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Abstract

By their nature, options markets are forward-looking. The risk-
neutral densities (RND) provide information on market’s view re-
garding the future movements of the underlying index and the per-
ception of the risk. In Chapter 2, we use S&P 500 index option prices
and the recently introduced China’s 50 Exchange-Traded Fund op-
tions to extract densities and find that all methods adopted fit both
option data well. However, the non-parametric method outperforms
the parametric approaches on the basis of RMSE, MAE, and also the
MAPE. We also investigate the dynamic behavior of the densities
from smoothing the implied volatility smile in both markets, espe-
cially the impacts of higher moments on the price levels and returns
of underlying assets. Chapter 3 examines the impact of macroeco-
nomic announcements on S&P 500 option prices and 50 ETF option
prices. We aim to distil information with the RND from both options
data by employing the stochastic volatility inspired (SVI) method.
We investigate the densities and test market efficiency based on the
impact of implied moments on current returns. Furthermore, we
also distinguish between types of the macroeconomic indicators and
examine the reactions of RNDs. In Chapter 4, we apply the Recovery
Theorem of Ross (2015) to deduce both the physical distribution
and pricing kernel from option prices. The time-homogeneity and
irreducibility of the Markov Chain and the path-independence in
pricing kernel are two main restrictions. This study aims to test the
efficiency of the Recovery Theorem with the application to the op-
tions written on Adidas AG. The interpretation of risk aversion and
real-world probability distribution is provided. Chapter 5 concludes.
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Chapter 1

Introduction

This thesis consists of three main chapters. Although linked by the common
theme of measurement of financial risk using options market data, each chapter
has been written as a self-contained research study with focuses on different
objectives of financial options research.

Chapter 2 is concerned with the risk-neutral density. Past decades have seen
much attention given to implied volatility (see, Jiang and Tian, 2005; Busch,
Christensen and Nielsen, 2011; DeMiguel, et al., 2013, for example). But
studies by now have not limited in implied volatility, the risk neutral density
has also been much attention recently, and this is our focus in Chapter 2. The
risk-neutral density, which is a full probability distribution over the value of the
underlying asset at option expiration, gives abundant information to academics,
practitioners and policymakers. Methods to extract the risk-neutral density
have been developed, such as the single lognormal approach by Jackwerth and
Rubinstein (1996); the mixture of lognormals model by Bates (1996), Melick
and Thomas (1997), Liu et al., (2007); the nonparametric ways by Aı̈t-Sahalia
and Lo (1998), Aı̈t-Sahalia and Duarte (2003), Bondarenko (2003), and Bliss
and Panigirtzoglou (2004). In this chapter, we use three alternative approaches:
1) Single lognomal; 2) Mixture of two lognormals; and 3) Smoothing implied
volatility smile method. In the context of the pricing accuracy, we conclude
that the Smoothing implied volatility smile method outperforms the other two
alternative ways when adopting the two sets of data, the S&P 500 options over
the period Jan 2008 - Mar 2008 and the 50 ETF options during June, 2015 - early
Dec, 2015.
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Chapter 3 investigates the relationship between the option market and the
macroeconomy. By their nature, option markets are forward looking. The first
four moments of the risk-neutral densities are the most common information to
evaluate the expectation of the investors how the market will be. Theoretically,
the option market should have anticipated the macroeconomic news. To address
this issue, in Chapter 3, we use the S&P 500 options and China’s 50 ETF options
to test the impact of these movements on returns of the underlying index. We also
test the weak form and semi-strong form Efficient Market Hypothesis (EMH). It
is worth noting that we test the effect of lagged return, which amounts to a test
of weak-form EMH, and the effect of the lagged moments that amounts to a test
of semi-strong form EMH. In this study, we also investigate how the anticipated
and unanticipated news has been reflected in the options market.

We begin Chapter 4 with the introducing of the recovery theorem by Ross
(2015) and the relationship among the risk-neutral density, the real-world density
and the risk aversion. Risk neutrality has been widely assumed in numerous
studies, as well as previously in Chapters 2 and 3. However, empirical and
experimental studies have found that investors are risk averse (see Thaler et
al., 1997; Schubert et al., 1999; Isaac and James, 2000; Goeree, Holt and
Palfrey, 2003; Lewellen, 2006; Bollerslev, Gibson and Zhou, 2011; Wilcox,
2011; Bekaert, Hoerova, and Duca, 2013; Dew-Becker et al., 2017, for example).
The option prices are interpreted as reflecting to reflect the investors’ risk aversion
and real-world probability distribution. Studies by Aı̈t-Sahalia and Lo (2000),
Jackwerth (2000), Bliss and Panigirtzoglou (2004) and Chabi-Yo, Garcia and
Renault (2007) have argued that the ratios between the risk-neutral density and the
physical one result in the markets’ aggregate risk aversion1. Intuitively, according
to the previous studies, we compute the risk aversion only through finding the
risk neutral density and the natural probability density. Next investigation follows
the Ross (2015), the Chapter 4 intends to find the real-world density and risk
aversion directly from the option prices. Two main nonparametric assumptions
are given in current methodology: 1) the risk-neutral process is restricted to be a
time-homogeneous and irreducible Markov Chain in a finite state space; 2) the
pricing kernel is independent of asset path.

1 Mathematically, Risk−neutral probability = Physical probability×Risk aversion.
In a no-arbitrage economy, the risk-neutral expected return is the risk-adjusted physical return,
i.e., EQ(rt, τ) = EP(rt, τ)−Risk premium = rf .
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Chapter 5 concludes the thesis by summarising the chapters. We have also
discussed and highlighted several ideas on which further study would be benefi-
cial.

In the thesis, several different software packages are used, including the Stata
12 (StataCorp, 2011), the MATLAB 13a (The MathWorks, Inc., 2007), R version
3.3.2 (R Core Team, 2014), and the RStudio 1.0.136 (RStudio Team, 2015), for
different purposes.
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Chapter 2

Extracting Implied Risk-Neutral
Densities from S&P 500 Index
Option Prices and 50 ETF Options
Prices

2.1 Introduction

The implied volatility is one of the most important concepts in the financial
econometrics. By definition, the implied volatility is the inverse problem of
option pricing. The past decades or so have seen much attention focused on it.
Theoretically, the implied volatility can be regarded as a good predictor of the
future volatility of the underlying asset, even its familiar pattern ‘volatility smile’
seems not to consistent with the Black-Scholes formula. However, extracting
important but unobservable parameters from option prices in the market is not
limited to implied volatility.

Nowadays, focuses have turned to risk-neutral density. The price of the
options written on a given asset with different strike prices with the same time-
to-maturity delivers the risk-neutral density, which has the ability to indicate the
market assessment of the probability of the payoff over the series of the strike
prices.

Investors revise their expectations in the light of the new information. Accord-
ing to the efficient market hypothesis, the prices reflect all the information in the
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market. Only the new or unanticipated information can influence the expectation
of the market, which are all reflected in the risk neutral densities. By studying
the risk neutral density, we can easily obtain the markets’ beliefs. For instance,
the density shows whether the market places a higher probability on an upward
movement of the state of the underlying asset than a downward movement of
state. In the meantime, the risk-neutral density has superior performance than
implied volatility. Because implied volatility is a measure of the second moment
of the distribution of the price of the underlying. The risk-neutral density embod-
ies all the moments. Furthermore, the evolution of the risk neutral densities can
reveal information on how the market’s beliefs change over time.

In order to extract a well-behaved risk neutral density from a set of option
prices, two problems need to be solved. Firstly, the theory calls for the option’s
strike prices to be continuous. As a matter of fact, take the S&P 500 index
options market as an example, the market only trades with a small number of
discrete strikes, with at least 5 points apart and up 25 points apart or even more in
some parts of the available range of strikes. Secondly, the other problem is that
we can only extract the middle portion of the density as a result of solving the
first problem with interpolating and smoothing, which does not extend further to
the both tails because of the small range of the strike prices.

Current chapter would like to examine how the moments of the risk-neutral
densities evolve over time. Focusing on parametric and non-parametric methods,
we try to extract the information content of the risk neutral densities extracted
from S&P 500 index option prices and 50 ETF options prices, in particular to
investigate the response of the risk neutral density to the fluctuation in the S&P
500 index and 50 ETF prices, respectively. Furthermore, the analysis of the
moments of the density and what the dynamic behaviour of the densities are will
also be examined. With respect to the literature review, this chapter also aims
to summarize on the significant papers. To answer these question, this chapter
will adopt the smoothing implied volatility smile method by Figlewski (2009) to
extract the risk-neutral density and distil the information from the densities for
further investigation.

The contribution here is threefold: The first contribution is that numerous
papers have done a summary of the existing methodologies to find risk-neutral
density, but few have done a review of the application of risk-neutral density.
Secondly, this chapter finds definitively which is the best method for extracting
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the risk-neutral density. In other words, rare study has investigate the perfor-
mance of Figlewski’s smoothing implied volatility smile method by comparing
it with other alternative methodologies. Thirdly, this chapter also investigates
the relationship between the moments implied by risk-neutral density and the
current value of the underlying.

The remainder of this chapter is organized as follows. The following section
gives a review of the previous literature both the theoretical literature and the
empirical literature related to this topic. Section 2.3 describes the data. Section
2.4 documents the methodologies adopted for obtaining the implied risk neutral
densities from option prices. The results will be carried out in the Section 2.5.
The conclusion of this chapter is provided in Section 2.6, as well as a further
study.

2.2 Literature Review

In this part, I would like to review and present some existing applications by the
two main model categories and also address the gap between the existing papers
and current study.

The literature on extracting the risk neutral density from the option prices
and the application of risk neutral density is broad. To date, several methods for
extracting the implied risk-neutral density have been developed. Depending on
the degrees of freedom and number of parameters needed to define the model,
a general classification can be divided into two main categories: parametric
methods and non-parametric methods (Jackwerth, 1999).

The parametric methods, which rely on particular assumptions, have been
most often used related to the recovery of risk-neutral density. These methods
try to select known density functions, and fit these parameters by minimizing the
the squared difference between the empirical risk neutral densities and the fitted
densities. This approach to estimate the risk neutral density function directly
starts with the assumption that the risk neutral distribution of ST belongs to a
parametric family. One of the most classical approaches in this area is the the
single lognormal approximation, which is based on the Black-Scholes model.
However, this method has been criticised by Gemmill and Saflekos (2000), where
the parametric approaches via double lognormal method and single lognormal are
both adopted to examine the double-lognormal assumption in option pricing and
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the performance around crashes and British general elections. Their study finds
that Double-lognormal method is much better than the one-lognormal approach
at fitting observed option prices. Melick and Thomas (1997) study the risk neutral
density from the Crude oil American options prices during Persian Gulf crisis to
investigate market’s perceptions. They find options market reflected a significant
probability of a major disruption in oil prices, and distributions implied by
mixture of three lognormals are better that of by using single lognormal method.
Bahra (1997) and Cheng (2010) also compare the parametric methodologies
using single lognormal or a mixture of lognormals in different applications.

Methods within parametric category are diverse, Bates (1991) studies the
jump-diffusion approach and finds that a strong perception of downside risk in
the market and the crash was predicted by the S&P 500 futures options over
1985-1987. Coutant, Jondeau and Rockinger (1999) investigate the methods with
Hermite expansion and Maximum Entropy. They study show that both method
fit the option prices better than that by lognormal distribution.

The non-parametric methods, with advantages of no distributional assump-
tions and no assumed functional relationship, could result in more accurate,
flexible and robust models. There are several different non-parametric method
have been applied in literature. Rubinstein (1994) study the risk neutral density
with implied binomial trees model; Ait-Sahalia and Lo (1998) examine with the
kernel estimation methods; Avellaneda (1998) studies with maximum entropy
approaches.

A non-parametric approach is proposed by Shimko (1993), where the method
is based on smoothing implied volatility smile method with parametric assump-
tion of lognormal distributions on the tails of density. This model makes it
possible to analyse probability movements and compare them across markets.
Since then, various smoothing methods have been used in this approach. Campa,
Chang and Reider (1998) study the cubic spline smoothing methods in the appli-
cation of Dollar-mark, dollar-yen and key EMS cross-rates options. They find
that, based on the moments of the risk-neutral density, the stronger a currency the
more expectations are skewed to a further appreciation of the currency. Cooper
(1999) also studies the cubic spline smoothing methods. It concludes that the
pricing performance of method based on smoothing implied volatility performs
better than that from the mixture lognormals.

This work, however, is more closely related to the approach in the study
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Figlewski (2009). It uses the non-parametric model with a combination of implied
volatility smile method and Generalized Extreme Value (GEV) distribution
method to find the risk-neutral density in a 12-year daily S&P 500 index options
prices over the period January 4, 1996 to February 20, 2008. It finds that densities
are always left skewed and the left tail responds more than the right to the market
return. Inspired by this study, Birru and Figlewski (2012) adopt the same method
to investigate the behavior of the risk neutral probability density by using the
intraday S&P index options data during the fall of 2008. They confirm that a
strong pattern has been found in the RND shape responds to changes of stock
index.

A summary of the recovery methodologies can also be found in Aparicio and
Hodges (1998), Bahra (1997), Bliss and Panigirtzoglou (2002), Banz and Miller
(1978), Campa et al. (1998), Grith and Kratchemer (2010), Jackwerth (1999,
2004).

Follow on the discussion of parametric methods and non-parametric methods,
current study would like to investigate the smoothing implied volatility smile
method by Figlewski (2009) for its flexibility. I will also adopt the single
lognormal distribution method and a mixture of lognormal method to compare
the pricing performances. The most important objective is to see how the risk-
neutral moments behave and how they reflected in the stock markets.

2.3 Data

2.3.1 S&P 500 index options

This section starts with the introduction of the data source. It will also discuss
the criteria for option selection and clean the data for further study. A descriptive
statistics is also reported in this part.

Our input dataset includes daily call and put option data on S&P 500 index,
between 02 Jan, 2008 and 19 Mar, 2008, expired on 22 Mar, 2008. Table 2.1
shows the source of each data variable.
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Table 2.1: Data Sources

Variables Sources
Option prices OptionMetrics
Risk-free interest rate Federal Reserve Bank of St. Louis
Dividend yield OptionMetrics
S&P 500 Index Level S&P Dow Jones Indices LLC

2.3.1.1 Criteria for option selection

In this chapter, we begin with bid and ask quotes rather than the transaction
prices for calls and puts with a given expiration date1.

Moreover, due to their illiquidity, in-the-money and far out-of-the-money for
both call and put options will be eliminated in this study. In this case, a minimum
bid price is set of 0.50 for this study.

Only at-the-money and out-of-the-money options will be used because there
is more trading in these. Furthermore, taking options that are too much out of
the money can lead to negative probabilities and outliers when calculating the
implied volatility.

Moreover, we also eliminate the data which seems to be unreasonable, in-
cluding the example of implied volatility around -99.99%2.

2.3.1.2 Descriptive Statistics

Figure 2.1 presents the evolution of the S&P 500 index. To the naked eye, it
seems that the S&P 500 index has a decreasing trend during this sample period.

1Transactions, in many times, take place sporadic in option market, and even worse in a single
stock options. However, market quotes are continuous on a trading day. Therefore, it is better to
use the bid and ask quotes in this study.

2As stated in the OptionMetrics (2010), in this case, the implied volatility will be set to
-99.99% if any of the following conditions holds: 1. The midpoint of the bid/ask price is below
intrinsic value. 2. The vega of the option is below 0.5. 3. The implied volatility calculation fails
to converge.
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Figure 2.1: S&P 500 index during the sample period

In this sample data, 125 to 205 options were traded on each trading day, with
125 observations on 02 Jan, 2008 and 03 Jan, 2008 and 205 observations on 14
Feb, 2008. Moreover, the data sample includes option prices for 54 trading days
and maturities from 3 to 80 days. Their implied volatilities averaged around
28.68%. And about 95% of them are in the range between 13.81% and 45.96%.
Table 2.2 shows a summary statistics of the data which has been cleaned by the
criteria.

Table 2.2: Descriptive Statistics for US market

Variable Obs Mean Std. Dev. Min Max
Call Bid 3453 77.5304 93.7640 0.5 750.7
Call Ask 3453 79.6173 94.0965 0.6 752.7
Put Bid 3738 65.5225 79.6935 0.5 622
Put Ask 3738 67.6166 80.1659 0.55 626
Call IV 3453 0.2612 0.1056 0.1381 1.6582
Put IV 3738 0.3104 0.1590 0.1663 2.2127
S&P 500 Index 7191 1352.802 36.9483 1273.37 1447.16
Risk-Free Rate 7191 0.0332 0.0053 0.0254 0.0468
Dividend Yield 7191 0.0086 0.0043 0.0048 0.0170

2.3.2 50 ETF options

We adopt options data written on China’s 50 ETF from 26 June, 2015, updated
to early December, 2015. The options are standard European style, which means
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the option holders have the right to exercise the contracts at the strike price at the
maturation. All the data variables, including the Option prices, Risk-free interest
rate, Dividend yield and 50 ETF price level are collected from Wind Data-stream.
The raw data also includes closing prices, option Greeks across various maturities.
The contracts mature in December 2015, January 2016, March 2016 and June
2016.

Table 2.3: Descriptive Statistics for Chinese market

Variable Obs Mean Std. Dev. Min Max
Call Price 1,886 0.4105 0.3556 0 1.4423
Put Price 1,886 0.3002 0.2003 0.0002 0.9741
Call IV 1,886 0.1042 0.0492 0 0.1992
Put IV 1,886 0.1681 0.0387 0.0854 0.2765

This dataset is quite different with the S&P 500 options as it does not contain
too much information. For example, it only has the transaction data, but not the
bid prices and the ask prices. Also, as we can see from the descriptive statistics,
the prices for the options are quite low, so I did not use the same criteria for
option selection to exclude the prices less than 0.5. I keep most of the raw data
unless it has some missing data or noise data.

2.4 Theoretical Framework

2.4.1 Extract the risk neutral density from option prices and
estimation with discrete data

Asset pricing theory states that the theoretical option price is equal to the dis-
counted value of the expected payoff under the risk neutral measure. And the
density under the risk neutral measure results in the risk neutral density.

C = e−rτ
∫ ∞
X

f(ST )(ST −X)d(ST ) (2.1)

P = e−rτ
∫ X

0

f(ST )(X − ST )d(ST ) (2.2)

In this study, C, ST , X, r and τ all have the standard meaning of option
valuation. C= call price; ST= the index level at expiration date T; X= exercise
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price or strike price; r= risk-free interest rate; τ = time to expiration date. And
we also use f(ST )= risk neutral density; F (ST )= risk neutral distribution.

I then verify the calculation of the risk neutral density for call option. Here
we have:

∂C

∂X
= e−rτ

∂

∂X

∫ ∞
X

f(ST )(ST −X)d(ST )

= −e−rτ
∫ ∞
X

f(ST )d(ST )

= −e−rτ
[
F (∞)− F (X)

]
= −e−rτ

[
1− F (X)

]
(2.3)

In the second line of this differentiation, we use Leibniz’s Rule to differentiate
with respect to an integration limit. The F (∞) in the third line is equal to 1
according to the property of probability distribution.

If we take a second differentiation, we have:

∂2C

∂X2
= e−rτf(ST ) (2.4)

Therefore,

f(ST ) = erτ
∂2C

∂X2
(2.5)

The density for call option f(ST ) is approximated as

f(ST ) ≈ erτ
Cn−1 − 2Cn + Cn+1

(∆X)2
(2.6)

Next followed by the calculation of the risk neutral density for put option.
Taking the first and second differentiation respectively:

∂P

∂X
= e−rτ

∂

∂X

∫ X

0

f(ST )(X − ST )d(ST )

= e−rτ
∫ X

0

f(ST )d(ST )

= e−rτF (X) (2.7)
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∂2P

∂X2
= e−rτf(ST ) (2.8)

Therefore,

f(ST ) = erτ
∂2P

∂X2
(2.9)

The density for put option f(ST ) is approximated as

f(ST ) ≈ erτ
Pn−1 − 2Pn + Pn+1

(∆X)2
(2.10)

However, when extracting the risk neutral density from discrete option prices
only, i.e. the squares for calls and circles for puts in Figure 2.2, we will have the
result in Figure 2.3.

Figure 2.2: Market Option Prices

Note: The curves represented the interpolated option prices for our market calls and

market puts in the figure below look highly good, without any bumps or wiggles

between the market prices.
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Figure 2.3: Risk Neutral Density from Raw Options Prices

Note: The unacceptable densities in the following graph result from the discreteness of

the strike prices.

Firstly, to the naked eye, the curves from Figure 2.2, which shows the option
prices to the calls and puts without any jumps among the prices, look nice. It
seems that if we take the second derivative of the valuation function, we will get
a reasonable risk-neutral density. However, as we can see from Figure 2.3, which
plots the risk neutral densities from the raw options prices, seems to be clearly
unacceptable as densities for both the calls and puts have some negative values.
As proper distributions, risk-neutral densities must be non-negative. Moreover,
the extreme fluctuations in the middle portion, as well as the shape differences
between these two RNDs, violate our prior beliefs that the risk-neutral density
should be smooth.

To solve this problem, in their seminal work, Breeden and Litzenberger
(1978), which relates the risk-neutral density to the curvature of the option price
function, state that the risk-neutral density is proportional to the second derivative
of a European call price with respect to the strike price. They also show how
the risk-neutral density could be extracted from the prices of options with a
continuum of strikes.

f(ST ) = erτ
∂2C

∂X2
(2.11)

Use the same way, we yield a procedure for obtaining the risk-neutral density
from put prices.
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f(ST ) = erτ
∂2P

∂X2
(2.12)

The following will show an example when adopting the terminologies from
Breeden and Litzenberger (1978).

Figure 2.4: Relationship between the risk-neutral density to the curvature of the
option price function.

Figures above describe the result of Breeden and Litzenberger (1978), which
implies that the call’s curvature in strike is the risk-neutral density. From the
upper figure, its slope goes larger along with the strikes and the curvature, which
measures the slope-of-the-slope, with the values go down to approximately zero
to both sides and peaks at strike of near 1530. This is consistent with the risk-
neutral density in the nether graph. We can also find that the mode in the density
to the left of the current index level, which is represented as the vertical line.

When investigating a density, we also look at the tails of the density. In
order to extract entire densities. Numerous methods have been applied for
recovering implied risk-neutral densities from option prices. this section, some
of these methods are described. The following subsections will introduce the
single lognormal distribution (LN) method and the double lognormal (DLN)
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distribution method, respectively, and following with the smoothing implied
volatility smile (SML) method. We will take the S&P 500 options as the example
throughout this section.

2.4.2 Single lognomal

This methodology assumes the density to be single lognormal, which is consistent
with that S&P 500 index follows Geometric Brownian Motion (GBM).

f(ST ) =
1

STβ
√

2π
e
− (lnST−α)

2

2β2 (2.13)

L(ST ;α, β) is the lognormal distribution used in the methodology, and α ,
β are parameters in the lognormal distribution, α = lnSt + (µ − σ2/2)τ and
β = σ

√
τ . µ and σ represent the return expectation and the standard deviation,

respectively.
The expected value of S&P 500 index level at its expiry is equal to St exp(rτ),

which should have the same value of the mean of the lognormal distribution,
eα+ 1

2
β2

.
If we rewrite the Black-Scholes formula, we have:

C = e−rτ
[
eα+ 1

2
β2

N(d1)−XN(d2)
]

(2.14)

P = e−rτ
[
XN(−d2)− eα+ 1

2
β2

N(−d1)
]

(2.15)

Where:

d1 =
−ln(X) + α + β2

β

d2 = d1 − β

Here we have N(·) is the cumulative normal distribution function. This
method estimates α and β by minimizing the sum of the squared deviation
between the observed option prices (Ci

mkt and P i
mkt stand for observed call prices

and observed put prices, respectively) and the theoretical option prices from
equation (2.14) and (2.15) for both calls and puts. In addition, we have one more
condition in the minimization problem that, by exploiting the fact, in the absence
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of arbitrage the mean of risk-neutral function should be equal to erτSt3. This is
because European options on S&P 500 index futures and S&P 500 index with
a particular strike and τ should be the same, and the underlyings are equal at
expiry.

min
α,β

{ n∑
i=1

[
Ci − Ci

mkt

]2

+
n∑
i=1

[
P i − P i

mkt

]2

+
[
eα+ 1

2
β2 − erτSt

]2 }
(2.16)

With a constraint of β > 0 , this minimization aims to find α and β over
the observed option prices across a series of strike prices. Note that in order to
extend the tails, in this method, we assume the implied volatilities are constant,
which means the values of the implied volatility beyond the available strikes are
equal to the implied volatility of smallest strike and largest strike in the data.
Therefore, the tails assume to follow the lognormal distribution.

2.4.3 Mixture of two lognormals

An alternative way is to conduct a flexible parametric form, mixture of lognor-
mals, on the densities and determine the parameters by maximizing the fit of
the option prices from the risk neutral density to the market prices, that is, the
function tries to minimize the squared differences between the prices computed
by the risk neutral density and that of traded in the market.

According to asset pricing theory, shown as (2.1) and (2.2), we assume the
risk-neutral density f(ST ) follows a mixture of k lognormals,

f(ST ) =
k∑
j=1

θjL(αj, βj) (2.17)

Where L(αj, βj) is the lognormal distribution j in the total number of k
lognormals used in the methodology, θj is the weight of the ith lognormal dis-

tribution. Moreover, the weight θi should satisfy the condition,
k∑
j=1

θj = 1, θj

> 0 for every j. It is worth noting that lognormal distribution ‘j’ means the
j th lognormal distribution in (2.16), we only have one lognormal distribution.
Therefore no ‘j’ will appear in this equation.

This chapter, particularly, uses a double lognormal distribution method, k=2.

3In MATLAB R2013a version, this problem can be solved by the derivative-free minimization
routine fminsearch, a procedure for tackling complex constrained non-linear minimization
problems.
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This method assumes the risk neutral density follow a functional form of mixture
of two lognormals, and then estimate the parameters by minimizing the squared
difference between the actual call and put option prices and the option prices
fitted by the assuming distribution. As suggested by Melick and Thomas (1997),
the double lognormal method makes this model more flexible than the single
lognormal one as it increases its ability to capture the accurate pdf and higher
goodness-of-fit is generated. And also, comparing with the single lognormal
method, this alternative method has higher ability to extract the contributions to
the volatility smile, namely the skewness and kurtosis.

f(ST ) = θL(α1, β1) + (1− θ)L(α2, β2) (2.18)

That is,

C = e−rτ
∫ ∞
X

[θL(α1, β1) + (1− θ)L(α2, β2)](ST −X)d(ST ) (2.19)

P = e−rτ
∫ X

0

[θL(α1, β1) + (1− θ)L(α2, β2)](X − ST )d(ST ) (2.20)

It also can be expressed as the weighted Black-Scholes formula,

C = e−rτ{θ
[
eα1+ 1

2
β1

2

N(d1)−XN(d2)
]
+(1−θ)

[
eα2+ 1

2
β2

2

N(d3)−XN(d4)
]
}

(2.21)

P = e−rτ{θ
[
XN(−d2)− eα1+ 1

2
β1

2

N(−d1)
]
+(1−θ)

[
XN(−d4)− eα2+ 1

2
β2

2

N(−d3)
]
}

(2.22)
The parameters d1 and d2 are given by:

d1 =
−ln(X) + α1 + β1

2

β1

d3 =
−ln(X) + α2 + β2

2

β2

d2 = d1 − β1 d4 = d3 − β2
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Furthermore, with the assumption of arbitrage-free, with a special case of
zero strike price, we compute the present value of the future price.

C(0, τ) = e−rτ{θeα1+ 1
2
β1

2

+ (1− θ)eα2+ 1
2
β2

2} = e−rτf(τ) (2.23)

Where the C(X, τ) represents the call price with strike X and the time to
maturity τ , and f(τ) is the forward price of the underlying in τ time. In the
absence of arbitrage, the forward price should be equal to first moment, the mean,
of the risk neutral density.

This method tries to capture the parameters, {α1, β1, α2, β2, θ} , by minimiz-
ing the sum of the squared differences between the fitted option prices and the
market prices for both calls and puts. In the absence of arbitrage, we have the
mean of the risk-neutral function should be equal to f(τ).4

min
α1,α2,β1,β2,θ

{
n∑
i=1

[
Ci − Ci

mkt

]2

+
n∑
i=1

[
P i − P i

mkt

]2

+
[
θeα1+ 1

2
β1

2

+ (1− θ)eα2+ 1
2
β2

2 − f(τ)
]2

}

(2.24)
With the restriction β1 > 0 , β2 > 0 and 0 ≤ θ ≤ 1, for all the observations

with strikes X = X1, X2, X3, . . . , Xn. In this method, we also assume both tails
follow the lognormal distributions.

2.4.4 Smoothing implied volatility smile method

The smoothing implied volatility smile method is originally developed by Shimko
(1993). This method smoothes the implied volatility space computed by the
Black-Scholes formula5. The continuum of fitted implied volatilities are then
converted back to a continuous of option prices. The implied risk-neutral densi-
ties, finally, can be obtained by applying equations (2.11) and (2.12).

This method can solve the two problems came from the nature of the option
prices. On one hand, the smoothness of the density as we have discussed in the
first part in the Section 2.4. On the other hand, the theory calls for options with

4The same as in the single lognormal approach, this problem can be also solved by MATLAB’s
derivative-free minimization routine fminsearch which works well.

5This method tries smooth the implied volatility/strikes space from the Black-Scholes formula
instead of option price/strike leads to a better interpolation result, due to the more linearity and
smoother than the option price.
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a continuum of strike prices from 0 to infinity. However, that is clearly not the
case in the market. Therefore, interpolation and smoothing are needed to solve
the problems. The following states the procedures in detail for extracting the
risk-neutral density on 02 Jan, 2008 from the available S&P 500 index option
prices.

This method begins with bid and ask quotes, which have been cleaned at the
beginning, for calls and puts with a given expiration date.

Secondly, we compute the implied volatilities from the call prices and put
prices by using equations (2.25) and (2.26), respectively.

C = StN(d1)−Xe−rτN(d2) (2.25)

P = Xe−rτN(−d2)− StN(−d1) (2.26)

The parameters d1 and d2 is given by:

d1 =
ln(St/X) + (r + σ2/2)τ

σ
√
τ

,

d2 =
ln(St/X) + (r − σ2/2)τ

σ
√
τ

= d1 − σ
√
τ .

where N(·) is the cumulative normal distribution function, τ is time to expiration
date, T − t. X, r, τ , σ have the standard meaning of option as indicated in the
equation (2.1) and (2.2), and St is the current S&P 500 index level.

Previous studies adopt various smoothing functions, including cubic splines
(Bates, 1991; Bu and Hadri, 2007; Monteiro, Tütüncü and Vicente, 2008),
natural spline (Bliss and Panigirtzoglou, 2002, 2004; Liu, Shackleton, Taylor
and Xu, 2007, 2009), quadratic polynomial (Shimko, 1993; Jackwerth and
Rubinstein, 1996). Using the same smoothing methodology as Figlewski (2009),
we then interpolate the implied volatility curve by using a 4th degree polynomial
smoothing6. Before this, we blend the implied volatility for calls and puts with
strike between (St - 50) to (St + 50) by the following equation,

6Using MATLAB, we interpolate the blended implied volatility by a 4th degree polynomial
smoothing.
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σblend(X) = wσput(X) + (1− w)σcall(X) (2.27)

Where,

w =
Xhigh −X
Xhigh −Xlow

,

In this case, as we can see from the Figure 2.5, we use the blended IVs with
the strikes between 1400 and 1495, the put IVs with strikes up to 1400 and the
call IVs with strikes start from 1500. And we apply the 4th degree polynomial
smoothing to fit the IVs, which is also showed in the figure below:

Figure 2.5: Fit the volatility smile on 02 Jan, 2008

Fourthly, we convert the interpolated implied volatility curve back to option
prices space and extract the middle portion of the risk-neutral density, which
shows in Figure 2.6.
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Figure 2.6: Empirical Risk-Neutral Density on 02 Jan, 2008

Finally, this method tries to append the two tails to the risk-neutral density
beyond the range from X2 to Xn−1 via Generalized Extreme Value (GEV) distri-
bution. The standard GEV distribution has one parameter ξ 7, which determines
the shape of the both tails:

F (z) = exp[−(1 + ξz)−
1
ξ ] (2.28)

where
z =

ST − µGEV
σGEV

Where, the µGEV and σGEV determine the location and the scale of the
distribution, respectively. In order to extend the tails for risk-neutral density by
fitting with Generalized Extreme Value Distribution. In this case, we need to
follow the below conditions: First of all, the total probability should the same
between the tails in the empirical RND and GEV functions. And, we also want
both tails in the GEV density to have the same shapes as those in the empirical
RND, where each of the two GEV densities should go through the two points
in the empirical RND, respectively. The details of how to fit the Generalized
Extreme Value distribution are showed in Appendix II.

7In the Generalized Extreme Value distribution, ξ determine which distribution the tails
follow:

ξ =

 < 0 Weibull distribution finite tails, which do not extend to infinity
=0 Gumbel distribution tails similar to the normal
> 0 Frchet distribution fat tails relative to the normal
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Here we implement our methods to compute an example of the risk neutral
density on 02 Jan, 2008. These S&P 500 index options data are traded in Chicago
Board Option Exchange (CBOE) on 02 Jan, 2008, where the S&P 500 index
level is 1447.16. These options have 80 days to maturity, the risk-free rate is
4.68% and the dividend yield is 1.71%.

Figure 2.7 shows the risk-neutral densities extract from various methods,
including the single lognormal, a mixture of two lognormals and smoothing
implied volatility smile method.

Figure 2.7: Risk-Neutral Densities extracted from various methods

As we can also see from the figure, these methods result in different densities.
The density extracted by smoothing implied volatility smile seems to be quite
different from the lognormal densities assumed in the Black-Scholes framework.
The density is skewed to the left relative to the lognormal family. The next
section, we would like to show the results using S&P 500 options and 50 ETF
options.

2.5 Results

2.5.1 Implied volatility surface

The variation of the implied volatilities, which are backed out from Black-
Scholes model, of European options across strike prices or moneyness and time
to maturity result in the implied volatility surface (see Kamal and Gatheral, 2010).
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In other words, the implied volatility surface changes over the time and also the
strike prices.

Figure 2.8: Graph of the S&P 500 Index Options implied volatility surface expiry
on 22 Mar, 2008.

The implied volatility surface for S&P 500 Index Options shows in the Figure
2.8. As we can see in this figure, the height of the surface measures the value of
implied volatility for each maturity and moneyness combination.

For a given expiration date, the implied volatilities decrease as the strike prices
goes down, that is, the S&P 500 index options exhibit a well-known “skew”,
which is also confirmed by Rubinstein (1994) and Jackwerth and Rubinstein
(1996).

Figure 2.9: Graph of the 50 ETF Options implied volatility surface expiry on 23
Dec, 2015.
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We can see the similar patterns between the S&P 500 Index Options implied
volatility surface and the 50 ETF Options implied volatility surface. But the later
one exhibit higher implied volatility when options are nearly expired and with
higher moneyness.

2.5.2 Testing Risk Neutral Densities

In order to test the risk-neutral density, this section would like to test the goodness-
of-fit among these methods.

The existence of various risk-neutral density estimation methods from option
prices come out of a question of the best method to be chosen in application. In
order to answer this question, we focus on the goodness-of-fit measures, which
compares the market prices and the fitted option prices using the Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and the Mean Absolute
Percentage Error (MAPE). The method presenting the smallest pricing errors
will be considered as the best model to fit the option prices. A comparison of
goodness of fit among these three methods over the sample period is presented.

Table 2.4: Summary statistics of the goodness-of-fit measures for three models
for S&P 500 Options

Single lognormal a mixture of two
lognormals

smoothing im-
plied volatility
smile

RMSE 3.4862 1.9950 0.3621
MAE 3.3140 1.5058 0.3318
MAPE 0.4054 0.1188 0.0438

Table 2.5: Summary statistics of the goodness-of-fit measures for three models
for 50 ETF Options

Single lognormal a mixture of two
lognormals

smoothing im-
plied volatility
smile

RMSE 0.0782 0.0363 0.0188
MAE 0.0616 0.0214 0.0096
MAPE 0.6908 0.1114 0.0530

Table 2.4 and 2.8 show the summary statistics of the RMSE, MAE, and
MAPE for these approaches for the US and Chinese markets. In both markets,
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the single lognormal method with the largest accuracy measures, means it fits the
options market prices worst. Though compared with single lognormal method,
the mixture of two lognormal does better. The smoothing implied volatility
smile does best, only has some small values. These are consistent with the both
markets.

Therefore, this part concludes that smoothing implied volatility smile per-
forms best, at least for the S&P 500 index options and 50 ETF options during
this sample period. The following section would like to apply the smoothing
implied volatility smile in order to examine the information content and try to
investigate the evolution of the moments.

2.5.3 The Dynamic Behavior of the S&P 500 Risk Neutral
Density

The movements in the entire density could provide interesting information to
daily changes in the underlying expectations. It is important to gauge changes of
the moments. In this subsection, we extract the risk-neutral moments from S&P
500 index option prices from 02 Jan, 2008 to 19 Mar, 2008, expired on 22 Mar,
2008. Theoretically, the moments from the risk-neutral densities changes as the
time-to-expiry changes because of a fixed expiration date for all the options in
this case. The first two moments are the mean and the variance of the density,
respectively. Here we define the mean of a risk-neutral density is the expected
value of the index, or the forward index. Followed by the variance, which is
the most common measure of dispersion of a distribution about its mean, and
by definition always positive. Skewness, a measure of asymmetry, is the third
moment of the density. And the fourth moment is the kurtosis of the density. A
distribution with negative excess kurtosis is called platykurtic, and a distribution
with positive excess kurtosis is called leptokurtic. The higher moments will not
be included in this study. Details about the calculation of moments are shown
in Appendix III. And we can also find the summary statistics of the moments as
well.
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Figure 2.10: S&P 500 futures index, the means of risk-neutral densities and
underlying index level over time

The Figure 2.10 shows the time varying S&P 500 expected value/futures
index, the means of risk-neutral densities and underlying index level over the
period from 02 Jan, 2008 to 19 Mar, 2008. It also attempts to shed some light on
the accordant fluctuations among the S&P 500 index level, the S&P 500 futures
prices with delivery in March 2008 and the means computed smoothing implied
volatility smile. We can find that the means are moving along with the S&P 500
index. It is consistent with the theory we presented earlier in this chapter. As the
time-to-maturity is small, the Figure 2.10 also indicates that the S&P 500 index
is close to the futures price.

Figure 2.11: Variance of Risk-Neutral Densities
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The variance of the risk neutral density represents the market’s uncertainty
around the expected value of ST , given today’s index level St and other in-
formation. The change in the risk neutral variance measures the resolution of
uncertainty. For example, when the new interest target is announced today,
compared with the variance of risk-neutral density yesterday, the change in the
variance can judge how much information is provided by this interest rate target
announcement. The variance in the figure above seems to be stationary8 during
this period. Although the slope of the fitted line is near zero (i.e. 9.5037e-05),
we can see from the figure, the fluctuation of the variance become larger along
the time from the minimum of 0.027 to its maximum of 0.122, with a lowest
variance by the end of option lifetime. This can be also confirmed by Figlewski
(2012), the risk neutral density evolves towards its maturity, the variance will
collapse to zero. Moreover, a spike occurs when the variance collapses. This
could be the reason that investors tend to trade more on these options when the
expiration date comes, i.e., it worth noting that a large part of do not trade the
options to hedge therefore they want to exercise the options before the expiration
date. Hentschel (2003) also states that the options near expiration provide more
extremely noisy volatility than those with mid-term and long-term options.

Figure 2.12: Skewness of Risk-Neutral Densities

The skewness are always negative, which means that the risk-neutral densities
are asymmetric and the tails are skewed left. This suggests that a higher chance

8Conducting a unit root test, we find that the test statistic (-5.272) is less than the 1% Critical
value (-3.634), and with the p-value of 0.0001 is much smaller than 0.01. We reject the hypothesis
of a unit root. We find evidence that the variance is stationary.
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of large price decrease in the S&P 500 index have been predicted in the market
and reflected in the traded option prices. Therefore, the risk-neutral density gives
a negative skewness with a pronounced left tail. This result can be supported by
Bliss and Panigirzoglou (2002), who found that the mean of skewness extracted
from the FTSE 100 options’ risk-neutral densities is equal to -0.54. This is
also consistent with the evidence from Corrado and Su (1997) and Figlewski
(2009). They all state that the implied volatility skewness in S&P 500 index
options is often negative, which seems to be a contrary result from the skewness
of lognormal distribution. Moreover, it has been stated by Melick and Thomas
(1997), in the case of oil prices, the densities were skewed to right, and suggested
a relatively high probability for a large increase in the future oil price.

Figure 2.13: Kurtosis of Risk-Neutral Densities

The kurtosis, which measures the fatness of the tails of a probability distri-
bution, ranges from 1.23e-09 and 1.020718 are all larger than that of Gaussian
distribution. As it is in the Figure 2.13, most of the algorithms of the kurtosis are
negative, with the last one is approximately equal to 0. This indicates that the
RNDs are fat-tailed compared to the normal distribution, but not significant.

Table 2.6 shows the result of relationship between S&P 500 index and higher
risk-neutral moments. Although this regression does not fit the S&P 500 index
well, both the skewness and the kurtosis are significant. The coefficients for both
higher moments are negative. This means with one unit increase in skewness
and kurtosis, the S&P 500 index will decrease by 54.33 and 72.78, respectively.
Hence, the higher moments are dynamically linked to the underlying.
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Table 2.6: S&P 500 index and higher risk-neutral moments

Dependent Variable S&P 500 index
skewness -54.334 ***

(-2.93)
kurtosis -72.783 ***

(-2.85)
constant 1318.92 ***

(95.25)
obs 54
R-squared 0.2523

Table 2.6 reports the estimation results of regressions of the S&P 500 index on the
corresponding higher moments. The estimated model is
St = β0 + β1 ∗ skewnesst + β2 ∗ kurtosist + εt

Here we have the significant levels: *p <= 0.1,**p <= 0.05,***p <= 0.01.

Table 2.7: S&P 500 index returns and higher risk-neutral moments

Dependent Variable S&P 500 index returns
skewness 0.0188 **

(2.37)
kurtosis -0.022 **

(-2.10)
constant 0.0124 **

(2.06)
obs 53
Adj R-squared 0.1643

Table 2.7 reports the estimation results of regressions of the S&P 500 index returns on
the corresponding higher moments. The estimated model is

rt = β0 + β1 ∗ skewnesst + β2 ∗ kurtosist + εt
Here we have the significant levels: *p <= 0.1,**p <= 0.05,***p <= 0.01.
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2.5.4 The Dynamic Behavior of the 50 ETF Risk Neutral Den-
sity

In this subsection, we extract the risk-neutral moments from 50 ETF option
prices from 26 June to 06 December, 2015.

Figure 2.14: 50 ETF futures price, the means of risk-neutral densities and
underlying price level over time

The Figure 2.14 shows the time varying 50 ETF expected value/futures index,
the means of risk-neutral densities and underlying index level. We can also find
that, as the time-to-maturity is small, the Figure 2.14 also indicates that the 50
ETF is close to the futures price. However, the different point with the case for
S&P 500 options is that the series always move together over the time but in
the case of 50 ETF options, more volatile among the series can be found at the
beginning.
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Figure 2.15: Variance of Risk-Neutral Densities

When looking at the time series of variance, it seems that the variance has
experienced a decrease trend. Theoretically, the change in the risk neutral
variance measures the resolution of uncertainty. As expiration approaches, the
variance decreases due to the information has been released in the market. This
is not consistent with the evidence from S&P 500 options, it could be the reason
that the two datasets have different sample period.

Figure 2.16: Skewness of Risk-Neutral Densities

The skewnesses seem to be more volatile in the first half time span than those
in the second half. More specifically, the skewness behaved a huge positive in
the second sample. The tendency to its negative value presents that the densities
skewed to left, which indicated a decrease expectation in the market.
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Figure 2.17: Kurtosis of Risk-Neutral Densities

In terms of the kurtosis, we can see that in the first half period, the risk neutral
density exhibits the heavy tail. But in the second half, the values are below 3,
which do not show the leptokurtic distributions characteristics.

Table 2.8: 50 ETF price and higher risk-neutral moments

Dependent Variable 50 ETF price
skewness 0.029 ***

(.0079 )
kurtosis 0.047 ***

(.0052 )
constant 2.268 ***

(.0240)
obs 111
R-squared 0.471

Table 2.8 reports the estimation results of regressions of the 50 ETF price on the
corresponding higher moments. The estimated model is
St = β0 + β1 ∗ skewnesst + β2 ∗ kurtosist + εt

Here we have the significant levels: *p <= 0.1,**p <= 0.05,***p <= 0.01.

Table 2.8 shows the result of relationship between 50 ETF prices and higher
risk-neutral moments. it is quite different with the one from US market. The
skewness and the kurtosis are positively affect the 50 ETF price. This might due
to the different sample periods. This means the different effects of the skewness
and kurtosis might come from the different economic condition. Both effects are
negative when it is in the crisis, but positive when it is in the normal time.
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Table 2.9: 50 ETF price returns and higher risk-neutral moments

Dependent Variable 50 ETF price returns
skewness 0.0007 **

(0.0015)
kurtosis -0.0005 **

(0.0009)
constant -0.0003 **

(0.0044)
obs 53
Adj R-squared 0.1643

Table 2.9 reports the estimation results of regressions of the 50 ETF price returns on the
corresponding higher moments. The estimated model is
rt = β0 + β1 ∗ skewnesst + β2 ∗ kurtosist + εt

Here we have the significant levels: *p <= 0.1,**p <= 0.05,***p <= 0.01.

Comparing the results in S&P 500 index options market, we find that the
higher moments in respective markets have the same effect to the US and Chinese
underlying asset returns.

2.6 Conclusion and Directions for Further Study

In this chapter, we used three comprehensive methodologies for extracting the
risk-neutral densities over the S&P 500 index options and 50 ETF options
prices. Using the smoothing implied volatility smile method, we have solved two
significant technique problems through smoothing and interpolation.

Moreover, we have presented the results showing a comparison among the
risk-neutral densities for S&P 500 index and 50 ETF options extracted from
different methodologies and find that densities by smoothing implied volatility
smile is far different from that by the benchmark methodology, a mixture of two
lognormals. Due to the flexibility of the non-parametric method, not surprisingly,
the smoothing implied volatility smile method fits the data better than the single
lognormal method and mixture of two lognormals method.

Then the moments are examined. In the case of S&P 500 index options,
with respect to to the mean of the densities, it seems that the models yields the
right expected value owing to the reasonably trend with the futures prices. The
variances are stationary with a mean approximately equal to 0.052 with a smallest
value of 0.0271 by the maturity, which is consistent as stated in Figlewski (2012).
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Especially to the skewness, the densities are negatively skewed, which can
be explained by a greater fear in the decreasing of S&P 500 index relative to
increasing in the market. And the excess kurtosis indicates that the densities are
always fat-tailed, which also means greater tail risk.

I compare the results from 50 ETF options with S&P 500 index options. It
seems that they have quite different patterns in the behavior of the moments.
when looking into the higher moments on the indices and the returns, they
still have opposite impact. One of the most important factors might due to the
economic environment. The time period for S&P 500 index options is 2008,
where the financial crisis taken place. But that for 50 ETF options is much more
stable.

In terms of further study, I would apply the option data from with various
expiration dates, to investigate the properties of the risk neutral density before
and during the Financial Crisis and to examine whether Risk Neutral Density
can anticipate the Financial Crisis? Furthermore, some other methods, such as
semi-parametric methods on Edgeworth expansions, Hermite polynomials and
non-parametric methods on tree-based methods, Kernel regression, will be under
consideration.
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2.7 Appendices

Appendix I: Sample Data on 02 Jan, 2008

Table 2.10: Sample Data on 02 Jan, 2008

Interest rate=4.68063% Underlying Index Level: 1447.16 Trading date: 02 Jan, 2008
Dividend Yield=1.706934% Time to Expiration Date: 80 days Expiration date: 22 Mar, 2008

CALLS PUTS
Strikes Bid Ask Mid-price IVs Bid Ask Mid-price IVs

700 750.4 752.4 751.4 0.781807 0 0.5 0.25 0.578907
800 651.4 653.4 652.4 0.654094 0.05 0.5 0.275 0.484391
900 552.4 554.4 553.4 0.540375 0.3 0.5 0.4 0.412137
1000 454 456 455 0.451662 0.75 1 0.875 0.362914
1100 356.9 358.9 357.9 0.385251 2.3 3.1 2.7 0.335037
1150 309.5 311.5 310.5 0.361272 4.3 5.1 4.7 0.323571
1200 263.1 265.1 264.1 0.339179 7.3 8.3 7.8 0.311175
1225 240.4 242.4 241.4 0.328671 9.4 10.1 9.75 0.303376
1250 218.2 220.2 219.2 0.319027 11.6 12.4 12 0.294578
1260 209.4 211.4 210.4 0.314848 12.8 14.4 13.6 0.295146
1270 200.8 202.8 201.8 0.311455 14 15.6 14.8 0.292027
1275 196.4 198.4 197.4 0.308926 14.7 15.6 15.15 0.288592
1300 175.2 177.2 176.2 0.299167 18.2 19.3 18.75 0.281263
1325 154.7 156.7 155.7 0.289689 22.2 24.2 23.2 0.274539
1350 134.9 136.9 135.9 0.279926 27.2 28.7 27.95 0.265101
1360 127.2 129.2 128.2 0.275945 29.4 31.4 30.4 0.262722
1375 115.9 117.9 116.9 0.269855 32.9 34.9 33.9 0.25697
1380 112.2 114.2 113.2 0.267778 34.2 36.2 35.2 0.255275
1385 108.6 110.6 109.6 0.265949 35.5 37.5 36.5 0.253393
1390 105 107 106 0.263942 36.9 38.9 37.9 0.251744
1400 97.9 99.9 98.9 0.259801 39.7 41.7 40.7 0.247868
1410 91 93 92 0.255733 42.7 44.7 43.7 0.244027
1425 80.9 82.9 81.9 0.249189 47.5 49.5 48.5 0.237947
1435 74.5 76.5 75.5 0.245125 50.9 52.9 51.9 0.23363
1450 65.2 67.2 66.2 0.238601 56.5 58.5 57.5 0.227419
1455 62.2 64.2 63.2 0.23637 58.5 60.5 59.5 0.225394
1460 59.3 61.3 60.3 0.23429 60.5 62.5 61.5 0.223133
1465 56.4 58.4 57.4 0.23198 62.6 64.6 63.6 0.221005
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1470 53.6 55.6 54.6 0.22981 64.7 66.7 65.7 0.218629
1475 50.9 52.9 51.9 0.227775 66.9 68.9 67.9 0.216375
1480 48.2 50.2 49.2 0.225494 69.2 71.2 70.2 0.214237
1485 45.6 47.6 46.6 0.223339 71.6 73.6 72.6 0.212212
1490 43.1 45.1 44.1 0.221306 74 76 75 0.209912
1495 40.6 42.6 41.6 0.219009 76.5 78.5 77.5 0.207714
1500 38.3 40.3 39.3 0.217213 79.1 81.1 80.1 0.205614
1505 36 38 37 0.215143 81.8 83.8 82.8 0.20361
1510 33.8 35.8 34.8 0.213185 84.5 86.5 85.5 0.201303
1515 31.6 33.6 32.6 0.210938 87.5 89.5 88.5 0.199892
1520 29.6 31.6 30.6 0.209201 90.2 92.2 91.2 0.196944
1525 27.6 29.6 28.6 0.207166 93.2 95.2 94.2 0.194892
1530 25.7 27.7 26.7 0.20524 96.2 98.2 97.2 0.192498
1540 22.1 24.1 23.1 0.201289 102.5 104.5 103.5 0.187929
1545 20.4 22.4 21.4 0.199258 105.8 107.8 106.8 0.18576
1550 19 20.6 19.8 0.197341 109.2 111.2 110.2 0.183676
1560 16.1 17.7 16.9 0.193887 116.1 118.1 117.1 0.178773
1570 13.4 15 14.2 0.189998 123.4 125.4 124.4 0.174187
1575 12 13 12.5 0.185538 127.1 129.1 128.1 0.17146
1585 10.3 11.3 10.8 0.184818 134.8 136.8 135.8 -99.99
1600 7.5 8.5 8 0.179699 146.9 148.9 147.9 -99.99
1605 6.7 7.7 7.2 0.178063 151 153 152 -99.99
1610 5.9 6.9 6.4 0.175984 155.2 157.2 156.2 -99.99
1615 5.3 6.3 5.8 0.175026 159.5 161.5 160.5 -99.99
1620 4.7 5.5 5.1 0.172821 163.8 165.8 164.8 -99.99
1625 4.1 4.9 4.5 0.170986 168.2 170.2 169.2 -99.99
1630 3.6 4.4 4 0.169631 172.6 174.6 173.6 -99.99
1635 3.1 3.9 3.5 0.167813 177.1 179.1 178.1 -99.99
1640 2.7 3.5 3.1 0.166615 181.6 183.6 182.6 -99.99
1645 2.3 3.1 2.7 0.164957 186.1 188.1 187.1 -99.99
1650 2.1 2.6 2.35 0.163439 190.7 192.7 191.7 -99.99
1660 1.7 2.2 1.95 0.163597 200 202 201 -99.99
1675 1.05 1.55 1.3 0.160507 214.2 216.2 215.2 -99.99
1700 - - - - 238.3 240.3 239.3 -99.99
1725 - - - - 262.8 264.8 263.8 -99.99
1750 - - - - 287.5 289.5 288.5 -99.99
1775 - - - - 312.2 314.2 313.2 -99.99
1800 - - - - 336.9 338.9 337.9 -99.99
1900 - - - - 436 438 437 -99.99
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Appendix II: Fit Tails with Generalized Extreme Value Distri-
bution

In order to fit the tails of risk-neutral density to Generalized Extreme Value
Distribution. The following conditions need to satisfied:

FGEV (X(α0)) = α0 (2.29)

fGEV (X(α0)) = fRND(X(α0)) (2.30)

fGEV (X(α1)) = fRND(X(α1)) (2.31)

Where FGEV (.) and fGEV (.) are the GEV distribution function and GEV
density function, respectively. X(α) is the strike price corresponding to the α-
quantile of the risk-neutral density. fRND(.) is the estimated risk-neutral density
from the available strike prices.9

On 02 Jan, 2008, the 1% and 2% quantiles on the left tail of the density
extracted from the available strikes are 1006.72 and 1013.49, respectively, and
the the 98% and 99.5% quantiles on the right tail of the density are 1663.51 and
1673.66, respectively.

Appendix III: Calculation of moments for density

The mean of the density is equal to the weighted outcomes from each strike
prices with the corresponding probability in the density.

Mean : µ = E(X) (2.32)

Variance, which measures the dispersion of a density, is defined as the
weighted average squared deviation from the mean.

V ariance : σ = E[X − µ]2 (2.33)

The Skewness is a measure of asymmetry of one density. If one density has
a longer tail to the left means the density is negatively skewed. Otherwise, it is

9In practice, we also use Matlab’s minimization routine fminsearch and it works well.
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positive skewed.

Skewness : γ = E

[(
X − µ√

σ

)3
]

(2.34)

The Kurtosis measures to what extent one density peaked.

Kurtosis : κ = E

[(
X − µ√

σ

)4
]

(2.35)

Appendix IV: Calculation of goodness-of-fit measures

Root Mean Square Error (RMSE),

RMSE =

√
1

n
Σn
i=1

(
yi − xi

)2

(2.36)

Mean absolute error (MAE),

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

(2.37)

Mean Absolute Percentage Error (MAPE),

MAPE =
100%

n

n∑
t=1

∣∣∣∣yi − xiyi

∣∣∣∣ (2.38)

Appendix V: Selected computational code

1. STATA code

. summ
. count if comb==6150
. dydx midp strike if comb==6150 cp==0, gen(a0)
. dydx a0 strike if comb==6150 cp==0 , gen(b0)
. line b0 strike
. dydx midp strike if comb==6150 cp==1, gen(a1)
. dydx a1 strike if comb==6150 cp==1 , gen(b1)
. line b1 strike
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2. R code

library(RND)
library(foreign)
mydata=read.dta(”01080308.dta”)
y=subset(mydata, comb==”6150”)
a=subset(y,cp==”0”)
b=subset(y,cp==”1”)
x <- merge(a, b, by=c(”strike”))
head(x)
strikes =x[,“strike”]
sp500.calls=(x[,“bid.x”]+ x[,“ask.x”])/2
sp500.puts=(x[,“bid.y”]+ x[,“ask.y”])/2
matplot(strikes, cbind(sp500.calls, sp500.puts), type=“b”, pch=19, xlab=“Strikes”,

ylab=“price”, main=“S&P 500 Calls and Puts”)
legend(“topright”, c(“Calls”,“Puts”), col=c(“Black”,“Red”),pch=19, bty=“n”)
te=x[1,12]
y=x[1,13]
r=x[1,11]
s0=x[1,5]
MOE(market.calls= sp500.calls, market.puts= sp500.puts, s0=s0, call.strikes=strikes,

put.strikes=strikes, te=te, r=r, y=y, file.name=“6150”, lambda=1)

3. MATLAB code

Information extracted from European option prices use programs written in
Matlab 2014.

%% Extract the implied volatilities in Single lognormal and mixture of
lognormals.

for k=1:length(Call)
CallIV(k) = fminsearch(@(v) BSIV(v,Call(k),S,K(k),r,q,T,‘C’), 0.15);
PutIV(k) = fminsearch(@(v) BSIV(v,Put(k), S,K(k),r,q,T,‘P’), 0.15);
end
%% Parameter estimation in Single lognormal and mixture of lognormals.
LNmeans = [2.0 3.0];
LNstdev = [0.5 0.2];
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LNweight = 0.5;
start = [LNmeans LNstdev LNweight];
options = optimset(‘MaxFunEvals’, 1e5, ‘MaxIter’, 1e5);
beta = fminsearch(@(b) FindLNparams(b,Call,Put,S,K,r,T), start, options);
%% Fit the right tail with GEV distribution in Smoothing Implied Volatility

Smile Method.
a1R = 0.995;
a0R = 0.98;
Ka1R = quantile(K2, a1R);
Ka0R = quantile(K2, a0R);
fKa1R = interp1(K2(1:length(RND)), RND, Ka1R);
fKa0R = interp1(K2(1:length(RND)), RND, Ka0R);
% Find the GEV parameters for the right tail.
start = [1300 360 0];
options = optimset(‘MaxFunEvals’, 1e8, ‘MaxIter’, 1e6, ‘TolX’, 1e-10, ‘Tol-

Fun’, 1e-10);
betaR = fminsearch(@(betaR) FitGEVRightTail(betaR,a0R,a1R,Ka0R,Ka1R,fKa1R,fKa0R),

start, options);
Mean = betaR(1);
sigma = betaR(2);
phi = betaR(3);
%% Fit the left tail with the GEV distribution
a1L = 0.01;
a0L = 0.02;
Ka1L = quantile(K2, a1L);
Ka0L = quantile(K2, a0L);
fKa1L = interp1(K2(1:length(RND)), RND, Ka1L);
fKa0L = interp1(K2(1:length(RND)), RND, Ka0L);
% Find the GEV parameters for the left tail
start1 = [-1300 160 -0.1];
options = optimset(‘MaxFunEvals’, 1e8, ‘MaxIter’, 1e6, ‘TolX’, 1e-10, ‘Tol-

Fun’, 1e-10);
betaL = fminsearch(@(betaL) FitGEVLeftTail(betaL,a0L,a1L,Ka0L,Ka1L,fKa1L,fKa0L),

start1, options);
Mean = betaL(1);
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sigma = betaL(2);
phi = betaL(3);
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Chapter 3

The reaction of option prices to
macroeconomic announcements:
Evidence from S&P 500 Index
Options and China’s 50 ETF
Options

3.1 Introduction

How do macroeconomic fundamentals reflect in the option markets? Past decades
or so have been much attention focused on the implied volatility. Theoretically,
the implied volatility can be regarded as a good predictor of the future volatility
of the underlying asset, even its familiar pattern ‘volatility smile’ seems not to
consistent with the Black-Scholes formula. Recent researches by Nikkinen and
Sahlström (2004), Vähämaa and Äijö (2011), Gospodinov and Jamali (2012),
etc., have examined the impact of macroeconomic announcements, either the
scheduled macroeconomic announcements or the non-scheduled macroeconomic
announcements, on the changes in implied volatility derived from the options
data (also see Kim and Kim, 2003; Kearney and Lombra, 2004; Füss, Mager,
Wohlenberg and Zhao, 2011; and Tanha, Dempsey and Hallahan, 2014). More-
over, investigations to examine the impacts of the good news and the bad news
have also been implemented (see Fostel and Geanakoplos, 2012; Äijö, 2008;
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Nofsinger and Prucyk, 2003). Ederington and Lee (1996) find an inverse rela-
tionship between the time to maturity and the effect of new information on the
implied volatility, they also conclude that implied volatility only rises following
price innovations due to unscheduled announcements, but declines following
scheduled announcements. Fung (2007) indicates that the implied volatility
provides a signal to the Hong Kong stock market crash in 1997.

However, extracting important but unobservable parameters from option
prices in the market is not limited to implied volatility. Nowadays, focuses
have turned to risk-neutral density. The prices of the option written on a given
asset with different strike prices with the same time-to-maturity delivers the
risk-neutral density, which has the ability to indicate the market assessment of
the probability of the payoff over the series of the strike prices.

A main spirit of this chapter examines how the macroeconomic news reflect
in the option market. Investors revise their expectations in the light of the new
information. According to the efficient market hypothesis, the prices incorporate
all the information in the market. Only the new or unanticipated information
would influence the expectation of the market. When the announcement does not
deviate from the market expectation, theoretically, the densities will not change
with respect to this information. By studying the risk neutral density, we can
easily obtain the markets’ beliefs. For instance, the density shows whether the
market places a higher probability on an upward movement of the state of the
underlying asset than a downward movement of state. In the meantime, the risk-
neutral density has superior performance than implied volatility. Because implied
volatility is a measure of the second moment of the distribution of the price of
the underlying. The risk-neutral density embodies all the moments. Furthermore,
the evolution of the risk neutral densities can release the information about
how the market’s beliefs change over time. It might be considered to look at
how market beliefs changes to either scheduled or unscheduled macroeconomic
announcements, such as scheduled CPI release and the adjustment on the base
rate by the central bank, respectively.

Current study offers the research on China’s 50 ETF option market, which
was introduced in early 2015 and is the only option in Chinese market. It is
evident from the Shanghai Stock Exchange Month Market Statistics in 2015 that
the trading volume of this option rose around 50% at the end of the year. In July
2017, because of the surprising interest to the investors, the trading volume has
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increased up to 05 million and average daily nominal trading volume around 0.25
billion RMB. It is the fact that the China’s 50 ETF options market is a young
market. Also, the Chinese financial market has unusual restrictions by the regula-
tors. Will this market response to the macroeconomic news? Does the response
differ to that in the mature market, e.g. the response of the S&P 500 options
market to the U.S. macroeconomic news? To our best of knowledge, previous
studies mostly concentrate on the financial markets in developed countries, and
little research has done on the effect of macroeconomic news announcement with
respect to the option market in developing countries, especially rare can be found
in the China’s 50 ETF options. How integrated the Chinese stock market reacts to
the scheduled regularly macroeconomic news announcements and understanding
how the risk neutral densities extracted from China 50 ETF options react to the
macroeconomic news announcements is definitely significant to both investors
and policy-makers. For the purpose of comparison, we also further examined the
S&P 500 options, which has been used in the Chapter 2.

The contribution here is threefold. Firstly, while a wealth of research has
investigated the response of the Chinese financial markets react to the macroeco-
nomic news announcements, this study employ a new set of options data, which
is written on China’s 50 ETF and rarely been investigated by now. The use
of such dataset will contribute to the existing literature by providing a newly
investigation on risk-neutral density from an emerging market. We also try to
examine the influence of the macroeconomic announcements on the 50 ETF
options. Secondly, the tests for EMH based on the spot market and options
market are included. Thirdly, this chapter also evaluates the effect of surprises
(or shocks) in 18 types of macroeconomic news announcements on China 50
EFT options market and 57 types of those on the US options market. The an-
nouncements were divided into groups in order to answer the research questions.
In both market, due to limitation of the time spans of the two data, thereby the
limitation of the number of each macroeconomic announcement type, we didn’t
find any significant effect of each type of announcement on the financial option
market. We investigate the option market response the good news and bad news.

The remainder of this chapter is organized as follows. The following section
gives a review of the related literature. Section 3.3 describes the options data
adopted to obtain the implied risk neutral densities and related macroeconomic
variables. The theoretical framework for estimation for implied densities is given
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in Section 3.4. The econometric analysis will be carried out in Section 3.5. A
conclusion of this chapter is provided in Section 3.6, followed by a further study
in Section 3.7.

3.2 Literature Review

The study of the risk-neutral density is numerous. From the methodology perspec-
tive, main approaches to examine the impact of macroeconomic news announce-
ments on financial markets including the GARCH model (see Bonser-Neal and
Tanner, 1996; Connolly and Taylor, 1994; Dominguez, 2003; Nikkinen, Omran,
Sahlström and Äijö, 2006; Äijö, 2008; Bekaert and Wu, 2000; Li and Engle,
1998; Kim, McKenzie and Faff, 2004; Roache and Rossi, 2010), simple OLS
model (see Christie-David, Chaudhry and Koch, 2000; Beber and Brandt, 2006;
Hess, Huang and Niessen, 2008; Kilian and Vega, 2008; Gospodinov, and Jamali,
2012) and others like EGARCH model (see Kim and Sheen, 2000), fractional
autoregressive integrated moving average (FARIMA) model (see Onan, Salih
and Yasar, 2014), Autoregress model (see De Goeij and Marquering, 2006), Vec-
tor Error Correction Model (VECM) model (see Yoshino, Taghizadeh-Hesary,
Hassanzadeh and Prasetyo, 2014), etc.

Beber and Brandt (2006) compare the option-implied moments before and
after the announcements and find that the announcements reduce the uncertainty
on all news, which is consistent with the study Jiang, Konstantinidi and Ski-
adopoulos (2012). However, the changes in the higher-order moments depend
on the characteristics of the news. Äijö (2008) shows that good news would
decrease the implied volatility and also the skewness of the RND, while increase
the kurtosis. Birru and Figlewski (2010) also show how the risk-neutral moments
response to the macroeconomic news announcements. Steeley (2004) studies
whether the distribution of stock prices is influenced by new public information
and finds that volatility reduced after news releases as uncertainty was resolved.
The results suggest that there is also higher moment sensitivity to macroeconomic
surprises. Vähämaa and Äijö (2011) documented that the implied volatility is
significantly affected by the Fed’s monetary policy decisions. More interestingly,
Brenner, Pasquariello and Subrahmanyam (2009) show that the asset returns
react asymmetrically to the information content of these surprise announcements.
However, Mandler (2002) does not find any effect of European Central Bank
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meeting on the RND. Adopting the double lognormal method to extract the RND,
Gemmill and Saflekos (2000) find that RND does not help to reveal investors’
sentiment during British elections. Other literature on how the risk-neutral den-
sity response to the macroeconomic announcements can be found from Mandle
(2002), Castrén (2005), Galati, Melick and Micu (2005), and Hattori, Schrimpf
and Sushko (2016).

With regard to the Chinese financial market, although, Baum, Kurov and
Wolfe (2015) try to study how the Chinese scheduled macroeconomic announce-
ments influenced on the global financial and commodity futures markets. Tang,
et al. (2013) examine the impact of monetary policies, including the changes of
interest rate and the required reserve ratio, on the Chinese stock markets, rare
can be found through Chinese option market. Since the launch of the Shanghai
50 exchange-traded fund (ETF) option in China’s financial markets in early 2015,
China has come into the “era of option”, which not only make Chinese capital
market more complete but also promote and enhance Shanghai’s international
influence. It would be interesting to look at the Chinese option market.

3.3 Data

In this section, I will describe the data that will be using in both Chinese market
and the US market.

3.3.1 Chinese data

Our data we collected allow us to address our research questions. This section
describes the China 50 ETF, the China 50 ETF options and the macroeconomic
news announcements data.

3.3.1.1 China 50 ETF

We obtain the China 50 ETF price levels span from 26 June updated to 06
December, 2015, from the Wind Data-stream. The 50 ETF returns we use here
are the continuously compounded returns.

The continuously compounded returns are calculated as,

rt = lnPt − lnPt−1 t = 1, 2, ..., T, (3.1)
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Where Pt is the closing price of the China 50 ETF price level at time t.

Figure 3.1: China 50 ETF and Returns Over the Sample Period.

As we can see from the figure above, the top portion of the figure shows
the series of the price of the China 50 ETF and the returns are showed in the
bottom portion of the figure over the sample period. It seems that the first four
months has witnessed a sharply decrease and more volatile, especially fall from
the maximum of 3.427 to its minimum at 1.886. The series later on seems to be
more stable with a slight rise. These are consistent with the series of the returns,
in other words, more spikes are showed during the first half of the time span
than that over the last three months. The figure also shows that the China 50
ETF had experience a continuous fall in July and August, especially a 8.48% in
Shanghai stock market and 9.98% in China 50 ETF price on 24 August, marking
the largest decrease since 2007.

By 8-9 July 2015, the Shanghai stock market had fallen 30 percent over three
weeks as 1,400 companies, or more than half listed, filed for a trading halt in
an attempt to prevent further losses.Values of Chinese stock markets continued
to drop despite efforts by the government to reduce the fall. After three stable
weeks the Shanghai index fell again on 24 August by 8.48 percent, marking the
largest fall since 2007.
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3.3.1.2 China 50 ETF Options

We adopt options data written on China’s 50 ETF from 26 June, 2015, updated
to early December, 2015. The options are standard European style, which means
the option holders have the right to exercise the contracts at the strike price at
the maturation. The data is collected from Wind Data-stream1. The raw data
includes closing prices, option Greeks across various maturities. The contracts
mature in December 2015, January 2016, March 2016 and June 2016.

Evidence from the SSE’s data2, it seems that the China 50 ETF option sees
stable operation and played a significant and positive role in Chinese financial
market. Obviously, we do have limitations in current dataset. The emerging
option market starts in early 2015, a short period of the option data can be
collected in this study.

3.3.1.3 Macroeconomic News Announcements in China

The release of the macroeconomic news announcements are scheduled in advance,
such as Consumer Price Index, Gross Domestic Product, Foreign Exchange
Reserves, etc. And in this chapter, we call the release of macroeconomic news
announcements are not pre-scheduled (Unscheduled) announcements, including
the change of the base rate and the change of the Reserve Requirement Ratio.
According to the classifications from Reuters DataStream, the classifications of
the macroeconomic news announcements can be divided into Money & Finance,
Government Sector, Consumer Sector, Industry Sector, National Account, Prices,
External Sector, Surveys & Cyclical and Other. In this research, we adopted vast
of macroeconomic indicators. Furthermore, we split all the news into good and
bad news by applying the methodology of Lee (1992) and Nofsinger and Prucyk
(2003), who considered a positive asset return comes from a good news and vice
versa3.

1Shanghai Wind Information Co., Ltd
2According to the trading data in SSE, the first trading day of China 50 ETF option meets

the market expectation, with the volume of 18,843 contracts among which the volume of the
call option contracts and put option contract are 11,320 and 7,523, respectively; the turnover of
premium reaches RMB 28.7 million and the nominal value traded is RMB 431.8 million; the
open interest totals 11,720 contracts.

3Here, for some announcements are released at weekends or on holidays, we regard the news
as a good news if the return is positive in the following trading day. Moreover, we also consider
a zero return as a sign of good news.
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Table 3.1: Sample macroeconomic news announcements in China

Date Classifications Event Name Period Unit Actual Reuters
Poll

Surprise Prior

15-Jul-15 National Account GDP - GDP QQ SA Q2 2015 % 1.8 1.7 0.1 1.3
24-Jul-15 Surveys & Cyclical Manuf PMI - HSBC Mfg PMI Flash Jul. 2015 – 48.2 49.7 -1.5 49.6
01-Aug-15 Surveys & Cyclical PMI Manuf - NBS Manufacturing

PMI
Jul. 2015 – 50 50.2 -0.2 50.2

08-Aug-15 External Sector Trade - Exports YY Jul. 2015 % -9.1 -1 -8.1 1.5
08-Aug-15 External Sector Trade - Imports YY Jul. 2015 % -8.1 -8 -0.1 -6.1
08-Aug-15 External Sector Trade - Trade Balance Jul. 2015 USD B 42.05 53.25 -11.2 45.5
09-Aug-15 Prices Inflation - PPI YY Jul. 2015 % -5.4 -5 -0.4 -4.8
09-Aug-15 Prices Inflation - CPI YY Jul. 2015 % 1.6 1.5 0.1 1.4
10-Aug-15 Government Sector Money and lending - New Yuan

Loans
Jul. 2015 CNY B 1480 738 742 1279.1

10-Aug-15 Surveys & Cyclical Money and lending - Outstanding
Loan Growth

Jul. 2015 % 15.5 13.6 1.9 13.4

12-Aug-15 National Account Activity indicators - Urban invest-
ment (ytd)yy

Jul. 2015 % 11.2 11.5 -0.3 11.4

12-Aug-15 Industry Sector Activity indicators - Industrial Out-
put YY

Jul. 2015 % 6 6.6 -0.6 6.8

12-Aug-15 Consumer Sector Activity indicators - Retail Sales
YY

Jul. 2015 % 10.5 10.6 -0.1 10.6

21-Aug-15 Surveys & Cyclical Manuf PMI - HSBC Mfg PMI Flash Aug. 2015 – 47.1 47.7 -0.6 48.2
01-Sep-15 Surveys & Cyclical PMI Manuf - NBS Manufacturing

PMI
Aug. 2015 – 49.7 49.7 0 50

08-Sep-15 External Sector Trade - Exports YY Aug. 2015 % -5.7 -6 0.3 -9.1
08-Sep-15 External Sector Trade - Imports YY Aug. 2015 % -13.8 -8.2 -5.6 -8.1
08-Sep-15 External Sector Trade - Trade Balance Aug. 2015 USD B 59.9 48.2 11.7 42.05
23-Sep-15 Surveys & Cyclical Manuf PMI - HSBC Mfg PMI Flash Sep. 2015 – 47 47.5 -0.5 47.1
01-Oct-15 Surveys & Cyclical PMI Manuf - NBS Manufacturing

PMI
Sep. 2015 – 49.8 49.6 0.2 49.7

Source: Thomson Reuters Economic Data

For description, several macroeconomic announcement (see samples in Table
3.1) have been picked. Thomson Reuters Economic Data provides full informa-
tion about each announcement in a neatly organized layout. For the purpose of
answering the research questions, current study selects the information we need.
The ‘Date’ indicates the date that macroeconomic news announced. Second and
third columns show the classification and the indicator of a particular announce-
ment. The column ‘Period’ represents the time period of the indicator. The
following four columns show the unit of the indicator, the actual announcement
data, the Reuters Poll data, and the surprise data, respectively. To be notice, the
Reuters Poll data, unlike almost mainstream polls, the data is entirely collected
via online surveys, which allows to collect much more data and more flexible
than traditional (phone) research. Surprise (or shock) stands for the difference
between the actual announcement and Reuters Poll data. Last column is the
announcement data in previous period. Let’s take the first announcement for ex-
ample. The quarterly GDP Growth Rate (seasonally adjusted), which is classified
in the ‘National Account’, for second quarter in 2015 announced in July 15, 2015
was 1.8%. However, the Reuters Poll data was 1.7%, and thus the difference
between the announced data and the predicted data was 0.1%, which was the
surprise (see Figure 3.3).

Following table describes the dummies used to analyse the news announced.
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The announcements dummy represents dates with/-out macroeconomic announce-
ments (1/0); surprise dummy represents dates with/-out surprises (1/0); and
good/bad dummy represents the macroeconomic announcement is a good news
(1) or a bad news (0). The related the information and easier understanding of
the dummies can be found in the table in Appendix VI.

good bad total
surprise 17 23 40
no surprise 2 4 6
no announcement 65
total 19 27 111

Table 3.2: Summary Statistics for Dummies

Figure 3.2 shows announcements days with the China 50 ETF closing prices
over the study period. The dashed lines indicate all dates with macroeconomic
announcements, including ‘surprise’ news and ‘no-surprise’ news. It seems that
most of the news is announced around the mid next month. The dashed lines in
Figure 3.3 show all dates with ‘surprise’ news. From the figure we can find that
the majority announcements have not been anticipated by the market.

Figure 3.2: Dates with macroeconomic announcements (scheduled and unsched-
uled)
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Figure 3.3: Dates with macroeconomic surprises in China

3.3.2 US data

We now move to the US data, the S&P 500 index and the corresponding options
data used are the same as those in Chapter 2. We still need the macroeconomic
announcements in US over the same period that options traded.

3.3.2.1 Macroeconomic News Announcements in the US

The US macroeconomic announcements data is also collected from the Thomson
Reuters Economic Data. The data obtained is from 02 Jan, 2008 to 19 Mar, 2008.
Following table describes the dummies used to analyse the news announced.

good bad total
surprise 19 14 33
no surprise 5 4 9
no announcement 12
total 24 18 54

Table 3.3: Summary Statistics for Dummies

Figure 3.4 shows announcements days with the S&P 500 index over the study
period. The dashed lines in Figure 3.5 show all dates with ‘surprise’ news. From
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the figure we can find that the majority announcements have not been anticipated
by the market.

Figure 3.4: Dates with macroeconomic announcements (scheduled and unsched-
uled) in US

Figure 3.5: Dates with macroeconomic surprises in US
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3.4 Estimation Framework

3.4.1 Estimating the risk neutral density

As stated in Bahra (1997), the theoretical option price is equal to the discounted
value of the expected payoff under the risk neutral measure (Q measure).

C = e−rτ
∫ ∞
X

f(ST )(ST −X)d(ST ) (3.2)

P = e−rτ
∫ X

0

f(ST )(X − ST )d(ST ) (3.3)

Where, C, ST , X, r and τ all have the standard meaning of option valuation; C=
call price; ST= the index level at expiration date T; X= exercise price or strike
price; r= risk-free interest rate; τ = time to expiration date. And we also use
f(ST )= risk neutral density; F (ST )= risk neutral distribution.

Breeden and Litzenberger (1978) indicate that the risk-neutral density is
proportional to the second derivative of a European call price with respect to
the strike price (see the mathematical proof in Chapter 2). They also show how
the risk-neutral density could be extracted from the prices of options with a
continuum of strikes, see equation (3.4) and (3.5) for call options and put options,
respectively.

f(ST ) = erτ
∂2C

∂X2
(3.4)

f(ST ) = erτ
∂2P

∂X2
(3.5)

Firstly, when extracting the risk-neutral density, the theory calls for the
option’s strike prices to be continuous. As a matter of fact, the market only trades
with a small number of discrete strikes, with at least 0.5 Chinese Yuan apart and
up 1 Chinese Yuan apart or even more in some parts of the available range of
strikes for 50 ETF options (see example in Table 3.14 in Appendix I). Secondly,
the other problem is that we can only extract the middle portion of the density as
a result of solving the first problem with stochastic volatility inspired method,
which does not extend further to the both tails because of the small range of the
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strike prices. we convert the interpolated implied volatility curve back to option
prices space and extract the middle portion of the risk-neutral density. Finally,
we also extend the two tails to the risk-neutral density beyond the range from X2

to Xn−1.

3.4.2 Stochastic volatility inspired (SVI) parametrization

In this section, we will discuss the stochastic volatility inspired (SVI) methodol-
ogy to extract the risk-neutral density. In order to answer the research question,
the moments computed from the recovered density will be used to estimate the
effect of the news on the options market.

The stochastic volatility inspired parametrization originally developed by
Merrill Lynch in 1999 is a parametric model for stochastic implied volatility. In
the case of a call option this is a mapping, which is consistent with Gatheral and
Jacquier (2014):

(X, τ)→ σBSt (X, τ) (3.6)

This is the so called implied volatility surface at date t.

var(x; a, b, s, ρ,m) = a+ b
{
ρ(x−m) +

√
(x−m)2 + s2

}
(3.7)

Where, x is the log(X/F) or log(Strike price/Futures price); a gives the overall
level of variance; b gives the angle between the left and right asymptotes; s
determines the smoothness of the vertex; ρ determines the orientation of the
graph; and m translated the graph from left to right.

The left and right asymptotes are given by:

varL(x; a, b, ρ,m) = a− b(1− ρ)(x−m) (3.8)

varR(x; a, b, ρ,m) = a− b(1− ρ)(x−m) (3.9)

By definition, the overall level of variance is always positive; and the variance
increases linearly with |x| .

Based on the nature of volatility, as well as the properties of the SVI equations,
we have the following deductions, which are also consistent with the Gatheral
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(2006),
• Increasing ‘a’ will lead to a vertical translation of the volatility smile in

the positive direction, i.e., increases the general level of variance;
• An Increase of ‘b’ increases the slopes of both the put and call wings, i.e.,

decreases the angle between the put and call wing and thereby tightening
the smile;
• Increasing ‘ρ’ decreases (increases) the slope of the left (right) wing, a

counter-clockwise rotation of the smile;
• Increasing ‘m’ results in a horizontal translation of the smile in the positive

direction (to the right);
• Increasing ‘σ’ reduces the at-the-money curvature of the smile.
Graphs in Appendix IV show how the sensitivity of the parameters to the

volatility smile. Furthermore, we will follow the estimation by Gatheral (2006),
which uses an objective function minimization process compared to the implied
volatility given by Black-Scholes:

func = arg min
a,b,s,ρ,m

∑
(σ̂SV I − σBSt )2 (3.10)

The estimated implied volatility curve would be converted to the option prices
through Black-Scholes model.

Ĉ = StN(d̂1)−Xe−rτN(d̂2) (3.11)

The parameters d̂1 and d̂2 is given by:

d̂1 =
ln(St/X) + (r + σ̂2

SV I/2)τ

σ̂SV I
√
τ

, (3.12)

d̂2 =
ln(St/X) + (r − σ̂2

SV I/2)τ

σ̂SV I
√
τ

(3.13)

= d̂1 − σ̂SV I
√
τ .

where N(·) is the cumulative normal distribution function, τ is time to expiration
date, T − t. X, r, and σ̂SV I are the strike price, risk-free rate and fitted volatility,
respectively.

Finally, we would use the equation 3.4 to find a smoothed risk neutral density.
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3.5 Empirical Results

3.5.1 Time-varying Densities

Here in this subsection, we extract the risk-neutral densities through SVI method
from the China 50 ETF option markets. The figure below is the sample density
from 29 June to 16 July.

Figure 3.6: Time-Varying Risk-neutral Densities

In the figure, ‘- - -’ represents the densities with the macroeconomic announce-
ments on that day; ‘........’ stands for the densities on the day after macroeconomic
news announced.

According to the macroeconomic news data, on 09 July, 2015, the data on
CPI and PPI were announced at 02:30 in the morning, the surprises on both
CPI and PPI have produced, thereby the movement in the density. The density
on 16 Jul, 2015, whose kurtosis is the greatest in the figure, shows a higher,
sharper peak than those on the other days. This implies that the expectations of
the value in the China 50 ETF prices on option expiration day has been moved
from the shoulders of a distribution into its centre and both tails. The figure also
indicates that the densities move along with the time. However, we still cannot
find out whether the densities response to the macroeconomic announcements.
The following part is to extract the moments of the density so as to investigate
how the moments react to the news respectively.
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3.5.2 Risk-neutral Moments

Applying with the Stochastic Volatility Inspired method, we can find the risk-
neutral density and thus the moments of the densities. The corresponding mo-
ments for the densities can be found in the following figure.

Figure 3.7: Time-Varying Moments

The movement of the means corresponds to the series of the China 50 ETF
prices, which is reasonable because the means are always approximate to the
expected value of the underlying price under the no-arbitrage condition. This
is consistent with the findings by Figlewski (2009) and Fabozzi, Leccadito and
Tunaru (2014). The horizontal line indicated the terminal value of the 50 ETF
index level on the expiration date. Despite large fluctuations in August, the
means move towards to terminal value of the underlying. Evidence from the time
series of variance, it seems that the variance has experienced a decrease trend.
Theoretically, the change in the risk neutral variance measures the resolution
of uncertainty. As expiration approaches, the variance decreases due to the
information has been released in the market. The skewnesses seem to be more
volatile in the first half time span than those in the second half. More specifically,
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the skewness behaved a huge positive due to the great fall before July. The
tendency to its negative value presents that the densities skewed to left, which
indicated a decrease expectation in the market. The huge drop on 24 Aug
corresponds to the market expectation, the skewness recover to the zero axis
afterwards. This is also consistent with the variance, which demonstrated a large
increase in the uncertainty from 0.27 to 0.81. In terms of the kurtosis, the ‘heavy
tail’ phenomenon is presented in the first half period, however it does not exist
thereafter. It even behaved a thinner tail than that of the normal distribution.

Table 3.4 reports the descriptive statistics and the correlations for the variables
in this study. China 50 ETF price level has a mean of 2.44. Return has a mean
of -0.0012, which means the underlying has experienced a fall over the sample
period. Summary statistics for the moments are also reported in this table. Panel
B indicates that the variables do not seem to be correlated with each other in
current study.

Table 3.4: Descriptive Statistics and Correlations for the Variables (50 ETF
market)

Panel A: Descriptive Statistics for Moments
Variable Obs Mean Std. Dev. Min Max
50 ETF price 111 2.4384 0.2277 1.886 3.018
50 ETF return 111 -0.0012 0.0300 -0.0998 0.0842
mean 111 2.4671 0.2494 1.9072 3.2219
variance 111 0.3272 0.3053 0.0629 1.2536
skewness 111 0.2231 1.9954 -3.7381 10.9844
kurtosis 111 3.4719 3.0362 3.12e-10 11.4133

Panel B: Correlations among Returns and Moments
return mean variance skewness kurtosis

return 1.0000

mean 0.0314 1.0000
0.7434

variance -0.1195 0.4649 1.0000
0.2118 0.0000

skewness 0.0799 0.3527 0.5339 1.0000
0.4048 0.0001 0.0000

kurtosis -0.0220 0.6367 0.5289 0.0666 1.0000
0.8186 0.0000 0.0000 0.4873

Table 3.5 reports the descriptive statistics and the correlations for the variables
in the US market. Although the two datasets are with different time spans, the
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correlations between the variables are consistent with low values. This also
means the variables are not correlated with each other.

Table 3.5: Descriptive Statistics and Correlations for the Variables (S&P 500
market)

Panel A: Descriptive Statistics for Moments
Variable Obs Mean Std. Dev. Min Max
S&P 500 level 54 1352.836 40.133 1273.37 1447.16
S&P 500 return 54 0.002 0.016 -0.041 0.033
mean 54 1353.406 41.240 1275.153 1456.381
variance 54 0.237 0.028 0.1651 0.353
skewness 54 -0.695 0.262 -1.205 -0.090
kurtosis 54 0.053 0.190 0.000 1.021

Panel B: Correlations among Returns and Moments
return mean variance skewness kurtosis

return 1.0000

mean -0.1315 1.0000
0.3433

variance 0.2218 -0.5483 1.0000
0.1069 0.0000

skewness -0.3151 -0.4111 -0.1770 1.0000
0.0203 0.0020 0.2004

kurtosis 0.2611 -0.3384 0.1452 0.0293 1.0000
0.0565 0.0123 0.2949 0.8335

3.5.3 The Time-varying Behaviour of Risk-neutral Moments

Current section is to present the evolutions of Risk-neutral Moments from both
Chinese market and the US market. The main results will focus on the effects of
the change in the underlying prices on the change in the moments recovered from
risk-neutral densities. Furthermore, I will also assess both the contemporaneous
effect and lagged effect of the impact of underlying index on the change in the
risk-neutral moments for both markets. Before looking at such effects, I would
like to examine the stationarity for the variables in both markets.

From both tables, I have tested the stationarity for the variables in their levels
and also in their differences. We can see that all the variables in both markets are
stationary, I(0).

There is a substantial literature on how the Risk-neutral Moments behave
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Table 3.6: Unit root test for the Variables (50 ETF market)

in level in difference
variables Test Statistic p-value for Z(t) Test Statistic p-value for Z(t)
50 ETF price -2.602 0.0926 -7.751 0.0000
50 ETF return -8.989 0.0000 -11.169 0.0000
mean -3.232 0.0182 -7.222 0.0000
variance -3.539 0.0070 -13.386 0.0000
skewness -3.075 0.0285 -16.994 0.0000
kurtosis -3.710 0.0040 -11.105 0.0000

Table 3.7: Unit root test for the Variables (S&P 500 market)

in level in difference
variables Test Statistic p-value for Z(t) Test Statistic p-value for Z(t)
S&P 500 price -3.146 0.0233 -7.439 0.0000
S&P 500 return -7.106 0.0000 -13.212 0.0000
mean -3.083 0.0279 -6.802 0.0000
variance -4.314 0.0004 -3.702 0.0041
skewness -4.387 0.0003 -12.069 0.0000
kurtosis -3.800 0.0029 -4.045 0.0012

when the underlying price/index level moves. Table 3.8 shows the results of
regressing the changes in each risk-neutral moments on the change in the under-
lying index for the Chinese market, and Table 3.9 for the US market. In terms of
the contemporaneous effect and lagged effect of the impact of underlying index.
This study will adopt the following specifications,

Regression assessing the contemporaneous effect:

∆momentt = α + β∆closet + εt (3.14)

Regression assessing the lagged effect:

∆momentt = α0 + β0∆closet +
2∑
i=1

βi∆closet−i + εt (3.15)

We would rationally assume that the risk-neutral density tend to response
to the change of the underlying by equal magnitude. In other words, obviously,
ceteris paribus, one unit change in the 50 ETF index level would move the same
amount of the first moments of the density in both equations (3.14) and (3.15).
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The corresponding estimation results can be found in Table 3.8. We can see that
the changes in the 50 ETF closing values (∆closet) are statistically significant
different from zero in almost all cases, apart from the models with changes in
skewness, i.e. model (3) and model (7). It concludes that, from regressions
(1), (2) and (4), we do find the contemporaneous effects between the 50 ETF
and almost risk-neutral moments. It does not exist any relationship between
Skewness and the contemporaneous underlying index.

Theoretically, the coefficient β in equation (3.14) should be equal to 1 for the
first moment. It is the reason that, if the market is efficient, the changes of the
current index should be responded and reflected in the risk neutral density. We
test the null hypothesis (β in equation 3.14 is equal to 1), which has been rejected
significantly, and also the case of contain the lagged dependent variable (model
5). Therefore, when the index increases (falls), the density moves right (left)
substantially less than the change in the 50 ETF index level, i.e., the markets
have underreacted to the changes in the underlying asset. Underreaction to the
news would always lead to misallocation of the prices. Because the coefficients
are less than 1, which means the densities are not quite fully response to the
changes of the change in the index. This is consistent with the study Frazzini
(2006), which shows the financial stock markets always underreact to the news
due to disposition effect. Related evidence can be also found from Chen, et al.
(2016).

However, in terms of the lagged effect, we find that almost all the lagged
independent variable do not exhibits statistical significance but the first lag of
change in 50 ETF index in regression of change in mean (model 5) and change
in skewness (model 7). This means the lagged change in the underlying 50 ETF
index affect the changes in the mean and the skewness. The positive lagged
change in underlying drives the change in mean positively, but falls the skewness.

Furthermore, I use the ‘nlcom’ and ‘testnl’4 commands in STATA to test
the nonlinear combinations of estimators and the test nonlinear hypotheses after
estimation. The test for independent variables in model (1) and model (5) are
statistically significant. In model 1, when testing whether coefficient of the
change in closing price is equal to one. We do find evidence to reject the null
hypothesis of coefficient is equal to one. The 95% confidence interval spans from
0.5670 to 0.9420, which means this model indicates the risk neutral density has

4The null hypothesis for testnl is H0: β0 + β1 + β2 = 1 in equation (15).
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underreacted to the underlying prices change.
More interestingly, in model (5), we do not find evidence to reject the null

hypothesis in test nonlinear hypotheses after estimation. The 95% confidence
interval is from 0.7735 to 1.3499, which means this model indicates the risk
neutral density do rationally react to the underlying prices change.

When looking into the results in the US market, we find that the coefficients
in Model (1) in Table 3.9 is close to 1. This means that one unit change in the
S&P 500 index level would change the mean of the density and near the same
amount of the change. It is even closer to 1 when adding the lagged changes in
the closing prices in Model (5). The change in the closing price has the same
effect in both markets. The same as the effect on the change in variance in China,
the contemporary effect is also negative in Model (2) and (6). However, the
effects are different in the case of changes in the higher moments. The signs turn
to the opposite in the S&P 500 options market.

Table 3.8: Regressions of change in moments with respect to the change in
underlying index in Chinese market

(1) (2) (3) (4) (5) (6) (7) (8)
∆mean ∆variance ∆skew ∆kurt ∆mean ∆variance ∆skew ∆kurt

∆close 0.755*** -0.991*** -1.454 5.479** 0.655*** -0.777*** -0.764 4.908*
(0.0957) (0.239) (1.970) (2.632) (0.0851) (0.234) (1.912) (2.814)

∆close lag1 0.477*** -0.334 -3.583* 1.710
(0.0820) (0.225) (1.841) (2.710)

∆close lag2 -0.0704 0.328 -0.710 -0.992
(0.0845) (0.232) (1.898) (2.794)

constant -0.00331 -0.0139 -0.0552 -0.0484 0.000775 -0.00948 -0.0220 -0.0413
(0.00712) (0.0178) (0.147) (0.196) (0.00610) (0.0167) (0.137) (0.202)

N 110 110 110 110 108 108 108 108
R-sq 0.366 0.137 0.005 0.039 0.518 0.159 0.041 0.040
adj. R-sq 0.360 0.129 -0.004 0.030 0.504 0.135 0.013 0.013
rmse 0.0744 0.186 1.533 2.048 0.0629 0.173 1.414 2.081

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 3.9: Regressions of change in moments with respect to the change in
underlying index in US market

(1) (2) (3) (4) (5) (6) (7) (8)
∆mean ∆variance ∆skew ∆kurt ∆mean ∆variance ∆skew ∆kurt

∆close 0.952*** -0.000881*** 0.00664** -0.00394** 0.966*** -0.00102* 0.00586 -0.00226
(0.0228) (0.00017) (0.00191) (0.00144) (0.0377) (0.000344) (0.00332) (0.00236)

∆close lag1 0.103* 0.000264 -0.00721 0.00123
(0.0407) (0.00037) (0.00358) (0.00254)

∆close lag2 0.0238 -0.000136 0.00102 -0.00092
(0.0321) (0.000292) (0.00283) (0.00201)

constant -0.105 -0.00457 0.034 0.00153 0.598 0.00243 -0.0126 0.0247
(0.515) (0.00383) (0.0431) (0.0326) (0.768) (0.00699) (0.0675) (0.048)

N 42 42 42 42 18 18 18 18
R-sq 0.978 0.402 0.232 0.157 0.979 0.416 0.357 0.097
adj. R-sq 0.977 0.387 0.213 0.136 0.975 0.291 0.219 -0.097
rmse 3.29 0.0245 0.276 0.208 2.928 0.0267 0.258 0.183

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

3.5.4 Tests of weak-form and semi-strong-form EMH

Table 3.10: Regressions with lagged effect in Chinese market

(1) (2) (3) (4) (5) (6)
return return return return return return

L.return 0.127 0.134 0.139 0.118 0.122 0.164*
(0.0948) (0.0928) (0.0954) (0.0950) (0.0934) (0.0924)

L.mean -0.0271** -0.0313**
(0.0112) (0.0154)

L.variance 0.0103 0.0305**
(0.00942) (0.0133)

L.skew 0.00155 0.000576
(0.00143) (0.00183)

L.kurt -0.00193** -0.00192
(0.000927) (0.00137)

constant -0.00139 0.0655** -0.00475 -0.00174 0.00533 0.0724**
(0.00285) (0.0278) (0.00420) (0.00287) (0.00428) (0.0355)

N 110 110 110 110 110 110
R-sq 0.016 0.067 0.027 0.027 0.054 0.149
adj. R-sq 0.007 0.050 0.009 0.009 0.037 0.108
rmse 0.0299 0.0293 0.0299 0.0299 0.0295 0.0283

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

Models (1) - (5) in Table 3.10 aim to regress the returns on the lag return and
four lagged moments. Testing the effect of lagged return amounts to a test of
weak-form EMH. It seems we cannot reject the weak-form EMH from model (1).
In model (3) and (4), the lagged variance and lagged skewness also do not have
any significant effect on current return. However, model (2) and (5) show negative
impact on return. The model (6) also indicates the intertemporal relationship
between the moments and the returns. Analogous to the contemporaneous effect.
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Table 3.11: Regressions with lagged effect in US market

(1) (2) (3) (4) (5) (6)
return return return return return return

L.return -0.186 -0.155 -0.00743 -0.109 -0.147 0.0949
(0.167) (0.153) (0.140) (0.185) (0.159) (0.154)

L.mean 0.000174** 0.0000875
(0.0000591) (0.0000853)

L.variance -0.436*** -0.316*
(0.0923) (0.131)

L.skew 0.0106 0.0169
(0.0110) (0.0112)

L.kurt -0.0569* -0.0201
(0.0238) (0.0223)

constant 0.00284 -0.234** 0.106*** 0.0101 0.00433 -0.0292
(0.00258) (0.0801) (0.0219) (0.00800) (0.00252) (0.135)

N 42 42 42 42 42 42
R-sq 0.030 0.207 0.383 0.053 0.154 0.455
adj. R-sq 0.006 0.167 0.352 0.004 0.110 0.379
rmse 0.0167 0.0153 0.0135 0.0168 0.0158 0.0132

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

We refer to these lags as lag-mean-in-return effect and lag-variance-in-return
effect.

One possible explanation for these effects can be provided by considering
the behavior of the option traders. Testing the effect of the lagged moments
amounts to a test of semi-strong form EMH, model (6) shows that the lagged
mean has a negative effect on current return. Why is this? The lag-mean-in-
return effect implies if the mean of the risk neutral density rises, ceteris paribus,
the demand for call options will rise, and the demand for put options will fall.
Traders who are buying call options will short-sell the underlying in order to
hedge. Traders who are selling put options will sell the underlying in order to
restore their hedge. Both will cause the (current) price of the underlying to fall.
In terms of the lag-variance-in-return effect, one possible explanation is that if
the variance of investors’ expectations increases, both the prices of puts and calls
increase, the purchase and the sale of the underlyings take place at the same time.
However, due to the risk aversion of the investors, the purchase of the puts and
underlyings would be higher than sale of the underlyings to hedge for the calls.
This phenomenon will increase the price of the underlying and thus a positive
return. Our result is consistent with the skew response puzzle by Constantinides
and Lian (2015). In their paper, they argue that as the increase in variance,
investors demand more puts as insurance and result in credit-constrained in
writing puts. Theoretically, in this condition, more underlyings are needed to be
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hedge. Both effects might result from the behavior of the hedgers.
Turning to the US market in Table 3.11, The lagged return also does not

have any effect on the return, which means we cannot reject the weak-form
EMH. However, the lagged implied moments, except the lagged skewness, do
have significant impact on today’s return, see Model (2), (3) and (5). There are
substantial differences in the effect of lagged mean and lagged variance between
the two markets. One of the reason might come from the different sample in
the two markets. When it is in the crisis period, as we have in S&P 500 options
market, the increase in the uncertainty yesterday will decease the return today, as
the results shown in Model (2) and (6).

3.5.5 Effect of announcements on densities

3.5.5.1 Effect of announcements on densities in Chinese market

Table 3.12 shows the regression of moments on the dummies. As we can see
from the Figure 3.1, a huge crash was taken place on 24 Aug, 2015. Evidence
from the structural break test, we find that the date on 24 Aug is a significant
break point for all four moments over the sample period (p < 0.05). Therefore,
the regression in this subsection consist of the whole period, pre-crash period
and the post-crash period. What we are interested is the change of the moments.

The regression of the changes in mean, from Panel A, shows how does mean
change with respect to the news over sample period and two sub-sample period.
For the whole sample period, the density shifts in the case of announcement,
surprise and the good news dummy. The announcement yesterday and the
surprise today would decrease the changes in mean of the density for the whole
period and the post-crash period. Both good news today and yesterday would
increase the mean of the density. In other words, these would shift the density to
the right, but the news today for the regression is not significant in pre-crash.

The good news yesterday decrease the variance today. This is not surprising
because the release of the good news will decrease the overall uncertainty of
the market for the whole period and the pre-crash period. But we did not
find a significant effect in the post-crash period. Comparing with the effect of
announcement and the surprise have opposite effect in the volatile period and
post-crash period.

In terms of the regressions for skewness. We did not find any effect for the
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whole period and the pre-crash period. In the post-crash period, the announce-
ment, surprise and their lags have significant effect on the skewness. With the
interest on the left tails, we find that the announcement yesterday and surprise
today would show an increase of the downside risk.

The kurtosis measures both the ‘peakedness’ of the density and the heaviness
of the tails. The lagged surprise decrease the kurtosis of the density. We also find
different effect of announcement and the surprise in the pre-crash and post-crash
period.

Table 3.12: Effects of the news on densities

Panel A: Regressions for moments of Risk-Neutral Density
Dependent variable: Changes in Mean

(1) (2) (3)
Whole period pre-crash post-crash

announce 0.0441 0.0826 0.0249
(0.0315) (0.106) (0.0215)

L.announce −0.0511∗ -0.151 −0.0369∗
(0.0314) (0.146) (0.0205)

surprise −0.0596∗ -0.0902 −0.0435∗
(0.0318) (0.0971) (0.0233)

L.surprise 0.00802 0.0883 0.0154
(0.0319) (0.137) (0.0216)

good 0.0517∗ 0.0474 0.0382∗
(0.0267) (0.0664) (0.0213)

L.good 0.0804 ∗ ∗∗ 0.146 ∗ ∗ 0.0381∗
(0.0264) (0.0648) (0.0210)

constant -0.00845 -0.0244 0.00418
(0.0131) (0.0309) (0.00999)

N 110 44 66
R-sq 0.145 0.182 0.153
adj. R-sq 0.096 0.050 0.066
rmse 0.0885 0.127 0.0529

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Panel B: Regressions for moments of Risk-Neutral Density
Dependent variable: Changes in Variance

(1) (2) (3)
Whole period pre-crash post-crash

announce -0.0826 −0.621 ∗ ∗ 0.0655 ∗ ∗∗
(0.0706) (0.238) (0.0245)

L.announce 0.0175 0.245 -0.0134
(0.0704) (0.328) (0.0233)

surprise 0.0835 0.573 ∗ ∗ −0.0673 ∗ ∗
(0.0715) (0.219) (0.0265)

L.surprise 0.0137 -0.233 0.0174
(0.0715) (0.309) (0.0246)

good -0.0883 -0.00575 -0.0226
(0.0601) (0.149) (0.0242)

L.good −0.103∗ −0.262∗ 0.00830
(0.0593) (0.146) (0.0238)

constant 0.0125 0.0451 -0.00973
(0.0294) (0.0697) (0.0114)

N 110 44 66
R-sq 0.064 0.265 0.166
adj. R-sq 0.009 0.146 0.081
rmse 0.199 0.285 0.0601

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Panel C: Regressions for moments of Risk-Neutral Density
Dependent variable: Changes in Skewness

(1) (2) (3)
Whole period pre-crash post-crash

announce 0.0158 -2.240 0.453 ∗ ∗
(0.550) (1.973) (0.180)

L.announce -0.594 -1.528 −0.323∗
(0.549) (2.794) (0.171)

surprise -0.241 1.426 −0.453 ∗ ∗
(0.557) (1.862) (0.195)

L.surprise 0.208 0.325 0.381 ∗ ∗
(0.557) (2.633) (0.180)

good -0.195 0.487 -0.189
(0.468) (1.272) (0.178)

L.good -0.164 -0.321 0.00802
(0.462) (1.241) (0.175)

constant 0.238 0.670 0.0124
(0.229) (0.593) (0.0834)

N 110 44 66
R-sq 0.033 0.095 0.194
adj. R-sq -0.024 -0.052 0.113
rmse 1.548 2.425 0.441

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Panel D: Regressions for moments of Risk-Neutral Density
Dependent variable: Changes in Kurtosis

(1) (2) (3)
Whole period pre-crash post-crash

announce -0.122 4.830 ∗ ∗ −1.301 ∗ ∗
(0.744) (2.235) (0.619)

L.announce 0.567 1.668 0.578
(0.742) (3.084) (0.589)

surprise 0.519 −3.550∗ 1.455 ∗ ∗
(0.754) (2.056) (0.671)

L.surprise −1.197∗ -1.627 −1.157∗
(0.754) (2.907) (0.621)

good 0.164 -1.106 0.0183
(0.633) (1.405) (0.612)

L.good 0.754 1.011 0.199
(0.625) (1.371) (0.602)

constant -0.150 -0.768 0.141
(0.310) (0.655) (0.287)

N 110 44 66
R-sq 0.042 0.153 0.132
adj. R-sq -0.013 -0.015 0.043
rmse 2.093 2.677 1.521

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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3.5.5.2 Effect of announcements on densities in US market

Table 3.13: Effects of the news on densities in US market

Regressions for moments of Risk-Neutral Density for S&P 500 options market
(1) (2) (3) (4)

change in mean change in variance change in skewness change in kurtosis
announce 12.54 -0.00236 -0.000338 -0.122

(8.467) (0.0152) (0.156) (0.118)
L.announce 6.148 -0.0155 0.0399 0.0322

(8.976) (0.0161) (0.166) (0.125)
surprise 6.306 -0.00381 0.128 -0.0635

(6.364) (0.0114) (0.118) (0.0888)
L.surprise -8.040 0.0192 -0.109 0.0487

(7.057) (0.0127) (0.130) (0.0985)
good −36.27 ∗ ∗∗ 0.0358 ∗ ∗∗ −0.258∗ 0.114

(5.473) (0.00982) (0.101) (0.0764)
L.good 5.304 -0.0145 0.269∗ −0.172∗

(5.420) (0.00972) (0.100) (0.0756)
constant -3.208 -0.00731 -0.0276 0.119

(7.779) (0.0140) (0.144) (0.109)
N 42 42 42 42
R-sq 0.579 0.348 0.299 0.228
adj. R-sq 0.507 0.236 0.178 0.096
rmse 15.25 0.0274 0.282 0.213

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

We test the structural break and do not find break with the sample period
for US data. Therefore, we test the effect of news on the risk-neutral moments
with the whole period. Table 3.13 shows the regressions of moments in the
announcement dummy, surprise dummy, good new dummy and their lags. We
find that the implied moments in S&P 500 index options market only react to
the good news dummy. This is not surprising and is what we expected. As a
mature financial market, the S&P 500 market has anticipated almost the news and
announcements before they are announced. Comparing to the 50 ETF options
markets, the S&P 500 options markets have the higher information symmetry,
due to much more investors are participated in the market, which results in
the activeness and also accelerate the transaction of the market. Finally, these
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improves the efficiency of the market. From the table, we can see that the good
news does decrease the change in mean and the change in skewness, but increase
the change in variance. However, the good news yesterday increase the change
in skewness but decrease the change in kurtosis.

3.6 Conclusions

This study investigates the impact of macroeconomic new announcements on the
China’s 50 Exchange-Traded Fund (50 ETF) options and the S&P 500 options.
To examine this issue, we try to distil the information with the risk-neutral
densities extracted from the two markets. Current study employs the stochastic
volatility inspired (SVI) and find out the moments from the risk-neutral densities.
We firstly investigate the information content of the density from 50 ETF options
prices and the S&P 500 options prices.

In the Chinese market, for the whole sample period, the density changes
in the case of the announcement, surprise and the good news. The good news
yesterday falls the variance today. And the surprise makes the kurtosis lower. In
the pre-crash period, the macroeconomic announcements do have some effect on
the densities. Good news would increase the mean of the density. The surprise
do increase the uncertainty of the market. In contrast, the announcement and the
good news result in the fall of the variance. In the post-crash period, we also
find that the announcement yesterday and surprise today show an increase in the
downside risk. The announcement and surprise on variance and kurtosis have
an opposite effect in both volatile period and post-crash period. However, there
is no effect of the macroeconomic news announcement on the skewness in the
whole period and the pre-crash period.

When looking at the US market, we test the structural break and do not find
break. Therefore, we test the effect of news on the risk-neutral moments with
the whole period. The good news contemporaneously drives down the change in
mean and change in skewness, but drive up the change in variance. Moreover, the
good news also has the lagged effect on the change in skewness and change in
kurtosis. The good news has a positive lagged effect on the change in skewness
but negative lagged effect on the change in skewness.

However, due to limitation of the time spans of the two data, thereby the
limitation of the number of each macroeconomic announcement type, we did
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not find any significant influence on the financial option market. This comes out
with an idea for the further research to have a longer time span investigation.

Moreover, we also distinguish between types (good or bad) of the macroeco-
nomic indicators and examine how the RND responds to the variety of macroe-
conomic announcements.

3.7 Further study

One possible idea is to extend the dataset, constructing the fixed time to maturity
densities, to have multiple expiration dates and longer period of moments so as to
examine the time-varying of the preferences and expectations from the markets.
This would also allow us to observe more macroeconomic announcements. We
would also be able to examine the reaction of the option markets to various
macroeconomic news.

The risk premium, the difference between risk-neutral density and physical
probability distribution, has been widely examined. Testing the risk premium,
as one of our ideas, it is of interest to me to find how the risk premium could be
reflected in the option market and fundamental markets. How the risk premium
vary with the information flows?

In early 2010s, the European Central bank (ECB) began paying -0.1% on
deposits. Thirdly, in a Black-Scholes economy, the interest rate is assumed to be
strictly positive. A negative rate implies that investing money at money market
would result in a loss. However, one common but wrong solution was to set the
rate simply to zero. The risk free rate comes into the formula in the form e−rT in
the valuation equation, in a negative interest rate environment, this portion of the
equation will just add a discount, instead of a premium to the value of the option.
Examining how this phenomenon affect the valuation of options as well as the
risk-neutral densities would be interesting.
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3.8 Appendices

Appendix I: Sample Data on 09 Jul, 2015

Table 3.14: Sample Data on 09 Jul, 2015

Interest rate=4.68063% Underlying Index Level: 2.792 Trading date: 09 Jul, 2015
Dividend Yield=1.706934% Time to Expiration Date: 168 days Expiration date: 23 Dec, 2015

CALLS PUTS
strike price close price implied volatility close price implied volatility

2.5 0.65 0.675 0.27 0.581
2.55 0.569 0.592 0.24 0.502
2.6 0.593 0.662 0.28 0.527
2.65 0.569 0.661 0.302 0.524
2.7 0.492 0.586 0.289 0.471
2.75 0.449 0.558 0.312 0.467
2.8 0.402 0.525 0.373 0.513
2.85 0.41 0.564 0.37 0.472
2.9 0.423 0.608 0.431 0.514
2.95 0.351 0.537 0.46 0.512
3 0.348 0.558 0.493 0.515
3.1 0.338 0.59 0.554 0.51
3.2 0.304 0.586 0.641 0.536
3.3 0.277 0.589 0.668 0.475
3.4 0.272 0.618 0.795 0.548
3.5 0.219 0.577 0.886 0.571
3.6 0.191 0.568 0.94 0.535

Appendix II: Results from Raw Option Prices on 09 Jul, 2015

Figure below represented the interpolated option prices for calls and puts.
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Figure 3.8: Market Option Prices

The unacceptable densities in the following graph result from the discreteness
of the strike prices.

Figure 3.9: Empirical Risk-Neutral Density

Appendix III: Descriptive Statistics for announcements
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Table 3.16: Descriptive Statistics for announcements in Chinese market

Variable Obs Mean Std. Dev. Min Max
Foreign Domestic Investment

actual 5 8.29 .4873913 7.72 8.93
reuterspoll 0
surprise 0
prior 5 8.676 .9100168 7.72 10.06

Foreign Exchange Reserves
actual 4 3.5425 .105633 3.44 3.69
reuterspoll 1 3.75 . 3.75 3.75
surprise 1 -.06 . -.06 -.06
prior 4 3.615 .1112055 3.51 3.73

M2 Money Supply
actual 5 13 .6855654 11.8 13.5
reuterspoll 5 12.46 1.043072 11 13.2
surprise 5 .54 .680441 -.1 1.6
prior 5 12.46 1.119375 10.8 13.3

Retail Sales
actual 5 10.76 .2073643 10.5 11
reuterspoll 5 10.6 .2738613 10.2 10.9
surprise 5 .16 .1949359 -.1 .4
prior 5 10.58 .311448 10.1 10.9

Industrial Output
actual 5 6.04 .4722289 5.6 6.8
reuterspoll 5 6.16 .3286335 5.8 6.6
surprise 5 -.12 .5357238 -.6 .8
prior 5 6.14 .4037327 5.7 6.8

Consumer Price Index
actual 5 1.58 .2683282 1.3 2

reuterspoll 5 1.58 .2167948 1.3 1.8
surprise 5 0 .1870829 -.2 .2
prior 5 1.56 .2966479 1.2 2

Producer Price Index
actual 5 -5.58 .4868264 -5.9 -4.8
reuterspoll 5 -5.34 .5856621 -5.9 -4.5
surprise 5 -.24 .181659 -.4 0
prior 5 -5.32 .6058053 -5.9 -4.6

Trade Balance
actual 5 53.902 9.348183 42.05 61.7
reuterspoll 5 53.738 7.146605 46.79 64.75
surprise 5 .164 11.82881 -11.2 13.57
prior 5 53.106 8.662482 42.05 60.36

Imports
actual 5 -13.44 6.318465 -20.4 -6.1
reuterspoll 5 -12.44 3.983466 -16 -8
surprise 5 -1 5.970343 -5.6 8.9
prior 5 -13.22 6.100574 -20.4 -6.1

Exports
actual 5 -4.82 4.025792 -9.1 1.5
reuterspoll 5 -3.3 2.796426 -6.3 -.2
surprise 5 -1.52 4.452191 -8.1 2.5
prior 5 -4.12 3.852532 -9.1 1.5

Gross Domestic Product
actual 2 6.95 .0707106 6.9 7
reuterspoll 2 6.85 .0707106 6.8 6.9
surprise 2 .1 0 .1 .1
prior 2 7 0 7 7

Urban investment
actual 5 10.8 .5338538 10.2 11.4
reuterspoll 5 10.96 .4929504 10.2 11.5
surprise 5 -.16 .2701851 -.5 .2
prior 5 11.04 .461519 10.3 11.4

Manufacturing Purchasing Managers’ Index
actual 6 48.1 .8390474 47.2 49.4
reuterspoll 2 47.9 .5656849 47.5 48.3
surprise 2 .55 .3535534 .3 .8
prior 6 48.2 .9402133 47.2 49.4

Outstanding Loan Growth
actual 5 15.02 .9066422 13.4 15.5
reuterspoll 5 14.8 .9300537 13.6 15.6
surprise 5 .22 .9731392 -.6 1.9
prior 5 14.74 .9736529 13.4 15.5

House Prices
actual 5 -2.34 2.02682 -4.9 .1
reuterspoll 0
surprise 0
prior 5 -3.5 1.939072 -5.7 -.9

PBOC Deposit Rate
actual 1 2 . 2 2
reuterspoll 0
surprise 0
prior 3 2 .25 1.75 2.25

PBOC Lending Rate
actual 1 4.85 . 4.85 4.85
reuterspoll 0
surprise 0
prior 3 4.85 .25 4.6 5.1

PBOC Reserve Requirement Ratio
actual 1 18.5 . 18.5 18.5
reuterspoll 0
surprise 0
prior 3 18.33333 .2886751 18 18.588



Table 3.17: Descriptive Statistics for announcements in US market

Variable Obs Mean Std. Dev. Min Max
ADP Employment Change

actual 3 46 68.942 -18 119
reuterspoll 3 35 18.02776 15 50
surprise 3 11 59.73274 -33 79
previous 3 109.6667 68.47871 37 173

Average Hourly Earnings (MoM)
actual 3 0.3 0.1 0.2 0.4
reuterspoll 3 0.3 0 0.3 0.3
surprise 3 0 0.1 -0.1 0.1
previous 3 0.3666667 0.1527525 0.2 0.5

Average Hourly Earnings (YoY)
actual 3 3.7 0 3.7 3.7
reuterspoll 3 3.733333 0.1527526 3.6 3.9
surprise 3 -0.0333333 0.1527525 -0.2 0.1
previous 3 3.733333 0.057735 3.7 3.8

Average Weekly Hours
actual 3 33.73333 0.0577341 33.7 33.8
reuterspoll 3 33.76667 0.0577341 33.7 33.8
surprise 3 -0.0333333 0.057735 -0.1 0
previous 3 33.76667 0.0577341 33.7 33.8

Building Permits (MoM)
actual 3 1.037333 0.0488808 0.984 1.08
reuterspoll 3 1.070333 0.060136 1.023 1.138
surprise 3 -0.033 0.0284781 -0.058 -0.002
previous 3 1.069333 0.0184752 1.048 1.08

Business Inventories
actual 3 0.6666667 0.2516611 0.4 0.9
reuterspoll 3 0.4 0 0.4 0.4
surprise 3 0.2666667 0.2516611 0 0.5
previous 3 0.4 0.3 0.1 0.7

Capacity Utilization
actual 3 81.1 0.6928186 80.3 81.5
reuterspoll 3 81.3 0 81.3 81.3
surprise 3 -0.2 0.6928203 -1 0.2
previous 3 81.53333 0.0577341 81.5 81.6

Chicago Purchasing Managers’ Index
actual 2 48 4.949747 44.5 51.5
reuterspoll 2 51.35 2.333452 49.7 53
surprise 2 -3.35 2.616295 -5.2 -1.5
previous 2 53.95 3.464824 51.5 56.4

Construction Spending (MoM)
actual 3 -0.7333333 0.7371115 -1.3 0.1
reuterspoll 3 -0.5333333 0.1527525 -0.7 -0.4
surprise 3 -0.2 0.6557439 -0.8 0.5
previous 3 -0.6666667 0.7094599 -1.3 0.1

Consumer Confidence
actual 2 82.15 8.131728 76.4 87.9
reuterspoll 2 84.75 3.889087 82 87.5
surprise 2 -2.6 4.242641 -5.6 0.4
previous 2 88.25 0.4949726 87.9 88.6

Consumer Credit Change
actual 3 10.63333 6.30661 4.5 17.1
reuterspoll 3 7.566667 0.8144528 7 8.5
surprise 3 3.066667 5.653613 -2.7 8.6
previous 3 8.766667 7.217571 4.5 17.1

Consumer Price Index (MoM)
actual 3 0.2666667 0.2309401 0 0.4
reuterspoll 3 0.2666667 0.057735 0.2 0.3
surprise 3 -2.48E-09 0.2645751 -0.3 0.2
previous 3 0.5333333 0.2309401 0.4 0.8

Consumer Price Index (YoY)
actual 3 4.133333 0.1527526 4 4.3
reuterspoll 3 4.166667 0.057735 4.1 4.2
surprise 3 -0.0333333 0.1527525 -0.2 0.1
previous 3 4.233333 0.1154702 4.1 4.3

Consumer Price Index ex Food & Energy (MoM)
actual 3 0.1666667 0.1527525 0 0.3
reuterspoll 3 0.2 0 0.2 0.2
surprise 3 -0.0333333 0.1527525 -0.2 0.1
previous 3 0.2666667 0.057735 0.2 0.3

Consumer Price Index ex Food & Energy (YoY)
actual 2 2.4 0.1414214 2.3 2.5
reuterspoll 2 2.4 0 2.4 2.4
surprise 2 0 0.1414214 -0.1 0.1
previous 2 2.45 0.0707106 2.4 2.5
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Table 3.17 - Continued

Variable Obs Mean Std. Dev. Min Max
Continuing Jobless Claims

actual 5 2764 61.01229 2685 2828
reuterspoll 5 2751.2 44.41509 2688 2805
surprise 5 12.8 32.59908 -45 34
previous 5 2747.4 54.03055 2669 2807

Core Personal Consumption Expenditure - Price Index (MoM)
actual 2 0.25 0.0707107 0.2 0.3
reuterspoll 2 0.2 0 0.2 0.2
surprise 2 0.05 0.0707107 0 0.1
previous 2 0.2 0 0.2 0.2

Core Personal Consumption Expenditure - Price Index (YoY)
actual 2 2.2 0 2.2 2.2
reuterspoll 2 2.2 0 2.2 2.2
surprise 2 0 0 0 0
previous 2 2.2 0 2.2 2.2

Current Account
actual 1 -167.2 . -167.2 -167.2
reuterspoll 1 -184.4 . -184.4 -184.4
surprise 1 17.2 . 17.2 17.2
previous 1 -178.5 . -178.5 -178.5

Durable Goods Orders
actual 2 -0.1499999 6.434672 -4.7 4.4
reuterspoll 2 -1.05 4.17193 -4 1.9
surprise 2 0.9 2.262742 -0.7 2.5
previous 2 2.45 2.757717 0.5 4.4

Durable Goods Orders ex Transportation
actual 2 0.4999999 2.969848 -1.6 2.6
reuterspoll 2 -0.65 0.9192388 -1.3 0
surprise 2 1.15 2.05061 -0.3 2.6
previous 2 1.1 2.12132 -0.4 2.6

Existing Home Sales (MoM)
actual 2 4.9 0.0141421 4.89 4.91
reuterspoll 2 4.88 0.0989949 4.81 4.95
surprise 2 0.02 0.0848528 -0.04 0.08
previous 2 4.955 0.0636397 4.91 5

Existing Home Sales Change (MoM)
actual 2 -1.3 1.272792 -2.2 -0.4
reuterspoll 2 -1.4 0.5656854 -1.8 -1
surprise 2 0.1 1.838478 -1.2 1.4
previous 2 -0.9 1.838478 -2.2 0.4

Factory Orders (MoM)
actual 3 0.4666667 2.400694 -2.3 2
reuterspoll 3 0.3 2.523886 -2.5 2.4
surprise 3 0.1666667 0.5507571 -0.4 0.7
previous 3 1.466667 0.6806859 0.7 2

Fed Interest Rate Decision
actual 2 2.625 0.5303301 2.25 3
reuterspoll 2 2.875 0.5303301 2.5 3.25
surprise 2 -0.25 0 -0.25 -0.25
previous 2 3.25 0.3535534 3 3.5

Gross Domestic Product Annualized
actual 2 0.6 0 0.6 0.6
reuterspoll 2 1 0.2828427 0.8 1.2
surprise 2 -0.4 0.2828427 -0.6 -0.2
previous 2 2.75 3.040559 0.6 4.9

Housing Price Index (MoM)
actual 1 -1.1 . -1.1 -1.1
reuterspoll 1 -1.1 . -1.1 -1.1
surprise 1 0 . 0 0
previous 1 -0.4 . -0.4 -0.4

Housing Starts (MoM)
actual 3 1.05 0.0398874 1.004 1.075
reuterspoll 3 1.051667 0.0854888 0.995 1.15
surprise 3 -0.0016667 0.1253568 -0.146 0.08
previous 3 1.079 0.0793032 1.004 1.162

ISM Manufacturing PMI
actual 3 49.13333 1.357694 48.3 50.7
reuterspoll 3 48.83333 1.527525 47.5 50.5
surprise 3 0.3 2.685144 -2.1 3.2
previous 3 49.96667 1.357693 48.4 50.8

ISM Non-Manufacturing PMI
actual 2 49.25 6.576095 44.6 53.9
reuterspoll 2 53.25 0.3535534 53 53.5
surprise 2 -4 6.222539 -8.4 0.4
previous 2 54 0.1414192 53.9 54.1
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Table 3.17 - Continued

Variable Obs Mean Std. Dev. Min Max
Import Price Index (MoM)

actual 3 0.5 0.8888194 -0.2 1.5
reuterspoll 3 0.4333333 0.4041452 0 0.8
surprise 3 0.0666667 0.8326664 -0.6 1
previous 3 1.333333 1.457166 -0.2 2.7

Import Price Index (YoY)
actual 2 12.3 1.979899 10.9 13.7
reuterspoll 2 11.5 1.838478 10.2 12.8
surprise 2 0.8 0.1414213 0.7 0.9
previous 2 11.15 0.3535534 10.9 11.4

Industrial Production (MoM)
actual 3 -0.1666667 0.4618802 -0.7 0.1
reuterspoll 3 -0.0333333 0.1154701 -0.1 0.1
surprise 3 -0.1333333 0.4163332 -0.6 0.2
previous 3 0.1666667 0.1154701 0.1 0.3

Initial Jobless Claims
actual 10 343.8 26.36412 302 378
reuterspoll 10 341.2 13.35665 320 360
surprise 10 2.6 25.50033 -32 58
previous 10 341.8 24.14217 302 373

Michigan Consumer Sentiment Index
actual 5 73.96 5.085568 69.6 80.5
reuterspoll 5 74.28 3.986477 70 79
surprise 5 -0.32 4.623527 -7.4 5.5
previous 5 74.96 4.713067 69.6 80.5

Monthly Budget Statement
actual 1 17.8 . 17.8 17.8
reuterspoll 1 32 . 32 32
surprise 1 -14.2 . -14.2 -14.2
previous 1 38.2 . 38.2 38.2

NAHB Housing Market Index
actual 3 19.66667 0.5773503 19 20
reuterspoll 3 19.33333 0.5773503 19 20
surprise 3 0.3333333 0.5773503 0 1
previous 3 19 1 18 20

NY Empire State Manufacturing Index
actual 3 -8.306667 15.90707 -22.23 9.03
reuterspoll 3 3.7 8.772685 -6.3 10.1
surprise 3 -12.00667 9.596616 -19.02 -1.07
previous 3 2.37 12.20837 -11.72 9.8

Net Long-Term TIC Flows
actual 1 56.5 . 56.5 56.5
reuterspoll 1 76 . 76 76
surprise 1 -19.5 . -19.5 -19.5
previous 1 90.9 . 90.9 90.9

New Home Sales (MoM)
actual 2 0.603 0.0028284 0.601 0.605
reuterspoll 2 0.6225 0.0318198 0.6 0.645
surprise 2 -0.0195 0.0289914 -0.04 0.001
previous 2 0.6195 0.0205061 0.605 0.634

New Home Sales Change (MoM)
actual 1 -1.6 . -1.6 -1.6
reuterspoll 1 -0.7 . -0.7 -0.7
surprise 1 -0.9 . -0.9 -0.9
previous 1 -4.7 . -4.7 -4.7

Nonfarm Payrolls
actual 3 -5.333333 80.30774 -76 82
reuterspoll 3 51.66667 20.20726 30 70
surprise 3 -57 61.48984 -106 12
previous 3 58.33333 71.50058 -22 115

Nonfarm Productivity
actual 2 1.8 0 1.8 1.8
reuterspoll 2 1.4 0.5656854 1 1.8
surprise 2 0.4 0.5656854 0 0.8
previous 2 4.05 3.181981 1.8 6.3

Pending Home Sales (MoM)
actual 3 -1.366667 1.305118 -2.6 0
reuterspoll 3 -0.7666667 0.2516611 -1 -0.5
surprise 3 -0.6 1.452584 -2.1 0.8
previous 3 -0.1333333 3.365016 -2.6 3.7

Personal Consumption Expenditures - Price Index (MoM)
actual 2 0.35 0.0707107 0.3 0.4
reuterspoll 2 0.15 0.0707107 0.1 0.2
surprise 2 0.2 0 0.2 0.2
previous 2 0.65 0.4949747 0.3 1
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Table 3.17 - Continued

Variable Obs Mean Std. Dev. Min Max
Personal Income (MoM)

actual 2 0.25 0.3535534 0 0.5
reuterspoll 2 0.3 0.1414214 0.2 0.4
surprise 2 -0.05 0.212132 -0.2 0.1
previous 2 0.45 0.0707107 0.4 0.5

Philadelphia Fed Manufacturing Survey
actual 1 -24 . -24 -24
reuterspoll 1 -10 . -10 -10
surprise 1 -14 . -14 -14
previous 1 -20.9 . -20.9 -20.9

Producer Price Index (MoM)
actual 3 0.3333333 0.6506407 -0.3 1
reuterspoll 3 0.3 0.1 0.2 0.4
surprise 3 0.0333333 0.6110101 -0.5 0.7
previous 3 1.3 1.769181 -0.3 3.2

Producer Price Index (YoY)
actual 3 6.7 0.6082762 6.3 7.4
reuterspoll 3 7.233333 0.3785938 6.8 7.5
surprise 3 -0.5333333 0.5131602 -1.1 -0.1
previous 3 6.966667 0.5859464 6.3 7.4

Producer Price Index ex Food & Energy (MoM)
actual 2 0.3 0.1414214 0.2 0.4
reuterspoll 2 0.2 0 0.2 0.2
surprise 2 0.1 0.1414214 0 0.2
previous 2 0.3 0.1414214 0.2 0.4

Producer Price Index ex Food & Energy (YoY)
actual 3 2.233333 0.2081666 2 2.4
reuterspoll 3 2.1 0.1 2 2.2
surprise 3 0.1333333 0.1527525 0 0.3
previous 3 2.1 0.1732051 2 2.3

Retail Sales (MoM)
actual 3 -0.1333333 0.4618802 -0.4 0.4
reuterspoll 3 0.0333333 0.2081666 -0.2 0.2
surprise 3 -0.1666667 0.6658328 -0.6 0.6
previous 3 0.3333333 0.7023769 -0.4 1

Retail Sales ex Autos (MoM)
actual 3 0.0333333 0.4163332 -0.3 0.5
reuterspoll 3 0.1666667 0.057735 0.1 0.2
surprise 3 -0.1333333 0.3785939 -0.4 0.3
previous 3 0.6666666 1.059874 -0.3 1.8

Richmond Fed Manufacturing Index
actual 1 -5 . -5 -5
reuterspoll 1 -7 . -7 -7
surprise 1 2 . 2 2
previous 1 -8 . -8 -8

Trade Balance
actual 3 -59.99333 2.759153 -63.12 -57.9
reuterspoll 3 -60 0.9539378 -61.1 -59.4
surprise 3 0.0066667 3.490692 -3.72 3.2
previous 3 -59.61333 3.037125 -63.12 -57.82

Unemployment Rate
actual 3 4.9 0.0999999 4.8 5
reuterspoll 3 4.933333 0.1154699 4.8 5
surprise 3 -0.0333333 0.2081666 -0.2 0.2
previous 3 4.866667 0.1527526 4.7 5

Wholesale Inventories
actual 3 0.9 0.1732051 0.8 1.1
reuterspoll 3 0.3666667 0.057735 0.3 0.4
surprise 3 0.5333333 0.2309401 0.4 0.8
previous 3 0.6333333 0.5686241 0 1.1
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Appendix IV: Changes of the variables in the volatility smile

Figure 3.10: Change a

Figure 3.11: Change b
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Figure 3.12: Change s

Figure 3.13: Change ρ
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Figure 3.14: Change m
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Appendix V: Surprises over the sample period

Figure 3.15: Surprises over the sample period in China
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Figure 3.16: Surprises over the sample period in the US

Appendix VI: Dummies description

0 1
announcements dummy no announcement have announcement

surprise dummy no surprise have surprise
good dummy bad news good news

Table 3.19: Dummy Clarification
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Chapter 4

Can we recover: Evidence from
stock option prices

4.1 Introduction

Options market infers information about the perception of the investors on the
probability distribution of future prices and the corresponding pricing kernel
(Jackwerth and Menner, 2017; Borovic̆ka, Hansen and Scheinkman, 2016).

Physical probability distribution =
Risk neutral density

pricing kernel
(4.1)

Technically, the risk-neutral densities are the natural probabilities, which
is equivalent to the physical probabilities, that have been adjusted for the risk
premium. If the representative investor is risk averse, we would expect a positive
risk premium. In fact, the natural probability densities, sometimes we say the
real world densities, are better to incorporate all the components in the market
and reflect the investors’ perception of the market (see de Vincent-Humphreys
and Noss, 2012). The existence of the risk aversion (of a representative agent)
has also examined in literature, such as the projection of the pricing kernel under
the P measure, which is the same as physical measure or real world measure,
in Bondarenko (2014). Theoretically, under the Black-Scholes assumption, the
real world density and the risk neutral density are exchangeable, due to the
assumption of risk neutral for all the investors. In this case, the pricing kernel is
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equal to one.
Neither the pricing kernel nor the physical probability distribution is theo-

retically easily observed from option market prices. Since we cannot be able to
compute the risk premium from the option prices as we could do from the bond/-
stock markets. It does not seem that, in traditional option pricing framework, the
investor’s risk attitude is included as a factor in the pricing function. In other
words, in the Black-Scholes formula, it does not exist one term to account for the
risk attitude of the investors. There are several ways to find the physical proba-
bility distribution. One way to find the real probability distribution, Aı̈t-Sahalia
and Lo (2000), Jackwerth (2000), Constantinides, Jackwerth and Perrakis (2007)
state that it approximates to the kernel density estimated from the time series of
past returns. Another popular method to compute the real-world density is to
use a parametric way of transforming from risk-neutral density (see Bliss and
Panigirtzoglou, 2004; Liu, et al. 2007).

Recent study by Ross (2015) presents a recovery theorem, the so-called
Theorem I, which allows separating the real-world probability distribution and
risk aversion only using the state prices. This was not possible until his study.
In the paper, two main nonparametric assumptions allow him to be able to
disentangle the pricing kernel from option prices, 1) the risk-neutral process is
restricted to be a time-homogeneous and irreducible Markov Chain in a finite state
space; 2) the pricing kernel is path independent, i.e., independent of asset path
(see Ross, 2015; Audrino, Huitema and Ludwig, 2015). Under this circumstance,
the pricing kernel can be expressed as a form of a discounted rate and a positive
function, and the solutions for both elements are unique. Ross attempts to find
the physical probability distribution through the following steps: 1) from market
prices to state price; 2) from the state price to state price transition matrix; 3)
from state price transition matrix to real-world transition probability matrix.

Although the studies in the Risk-Neutral Density is abundant, little investiga-
tion has been empirically conducted to find the real-world density. Most of the
studies examined the Ross recovery theorem in the context of S&P 500 index
options. One contribution of current study is to adopt the recovery theorem with
the stock options. Here in this study, I adopt the Adidas AG stock options in the
European market. Secondly, as in Ross (2015) paper, it does not fully clarify the
theory, another contribution is to clearly explain the recovery theorem.

More specifically, we investigate the implied volatility surface and the risk-
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neutral density surface. Evidence shows negatively implied volatility-time to
expiry and implied volatility-strike relationships. Empirically, we have success-
fully estimated the real-world density for the Adidas AG stock options. We also
discussed the evolution of the risk-neutral density and the real-world density.

The remainder of the chapter is organized as follow. Next section provides a
review of related literature. Section 4.3 gives a brief presentation of the related
theories would be applied in the Ross recovery theorem. Section 4.4 shows
how the recovery theorem can be implemented in practice. The data used in
current study is introduced in Section 4.5. The results are stated in the Section
4.6. Finally, a conclusion is provided in Section 4.7.

4.2 Literature Review

The Theorem I has been drawn much attention recently. Schneider and Trojani
(2018) aim to estimate the conditional moments of the physical probability
distribution through an almost model-free recovery method on the S&P 500
options data over 1990-2014. They indicate that their method is entirely forward-
looking and the pricing kernel can be expressed as a polynomial function of
both risk-neutral and physical moments. However, there is no unique pricing
kernel without the restriction of the minimum kernel variance. Their results also
show that the recovered moments do predict the future realized moments. For
stock options, Massacci, Williams and Zhang (2016) adopt the Ross Unimodal
approach to extract to an 11 × 11 transition matrix for Apple stock option data.

However, several studies find difficulties when empirically replicate the Ross
recovery theorem. For example, Jackwerth and Menner (2017) implement the
Ross recovery empirically and find several empirical problems. Their recovered
physical probabilities in the results fail to match the empirical distribution, i.e.
the historical return distribution. Aiming to test the theorem in a skeptical view
through the long-term bond futures and options data, Bakshi, Chabi-Yo and Gao
(2017) have challenged to conduct the Recovery theorem. Still, an agnostic result
has been given in the context of the accuracy of the Recovery theorem. It has also
been criticized by Borovic̆ka, Hansen and Scheinkman (2016), who document
that the recovery probability distribution seems to be biased due to the unrealistic
restriction in the pricing kernel.

The existence of the drawbacks of the Ross Recovery has attracted some
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extensions by an increasing number of studies. For example, exploring Ross’
results in a continuous-time diffusion setting, Carr and Yu (2012) introduce
the John Long’s Numeraire Portfolio, instead of using the representative agent
model. Following Carr and Yu (2012), Walden (2017) extends the results to
an unbounded intervals in a success. Also, Linetzky and Qin (2016) extend
the underlying process in the Ross (2015) theorem from a discrete time and
irreducible finite state Markov chains framework to a continuous-time Markov
process with a general state space (i.e., Borel right process), a similar study can
be found in Park (2016).

Relaxing the assumption of time homogeneous in the state prices, the study
Jensen, Lando and Pedersen (2018) show a closed-form solution to find both
the physical probability and risk preferences only using asset prices. Adopting
the standard call and put options written on S&P 500 index over the period
1996-2014, they find that the recovered physical probability might help to predict
the distribution of the future return.

For studies related to the Ross recovery theorem, readers are also suggested
to read Dubynskiy and Goldstein (2013), Martin and Ross (2013), Tran and Xia
(2015), Flint and Mare (2016), Liu (2014), and Christensen (2017) to name a
few.

4.3 Theoretical Framework

This section briefly documents several theories as a background to the recovery
theorem. The following theories are serving as the fundamentals to achieve the
recovery theorem.

4.3.1 Probability Measures

Theoretically, in modern financial theory, we have two basic probability measure,
the risk-neutral measure, we denoted by Q, and the physical probability measure,
we denoted by P. Intuitively, the risk-neutral measure is distinct from the physical
measure, which describes the actual stochastic dynamics of markets. In risk-
neutral condition, any risky asset, here we say options, has the same expected
return as the money market account. In other words, the risk-neutral density is the
natural probability distribution that has been ‘risk-adjusted’ - the risk premium
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has been subtracted from the density under the physical probability measure.
Formally, we have following definitions,

Definition 1. In a complete market, a risk-neutral measure (i.e., equivalent

martingale measure) is a probability measure, in which case the current price of

an asset at time t is equivalent to the discounted value of expected futures payoff

of the asset at the risk-free rate, given the information Ft available at time t.

Under this circumstance, the risky asset (options in this case) has the same
expected return as the riskless bond. Namely, risk-neutral measure indicates that
investors require no premium for bearing the risk.

Definition 2. Physical probability measure, also named real-world probability

measure and natural probability, has the expectation determined by the investors

belief or subjective perspective on a risky assets future price.

Broadly speaking, physical probability distribution incorporates the risk-
neutral density and pricing kernel. In a specific condition, if investors were risk
neutral, we say the risk-neutral probabilities coincide with physical probabilities.
However, if it is not the case, investors are risk-averse, then risk-neutral probabil-
ities would be risk-adjusted taking into account the price effect of investors’ risk
preference (Siu, 2008; Carr and Yu, 2012, and Ross, 2015).

4.3.2 Markov process and Markov Chain

We have a set of states, Ω = {1, 2, 3, ...}. The process initially starts in one of
these states, let’s say state i, and moves from one state to another (state j). Each
move is called a step.

In terms of the discrete time Markov chains, we denote pij measure the
probability the process changes from state i to state j. Mathematically, we also
call pij transition probabilities. Appendix II shows the diagram of a transition
matrix. For one-step transition matrix,

P = {pij}. (4.2)

Definition 3. A Markov chain (X(t) : t ∈ T 1) is said to be time-homogeneous if

P (X(s+ t) = j|X(s) = i) (4.3)
1 T is the set of natural number, T = {1, 2, ... }.
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is independent of s. When this holds, putting s = 0 gives

P (X(s+ t) = j|X(s) = i) = P (X(t) = j|X(0) = i), ∀t ∈ T. (4.4)

This indicates that, in the condition of Time Homogeneity, the probability
does not depend on the time t, but only rely on the state i and j.

When extended to the two step probabilities,

p2
ij = P (X2 = j|X0 = i) (4.5)

=
∑
k∈Ω

P (X1 = k|X0 = i)(X2 = j|X1 = k,X0 = i)

=
∑
k∈Ω

pikpkj

Using the same way, we have P (n) = P n for a n-step transition probability.

Definition 4. A stationary distribution of a Markov chain is a probability dis-

tribution π such that,

π · P = π. (4.6)

Definition 5. A matrix M is called non-negative matrix if all entries of the

matrix are non-negative, i.e., mi,j ≥ 0, ∀i ∀j.

It is clearly that the state price transition matrix P is a nonnegative matrix
(i.e., some entries might be zero).

Definition 6. A Markov chain P is called irreducible matrix if there exists some

t such that,

P t(i, j) > 0,∀i∀j. (4.7)

4.3.3 Perron-Frobenius theorem

The Perron-Frobenius theorem (PF in the sequel) is proposed by Oskar Perron
in 1907 (see Perron, 1907) and extended by Ferdinand Georg Frobenius, which
are shown in Appendix III. Their theorem provided numerous useful results for
non-negative matrices.

Theorem 1. (Perron-Frobenius Theorem) As stated in the Perron-Frobenius

theorem (Meyer, 2000), let A be a non-negative n× n matrix with all the element
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aij is strictly positive, i.e. aij > 0. Then A has a positive eigenvalue λ which is

equal to the spectral radius of A. Eigenvalue λ has a unique positive eigenvector

v.

From the Perron-Frobenius Theorem, we know that a non-negative irreducible
matrix have a unique positive eigenvalue λ. Refer to its proof, we recommend
the readers to the studies of Borobia and Trfas (1992), MacCluer (2000) and
Horn and Johnson (2012).

4.3.4 Representative Agent model

Representative agent model has been widely adopted in literature (see Geweke
1985; Eichenbaum, Hansen and Singleton, 1988; Hartley, 1996; Aı̈t-Sahalia and
Lo, 2000; Epstein and Schneider, 2008; Verdelhan, 2010; and Backus, Chernov
and Zin, 2014, for example), and it is also the case in current study. Represen-
tative agent theory, which is differently with the heterogeneous agents model,
reduces the heterogeneity of the behavior between the agents to a single repre-
sentative agent. As it states in the representative agent model, in a competitive
and frictionless market, we assume all agents act in the same manner and try to
maximize her expected utility function. In such model, a representative agent’s
utility reflects the markets’ true beliefs and also the risk aversion. Based on
the Representative Agent model, several popular theories have been developed,
including the Consumption-based Capital Asset Pricing Model (C-CAPM) by
Breeden (1979) and arbitrage pricing theory (APT) by Ross (1976).

4.3.5 Arrow-Debreu Security

Definition 7. An Arrow-Debreu security (hereafter A-D), also called state-

contingent claim, that pays you £1 of the state occurs. Assuming the current

state is i, the A-D security would pay £1 if the state ending at j and zero if other

states.

For example, the foreign exchange rate GBP to USD is 1.30, a state price is
the price of A-D Security that pays you £1 in a year if the GBP/USD goes up to
1.40.

We denote the price of one A-D Security by πi,j , state price transition matrix
by pi,j and the pricing kernel by ϕi,j . We will have πi,j = pi,j×ϕi,j . Theoretically,
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risk-neutral probability is the discounted state price at the agree exercise time,
thereby, Risk-neutral density is related but not equal to the Arrow-Debreu security
price. Breeden and Litzenberger (1978) have shown the relationship between
Risk-neutral probability distributions and A-D prices. The probabilities of all
states occurred must sum up to one, that is

∑n
j=1 pi,j = 1. Studies in risk-neutral

probability distribution can be found in previous two chapters.

4.3.6 Pricing Kernel

Definition 8. Pricing kernel, which is a fundamental concept of asset pricing in

finance and also named stochastic discounted factor, measures the market risk

aversion over equity returns.

Its existence results from the law of one price and the no arbitrage condition
(see Ahn, Conrad, and Dittmar, 2003; Dittmar, 2002). The pricing kernel, theo-
retically, is positive but generally decreasing, sometimes with some increasings.
This is so-called pricing kernel puzzle (Dittmar, 2002; Rosenberg and Engle,
2002) and we will not focus too detail in this study.

Empirically, two methodologies often adopted to find the Pricing Kernel,
1) one, based on the representative agent theory, is to compute the parameters
by fitting maximizing some agent’s utility; 2) an alternative one is to estimate
based on cross-sectional option data and historical returns. We will present the
estimation methodology below.

4.4 Estimation Framework

Previous literature has documented that one of the three concepts, i.e. the risk-
neutral density, real-world probability distribution and the pricing kernel, can
theoretically be extracted from the other two. In this section, I will show how
we can estimate the real-world probability distribution and the risk aversion
directly from the state price in a representative agent condition. In line with the
description of estimates mentioned above, throughout the study, we have the
following notations,

· State price matrix, S, where S := (si,j) is a n×m matrix and normally
n ≤ m, i.e., the number columns of the tenor is not less than the number
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rows of the moneyness, which is equal to
S

X
, where X denotes the strike

price for the option price;

· State price transition matrix, P, where P := (pi,j) is an n× n matrix, and
pi,j is the state i price of an Arrow-Debreu security paying off in state j.;

· Natural probability transition matrix, F, where F := (fi,j) is an n × n
matrix;

· Discount rate or discounted factor, δ;

· Pricing kernel, ϕ.

Several studies have empirically implemented the Ross Recovery Theorem
(see, Carr and Yu, 2012; Borovic̆ka, Hansen and Scheinkman, 2016; Park, 2016;
and Walden, 2017, for example). Here we consider a discrete time framework.
Current study adopts the option prices written on the Adidas AG (listed in
German Stock Exchange (Xetra)).

4.4.1 From Option Prices to State Prices

As it might not be able to observe a continuum strikes, we estimate the state price
expressed as a tenor matrix from option prices, i.e. a matrix with rows of state
prices and columns of times to maturity in years. Quite a few methodologies have
been examined in previous studies, such as mixture of lognormals, Smoothed
Implied Volatility Smile Method, Generalised beta distribution, Hermite Polyno-
mials method, etc.

We collect the volatility surface, then interpolate the implied volatility, con-
vert the smoothed implied volatility to the state price. Breeden and Litzenberger
(1978) indicate that the state price density is uniquely equivalently to the second
derivative of the option pricing equation concerning the strikes2. Details for how
to estimate the state price can be found in Chapter 2 of this thesis.

2For European call option valuation, its price is c = e−rτ
∫∞
X
f(ST )(ST −X)d(ST ). For

European put option, p = e−rτ
∫X
0
f(ST )(X − ST )d(ST ). Therefore, the second derivative for

the calls and puts are f(ST ) = erτ ∂2c
∂X2 and f(ST ) = erτ ∂

2p
∂X2 , respectively.
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4.4.2 From State Prices to Markov Chain

This subsection aims to estimate the state price transition matrix P from the
state price. In this stage we assume the transition matrix follows the time-
homogeneous Markov Chain. In other words, The time-homogeneous transition
matrix presents that, in a market, the probability from one state to another state
are the same and not depend on time t. . Mathematically, we denote the first
column of the state price matrix S (an n×m matrix) as s1, thereby, s1 is a vector.

S =


s11 s12 . . . s1m

s21 s22 . . . s2m

...
... . . . ...

sn1 sn2 . . . snm


s1 = (s11s21 . . . sn1)ᵀ (4.8)

Due to the time-homogeneous property, we have sᵀ2 = sᵀ1P . Using the same
way, we have sᵀt+1 = sᵀtP for each t ∈ [1,m−1]. More interestingly, you can also
find the paper Jensen, Lando and Pedersen (2019), who relax the assumption of
the time-homogeneity in P. Tran and Xia (2015) have shown that, in the recovery
process, the optimization can be expressed as,

P = arg min
pi,j≥0

‖AP −B‖2
2 (4.9)

where,

A =


s11 s12 . . . s1,m−1

s21 s22 . . . s2,m−1

...
... . . . ...

sn1 sn2 . . . sn,m−1


T

,
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B =


s12 s12 . . . s1m

s22 s22 . . . s2m

...
... . . . ...

sn2 sn2 . . . snm


T

.

Other optimization methods included the Tikhonov method by Audrino,
Huitema and Ludwig (2015) and modified Tikhonov method by Kiriu and Hibiki
(2019).

4.4.3 From Markov Chain to Real-world Transition Matrix

Previous subsection has derived the state price transition matrix P. In this section,
we show how to compute the Real-world Transition Matrix F from P. More
specifically, F would be uniquely determined by the P under the Perron-Frobenius
theorem.

The pricing kernel from state i to state j, theoretically, can be estimated by
following equation,

ϕi,j =
pi,j
fi,j

(4.10)

where, pi,j stands for the risk-neutral density and fi,j measures the physical
probability distribution.

Proposition 1. Under the condition of Time Separable Utility, we would define

the pricing kernel ϕi,j as:

ϕi,j = δ
U ′(cj)

U ′(ci)
(4.11)

The assumption of the Time Separable Utility is amounted to the path in-
dependent in pricing kernel. We say, different with the empirical (stochastic)
pricing kernel, if the pricing kernel is path independent, then combine (4.10) and
(4.11), we have

ϕi,j =
pi,j
fi,j

= δ
uj
ui

(4.12)

where, ui ≡ U ′(ci), δ is the discounted rate and is a positive constant (the-
oretically, 0 < δ ≤ 1), and ui, uj , which are strictly positive functions and
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ui, uj ∈ U , represent the marginal utility at state i and state j, respectively. Sev-
eral ways can be adopted to generate the transition-independent kernel, including
the intertemporally additive utility function (see Ross, 2015).

Recall that,
P = δ

uj
ui
F, (4.13)

we have the diagonal matrix U,

U =


u1 0 . . . 0

0 u2 . . . 0
...

... . . . ...
0 0 . . . un


Where, uj, ui are the diagonal elements of the matrix, and should be positive
values. The inverse of U is,

U−1 =


1
u1

0 . . . 0

0 1
u2

. . . 0
...

... . . . ...
0 0 . . . 1

un


Theorem 2. (Recovery theorem) In a complete and frictional market, if the

pricing kernel is path independent and discounted rate is a positive constant,

then given an irreducible state-price matrix P, we can uniquely recover the

real-world transition matrix F.

Proof.

P = δU−1FU (4.14)

F =
1

δ
UPU−1 (4.15)

Let 1 is a n × 1 vector, (1, 1, . . . , 1)ᵀ. With the fact that the sum of each row
of the real-world transition probability matrix must be equal to 1. We have,

F · 1 = 1 (4.16)

Therefore, substituting the equation (4.15) into (4.16), we have,

F1 =
1

δ
UPU−11 (4.17)
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1 =
1

δ
UPU−11 (4.18)

Rearranging this equation, we have,

PU−11 = δU−11 (4.19)

Let U−11 = x, therefore,

Px = δx, where xi =
1

ui
. (4.20)

Such problem can be expressed as the problem to find the eigenvalue and
the eigenvector of a matrix. Because P is a non-negative and irreducible matrix.
Perron and Frobenius theorem mentioned in Section 4.2 documents that there
exists an only eigenvector and it is larger and equal to zero. The theorem also
documents that δ is unique and equal to the spectral radius.

Proposition 2. Given the transition matrix in the recovery theorem, either for

state price probability matrix P or real-world probability matrix F, such stochastic

matrix has an eigenvalue of one

Proof. As in the transition probability matrix P or F, the sum of its row must be
1. We have

P · 1 = 1 · 1

and
F · 1 = 1 · 1.

As also stated in previous studies, we have the absolute value of any eigen-
value for such stochastic matrix is less or equal to one. Moreover, eigenvalue one
for both P and F, the corresponding eigenvector, say v, we have,

P · v = v (4.21)

and
F · v = v. (4.22)
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4.5 Data

I intend to investigate a stock option. Randomly chosen from the Eurex Exchange,
the options data written on Adidas AG on 15 March, 2013, was chosen to be
examined. The time series of its stock price shows in Figure 4.1 below. The spot
(closing) price of the stock is 79.75. As we can see from the figure, the stock
behaves around 80 Euro over 2013-2015, following by a shape increase. The
stock price doubled from 15 March 2013 to the end of the 2017. All the prices
were recorded in Currency EUR. The same as the S&P 500 index options and the
China 50 ETF options, one Adidas AG option equals rights over 100 underlying
shares. The underlying firm, Adidas AG produces and markets a wide range of
athletic and sports products. The Company’s segments are around the whole
world, include Europe, America, Asia, etc.; Each market includes wholesale,
retail and e-commerce business activities.

Figure 4.1: Adidas AG Closing Prices

I choose Adidas AG option prices trading on 15 March 2015, with multiple
maturities3. This study only uses the European call options. We then construct

3The maturities are 19/04/2013, 17/05/2013, 21/06/2013, 20/09/2013, 20/12/2013,
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an 8 × 11 matrix, see Table 4.1.

4.6 Empirical Results

Section 4.3 and Section 4.4 outlined the necessary theoretical and practical
backgrounds, we try to implement the recovery theorem as follows:

1. We extract the risk-neutral densities and estimate the state price matrix
S from Adidas AG option prices on 15 March, 2013 with 11 different
maturities;

2. Then we aim to estimate the state transition probability matrix by finding
the optimized matrix with regarding to a minimization problem with Mat-
lab, arg minpi,j≥0‖AP −B‖

2
2. In this step, we also restrict all the elements

to be nonnegative, therefore the state transition probability matrix would
be a nonnegative matrix;

3. We define the matrix A as S ′1:8,1:T−1 and matrix B as S ′1:8,2:T and find a
risk-neutral transition probability matrix P;

4. Using the Ross recovery theorem, the real-world Transition Probability
Matrix would be found.

4.6.1 Implied Volatility Surface and Risk-Neutral Density

20/06/2014, 19/12/2014, 19/06/2015, 18/12/2015, 16/12/2016, and 15/12/2017
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Table 4.1 shows the tensor matrix of the option prices with fixed strikes. The
corresponding scatters plot can be found in Figure 4.2.

Figure 4.2: Observed Call Prices

This will be used for the following optimisations and estimations. We have
eight strikes and eleven times to expiry, an 8 × 11 matrix. One of our aims is to
find an 8 by 8 transition matrix.

Figure 4.3: Implied Volatility Surface

Figure 4.3 presents the implied volatility surface for the call prices trading on
15 March 2013. The corresponding table of smoothed implied volatility surface
can be found in Table 4.7. Evidence has shown that this is consistent with the
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traditional financial theory. Implied volatility for the call option goes down as
the strikes increase.

Table 4.2: Average of implied volatility

Moneyness (1.6, 1.4] (1.4, 1.2] (1.2, 1.1] (1.1, 1] (1, 0.9] (0.9, 0.8]

τ

(0, 1] 0.23955 0.18743 0.17816 0.17003 0.16700 0.16497
(1, 2] 0.22424 0.18594 0.17550 0.16937 0.16642 0.16437
(2, 3] 0.20452 0.18137 0.17288 0.16732 0.16437 0.16232
(3, 4] 0.18445 0.17093 0.16468 0.16051 0.15776 0.15591
(4, 5) 0.17260 0.15679 0.15269 0.15119 0.14893 0.14750

The implied volatility for shorter term option is typically higher. The implied
volatility shows an inverse relation with strike price, therefore, a positive implied
volatility-moneyness relationship.

Figure 4.4: Risk-Neutral Densities on 15 March 2013 with multiple expiries

We find out the evolution of the RNDs with multiple expiries. It seems that
the densities tend to a flatter curve as the increase of the expiry (see Backwell,
2015). This indicates that, given a particular trading date, the expiry of the future
prices is higher when the market expects with a longer period to the prices, which
is consistent with the heterogeneous belief of the investors to the future. This
has been fully examined in my previous studies in this thesis. The recorded state
price matrix can be seen from the Table 4.3.
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The corresponding risk-neutral density surface is also presented below.

Figure 4.5: Risk-Neutral Density Surface on 15 March 2013

Each dot line of the Expiration date Axis as a single option Expiration date.
More Expiration days took place for near terms options. From the figure above,
the near term of options the steeper the risk-neutral density. The RNDs of longer
term options behave flatter.

4.6.2 Implementation of Recovery Theorem

After estimating the Step III, the state price transition matrix is found to be as
follow,

Table 4.4: The Transition matrix

State on date t+1

St
at

e
on

da
te

t

0.110536 0.073110 0.061060 0.052145 0.024347 0.025542 0.055951 0.087848
0.122194 0.142363 0.145421 0.077858 0.024610 0.027942 0.096004 0.157029
0.139192 0.193440 0.222707 0.145484 0.031553 0.034612 0.169256 0.166704
0.140768 0.134059 0.142204 0.228087 0.124296 0.143951 0.204630 0.126792
0.109347 0.087106 0.071003 0.080853 0.382226 0.354358 0.081920 0.090423
0.123438 0.100901 0.086211 0.123513 0.312913 0.303053 0.114674 0.096383
0.162459 0.138017 0.139800 0.214486 0.071827 0.078252 0.197576 0.151662
0.092066 0.131003 0.131595 0.077574 0.028228 0.032290 0.079989 0.123158
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This procedure can be implemented by the ‘fmincon’4 in Matlab. We use
Matlab to find the optimized matrix with regarding to minimization of Frobenius
norm. All the elements in the matrix are restricted to be nonnegative and less
than 0.99995. The sum of the each row for the state transition matrix is equal to
a unit. The corresponding figure can be below.

Figure 4.6: State Transition Probability Matrix

We compute the eigenvalues and the corresponding eigenvectors for the tran-
sition probability matrix. We find a maximum eigenvalue of 0.9999. Furthermore,
evidence also been finding that Perron-Frobenius eigenvalue, the so-called Perron
root δ, is also equal to 0.9999, whose computation is based on the Chanchana
(2007).

Step IV allows us to find the Real-World Transition Probability Matrix, the
result is shown as in Table 4.5.

4x = fmincon(@(x)obj(x, S1, S2), x0, [], [], Aeq, beq, lb, ub);
5The computed eigenvalues are (0.9999, 0.4948, 0.1481, 0.05222, -0.0073, 0.0069 + 0.0013i,

0.006967 - 0.0013i, 0.007972). The corresponding eigenvector for eigenvalue 0.9999 is

0.134733
0.218966
0.320902
0.421010
0.500297
0.481735
0.362796
0.199209


.

119



Table 4.5: Real-World Transition Probability Matrix

State on date t+1

St
at

e
on

da
te

t

0.110536 0.118817 0.145430 0.162941 0.090406 0.091324 0.150659 0.129887
0.075189 0.142363 0.213120 0.149698 0.056230 0.061473 0.159065 0.142861
0.058441 0.131993 0.222707 0.190869 0.049192 0.051959 0.191353 0.103487
0.045049 0.069724 0.108391 0.228087 0.147705 0.164715 0.176335 0.059994
0.029448 0.038124 0.045543 0.068039 0.382226 0.341210 0.059405 0.036005
0.034524 0.045863 0.057428 0.107943 0.324970 0.303053 0.086361 0.039857
0.060333 0.083300 0.123656 0.248902 0.099049 0.103906 0.197576 0.083277
0.062268 0.143995 0.211982 0.163946 0.070892 0.078084 0.145674 0.123158

The estimation is based on the Theorem 2. We also confirm that the sum of
the probabilities for one state to other possible states is equal to one. This would
allow us to find the recovered density for the Adidas AG options.

4.6.3 Recovered density

Figure 4.7: Real-World Density Surface

Figure 4.7 plots the Real-World Density for each Expiation date.
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Figure 4.8: Risk-Neutral Density and Real-World Density Surface

A comparison between risk-neutral density surface and real-world density
surface is shown in Figure 4.8. Readers are also suggested to see the Figure 4.10
and 4.11 for the plots of each density. It seems that the Risk-Neutral Density is
more peaked than the Real-World density, which indicates the more leptokurtic
in Risk-Neutral Density. In economic theory, we can associate the kurtosis with
the fat-tailed property. This means we can also document that people have put
more probabilities on the tails when we estimate the risk-neutral density. In
reality, higher probabilities have been given in the middle portion of the market
expectation.

Table 4.6: Correlation matrix of Risk-Neutral and Real-World Density Moments

Risk-Neutral Density (RND) Real-World Density (RWD)
Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis

R
N

D

Mean 1.0000
Variance 0.8098 1.0000
Skewness 0.1517 0.3155 1.0000
Kurtosis -0.3783 -0.2528 0.5899 1.0000

R
W

D

Mean 0.9916 0.8662 0.2113 -0.339 1.0000
Variance 0.8547 0.9823 0.3362 -0.2564 0.9112 1.0000
Skewness -0.1118 -0.0308 0.757 0.4554 -0.0905 -0.0102 1.0000
Kurtosis -0.9143 -0.898 -0.1981 0.4408 -0.9456 -0.9459 0.0226 1.0000

We see from the Table 4.6, the correlation between the means from two
measurements is 0.9916, as well as highly correlated between the variances.
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However, for both skewness and kurtosis, the correlations are not as high as those
for the first two moments, especially for that between the kurtosis. When looking
at the correlation matrix, the rolling window is still a good method to adopt, even
though the main objective of current study is to examine how successful the Ross
recovery theorem can apply in the stock option. As in Table 4.6, which shows
the correlation matrix of risk neutral density and real-world density for Adidas
AG option prices trading on 15 March, 2013, we extend our results by using the
rolling window. I try with the window of 5, the result shows in the following
figure.

Figure 4.9: Correlation between the risk-neutral and real-world moments

From the figure, we find that recovered skewness and kurtosis are signifi-
cantly different with the higher moments in the risk-neutral measure. This is
reasonable, although we have successfully derive the real-world density, due to
the insufficient data for stock options, comparing to the S&P 500 index options,
it is difficult to get an accurate estimator (see Kiriu and Hibiki, 2019).

4.7 Conclusions

The nature of the forward-looking feature in options market is of interest to the
academia and investors, who is in the field of asset pricing, risk management
and portfolio allocation. The conventional argument indicates that we might be
able to determine the physical measure from the risk-neutral measure. Summing
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up, current study has discussed the Recovery Theorem and adopted the Ross’
recovery theorem to decode the physical probability and risk preferences from
the Adidas AG option prices.

In this study, we analyse the implied volatility surface and find that the
implied volatility decreases with time to expiry and decreases with strikes, which
are consistent with the traditional financial theory and most of the previous
empirical studies, such as Mixon (2002) and Frijns, Tallau and Tourani-Rad
(2010). Furthermore, when defining the moneyness as a ratio of underlying
price to strike price, there is a positive relationship between implied volatility
and moneyness. As stated in the Ross (2015), based on the Perron-Frobenius
Theorem, F can be uniquely determined by the P. Also in this study, we have
successfully found the real-world density from the Adidas AG data. We also
discussed the evolution of the risk-neutral density and the real-world density.
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Appendices

Appendix I: Steps of Ross Recovery

The following flow chart shows the procedures how the Ross recovery theorem
implements. The details can be found in the Estimation Framework section.

Option Prices

State price matrix (S)

State price transition matrix (P)

Physical probability transition matrix (F)

Step 1

Step 2

Step 3

Appendix II: Transition Matrix Diagram

Consider a system with three states, i.e., 1, 2 and 3, and transition matrix is
presented below,

P =

0.20 0.30 0.50

0.30 0.00 0.70

0.35 0.20 0.45


The following transition matrix diagram shows the three possible states 1, 2

and 3, and the arrows indicate the transition probabilities from state i to other
state j.
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1start

3

2

0.2

0.3

0.4

0.3

0.70.35

0.2

0.45

Appendix III: Perron Theorem and Frobenius Theorem

Theorem 3. (Perron Theorem) Let A be an n × n square matrix, where each

entry is strictly positive. Then the spectral radius ρ(A) of A is greater than the

other eigenvalue λ, i.e., ρ(A) > |λ|. The ρ(A) has a positive eigenvector v.

Theorem 4. (Frobenius Theorem or Frobenius’s extended version) Let A be

an n × n non-negative and irreducible matrix with spectral radius ρ(A) = λ.

Then, λ is a positive real number and an eigenvalue of A; all components of

the associated right eigenstate z are strictly positive. Moreover, the eigenspace

associated to λ is one-dimensional.
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Appendix V: Risk-Neutral Density and Real-World Density for
Each Expiration Date

Figure 4.10: Risk-Neutral Densities
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Figure 4.11: Real-World Densities
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Chapter 5

Conclusions

5.1 Summary of the Thesis

Option markets by their nature contain abundant information to investors and
regulators. They also contain useful information for academic research. This
thesis has mainly focused on the use of option data in the study of the risk-
neutral density and the real-world density and contained four individual essays
on options market research.

The preceding four chapters have concerned four different objectives using
financial option data. Chapter 2 adopted three alternative approaches to estimate
the risk-neutral density: 1) Single lognomal; 2) Mixture of two lognormals; and
3) Smoothing implied volatility smile (IVS) method. The smoothing IVS method
was found to be the best of these three in the context of the pricing errors. When
looking into the risk-neutral moments, we found that the variances declined with
the maturity date approaches, which was in line with Figlewski (2012). Due
to investors’ risk aversion, consistent with previous studies, the densities were
left-skewed in normal period. The fat-tailed property has also been confirmed.
We also found that the higher moments of the densities are dramatically linked to
the underlying index and the index returns

In Chapter 3, we investigated the relationship between the option market and
the macroeconomy in Chinese market. Intuitively, the options market should
have reflected the macroeconomic news. This study particularly aimed to find out
how the market response to the macroeconomic announcements. We, empirically,
examined this issue in the context of both good and bad news and the surprised
and unsurprised news. More interestingly, we found out different results for the
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whole sample period and the sub-sample periods.
Chapter 4 recovered the real-world density and risk aversion from the Adidas

AG option prices through the recovery theorem of Ross (2015). Two main
nonparametric assumptions have been made in this study. Here we examined the
state price density (surface). Moreover, we have empirically and successfully
estimated the real-world density for the Adidas AG stock options. We also
discussed the evolution of the real-world density.

5.2 Directions for Further Research

Our studies do have some shortcomings, which have been indicated in each
chapter, mainly due to the limited access to the use of the data. Consequently,
there are a number of different areas in which further research could be beneficial
In particular, we are keen on the following direction for future research.

5.2.1 Risk-neutral density from American options

In the thesis, we have successfully extracted the risk-neutral density from S&P
500 index options. To the best of our knowledge and according to the description
from CBOE website, the S&P 500 index options are European style, which
normally can be exercised only on a particular date, the maturity day. With the
right to exercise their options before the maturity, the American options, such
as OEX options and Exchange Traded Products Options might contain more
valuable information than European options. How about the densities from the
American options? Can we distil the information from them? Could they provide
more flexible and more valuable information to the investors and policy-maker?
These questions are largely unanswered. To date, studies to find the risk-neutral
densities for American options have been conducted (e.g. Abken, Madan and
Ramamurtie, 1996; Melick and Thomas, 1997; Bates, 2000; Broadie, Chernov
and Johannes, 2007; Gemmill and Saflekos, 2000; Tian, 2011; Arismendi and
Prokopczuk, 2016). Regarding this idea, we aim to find out the densities from
the American options and also to find what are the expectations of the investors
to the market.
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5.2.2 Does investor sentiment matter for option markets?

Going back to 1990s, Barberis, Shleifer and Vishny (1998) develop a novel
investor sentiment estimator and examine the reactions of the stock prices to the
news. A number of studies have also been done to investigate the relationship
between investor sentiment and stock markets. To name a few, the reaction of
market price of risk to the market sentiment (see Verma and Soydemir, 2009), the
relationship between the sentiment and the stock returns (e.g. Chung, Hung and
Yeh, 2012; Kim and Kim, 2014), the investor sentiment during the bear market
(see Garcia, 2013). Our focus will be on the investor sentiment in options market.
Han (2007) and Lemmon and Ni (2009) document that the investor sentiment
plays an important determinant of the time variation in the slope of the volatility
smile. Han (2005) and Coakley, et al. (2014) also examine the effect of investor
sentiment on the option prices. Extending our studies in Chapter 2 and 3, I intend
to find out whether investor sentiment can partly explain the time-varying of the
risk neutral moments. More interestingly, allowing us to compute the real-world
densities (see Ross, 2015), our focus on the physical moments would be also of
interest.

5.2.3 The determinants of the time variant in pricing kernel

A number of studies have examined the empirical pricing kernel from option
markets (see Dittmar, 2002; Rosenberg and Engle, 2002; Brandt and Wang, 2003;
Bollerslev, Gibson and Zhou, 2011; Drechsler, 2013). In line with previous
studies, we would like to investigate the time-varying pricing kernel. Only a
few has attempted to examine the drivers of the movements. I aim to find out
some potential factors that might have affected the pricing kernel, such as the
macroeconomic indicators, investor sentiments, realized variances, economic
policy uncertainty, business cycle, the stochastic volatility, the jumps of financial
returns, etc. Recent work in this area includes Scheicher (2003), Kurz, Jin and
Motolese (2005), Damodaran (2009), Guiso, Sapienza and Zingales (2013), to
name a few.
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5.2.4 Systematic risk and option prices

We also motived by the study Backus, Chernov and Martin (2011), Acharya,
Pedersen, Philippon and Richardson (2017), Kelly, Lustig and Van Nieuwer-
burgh (2016), Diavatopoulos, Doran and Peterson (2008), who investigate the
systematic risk in options market. I intend to document whether the systematic
risk has been priced in option prices, which is close to the impressive study
Duan and Wei (2008). Their study examine the states that the influence of the
systematic risk on equity options, i.e. the S&P 100 index and 30 component
stocks. Evidence shows that the systematic risk does affect the implied volatility
level and its slope.
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Kirchler, M., Huber, J. and Stöckl, T., 2012. Thar she bursts: Reducing confusion
reduces bubbles. The American Economic Review, 102(2), pp.865-883.

Kiriu, T. and Hibiki, N., 2019. Estimating forward looking distribution with the
Ross recovery theorem. Journal of the Operations Research Society of Japan,
62(2), pp.83-107.

146



Kurz, M., Jin, H. and Motolese, M., 2005. Determinants of stock market volatility
and risk premia. Annals of Finance, 1(2), pp.109-147.

Lai, W., 2014. Comparison of methods to estimate option implied risk-neutral
densities, Quantitative Finance, 1839-1855.

Lee, C.M., 1992. Earnings news and small traders: An intraday analysis. Journal

of Accounting and Economics, 15(2-3), pp.265-302.

Lemmon, M.L. and Ni, S.X., 2009. The effects of investor sentiment on specula-

tive trading and prices of stock and index options. Unpublished working paper,
University of Utah.

Lewellen, K., 2006. Financing decisions when managers are risk averse. Journal

of Financial Economics, 82(3), pp.551-589.

Li, L., and Engle, R., 1998. Macroeconomic Announcements and Volatility of

Treasure Futures. Discussion Paper, University of California, San Diego.

Lim, G.C., Martin, G.M. and Martin, V.L., 2005. Parametric pricing of higher
order moments in S&P500 options. Journal of Applied Econometrics, 20(3),
pp.377-404.

Lin, Y.N. and Chang, C.H., 2010. Consistent modeling of S&P 500 and VIX
derivatives. Journal of Economic Dynamics and Control, 34(11), pp.2302-2319.

Linders, D., Dhaene, J. and Schoutens, W., 2015. Option prices and model-free
measurement of implied herd behavior in stock markets. International Journal

of Financial Engineering, 2(02), p.1550012.

Linetzky, V. and Qin, L., 2016. Positive eigenfunctions of markovian pricing op-
erators: Hansen-scheinkman factorization, ross recovery, and long-term pricing.
Operations Research, 64(1), pp.99-117.

Liu, F., 2014. Recovering conditional return distributions by regression: Estima-

tion and applications. Available at SSRN 2530183.

Liu, X., Shackleton, M.B., Taylor, S.J. and Xu, X., 2007. Closed-form trans-
formations from risk-neutral to real-world distributions. Journal of Banking &

Finance, 31(5), pp.1501-1520.

Liu, X., Shackleton, M.B., Taylor, S.J. and Xu, X., 2009. Empirical pricing
kernels obtained from the UK index options market. Applied Economics Letters,
16(10), pp.989-993.

147



Lynch, D. and Panigirtzoglou, N., 2008. “Summary Statistics of Option-Implied

Probability Density Functions and their Properties.” Bank of England Working
Paper No. 345.

MacCluer, C.R., 2000. The many proofs and applications of Perron’s theorem.
Siam Review, 42(3), pp.487-498.

Mandler, M., 2002. Comparing risk-neutral probability density functions implied

by option prices-market uncertainty and ECB-council meetings. In EFA 2002
Berlin Meetings Presented Paper.

Martin, I. and Ross, S., 2013. The long bond. Unpublished working paper.
London School of Economics and MIT.

Massacci, F., Williams, J., and Zhang, Y., 2016. Empirical Recovery: Hansen-

Scheinkman Factorization and Ross Recovery from High Frequency Option

Prices. University of Trento, Durham Business School. Working Paper, Available
at SSRN.

Melick, W. R. and Thomas, C. P., 1997. Recovering an Asset’s Implied PDF
from Option Prices: An Application to Crude Oil During the Gulf Crisis. Journal

of Financial and Quantitative Analysis 32, 91-115.

Mencı́a, J. and Sentana, E., 2013. Valuation of VIX derivatives. Journal of

Financial Economics, 108(2), pp.367-391.

Merton, R.C., 1973. Theory of rational option pricing. The Bell Journal of

economics and management science, pp.141-183.

Meyer, C.D., 2000. Matrix analysis and applied linear algebra (Vol. 2). Siam.

Mixon, S., 2002. Factors explaining movements in the implied volatility surface.
Journal of Futures Markets, 22(10), pp.915-937.
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Vähämaa, S. and Äijö, J. J., 2011. The FED’s policy decisions and implied
volatility. Journal of Futures Markets, Vol. 31, No. 10, pp. 995-1010.

Van Boening, M., A. Williams, and S. LaMaster, 1993. Price Bubbles and
Crashes in Experimental Call Markets, Economics Letters, Vol. 41, 179-185.

Verdelhan, A., 2010. A habitbased explanation of the exchange rate risk premium.
The Journal of Finance, 65(1), pp.123-146.

Verma, R. and Soydemir, G., 2009. The impact of individual and institutional in-
vestor sentiment on the market price of risk. The Quarterly Review of Economics

and Finance, 49(3), pp.1129-1145.

Walden, J., 2017. Recovery with unbounded diffusion processes. Review of

Finance, pp.1-42.

Weinberg, S., 2001. Interpreting the volatility smile: an examination of the
information content of option prices? FRB International Finance Discussion

Paper, 706.

Wilcox, N.T., 2011. ‘Stochastically more risk averse:’A contextual theory of
stochastic discrete choice under risk. Journal of Econometrics, 162(1), pp.89-
104.

Wong, A.S., Carducci, B.J. and White, A.J., 2006. Asset disposition effect: The
impact of price patterns and selected personal characteristics. Journal of Asset

Management, 7(3-4), pp.291-300.

Xing, Y., Zhang, X. and Zhao, R., 2010. What does the individual option
volatility smirk tell us about future equity returns?. Journal of Financial and

Quantitative Analysis, 45(3), pp.641-662.

Yoshino, N., Taghizadeh-Hesary, F., Hassanzadeh, A. and Prasetyo, A.D., 2014.
Response of stock markets to monetary policy: The Tehran stock market perspec-
tive. Journal of Comparative Asian Development, 13(3), pp.517-545.

152


	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Extracting Implied Risk-Neutral Densities from S&P 500 Index Option Prices and 50 ETF Options Prices
	2.1 Introduction
	2.2 Literature Review
	2.3 Data
	2.3.1 S&P 500 index options
	2.3.1.1 Criteria for option selection
	2.3.1.2 Descriptive Statistics

	2.3.2 50 ETF options

	2.4 Theoretical Framework
	2.4.1 Extract the risk neutral density from option prices and estimation with discrete data
	2.4.2 Single lognomal
	2.4.3 Mixture of two lognormals
	2.4.4 Smoothing implied volatility smile method

	2.5 Results
	2.5.1 Implied volatility surface
	2.5.2 Testing Risk Neutral Densities
	2.5.3 The Dynamic Behavior of the S&P 500 Risk Neutral Density
	2.5.4 The Dynamic Behavior of the 50 ETF Risk Neutral Density

	2.6 Conclusion and Directions for Further Study
	2.7 Appendices

	3 The reaction of option prices to macroeconomic announcements: Evidence from S&P 500 Index Options and China's 50 ETF Options
	3.1 Introduction
	3.2 Literature Review
	3.3 Data
	3.3.1 Chinese data
	3.3.1.1 China 50 ETF
	3.3.1.2 China 50 ETF Options
	3.3.1.3 Macroeconomic News Announcements in China

	3.3.2 US data
	3.3.2.1 Macroeconomic News Announcements in the US


	3.4 Estimation Framework
	3.4.1 Estimating the risk neutral density
	3.4.2 Stochastic volatility inspired (SVI) parametrization

	3.5 Empirical Results
	3.5.1 Time-varying Densities
	3.5.2 Risk-neutral Moments
	3.5.3 The Time-varying Behaviour of Risk-neutral Moments
	3.5.4 Tests of weak-form and semi-strong-form EMH
	3.5.5 Effect of announcements on densities
	3.5.5.1 Effect of announcements on densities in Chinese market
	3.5.5.2 Effect of announcements on densities in US market


	3.6 Conclusions
	3.7 Further study
	3.8 Appendices

	4 Can we recover: Evidence from stock option prices
	4.1 Introduction
	4.2 Literature Review
	4.3 Theoretical Framework
	4.3.1 Probability Measures
	4.3.2 Markov process and Markov Chain
	4.3.3 Perron-Frobenius theorem
	4.3.4 Representative Agent model
	4.3.5 Arrow-Debreu Security
	4.3.6 Pricing Kernel

	4.4 Estimation Framework
	4.4.1 From Option Prices to State Prices
	4.4.2 From State Prices to Markov Chain
	4.4.3 From Markov Chain to Real-world Transition Matrix

	4.5 Data
	4.6 Empirical Results
	4.6.1 Implied Volatility Surface and Risk-Neutral Density
	4.6.2 Implementation of Recovery Theorem
	4.6.3 Recovered density

	4.7 Conclusions

	5 Conclusions
	5.1 Summary of the Thesis
	5.2 Directions for Further Research
	5.2.1 Risk-neutral density from American options
	5.2.2 Does investor sentiment matter for option markets?
	5.2.3 The determinants of the time variant in pricing kernel
	5.2.4 Systematic risk and option prices


	References

