CLASSIFICATION

In this paper, we utilised an ensemble dense neural
network architecture to process the hourly accelerometer
features available and classify participants as being in either
the SMI or control group. We opted for a Deep Neural
Network (DNN) architecture due to its capability to process
raw time-series data, large error handling capability, and
potential for high model accuracy [11].

Our model is implemented using the Keras open source
library in Python [12], and we have utilized the sequen-
tial model and the dense, dropout, concetenate, and batch
normalization layers. At the very first layer, we fed the 43
features from Fig. 2: the thirty-eight derived accelerometer
features, one-hot encoded gender (2 channels), and age
features (3 channels). These features create a non-linear,



Fig. 3. Visualization of the proposed ensemble Dense Neural Network
(DNN) model. The model handles a class imbalance using a synthetic
minority oversampling technique.

distributed representation of the input. A visualisation of the
proposed network is given in Fig. 3.

Ensemble methods are commonly used for achieving
better performance compared to single models. As can be
seen from Fig. 3, we started with three baseline models to
obtain initial feature processing and classification. In each
of these networks there were four dense layers to learn from
the features according to their priority. These baseline meta-
classifiers were identical in nature for feature exploration
purposes, but fed with separate balanced training sets. As the
majority (control) group instances (sample size = 200) were
almost three times than the minority SMI group (sample size
= 63) we partitioned the the majority group into three equal
parts to avoid the majority bias on the ensemble layers. We
then applied the SMOTE technique on the minority group to
further equalize the class imbalance. A balanced test set of 80
participants containing both the groups was kept separately
for the purpose of model evaluation.

After the three baseline classifiers a three layer dense
neural network is employed (seen at the bottom of Fig. 3),
trained by using the concatenated output of the three en-
semble DNNs as inputs. The output layer uses a softmax
activation, and all layers are fine-tuned using a holdout
dataset. The final model was trained with an Adam optimizer
with a learning rate of 0.002 and a binary cross-entropy. The
training of the model has been done offline on a PC with
2.4 GHz Intel core i7 processor and 32 GB memory.

To act as comparison cases, in Section IV we report the
performance of both the ensemble DNN, and a single (non-
ensemble) DNN which is identical in set up to the above and
trained on the unbalanced training data set. We also report the
performance of a standard random forest classifier applied to
the data, implemented from the python sklearn library.

Fig. 4. Comparative pair-plot for weekday and weekend average acceler-
ation for the control (blue) and SMI (green) participants.

Fig. 5. Top fifteen discriminatory features for this classification task
(presented in an ascending order). f# indicates the feature number according
to our internal numbering scheme.

IV. RESULTS AND DISCUSSION

To illustrate the two groupings, we present a comparative
pair-plot for weekday and weekend average acceleration for
the control and SMI group participants in Fig. 4. The control
group is seen to have greater average daily acceleration than
the SMI group. We have also provided an estimate of feature
importance for the classification task in hand in Fig. 5. This
has identified age, gender, and some of the hourly average
acceleration features during the morning, evening and night
hours to be highly important in separating the two groups.

Confusion matrices for the single DNN model and ensem-
ble DNN model are given in Fig. 6. It can be seen that the
ensemble DNN substantially outperforms the single DNN
with an overall accuracy of 91.3% compared to 83.8%. The
number of records correctly classified into the control state
is in fact the same between the two DNN set ups, with
the ensemble DNN getting better performance due to more
participants being correctly classified into the SMI class.

A comparison to the performance of a random forest
classifier is given in Table I. The random forest model
outperformed the single DNN in overall performance, but not
the ensemble DNN. In addition, the random forest had much



TABLE I
QUANTITATIVE COMPARISON OF ENSEMBLE DNN WITH TRADITIONAL SINGLE DNN AND A RANDOM FOREST CLASSIFIER.

Classifier Overall accuracy Recall (SMI class) Recall (Control class) Precision (SMI class) Precision (Control class)

Random forest 85.2% 67.1% 87.0% 64.2% 83.0%

Single DNN 83.8% 85.3% 82.4% 84.4% 78.8%
Ensemble DNN 91.3% 89.7% 92.7% 92.1% 90.5%

Fig. 6. Class-wise confusion matrix of the test dataset for the (a) non-
ensemble and (b) ensemble DNN.

lower recall in the SMI class than either of the DNN based
approaches. In terms of model execution time, the ensemble-
DNN model took longer (10.9 seconds) in the training phase
than the single DNN (3.41 seconds) and random forest (9.66
seconds).

These high classification performances show that it is
potentially possible to differentiate between the two classes
based upon a week of activity data. This acts as a starting
point to show that there is separability between the two
classes, although we note that our control group was only
matched for age and gender. Differences in socio-economic
status and disease co-morbidity may be present which could
be the underlying source of the separability reported here and
should be taken as a limitation of the current work. Future
investigations will investigate whether the accelerometry data
sampled at different points in time could be used to give
an indicator of potential relapse or remission events, with
the ultimate aim of using wearables to help with earlier
interventions.

V. CONCLUSIONS

In this work we applied a data-driven ensemble dense neu-
ral network technique aimed to separately classify a serious
mental illness participant group from a control group using
their physical activity data available from the UK Biobank.
The results show that the two classes were potentially
separable based upon accelerometer activity recorded over
a week. Using an ensemble classifier approach substantially
improved the performance compared to using a single dense
neural network.
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