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Many migratory systems are changing rapidly in space and time, and these

changes present challenges for conservation. Changes in local abundance

and site occupancy across species’ ranges have raised concerns over the effi-

cacy of the existing protected area networks, while changes in phenology

can potentially create mismatches in the timing of annual events with the

availability of key resources. These changes could arise either through indi-

viduals shifting in space and time or through generational shifts in the

frequency of individuals using different locations or on differing migratory

schedules. Using a long-term study of a migratory shorebird in which indi-

viduals have been tracked through a period of range expansion and

phenological change, we show that these changes occur through genera-

tional shifts in spatial and phenological distributions, and that individuals

are highly consistent in space and time. Predictions of future rates of changes

in range size and phenology, and their implications for species conservation,

will require an understanding of the processes that can drive generational

shifts. We therefore explore the developmental, demographic and environ-

mental processes that could influence generational shifts in phenology and

distribution, and the studies that will be needed to distinguish among

these mechanisms of change.

This article is part of the theme issue ‘Linking behaviour to dynamics

of populations and communities: application of novel approaches in

behavioural ecology to conservation’.
1. Introduction
Migratory populations throughout the world are changing rapidly, with

declines in abundance being reported on all major flyways [1–3] and driving

international calls for action [4]. Identifying the causes of population changes

in migratory species is inherently complex because of the range of sites and con-

ditions experienced by individuals on their annual journeys. Changing

conditions in any or all parts of migratory ranges could drive changes in abun-

dance and distribution. For example, changes in local conditions could

influence local demography and thus alter relative abundances and site occu-

pancy anywhere within a migratory range. However, the effects of local

changes in one part of a range can also cascade through to influence abundance

and distribution across a range [5,6]. This potential for interactions between

local environmental conditions, demography, individual development and

range-wide distribution and phenology make migratory systems complex,

and designing conservation actions to halt and reverse declines in migratory

species is therefore a major challenge.

Recent changes in abundance of migratory species have been linked to their

distribution and phenology. For example, phenological change is most com-

monly observed as shifts in the timing of migration to breeding grounds, and
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the magnitude of these shifts can vary greatly among species.

Among European breeding birds, declines have been more

frequent in species for which advances in spring arrival

dates have not occurred [7], and species with non-overlapping

breeding and wintering ranges are both more likely to be

declining and less likely to have shown advances in spring

arrival [2]. A lack of advance in spring arrival dates can

potentially increase the impact of any trophic mismatch

resulting from climate-driven changes in the timing of avail-

ability of key food resources for breeding [8,9]. Declining

species with little or no phenological change are often

assumed to be constrained from responding to changing

climatic conditions in breeding areas (for example, because

they migrate to more distant non-breeding locations), but

the nature of any such constraint is unknown. Identifying

the mechanisms through which phenological change occurs,

and thus the factors constraining or facilitating these changes,

may therefore be key to designing and targeting conservation

actions to mitigate the effects of trophic mismatch.

Changes in the distribution of breeding and non-breeding

ranges have also occurred in many migratory species, with

polewards range shifts being particularly prevalent [10,11].

Concerns have consequently arisen over the efficacy of the

existing protected area networks [5,12]. Range change is

often interpreted as a response to changes in the suitability

of environmental conditions (e.g. colonization of areas that

were previously unsuitable and/or contraction from areas

of declining suitability). However, the mechanisms driving

changes in the distribution of individuals across a range are

rarely known.

Both range change and phenological change could arise

through individual plasticity in the use of space and time.

For example, range change may occur through individual

movement to locate suitable conditions, while changes in

the timing of migration could arise through individual

decisions on departure timings or time spent on migratory

journeys varying between years. By contrast, these changes

could also result from generational shifts in the frequency

of individuals that use different locations or migrate at

specific times. Generational shifts would not require individ-

ual plasticity but would require changes in the conditions

determining the frequency of individuals within a population

with different phenologies or probabilities of occupying

different parts of a range, such that the spatial and temporal

distribution of recruits to the population would differ from

their predecessors. For example, changes in distribution

could arise through shifts in the conditions influencing the

probability of occupancy of different locations by new

recruits, and/or by shifts in the survival rates achieved

within different locations. Similarly, shifts in the timing of

migration could occur through changes in the conditions

influencing adoption of migration schedules by new recruits

(or survival rates associated with different schedules) altering

the frequency of individuals on different schedules within a

population [13].

Individual plasticity in spatial distribution and migratory

timings would facilitate relatively rapid responses to chan-

ging environmental conditions. However, generational

shifts would likely result in slower responses to environ-

mental changes, particularly in long-lived species, as the

direction and magnitude of the changes would depend on

the proportion of annual recruits within a population and

the proportion of those recruits experiencing changing
drivers of the use of space and time. If individual variation

in migratory destination or timing has a genetic component,

then generational shifts could drive microevolutionary

change. However, genetic change is not an inevitable conse-

quence of generational shifts, as individual destinations or

timings could also be determined by environmental or

social cues.

Changes in range size or migration phenology of popu-

lations as a result of individual plasticity in the use of space

and time has not been demonstrated, and a growing

number of individual tracking studies are reporting high

levels of repeatability in individual migratory destinations

and timings [13–20]. If generational shifts are the more

likely driver of population changes in space and time, then

our focus should be on understanding drivers of settlement

and phenology of recruits, as well as their subsequent survival

and recruitment.

Identifying the relative contributions of generational

shifts and individual plasticity requires model systems in

which individuals can be tracked across space and time,

through periods of shifts in range and phenology. Such

large-scale, long-term tracking data are rare but one system

that provides all of these elements is the Icelandic black-

tailed godwit, Limosa limosa islandica, which has been the sub-

ject of intensive individual and population studies since the

mid-1990s [21–23]. In common with many migratory bird

species at temperate and subarctic latitudes, advances in

the phenology of spring migration have occurred in the Ice-

landic godwit population in recent decades [24]. Iceland

supports very large breeding populations of several shore-

bird populations which migrate south to locations ranging

from temperate Europe to sub-Saharan Africa [25]. The first

recorded arrival dates of these species into south Iceland in

spring have advanced over the last three decades, with god-

wits showing one of the most rapid advances (approx. two

weeks earlier now than in the 1990s; [24]). In addition, this

godwit population has shown sustained increases in

number for over a century, likely as a consequence of warm-

ing conditions in Iceland facilitating earlier and more

successful breeding and recruitment [6,26,27]. This popu-

lation growth has been accompanied by range expansion in

both the breeding and non-breeding ranges; in Iceland, god-

wits have expanded from a breeding range that was confined

to the southwest corner of the country around 1900, to

occupy progressively more northerly and easterly locations

[27]. In the non-breeding range, which spans coastal areas

of northwest Europe from Britain and Ireland to Iberia and

northern Morocco, colonization and population increases

have primarily occurred in the northern part of the range

(east and northwest England, Scotland and east Ireland)

since the 1970s, when surveys began [21,28].

In the mid-1990s, a programme of population-wide and

lifelong tracking of individual godwits was initiated [21,29].

Across the breeding and non-breeding ranges, godwits have

been caught and marked with unique combinations of

coloured leg-rings, and approximately 1–2% of the popu-

lation (which numbers approx. 50 000 individuals; [30]) is

marked. A citizen science network of greater than 2000 obser-

vers across Europe regularly report marked individuals,

allowing the locations of individuals to be repeatedly tracked

within and across years [31]. Here, we use this range-wide

tracking of an expanding (in space) and advancing (in time)

migratory shorebird, to explore whether individual plasticity
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Figure 1. Number of years on which 85 individually marked Icelandic god-
wits have been recorded on spring arrival in Iceland, between 1999 and 2018.
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or generational shifts are likely to have caused these changes

in space and time, and to consider the evidence for potential

developmental, environmental and demographic drivers of

such changes.

2. Methods
(a) Phenological change: repeated measures of

individual spring arrival dates
Black-tailed godwits return to Iceland between mid-April and

mid-May and, on arrival, flocks congregate on a small number

of arrival sites [32]. Since 1999, standardized surveys of arrival

sites in south and west Iceland have taken place from mid-

April to early May, with the identities of all individually

marked birds at all study locations being recorded every 1–3

days [13,32]. Between 1999 and 2018, arrival dates were recorded

in at least 3 years for 85 individuals (figure 1). In order to quan-

tify (a) the trends in arrival dates of individuals, we constructed a

generalized linear model (GLM) with each individual arrival

date (in Julian days) as the dependent variable, and year and

individual as fixed effects (an extension of the model reported

in Gill et al. [13] for a smaller sample). In order to then quantify

(b) whether individual trends in arrival dates have changed in

magnitude or (c) whether the frequency of individuals with dif-

fering arrival dates has changed over the 16-year survey period,

we then constructed two further GLMs with the (b) trend in arri-

val date and (c) mean arrival date for each individual as the

dependent variable, and the year of first spring arrival (i.e. the

first year in which each individual was observed on arrival in

Iceland) observation as a fixed effect.

(b) Range change: non-breeding locations of marked
individuals

Locations of individually marked godwits across the migratory

range have been recorded by a network of citizen scientists

since the mid-1990s. Here, we use all recorded non-breeding

locations (i.e. excluding records within Iceland) of 631 individ-

uals marked at the main post-breeding moult location in east

England during the autumns of 1995–2014, and the winter

(mid-October to mid-February) records of the 419 of these indi-

viduals observed during that period. To assess the role of

individual movement in driving the northward range expansion,

we use these sightings to quantify the total number of non-

breeding locations (individual estuaries and wetlands), regions

and countries (table 1) used by individuals tracked for differing

numbers of years. To quantify the contribution of generational

shifts in the frequency of individuals using different locations

to the northwards range expansion, we then use these sightings

to assess whether individuals marked in more recent years

(which will be younger, on average, than previously marked

individuals) are more likely to use recently colonized locations.

We constructed GLMs with a binomial structure and a logit

link, with the number of individuals marked in consecutive

5-year time periods since 1995 that winter in sites (i) colonized

before or after the 1960s and (ii) north and south of 528 N

(most of the recently colonized sites are north of 528 N; [31,33])

as the dependent variable, and time period as a fixed effect.

3. Results
(a) Mechanisms driving phenological change: individual

plasticity or generational shifts
Although first spring observations of godwits in south Ice-

land have advanced by more than two weeks in the last
two decades [24], trends in arrival dates of 85 marked indi-

viduals over the last 16 years vary significantly among

individuals but show no consistent advances in individual

arrival date (table 2a), and no change in individual arrival

trends over the survey period (figure 2a and table 2b). How-

ever, the distribution of arrival dates of marked individuals

has changed over time, with individuals first observed in

more recent years tending to arrive earlier than individuals

first recorded in the late 1990s/early 2000s (figure 2b and

table 2c). Thus, while the arrival dates of individuals have

not advanced, the frequency of early-arriving individuals

has increased over this time period.
(b) Mechanisms driving range change: individual
plasticity or generational shifts

Repeated tracking of individual godwits across the migratory

range for up to 23 years indicates a remarkably low level of

individual plasticity in site use throughout their lives. On

average, individuals are recorded on a total of only approxi-

mately 4 (+2.5 s.e.) non-breeding locations, regardless of the

number of years for which they have been tracked (figure 3).

In addition, these few locations are spread across, on average,

2.5 (+1.5) regions in 1.5 (+0.8) countries. Individuals are

therefore highly restricted and consistent in their use of a

small number of passage and winter locations, and these

can be spread across the migratory range. However, over

the two decades of continuous marking and tracking, with

newly marked individuals being added to the population

each year, the relative frequency of individuals using ‘new’

(colonized since the 1960s, table 3) winter sites has increased

(figure 4a), and this is primarily through increased numbers

of individuals using more northerly sites (figure 4b and

table 3).
4. Discussion
The spring arrival dates of godwits in Iceland have advanced

[24] and the breeding population has expanded northwards

in recent decades, with rapid population increases in more

northerly non-breeding locations [21]. Repeated tracking of

individuals in space and time over this period has shown

that these expansions and advances are driven by genera-

tional shifts in the frequency of individuals occupying



Table 1. The 121 winter locations across 26 regions and nine countries used by the individual godwits shown in figure 3. Regions in italics are colonized since
the 1960s.

country region lat. – long. no. of locations

N Ireland east 548 N, 058 W 1

Ireland west 538 N, 088 W 1

central 528 N, 088 W 2

east 538 N, 068 W 6

south 518 N, 088 W 11

Wales north 538 N, 038 W 2

west 528 N, 048 W 1

England northwest 538 N, 038 W 9

central 528 N, 018 W 2

east 528 N, 018 E 27

south 508 N, 018 W 10

southeast 518 N, 018 E 3

southwest 508 N, 038 W 7

The Netherlands north 538 N, 068 E 1

central 528 N, 068 E 2

west 528 N, 048 E 3

France north 488 N, 018 W 3

northwest 478 N, 028 W 7

west 468 N, 018 W 10

Portugal south 378 N, 088 W 4

west 388 N, 098 W 3

Spain north 438 N, 038 W 1

northwest 428 N, 088 W 1

west 388 N, 068 W 1

south 378 N, 068 W 2

Morocco west 308 N, 098 W 1

Table 2. Results of GLMs of (a) annual and individual variation in arrival dates of 85 godwits (3 – 12 years between 1999 and 2018) and variation in (b)
annual trends in arrival dates and (c) mean arrival dates, in relation to the year in which those 85 individuals were first observed on arrival in Iceland.

d.f. F p-value slope (+++++s.e.)

(a)

year 1 0.99 0.32 0.062+ 0.06

individual 84 2.06 0.001

error 300

(b)

first observation year 1 0.02 0.89 0.004+ 0.03

error 83

(c)

first observation year 1 8.83 0.004 20.21+ 0.07

error 83
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different locations and migrating at different times, and not

by individual plasticity. Individuals show lifelong consist-

ency in the use of a small number of non-breeding

locations, but the proportion of individuals occupying
recently colonized sites is greater for more recently ringed

birds. As recently colonized sites are primarily (but not exclu-

sively) in the north of the range, and as the network of

observers recording individual locations has been in
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Figure 2. Changes in the mean (a) annual change in arrival date and (b) arrival date (days since 1 April) in Iceland of 85 individual godwits with the year in which
they were first observed on arrival in Iceland (see table 2c for model details).

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180047

5

operation throughout the 20-year survey period, the recorded

shift in distribution is unlikely to be influenced by changes in

reporting rates across the range.

The widely reported changes in phenology and distri-

bution of many migratory species in recent decades may

therefore be likely to result from generational shifts in the fre-

quency of individuals with differing phenologies and using

different locations. Generational shifts have been shown to

drive shifts in distribution in other migratory systems. For

example, a shift in the use of spring passage sites by a

migratory wader population (continental black-tailed god-

wits, Limosa limosa limosa) was driven by new recruits to the

population, while adults in the population continued to use

the site they had always previously occupied [33]. Quantify-

ing the role of generational shifts requires long-term tracking

of individuals, and relatively few studies have this infor-

mation during periods of change. However, tracking

studies are increasingly being conducted, and studies track-

ing individuals over multiple years are typically reporting

high levels of repeatability of individual timings and desti-

nations [13–20], suggesting that the benefits of philopatry

in the use of space and time are very strong [34,35]. Thus,
generational shifts may be the primary mechanism through

which phenological shifts and range change occur.

Identifying the environmental and demographic pro-

cesses that drive generational shifts in space and time is

therefore likely to be a critical step in understanding popu-

lation-level responses to environmental change and the

associated implications for conservation. Generational shifts

in distribution or phenology could potentially arise through

processes occurring at the following points in early life.
(a) Developmental drivers of generational shifts
Conditions experienced at the natal stage, such as timing of

hatching and/or conditions for growth and development,

could influence the probability of those individuals undertak-

ing different subsequent migratory routes and timings. For

example, individuals hatched late in the season and/or

with insufficient resources to fuel rapid growth are likely to

migrate later, on average, and may thus have less time to

locate more distant non-breeding locations. In such a case,

an increase in the number of later-fledging individuals

could drive recruitment into non-breeding locations that are
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Figure 3. The total number of (a) countries, (b) regions and (c) locations on which individual godwits have ever been recorded in the total number of years over
which each has been tracked. The number of individuals tracked for each total number of years is shown above the bars in (a); see table 1 for numbers of locations,
regions and countries.

Table 3. Results of binomial models of variation through consecutive time
intervals in the frequency of individually marked godwits recorded in
winter locations (a) occupied since the 1960s (old, 0) or colonized since
then (new, 1), and (b) north (0) and south (1) of 528 N.

estimate s.e. p-value odds ratio

(a)

intercept 0.4 0.25

year 20.77 0.13 0.001 0.46

(b)

intercept 20.008 0.23

year 20.29 0.11 0.006 0.74
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closer to the breeding grounds. Similarly, natal conditions

could potentially influence subsequent migration phenology,

either directly through impacts on individual condition or

indirectly through impacts on the conditions and potential

flockmates encountered during the non-breeding season.

An important aspect of natal conditions that could poten-

tially influence juvenile distribution and migratory timings is

the changes in breeding phenology that are widely reported

in many migratory populations [9,36]. Advances in nesting

dates have been reported in many species and individual

plasticity in nesting dates is common [37,38]. Thus, current

evidence suggests that individual timings of arrival of

migrants on breeding grounds tend to be consistent, but sub-

sequent timings of breeding can vary greatly, and often vary
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in response to local weather conditions [6,39,40]. This chan-

ging phenology of natal conditions could potentially drive

changes in subsequent phenology and distribution of new

recruits to the population, if timing of fledging influences

subsequent migratory routes and timings. A key mechanism

that could drive such links is the potential for timing of fled-

ging to influence the likely flockmates on migratory journeys,

and the destinations to which they are travelling. For

example, tracking of adult and juvenile lesser spotted

eagles, Clanga pomarina, on their migratory journeys has

shown that juveniles that departed at the same time as

adults were significantly more likely to take the same

routes as adults, and to have higher subsequent survival

rates, than juveniles who departed without adults [41].

Timing-driven access to social cues in migratory flocks

could therefore be an important driver of the migratory

routes and destinations located by juveniles, and changes in

the timing of fledging could therefore drive changes in the

non-breeding distribution of migratory species.

(b) Environmental effects on generational shifts
Changing environmental conditions could directly influence

the probability of recruits migrating at specific times or locat-

ing specific non-breeding locations. For example, changing

weather conditions (e.g. windspeeds or directions) could

alter the proportions of recruits migrating at different times

or taking different routes. However, while wind conditions

can have important effects on migrating birds [42], individual
consistency in migratory destinations and timings would

mean that such effects could only operate in early life (i.e.

during settlement/recruitment).

(c) Demographic effects on generational shifts
Disproportionate changes in survival rates of recruits that

differ in distribution or timing could lead to generational

shifts. For example, while the numbers of individuals recruit-

ing into more northerly winter locations or arriving early on

the breeding grounds may not be changing, those individuals

could be increasingly likely to survive, for example, as a con-

sequence of ameliorating weather conditions in northerly

areas or on arrival in the breeding areas. Changing patterns

of survival may be particularly relevant in systems with

range expansion into areas in which weather conditions are

changing as a consequence of climatic change [43], and

these effects could operate alongside developmental or

environmental effects.

(d) Drivers of generational shifts in Icelandic godwits
In Icelandic black-tailed godwits, rapid warming has

occurred on the breeding grounds in recent decades, and

nesting dates are earlier [6] and productivity is higher [26]

in warmer years. This warming-driven increase in pro-

ductivity is likely to have fuelled the colonization of colder

breeding areas in the north, where nest-laying and hatching

dates are, on average, later than in more southerly breeding



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180047

8
areas [6]. Individuals from these colder and more recently

colonized breeding areas are more likely to also winter in

the more recently colonized non-breeding areas [31], and

these seasonal links could thus result from regional-scale

differences in the timing of fledging and subsequent social

cues available to juveniles undertaking their first migration.

Warming-driven advances in nesting dates could also have

driven the advancing spring arrival of godwits in Iceland, as

previous analyses have shown that (i) individuals wintering

in more southerly areas of Europe [29] and breeding in the

warmer areas of south and west Iceland [32] arrive first, and

(ii) more recently hatched individuals tend to have earlier

spring arrival dates than individuals hatched in the 1990s

[13]. This suggests that the generational shifts driving the phe-

nological advance in this system (figure 2) could potentially

result from increased numbers of early-hatched individuals

from the traditionally occupied areas of Iceland that, because

of their early fledging, are also more likely to have the time,

condition and social cues to both locate traditionally occupied

winter areas and return early in spring. Increased survival rates

of early-arrivers and northerly winterers could also be contri-

buting to these changes in space and time.

(e) Climate change and generational shifts in space
and time

If climate-driven shifts in breeding phenology can alter the

frequency of juveniles undertaking different migratory

routes, destinations and timings, this could be an important

route through which climate-associated shifts in range and

phenology are manifest. A common pattern among migratory

species at present is those migrating longer distances are less

likely to show shifts in migration phenology [44,45]. As

longer-distance migrants typically arrive later on the breed-

ing grounds and have a smaller gap between arrival and

laying than shorter-distance migrants [13], they may have a

more limited capacity to alter breeding phenology (and

thus generational shifts resulting from shifts in breeding

phenology are less likely to occur). The effects of climate

warming on breeding phenology can thus have potentially

far-reaching consequences for migratory populations.
( f ) Future research
Identifying the contribution of developmental, environ-

mental and demographic change to generational shifts, and

the conditions in which each might be most relevant, will

require studies in which the effects of natal conditions,

environmental conditions experienced by juvenile individ-

uals undertaking different migratory routes and timings,

and the demographic consequences of conditions experienced

at destinations can be measured. Tracking individuals from

fledging to recruitment into adulthood is difficult because

survival rates at this life stage are typically low, and retrieval

of tags can be challenging because the subsequent breeding

locations of these individuals is typically unknown, but tech-

nological advances will hopefully make these issues more

tractable in the near future. Long-term studies of seasonal

patterns of nest loss, timing of replacement clutches and

juvenile fledging will also be particularly valuable in identi-

fying the potential role of breeding phenology in driving

change in migratory systems. Quantifying the developmen-

tal, environmental and demographic processes that

influence individual migratory routes, destinations and tim-

ings will be key to understanding future rates and

directions of spatial and phenological change in migratory

species, and the associated implications for designing effec-

tive protected area networks and conservation actions for

these species.
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