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Abstract

In this thesis, we will axiomatize the theory of a strongly minimal unar,
that is, a structure A in the language L = (f) where f is a unary function.
We will first classify the strongly minimal unars where f is injective and
give complete axiomatizations for them. Then we will show that these
theories have quantifier elimination after adding some relation symbols.
Then we will topologize A and prove that this topology satisfies the
Zariski axioms. Finally we will classify all the strongly minimal unars, not
necessarily the injective ones, and give an axiomatization of some of the

cases of the classification.



Contents

[Abstract] ii
[Acknowledgements| v
1__Introduction| 1
2 Background Materiall 4

[2.1  Geometry of Strongly Minimal Sets| . . . . . . ... ... .. 4

(2.2 Morley Rank And Morley Degree In Strongly Minimal Theories| 10

[3 Papers Review 15
[4  Zariski Geometry on a Pure set| 20
M1 TIntroductionl . . . . . . . . .. ... 20
[4.2  Zariski Geometry on a Pureset| . . . . ... ... ... ... 22
[4.2.1 Topology on (X,=)[. . . .. .. ... ... ... ... 24

[4.2.2  Zariski Axioms on (X,=)| . .. ... ... 31




Contents iv
[>  Classification of injective unars| 35
[>.1 'The theory of an injective unar| . . . . . ... .. ... ... 38
(5.2 Quantifier Elimination| . . . . . ... ... ... 41

6 Zariski Geometry on Strongly Minimal Injective Unars| 50
[6.1 Topology on Injective Unars| . . . . . ... ... ... .... 51
[6.1.1 Characteristic of A and Assumption () . . ... .. 51

[6.1.2  Definition of The Closed Sets C,|. . . . . . .. .. .. 52

[6.1.3  Formulas In Special Form| . . . . ... .. ... ... 54

(6.2 Dimension and Rank of Closed Sets in Injective Unars| 58
(6.3 Zariski Geometry Axioms on Injective Unars| . . . . . . . .. 63

[7  Classification of all Strongly Minimal Unars| 73




Acknowledgements

First and foremost I want to express my deep sense of thanks and
gratitude to my supervisor Dr Jonathan Kirby for his guidance, patience,
kindness, and motivation. His always available advice and valuable
encouragement helped me to a very great extent to accomplish this thesis.
I would like to extent my thanks to Dr Robert Gray for his academic
feedback.

My Father and Mother, I am very thankful for your everyday love,
support, and all your sacrifices. Without you I would never have enjoyed
so many opportunities. Fahad, May, Naif, Ghada, Rana, Shahad, thank
you very much for motivating me.

Turki, my love, thank you very much for your support, encourage,
sacrifice, and tolerance during the every stage of this Ph.D. You, Qamar,

Malak, Faisal are the source of my strength in this journey.



Introduction

Strongly minimal sets play an important role in modern model theory
where the local properties of the geometry of strongly minimal sets have

an influence on the global properties of structures.[12, p.289]

Motivation 1.1. Morley’s categoricity theorem states that if T is a
countable theory, then T is k-categorical for some uncountable x if and
only if it is x categorical for all uncountable x.

By [12], Corollary 6.1.16 and Theorem 6.1.18] we can deduce that strongly
minimal sets exist in every uncountable categorical theory. By [12]
Corollary 6.1.12] we can see that any model of a strongly minimal theory
is determined up to isomorphism by its dimension.

A geometry on the algebraic closure of strongly minimal sets can be a
disintegrated geometry, a locally modular (not disintegrated) geometry, or
a non-locally modular geometry. Examples of such geometries are a pure
set, vector spaces, and algebraically closed fields.

The trichotomy conjecture by Zilber is that every strongly minimal set
which is not locally modular interprets an algebraically closed field.
However, this conjecture is false as Hrushovski in 1993 [4] found counter
examples where he constructed nonlocally modular strongly minimal sets
which do not interpret even a group. In 1996 [6], Hrushovski and Zilber
defined Zariski geometries and proved that if M is a strongly minimal
Zariski geometry and not locally modular then M interprets an

algebraically closed field.
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Some locally modular strongly minimal sets satisfy the axioms of Zariski
geometries such as a pure infinite set, vector spaces, and their affine
spaces.

However, we do not know if there are examples of locally modular strongly
minimal sets which are not Zariski geometries. The table below
summarises what is known. This project is aiming to see if all locally
modular strongly minimal sets are Zariski geometries, or if we have new
interesting examples of strongly minimal sets which are not Zariski
geometries.

More precisely, the question is “Is every locally modular strongly minimal

set a Zariski Geometry?”. This thesis starts to answer this question.

Strongly minimal set which is | Strongly minimal set which is

a Zariski geometry not a Zariski geometry

New strongly minimal sets
Non-locally modular | Algebraically closed fields

(interesting behaviour)

Locally modular Vector spaces )

(not disintegrated) | Affine spaces

o Pure sets
Disintegrated ?
Unars studied in this thesis

Table 1.1: Strongly Minimal Sets

We aim in this thesis to classify strongly minimal sets in the language of
a unary function symbol f, then topologize these structures so they satisfy
the Zariski geometry axioms.

The thesis consists of seven chapters.

Chapter 2 is divided into two subsections. The first subsection is about
the geometry of strongly minimal sets with basic definitions and lemmas.
We also give a brief discussion of the pregeometry on the basic examples
of strongly minimal sets. Then we prove that a strongly minimal theory is
uncountably categorical. The second subsection is about Morley rank and
degree with basic definitions and lemmas particularly in strongly minimal

theories.
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In Chapter 3 we review the papers which were our main sources in this
project. The main paper is “Categorical Theories of a Function” by Yu. E.
Shishmarev where he classifies the categorical unars in general whereas we
classify the strongly minimal unars.

In Chapter 4, we take a pure set and topologize it then we prove that this
topology satisfies the Zariski axioms.

In Chapter 5, we work on the classification of strongly minimal injective
unars. We first axiomatize the theory of an injective unar especially the
strongly minimal ones and then we prove that this theory is complete. Then
we show this theory with some conditions has quantifier elimination.
Chapter 6 is about Zariski geometry on strongly minimal injective unars.
We will topologize a strongly minimal injective unar and we will add a
condition named (*), which will be defined and justified in this chapter, to
this topology. Then we will prove that this topology satisfies the Zariski
axioms.

In Chapter 7, we will give the classification of all strongly minimal unars,
not only the injective ones. The attempt in this chapter was to give a
complete axiomatization for all cases of our classification but as we lack

time we will give an axiomatization in some cases.



Background Material

2.1 Geometry of Strongly Minimal Sets

The notations and conventions used in this thesis are from [12] but they
are standard. A structure is a set equipped with relations, functions, and
constants corresponding to the symbols of a first order language L. For
example, (N, s,0) is the structure of the natural numbers with the successor
function s and constant symbol 0. We use a curly letter to denote the
structure and a Roman letter to denote the domain of the structure such
as N' = (N, s,0). We write A C B to mean that A is a subset of B. The
notation N stands for the set of positive integers. We write @ to denote
a finite sequence (ay, ...,a,), and @ € A to denote (ay,...,a,) € A™. For a
structure A, |A| is the cardinality of the domain A. We will use Z, 7 as
tuples of variables and ¢(7,7) as a formula in the variables T and 5. We
write A E ¢(@) to mean that ¢(a) is true in A. Let M be an L-structure
and A C M. Then L4 is the language obtained by adding constant symbols
to L for each element in A and Tha(M) is the set of all L4-sentences true
in M. We say that an L-theory T is satisfiable if there is an L-structure
M such that M E T.

Definition 2.1. [12] p.115] A set p of L s-formulas in free variables x1, ..., x,
is called an n-type if pUTh (M) is satisfiable. The set p is called a complete

n-type if for all L 4-formulas ¢ with free variables from x4, ..., z,, either ¢ € p
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or ~p € p. The set of all complete n-types is denoted by S (A).

Suppose p is an n-type over A. Then p is realised in M if there exists
a € M™ such that M F ¢(a) for all ¢ € p.

Let T be a complete theory with an infinite model in a countable language

L.

Definition 2.2. [I2] p.138] Let x be an infinite cardinal. A model M of T
is called s-saturated if for all A C M with |A| < x and p € SM(A), then p

is realised in M.

Definition 2.3. [9, p.117] Let M be an L-structure and A C M. Let
X C M". We say X is definable with parameters from A if and only if

there is an L-formula ¢(x1,...,2Zn, Y1, ..., Ym) and elements aq,...,a,, € A

such that X = {(z1,...,z,) € M" : M E @(x1, ..., Tn, a1, ..., ) }.

Definition 2.4. [I6, p.1] An infinite definable set X C M™, where X is
definable with parameters, is called minimal if every definable (with
parameters) subset of X is either finite or cofinite. If ¢(Z,@) is the formula
that defines X, then ¢(7,a) is minimal. We say that X and ¢(Z,a) are

strongly minimal if ¢(Z,@) is minimal in any elementary extension A of

M.

Typical examples of strongly minimal sets are as follows:

1. An infinite set in the language of equality.

2. The structure (N;s,0) consisting of the set of natural nembers

equipped with the successor function.
3. An infinite vector space over a field K.

4. An algebraically closed field.



Chapter 2: Background Material 6

Definition 2.5. Let M be an L-structure and A be a subset of M. We say
that b € M is algebraic over A if there is an L-formula ¢(v,w) and a € A
such that M |= ¢(b,a) and {y € M : M |= ¢(y,a)} is finite.

So, the algebraic closure, denoted by acl(A), is the union of all finite A-
definable subsets. In algebraically closed fields, this is equal to the field
theoretic algebraic closure.

In strongly minimal structures, acl gives rise to a special feature, called a

‘pregeometry’.

Definition 2.6. [I1], p.192] Let X be a set and let ¢l : P(X) — P(X) be
an operator on the power set of X. We say that (X, cl) is a pregeometry if

the following conditions hold:

i) If A C X, then A C cl(A) and if A C B C X, then cl(A) C cl(B).
(Monotonicity)

i1) If A C X, then cl(cl(A)) = cl(A).

ii) If A C X, a,b € X and a € cl(AU {b}), then a € cl(A) or b €
cl(AU{a}). (Exchange)

iv) If A C X and a € cl(A), then there is a finite Ay C A such that

a € cl(Ap). (Finite nature of closure)

Remark 2.7. In Definition[2.6] the properties (i), (i), and (iv) are true of
algebraic closure in any structure M. Also, exchange holds in any strongly

minimal set.

Lemma 2.8. [11], p.192] If D is a strongly minimal set, then (D, acl) is a

pregeometry.

Using Remark [2.7] (i), (i), and (iv) hold in (D, acl). So we only need to
show that (i27) holds and thus (D, acl) is a pregeometry.
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Proof. See[I1], p.192] O

Definition 2.9. [12, p.290] If (X, ¢l) is a pregeometry, then A C X is
independent if a ¢ cl(A \ {a}) for all a € A. We say that B is a basis for
Y C X if B CY isindependent and Y C acl(B).

The dimension of a pregeometry Y, denoted by dim(Y"), is the cardinality of
its basis and this dimension is well-defined. In other words, any two bases

for Y have the same cardinality.
Lemma 2.10. [12] p.210] Let A, B C D be independent with A C acl(B).
i) Suppose that Ay C A, By C B, Ay U By is a basis for acl(B) and

a € A\ Ag. Then, there is b € By such that Ay U {a} U (By\ {b}) is a
basis for acl(B).

ir) |Al < [B].

iti) If A and B are bases for Y C D, then |A| = |B].

Proof. See [12], p.210] O

Definition 2.11. Let (X, cl) be a pregeometry and A C X. We define the
localization cls(B) = cl(AU B).

The following are important properties of pregeometry:

Definition 2.12. [12] p.290] Let (X, cl) be a pregeometry:

i) We say that (X, cl) is trivial if cl(A) = [J,c, cl({a}) for any A C X.

i1) We say that (X,cl) is modular if for any finite dimensional closed

A, BCX,

dim(AU B) = dim A 4+ dim B — dim (AN B).



Chapter 2: Background Material 8

iii)

We say that (X, cl) is locally modular if (X, ¢l,) is modular for some
ac X.

Now we will examine some examples of strongly minimal sets to see what

type of pregeometry they give rise to.

Example 2.13. [12] p.291]

i)

i)

iii)

The acl on (X, =) and (Z, s) is a trivial pregeometry. For (X, =), we
have acl(z) = {z} for all x € X and acl(@) = @ and acl(Y) =Y for
all Y C X. For (Z,s), we have acl(z) = {s"(z) : n € Z}, acl(@) =
@, and acl(Y) = {s"(y) 1y € Y,n € Z} = U,y {s"(y) : n € Z}
= Uyey acl({y}) for all Y C Z. Note that the algebraic closure in
(X, =) for the empty set is empty and for each element in X is itself.

So acl is a trivial geometry.

Let V = (V,+,0, )\ : k € K) where V is an infinite vector space over
a division ring K. Then V is a strongly minimal set. For a subset
A CV, span(A) is the set of all K-linear combinations of elements
of A. So acl(A) = span(A), cl(@) = {0}, and for each a € V' \ {0}
and for each A\, € K we have cl(a) = {\¢a : k € K} which is a line
through a and 0. So (V,cl) is a pregeometry. Let A and B be
subspaces of a finite dimensional vector space V. By the dimension
theorem for intersections of linear subspaces,
dim(A + B) = dimA + dimB — dim(AN B). So (V,cl) is a modular

pregeometry.

Now let a,b,c € V be non-collinear. Consider the affine geometry on
V where cl(A) is the smallest affine space containing A, cl(@) = @ and
cl(a) = {a}. This geometry is not modular as dim(a,b,c,c+b—a) #
dim(a,b)+dim(c,c+b—a)—dim((a,b)N(c,c+b—a)). However, if we
localize this geometry at 0 we will get the vector space pregeometry

which is modular. So affine geometry on V' is locally modular.
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iv) Let K be an algebraically closed field of infinite transcendence degree.
We will localize the pregeometry at k where k is a subfield of K of finite
transcendence degree. Let a,b, x be algebraically independent over k
and y = ax +b. So dim(k(z,y,a,b)/k) = 3 and dim(k(x,y)/k) =
dim(k(a,b)/k) = 2 but acl(k(z,y))Nacl(k(a,b)) = k. So algebraically

closed fields are not locally modular.

The following theorem states a significant property of a strongly minimal
theory T which is that for each uncountable cardinal we have a unique model

of T" up to isomorphism. Hence, T is an uncountably categorical theory.

Theorem 2.14. [12, p.211] Suppose T is a strongly minimal theory in a
countable language. If K > ®; and M, N |= T with M| = |[N| = k, then
M=N.

First we need to show that the cardinality of a basis of M is equal to
the cardinality of M. Then we prove that if M and N have the same
dimension, then they are isomorphic. The proof of this theorem in [12]
p.211] use Zorn’s Lemma but here we will use the back and forth method to
prove this theorem which is an important method and we will use it later

in this thesis. The ideas in the following proof are not new.

Proof. Let B be a basis for M. Then, M = acl(B). So for each a € M
there is a formula ¢(z, ) and a tuple b from B such that (M, b) is finite
and a € p(M,b). There are |T| = R such formulas ¢(z,¥) and |B| finite
tuples from B. Thus, |M| < N, -|B| = |B|. So |[M| < |B|. But BC M
which means |B| < |M|. Hence |B| = |M]|.

Let M,N = T with |[M| = |N| = k > N;. Let B be a basis for M and C
be a basis for N. By the first part of the proof, we have |B| = |C| = k.
Thus we can choose a bijection f : B — C. By [12, Corollary 6.1.7,
p.210], f is partial elementary. List M as (as)a<s Where k = |M|. For
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each oo < K we define a partial elementary map

foa:BU{ag:pf <a} — N.

Let fo = f where f is partial elementary.

If o is a limit ordinal, take f, = |J fs. Then f, is partial elementary. If a
is not a limit ordinal, let o = 3 j—? We have f3 is partial elementary and
want to define f, on ag.

Since ag € acl(B), ag € (BU{a, : v < B}). So tplag/BU{a, : v < S})
is isolated by a formula ¢(x,d) where d is a tuple from B U {a, : 7 <

B}. Thus M [ ¢(ag,d). So M = 3z ¢p(x,d) which means N = Iz

o(z, fs(d)). Choose e € N such thatN = p(e, f3(d)). Since ¢(z, d) isolates

tp(ag/B U {a, : v < B}) and fs is partial elementary, ¢(z, f3(d)) isolates

tp(e/CU{fa(ay) : v < B}). Sodefine f,(ag) = e and f, is partial elementary

as required. Now let g = |J fo. Then g : M — N is an elementary map.
a<nr

For surjectivity, if e € N, there is a finite tuple ¢ from C such that e € acl(c)

as N = acl(C). Let p(z, ¢) be an algebraic formula for e with m realisations.

So N | 37™x[p(x,e)] A p(e, ). So M | FI="x[p(x, f~1(2))].

Suppose ay, ..., a,, are the realisations in M. Then one of g(ay),...,g(am)

must be e. So g is surjective and hence M = N. O]

2.2 Morley Rank And Morley Degree In

Strongly Minimal Theories

Morley Rank

The main references for this section are [12] section 6.2], and [3], section 2,

p.23]. Morley rank is an important tool in model theory to analyse w-stable
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theories. It was introduced by M. Morley in his study of complete countable
theory T such that T is k-categorical for some uncountable .

Morley rank is an ordinal value to measure the complexity of a definable
subset. It generalizes the notion of dimension in algebraic geometry. The
idea is that if a definable set .S has infinitely many pairwise disjoint definable
subsets of rank n, then the rank of S is at least n + 1.

Morley rank is defined by induction as follow:

Definition 2.15. Let A be an L-structure and ¢(Z) be an L 4-formula. The
Morley rank for the formula ¢ in A, denoted by RM“(o(T)) is either an
ordinal, —1, or co. First, we define RM*(p(T)) > « for an ordinal a by

induction:

i) RMA(¢(T)) > 0 if and only if p(.A) is non empty;

ii) if o is a limit ordinal, then RM%A(p(T)) > o« if and only if
RM*A(p(z)) > f for all B < a;

iii) for any ordinal a, RM4(p(Z)) > « + 1 if and only if there are
L 4-formulas 1 (T), 12(T), ... such that 1;(A),12(A), ... is an infinite
family of pairwise disjoint subsets of ¢(A) and RMA(¢;(T)) > « for

all 7.

Remark 2.16. o If p(A) = @, then RMA(p(7)) = —1.

o If RMA(¢(T)) > o but RMA(¢(T)) # a+ 1, then RMA(p(T)) = a.

o If ©(A) is finite and not empty, then RM*A(p(7)) = 0.

e If p(A) is infinite but does not contains an infinite family of disjoint
infinite definable subsets, then RM“(p(Z)) = 1.

o If RMA(p(T)) > a for all ordinals «, then RM4(p(T)) = oo.

Now we will define Morley rank of ¢ rather than defining it depending on

the model that contains parameters realised in ¢.

Definition 2.17. If A is an L-structure and ¢(T) is any La-formula, we
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define RM (¢(7)), the Morley rank of ¢, to be RM®(p(T)) where B is any

w-saturated elementary extension of A.

By [12, Corollary 6.2.4], RM (¢(7)) does not depend on the choice of w-

saturated elementary extension B.

Definition 2.18. Let A =T and S C A" be defined by the L4-formula
©(T). Then we define the Morley rank of S, denoted by RM(S), to be
RM (p(T)).

In other words, for an w-saturated model A and a definable subset
S C A" RM(S) > a+ 1 if and only if there are 51, Ss, ... pairwise disjoint
definable subsets of S such that RM(S;) > « for i € N.

Morley rank has some properties which we will introduce as follow:
Lemma 2.19. Let A be an L-structure and let S; and S5 be definable
subsets of A”. Then:

i) If S; € Sy, then RM(S1) < RM(Ss).

ii) RM(S;USs) is the maximum of RM(S;) and RM (Ss).

iii) If Sy is non empty, then RM(S;) = 0 if and only if S is finite.

Proof. see [12, p.218] O

Morley Degree

Definition 2.20. Let S be a definable set such that M R(S) = a. The
Morley degree of S, denoted by M D(S) is the maximal number d such that

S cannot be partitioned into more than d definable sets of Morley rank a.
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The following Proposition shows that the definition of Morley degree in
[2.20 is well-defined.

Proposition 2.21. Let ¢ be an L-formula with RM () = « for some
ordinal «. There is a natural number d such that if y,...,, are L.4-
formulas such that ¢;(A), ..., 1, (A) are disjoint subsets of p(A) such that
RM (;) = « for all 4, then n < d.

Proof. See [12, p.220]. O

Morley Rank and Degree in Strongly Minimal Theories

In strongly minimal theories Morley rank is the same thing as dimension.
Moreover, strongly minimal sets can be defined using Morley rank and

Morley degree.

Lemma 2.22. A formula ¢(7) is strongly minimal if and only if RM (¢) = 1
and M D(p) = 1.

Proof. Suppose ¢(T) is a strongly minimal formula. Then RM(A) > 1 as
©(A) is infinite. But ¢(A) cannot be partitioned into more than one infinite
definable set. So RM(p) = M D(yp) = 1.

Now suppose that RM () = MD(p) = 1. Then by Remark [2.16] ¢(A) is
infinite and cannot be partitioned into more than one infinite definable set.

Thus ¢ is strongly minimal. [

Let M be a model of a theory T"and A C M.

Definition 2.23. For p € 5,,(A), define RM (p) = inf{RM(p) : ¢ € p}.
If RM(p) < oo, then degy(p) = inf{degnu(p) : ¢ € pand RM(p) =
RM(p)}.

Definition 2.24. If A C M and @ € M, then we define RM(a) to be
RM (tp(a)) and RM (a/A) to be RM (tp(a/A)).
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Now let T be a strongly minimal theory, M E T, A C M and @ € M".
Define dim(a/A) to be the cardinality of its basis, with respect to the
pregeometry.

In strongly minimal theories, Morley rank is the same as dimension.

Theorem 2.25. Suppose that 7' is a strongly minimal theory. If A C M
and @ € M, then RM(a/A) = dim(a/A).

Proof. See [12, p.224]. O
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Let L; be the language with a single unary function symbol f. A unar is
an Lg-structure. The class of unars is a rich source of examples and a class
that can be used in solving many problems in model theory [14].

In this section we will analyse three papers which have results about
theories of unars. Two papers are “Complete Theories of Unars” and
“Totally Transcendental Theories of Unars” by A. A. Ivanov, and
“Categorical Theories of a Function” by Yu. E. Shishmarev.

The aim of [14] is to classify the unars whose theory is Wy-categorical
and/or uncountably categorical. The method for doing this was to

describe a complete L -theory T' as either limited or not limited.

Definition 3.1. [I14] A theory 7T is limited if there is N € N such that
N

THEYz[ \/ (f"(z) = f"™(z))] and T is not limited otherwise.

n,m=1
The ‘root’ of an element was the key point in proving categoricity.

Definition 3.2. [14] The root of depth n of an element x is the set
K,(z) = {y € A|3i < n such that f'(y) = x}.

The root of z is
K(z) = | Ka(2).
neN

Definition 3.3. [14] A connected subset of the root K, (x) that contains x
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is called a subroot of depth n of the element z.

The main results of [14] are the following theorems.

Theorem 3.4. A theory T of unars is countably categorical if and only if
T is limited and for any A = T, the set K(A) of isomorphism classes of

roots K (a) for a € A is finite.

The idea of proving that T is countably categorical is using the two
conditions which are 7' is limited and K (A) is finite. As K(A) is finite,
there is Ny € N such that for all z € A either {y € A : f(y) = z} is an
infinite set or < Ny. As T is limited, then every point is a pre-periodic or
on a cycle. Thus the set of types in A is finite. Then the proof is conducted
by using partition on these types. Then the proof is concluded by
constructing connected components using roots such that these connected
components satisfies four conditions which guarantee that T is countably

categorical.

Theorem 3.5. A limited theory 7T is uncountably categorical if and only

if it satisfies the following conditions:

i) |f'(a)] is infinite for at most one a, and is otherwise bounded.

ii) If |f~*(a)| is finite for all a, then all except one type of connected

component of A are finite.

iii) If there is a € A such that |f~'(a)| is infinite, then all types of
connected components of A are finite and all K (y) for f(y) = a are

isomorphic except for finitely many a.

A cycle of a connected component X is a set consisting of all z € X such

that f"(z) = x where n € NT.
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A set of N-neighborhood of X C A is  the set
N
{y € A: 3z € X such that \/ f"(z) = f™(y)}.

Theorem 3.6. An unlimited theory 7' is uncountably categorical if it

satisfies the following conditions:

i) |f~(a)| is bounded.

ii) For each n € N there are only finitely many connected components

whose cycle consist of n elements.

iii) There exists a finite set Xo C A, aset Y C A, an m € N, and a set
{P,:a €Y} such that A= XoU |J F., P, is a subroot of depth m
for a € Y, and for a,b € Y, the sﬁ:})/roots P, and P, are isomorphic
and this isomorphism can be continued to an isomorphism of their

2m-neighborhoods.

Shishmarev proves the necessity of these conditions using the fact that any
uncountably categorical structure A, is homogeneous and any infinite
definable subset of A4 must have the same cardinality as A. (See [12],
Corollary 4.3.39).  In this thesis, we use similar ideas, but strong
minimality is more powerful than just uncountable categoricity.
Shishmarev leaves the sufficiency of these conditions as an exercise. We
prove a similar theorem as Proposition of this thesis to classify the

injective unars.

Another paper on theory of unars is “Totally Transcendental Theories of
Unars” by A. A. Ivanov. Its purpose is to study totally transcendental
theories of unars, in particular almost categorical theories.

We will introduce some terminology used in [§].

Definition 3.7. [12] A theory T is totally transcendental if, for all A = T,

every L s-formula has ordinal Morley rank (not co).
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Definition 3.8. [2] A theory 7" is a principal extension of 7" if 7" is an
extension of T by constants ¢y, ¢y, ..., ¢,_1 which realize a principal n-type

of T.

Definition 3.9. [2] Let @ be a set of formulas in one variable. We say that
@ is two-cardinal in the theory T if there is a model A of T and a proper
elementary extension B such that p(A) = p(B) for any ¢ € .

Definition 3.10. [§] A complete theory T is almost categorical if there
exists a principal extension 7" of T' and formulas ¢;(x), ..., @, (z) that are
strongly minimal in 7" such that the formula @,(z) V ... V @,,(z) is not

two-cardinal in T".

The class of almost categorical theories of unars corresponds to the class
of totally transcendental theories of unars of rank 2. This is a consequence
of Theorem 1 in [2] which states that “Any totally transcendental theory
of rank 2 is almost categorical”. However, there is a counter example to
the converse which is an infinite periodic abelian group with period p such
that p is not divisible by the square of any prime number. This group is
almost categorical but not uncountably categorical and it has an
arbitrarily large finite rank [§].

The main theorem in [§] is that the class of almost categorical theories of
unars corresponds with the class of w—stable theories of unars whose
Morley rank is 2. This theorem is proved by investigating the set of
complete non-algebraic 1-types over a model A of T" and show that this set
which contains formulas of the form f"(x) = a for a € A is finite as well as
the set which does not contains the formulas of the form f"(z) = a.
Theorem 1.1 in [§] states that two unars M and N are elementarily
equivalent if and only if M and N either have the same finite number of
(k,l)—roots of the same type or there are infinitely many (k,[)— roots of
the same type. (One can refer to [8].page 1 and 2 for definition of

(k,l)-roots and (k,[)-ranks). So in the case of injective unars, we have that
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if M and N are elementarily equivalent this means that k.(M) = k.(N)
where r € N and k, is finite or both k,.(M) and k,(N) are infinite.

It is also proved in [§] that the theory of unars admits quantifier
elimination after expanding the language L = (f) with all predicates
defined by certain formulas called basis formulas and the proof is
analogous to [I2 Corollary 3.6.3] which we also use to prove quantifier
elimination in the theory of injective unars. The paper conclude with
Theorem 4.1 which gives a condition on a complete theory T of unars for
it to be totally transcendental of rank 2.

The second paper by A. A. Ivanov, “Complete Theories of Unars”,
concentrates on a technical proof regarding (k,[)-roots and (k,)-rank
which were the main source for the work in [8]. Also, the main result in [7]

is proving the criterion for two unars to be elementary equivalent.



Zariski Geometry on a Pure set

Zariski geometry was introduced by Ehud Hrushovski and Boris Zilber in[5]
[T7]. Tt gives a characterisation of the Zariski topology on an algebraic curve
and all its powers. As the idea of Zariski geometry is linked to algebraic

geometry, we will give a brief introduction about algebraic geometry.

4.1 Introduction

The main references for this section are [I] and [13]. Algebra and geometry
are important subjects in mathematics and the connection between them
has a significant role in studying mathematical objects.  Algebraic
geometry is a branch of mathematics which is classically the study of the
sets of zeros of polynomial rings. Now modern algebraic geometry uses
abstract techniques from commutative algebra for solving geometrical
problems about the sets of zeros. Algebraic geometry was motivated by
Fermat and Descartes where they investigated the properties of algebraic
curves such as conics and cubics. Now algebraic geometry is involved in

almost all other branches of mathematics either directly or indirectly[10].

The real beginning of algebraic geometry was in the 19th century where

David Hilbert established his fundamental theorems, the “ Hilbert Basis
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Theorem” and the “Hilbert Nullstellensatz”. His results connect algebraic
geometry to commutative algebra.
A ring R is Noetherian if it satisfies the ascending chain condition on ideals,

that is, given a chain of ideals Iy, I5, ..., there exists n such that I,, = I, =

Definition 4.1. [9] Let P be a set of polynomials from K|z, ...,x,]. The
set V(P)={ae€ K": f(a) =0 for all f(T) € P} is the zero set of P. The
subset V(P) C K" is called an affine algebraic veriety.

Definition 4.2. [9] Let I be an ideal of a ring R. Then I is radical ideal
if, for an m € N*_ for all f € R, if f™ € I, then f € I.

Theorem 4.3. (Hilbert’s Basis Theorem:) If R is a Noetherian ring then

the polynomial ring R[x] is Noetherian.

It follows from the theorem that every affine algebraic variety is the common
zero set of finitely many polynomials.

The set of polynomials vanishing on an affine algebraic variety V' forms an
ideal in the polynomial ring and this ideal is radical.

Now we state the fundamental theorem “Hilbert’s Nullstellensatz” .

Theorem 4.4. (Hilbert’s Nullstellensatz:) For any ideal J C Clxy, ..., z,),
I(V(J)) = v/J and if J is radical then I(V(.J)) = J.

Hilbert’s Nullstellensatz implies two important results. First, there is a one-
to-one correspondence between affine algebraic varieties in A" and radical
ideals in Clxy,...,z,]. Second, every maximal ideal has the form (z; —
Ay, ..., Ty — ay) for (ay,...,a,) € A"

Hilbert’s Nullstellensatz can be applied over any field beside the complex
field. Given any field k, let K be an algebraically closed field extension and
consider the polynomial ring k[zi,...,x,]. Let I be an ideal in this ring.
Then V(I) = {(a1,...,a,) € K"|f(a1,...,a,) = 0forall f € I}. If pisa
polynomial in k[zy, ..., x,] such that p(ay,...,a,) = 0 then p € I and I is
finitely generated.
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Theorem 4.5. (Fundamental Theorem of Algebra:) Every non-constant
polynomial in one variable with complex coefficients has at least one

complex root.

This is equivalent to saying that the complex field is an algebraically closed
field. We can see there is a link between Hilbert’s Nullstellensatz and the
Fundamental Theorem of Algebra. For instant, if we take the real field,
which is not algebraically closed, we can see that (z%+ 1) is a maximal ideal
in R[z] but is not of the form (x — a) which means Hilbert’s Nullstellensatz
has failed in this case. If we take the algebraic set V(I(S)) where S C k™
not necessarily an algebraic set then V(I(.9)) is the smallest algebraic set
which contains S and is called the Zariski closure of S. The algebraic
subsets of k™ define the closed sets of Zariski topology on k™. This has
established a correspondence between geometric objects namely algebraic

sets and algebraic objects namely ideals in an algebraically closed field.

4.2 Zariski Geometry on a Pure set

Since we are working on Zariski geometry on strongly minimal injective
unars, it will be helpful if we work first on Zariski geometry on pure sets
where it is simpler.

The rest of this chapter is given as an exercise in [12] but as far as we know
the details have not been written out before.

Let X be an infinite set. We can topologize X™ by taking the closed sets
to be the sets defined by positive quantifier-free formulas in the language of
equality. We will show that this topology will determine a Zariski geometry.
A topological space is Noetherian if there is no infinite descending chain of
closed sets. A closed set S is irreducible if there are no proper closed subsets
Sp and S; such that S = Sy U S;. The closure of a set S in a topological
space, denoted by S, is the smallest closed set such that S C S.
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Definition 4.6. [12, p.306] A Zariski geometry is an infinite set D and a
sequence of Noetherian topologies on D, D? D3, ... such that the following

axioms hold.

(Z0) i) If 7 : D™ — D™ is defined by 7(x) = (m(x), ..., 7 (x)) where
each m; : D™ — D is either constant or coordinate projection,

then 7 is continuous.

ii) Each diagonal A, = {z € D" : z; = z;} is closed.

(Z1) (Weak QE): If C C D™ is closed and irreducible, and 7 : D" — D™

is a projection, then there is a closed F' C 7w(C') such that 7(C) D
w(C)\ F.

(Z2) (Uniform one-dimensionality):

i) D is irreducible.

ii) Let C € D™ x D be closed and irreducible. For a € D", let
C(a) = {x € D : (a,z) € C}. There is a number N such that,
for all a € D", either |C(a)| < N or C(a) = D. In particular,

any proper closed subset of D is finite.

(Z3) (Dimension theorem): Let C' C D™ be closed and irreducible. Let W
be a nonempty irreducible component of C'N A};. Then dimW >

dimC — 1 where dim is the same as Morley rank.

Definition 4.7. A Zariski geometry on an L-structure A is a Zariski
geometry on the domain of A such that every closed set is a definable
(with parameters) set in A and every definable subset S C A" is a finite

Boolean combination of closed sets.

Definition 4.8. Let C,, be the collection of positive quantifier-free definable
subsets of X™, for n € N*, and C = |J C, in the language of equality with

neN
parameters.

This chapter is devoted to proving the following Proposition.
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Proposition 4.9. i) For each n € NT, C, is the set of closed sets of a

topology on X".
ii) The topology is Noetherian.

iii) The topology satisfies the axioms (Z0), (Z1), (Z2), and (Z3), so make

X into a Zariski geometry.

4.2.1 Topology on (X, =)

In this section, we will prove parts i) and ii) of Propositior| 4.9}

A positive quantifier-free formula is built from atomic formulas using A and
V only. The atomic formulas are precisely z; = x; for ¢,j = 1,...,n, or
x; = a; for © = 1,...,n where a; is a parameter from X, in the structure
(X,=).

Definition 4.10. (Disjunctive Normal Form; DNF):[15, p.25] A formula

of the form \/ /\ ¢ij, where each ¢;; is either an atomic formula or the
i=1j=1

negation of atomic formula, is said to be in disjunctive normal form.

Lemma 4.11. (DNF Lemma):[I5, p.25] Every quantifier free formula is

equivalent to one in DNF, and every positive quantifier free formula is

equivalent to a disjunction of conjunctions of atomic formulas.

Let S C X" be in C,. Then, by the Disjunctive Normal Form Lemma, S

T Sk

can be written in the form \/ A ¢5(Z) where ¢} ,(Z) are atomic formulas
k=11=1

and r,s € N. The set S corresponds to the finite union of Sy where Sj, is

Sk
defined by A ¢, (). Hence, it is sufficient to describe sets of the form S,
=1

which for simplicity we rewrite as A ¢ (T).
I=1

Now we will introduce the notion of formulas in special form in L = (=).
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Definition 4.12. Given a subset Fiz C {1,..,n} and an equivalence
relation ~ on {1,...,n} \ Fiz, and a; € X for i € Fix, let ¢p;za~ be the
formula given by A z; = a; A ¢, where ¢ is a conjunction of atomic

i€Fiz
formulas x; = x; such that

Y~ =, = x; if and only if ¢ ~ j.

Any formula ¢ is in special form if there are Fix,a and ~ such that ¢ =

PFiza,~-

Let m be the total number of equivalence classes of ~. So if ppizz~
defines the subset S C X", then dimS = m where dimS denotes the

dimension of S.

The dimension of S is the same thing as Morley rank, and .S is in definable
bijection to X™. We can see this from Definition [ 4.12| If x; is fixed for
some ¢ € {1,...,n} then we take it out from n. If z; = x; is one of the

formulas of S, then ¢ and j are in the same equivalence class.

Proposition 4.13. Suppose S C X" and S # @ is defined by a conjunction
of atomic formulas. Then there is a formula ¢(zy,...,x,) in special form

defining S.

Proof. If S = X", then we can take ¢ to be x; = x; which is in special

form. Suppose S is defined by a conjunction of atomic formulas A ¢; and

=1
S # @ and S # X™. Define Fiz C {1,...,n} by
Fix = {i: for some a € X, o F z; = a}.

Fori € Fiz,let a; € X be such that ¢ - x; = a;. Define ~on {1,...,n}\ Fix

by ¢ ~ j if and only if p F x; = x;.
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Let ¢piza~ be

/\xi:ai/\ /\ T, = Tj.

i€ Fix {(@,5)]i~3}

Then ¢piza~ is in special form and defines the same set as . O

Definition 4.14. Given ¢ = @piz s~ in special form define the rank of ¢

to be rky = w™ where ~ has m equivalence classes.

Definition 4.15. Given S € C, and ¢ defining S, with ¢ = \/ ¢, with

k=1
r

each @y in special form, define rkg = > rkpy such that rkp; > rkps >
k=1
... > rkyy. Define rkS = min{rkp|y is of the above form and ¢ defines S}.

Remark 4.16. In Definition it is important that rke, > rkes >

... > rkyy, as the ordinal sum is not commutative. For instant, w + w? = w?

but w? + w # w?.
Example 4.17. We will take a closed set S in X3 as an example. Suppose
©(x1, T2, x3) is the formula
($1 = $2) V (1’2 = 1’3),
and ¢'(x1, T2, x3) is the formula

o(T1,x2,23) V (r1 =29 Axg = a3) V (r1 = a1 A T = as A\ T3 = ag).

Both ¢(x1, 22, x3) and ¢'(x1, e, z3) are disjunction of formulas in special
form. So

rk(p) = w? + w? = 2°
and

rk(¢)) = 2w +w + 1.

Note that p(x1, T2, 23) and ¢'(xq, 22, 23) define the same subset S of X?3.
Thus rk(S) = 2w?. The set S consists of two planes in X3. So the dimension

of these planes are 2. So 7k(S) can’t be smaller than 2w?.
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Lemma 4.18. If Sl, S2 € Cn then Tk'(Sl U SQ) < rkSl + T’/{ZSQ.

Proof. Let S1,S; € C,. Choose 1, @9, disjunctions of formulas in special
form, ¢, = {7 Vr1 and o = {7 e with each 94, in special form such that
01(X) = SlkZIIld wa(X) = 5, kazrid rkSy = rky; and rkSs = rkpy. S1U S, is
defined by

Y =@1V s

T1 T2
=\ v v\
k=1 k=1

So
rke = Z rkr + Z rkibis
=rke1 + rkes
= rk;51 + T/{?SQ
Thus

rk(S1 U Sy) < rky
[

Lemma 4.19. Suppose C,S € C,, and S is defined by a conjunction of

atomic formulas,and C' C S. Then rkC' < rkS.

Proof. Let C C S. By Proposition S is defined by a formula ¢
in special form. We need to show rkC' < rkS. Suppose C' is defined
by ¢ = \T/ Yy each vy, in special form. Let Cj be defined by 1, (X) for
k=1, ,k;l So C'=C1U...UC,. Since C}, is a proper closed subset of S,
then

X E Yy, oo, 20 [00(T) — 0(@)].

So we can assume all conjuncts in ¢ (atomic formulas) are also in ;. As

Cy is a proper subset of S, there must be at least one more atomic formula,
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say 6 in 1. So we have
X EVT [fp(T) — (0(T) A o(T))]

So we can assume 1y = 0 A p. So 6 is either x; = a; for some i ¢ Fiz(p)
or 0 is x; = x; such that ¢ =, j. If 0 is z; = a; for some i ¢ Fiz(p), then
all j in the equivalence class of i in ~, are in F'iz(1;) and the number of
equivalence classes of ~y, is the number of equivalence classes of ~, —1.
If 0 is x; = x; such that i ~=, j, then [i]. U [j]l., = [i]., . That is,
the equivalence classes of 7 and j under ~, are contained in one equivalence
class under ~,, . So the number of equivalence classes for ~, is the number
of equivalence classes for ~, —1. Let m = dimS. Then rkS = rky = w™.
For each k, rkC), = rki, = w®C%  but dimC), < m, so rkC, < w™ !, So

by Lemma [4.18]

rkC < Zrka < rwm™t < w™=rkS.

k=1

So rkC < rkS.

]

Corollary 4.20. If S € C, is defined by a conjunction of atomic formulas
then S is irreducible: If C, Cy € C,, and S = C1 Uy then either C = S or
Cy=S.

Proof. Suppose S = C; U Cy with C7,Cy € S, and S is defined by a
conjunction of atomic formulas. By Lemma [4.19] rkC,; < rkS. By

Definition rkS = w™ for some m € N*. Now rkC,rkCy € Nw], say
m—1
rkC = Z Fiwh < W™
i=0

and

m—1
rkCy = Z St < w™.
i=0



Chapter 4: Zariski Geometry on a Pure set 29

So

T]f(Cl U CQ) < (’71 + (2)(,;)1 <w™ =rkS.

i

So C; UCy # S, a contradiction. Thus, S is irreducible. H

3

I
o

It follows from the definition of C,, that it contains X" and is closed under
finite unions and finite intersections. Also C, contains @ as @ is defined
by x1 = a1 A x1 = ag for a; # ay € X which is a positive quantifier free
formula. To show it is a topology we must show it is closed under infinite

intersections.

Proposition 4.21. If S; C Sy C X™ with 51, 55 € C,, then rk(S;) < rk(Ss)

Proof. Suppose S; C S5 C X" are in C,. First we consider the case where Sy
is defined by formula in special form. So by Corollary [£.20] S is irreducible.
So by Lemma [.19] rkS; < rkS;. Now we consider the case where Sy
is defined by a disjunction of formulas in special form, then, say S, has

dimension D and decomposition S, = S{U...US;US; ; U...US,. Then

v~ ~~
dim=D dim<D

either dim(S;) < D, so rk(S1) < wP? < rk(S,), or dim(S;) = D. Then the
irreducible components of S; of dimension D are some of S}, ..., S). If not
all S7,..., 8 are subsets of S; then rk(S;) < wP.d < rk(S;). Otherwise,
STU...US), C Sp. So let r be the largest number such that there is an S] in
the irreducible decomposition of Sy which is not in S; of dimension r. Then
rk(Sy) = wPd+ ... +w Tk +w'.l+ ... and rk(S;) = wP.d+ ... +w Tk +
whl'+ ... where I" < [. So rk(S1) < rk(Sz). O

Proposition 4.22. An infinite intersection of members of C, is in C,.

Proof. Let S; € C, fori € I. So S; C X™, for all 1 € I. Each S; is defined by
a positive quantifier free formula. We want to show there is a finite [y C [

such that () S; = [ S;. Assume that [ is an ordinal. Let C, = () Sp.

iel i€l B<a
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Thus C; 2 Cy D C3 D ... . Using Lemma [4.19] we have rkC; > rkCy >

So, since rk is ordinal valued, there are only finitely many ¢ € I such that
rkCi_y > rkC;, say iy, ...,i,. Let Iy = {4|l =1,...,k}. So rkC;, = rkC; for
all j > i, and C;, = C; for all j > 4. So () S;, = () Si. So C, is closed

i€lo iel
under infinite intersections, so is a topology and it is Noetherian. O]

We are interested in closed set but also we are more interested in irreducible
closed sets. In general, from the classifications of closed sets above, the
closed set S can be written as \T/ /\ vk (T) for the least possible value of r
such that if » =1, then S'is irrkedlulci%ble, and if » > 1, then the conjunctions

/\ ¢k, (T) give the r irreducible components of S.

Lemma 4.23. If S; and S, are closed sets and S is irreducible, and f :

S1 — S5 is continuous and surjective then S5 is irreducible.
Proof. Suppose Sy = C} U Cy where C, Cy are closed sets. Then

Sy = fHC) U f7H(Cy).

As f is continuous, f~'(Cy) and f~'(Cy) are closed in S;. Thus either
fﬁl(Cl) = S] or fﬁl(Cg) = S;. So f(Sl) = (Cj or f(Sl) = (5. That is
Sy = (4 or So = Cy. So Sy is irreducible. O

Proposition 4.24. The irreducible closed sets are exactly those defined by

conjunctions of atomic formulas.

Proof. Let S C X™ and S # @. If S is defined by a conjunction of atomic
formulas, then by Corollary S is irreducible.

Suppose S is closed and irreducible. As S is closed, by DNF theorem, it is
defined by a formula of the form k\r/1 l/\ ¢r(T) where each ¢y, (T) is atomic.

Let Si be defined by the conjunction /\ ¢ (T). Then S = U Sk. By
Proposition [4.13] each Sy is defined by a formula in special form As S'is
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irreducible, it is equal to one Si. So S is defined by a formula in special

form.

4.2.2 Zariski Axioms on (X, =)

We will show that (X, =) satisfies Zariski axioms.

We need the following definition to prove (Z0).

Definition 4.25. Given a function o : {1,....m} — {1, ...,n}, we can get
a projection map m, : X" — X™ given by 7 (21, ..., Tn) = (To(1), -, To(n))-
As we need to consider each coordinate projection or constant, and show it

is continuous, we define

ro6) if a(i) € {1,...,n}
Toi(T1, ooy Tp) =
a if a(i) =a,a € X

where  « : {1,...,m} — {1,..,n} U X. So

To(T1y ooy Tn) = (a1 (T), oo, Ta,m(T)) where T = (21, ..., Tp,).

Lemma 4.26. (Z0) holds for (X, =).

Proof. Let ¢;,,(Z) be the negation of atomic formulas
Wi = Lhgs

or

gy, = Akl

)

for iy, gk € {1,...,n},ax; € X. Any open set U C X™ has the form
r Sk

V A ¢ii(Z), which is a finite positive boolean combination of basic open
k=11=1

sets. So

r Sk

m (U) ={@ e X" \/ )\ ¥ra(ma(@))}

k=11=1
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which is also a finite positive boolean combination of basic open sets in X,
as we shall see, from which it follows that 7, is continuous. We need to
see that ¢y (7, (7)) is an open set. But ¢y (7 (7)) is the formula —(z; =
x;) with substitution of terms m,;(Z) for z; and 7, ;(Z) for z;. So it is
(70i(T) = 7o, j(T)) or =(74:(T) = ai;). These are negations of atomic
formulas, so they are basic open sets. Thus, 7, is continuous. Therefore,

axiom (Z0) holds for (X, =). O

Lemma 4.27. (Z1) holds in (X, =).

Proof. Let C C X" be irreducible closed set. Let 7 : X® — X" ! and
T(21, s Tn) = (21, ..., Tn_1). By Proposition [4.24] there is a formula ¢ in
special form which defines C'. Then ¢ has one of the following forms:
First : The formula ¢ can be the form of 6(z1, ..., z,_1) where 0(z1, ...,z ,_1)
is the conjunction of atomic formulas. Thus 7(C') is defined by 0(x1, ..., T,—1)
which is a closed set.

Second : The formula ¢ can have the form 6(xq,...,x,-1) A z, =t where ¢
is either a constant or x; where i = 1,...,n — 1. So m(C') will be defined by

eliminating «,, and so 7(C) is defined by 0(xy, ..., z,_1) which is closed set.

Thus in both cases, 7(C') is closed and hence 7(C') = w(C). Therefore, take

F = @ which is a closed set and 7(C) 2D 7(C) \ @ as needed. So we have
proved that Z1 holds in (X, =). O

Lemma 4.28. (Z2) holds in (X, =).

Proof. 1. By Corollary X is irreducible.

2. Back to C C X" ! x X and the projection 7 : X® — X"~!. For
ae X" let Cla) = {x, € X|(@,z,) € C}. We consider the same
two cases for the form of ¢ as in Lemma [4.27] In the first form,
as the same ¢ defines 7(C) we get dim(w(C)) = dim(C) — 1. Thus
C=mn(C)x X and C(a) = X.

In the second form, 7 [¢: C' — 7(C) is a bijection and dim(7(C)) =
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dim(C). So C(a) = {b} if t is a constant symbol and t* = b or
C(a) = {a;} if t is 7;. So C(a) = {t*(a)}. Therefore, |C(a)| = 1.

Hence 72 holds in (X, =). O

Lemma 4.29. (Z3) holds in (X, =).

Proof. Let W be a non empty irreducible component of C'N Af; where
A, ={r € X" : 7; = z;} and C is irreducible. Let 6 be the formula
defining C'NA};. We will examine the intersection of the diagonal with the
irreducible closed sets. If W = X" N A}, then dim(W) = dim(X") — 1 =
n—1and so dim(X") < dim(W)+1. f C = @ then W = @ NA};, =
but we assumed that W is non-empty. If W = C'NA?; where C C X" and
C # @, then looking at the forms of the formula ¢ in special form defining

C' we will have four cases:

Case 1: If ¢,j € Fizc, then we will have the formula z; = a;, A x; = a; in ¢.
Since we assumed that W # &, we must have a; = a;. So W = C. So
dim(W) = dim(C).

Case 2: If i € Fizc and j ¢ Fixe then we will have the formula z; = a; in ¢.

So # will be equivalent to

/\ :Uk:ak/\/\xk:ai/\ /\ T = 1

keFixc k~cj k~olkeog k<l

which means that ¢, € Fizy. So
Fizw = Fixc U { the ~¢ — equivalence classes of j}

and C'N A}, is irreducible as 6 is in special form. So dim(W) =
dim(C) — 1.

Case 3: If i,j ¢ Fizc and ¢ ~¢ j then ¢ will imply the formula x; = z;.
So ¢ will imply the formula z; = x;. So i ~w j. So W = C. So
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dim(W) = dim(C').

Case 4: If i,j ¢ Fize and i =¢ j, then 6 is equivalent to

/\ T = a; N\ /\ T =X N\ /\ T = Ij.

i€Fize k~ol k<l {(k,0) ks l~j, k<l}

So ¢ ~y 7 which means that ¢ and j are in one equivalence class in
W. As the above formula is in special form, ' A?; is irreducible.
So the number of equivalence classes of ~y, is equal to the number of

equivalence classes of ~¢ —1. So dim(W) = dim(C') — 1.
Thus Z3 holds in (X", =). O
In conclusion, we can deduce that (X,=) is a Noetherian topological

structure and by Lemma [ 4.26] [ 4.27, [ 4.28] and it satisfies the

Zariski axioms.




Classification of injective unars

In this chapter we will give first a condition for two injective unars to be
isomorphic. Then we will give an axiomatization of the theory of a
strongly minimal injective unar A and prove this theory is complete. We
will then prove that this theory has quantifier elimination after adding
unary relational symbols R, to the language L = (f).

Let L; be the language with a single unary function symbol.

Definition 5.1. A unar is an Lg-structure. Let (A, f) be a unar. If f is

injective then (A, f) will be called an injective unar.

This terminology comes from [7] and [8].

Definition 5.2. Let X C A and z,y € A. We say that x,y are connected
if there is n,m € N such that f"(x) = f™(y). The set X C A is connected
if any two elements of X are connected. A maximal connected set is called

a connected component of A.

When f is injective, the connected components in A can be classified to be

either a copy of N, Z, or a cycle of period r where r € N*.

Lemma 5.3. Let (A, f) be an injective unar. Then every connected

component of A is either

1. a copy of (N, succ),
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2. a copy of (Z, succ),

3. a cycle of period r for some r € Nt .

Proof. Suppose X is a connected component of A and X is finite. Let
r € X. We have x = f°(x), f(x), f2(2), f3(x),... € X. So f*(x) € X for all
n € N. Let r be the smallest number in N such that f"(z) = f*(z) for some
s €{0,...,7 —1}. We claim s = 0. If not, f(f"'(z)) = f(f*'(x)). So, by
injectivity of f, f7}(z) = f* (), and s — 1 € {0, ...,r — 2}, contradicting
that r is the smallest such number. Then X contains a cycle of period
r. Since f is injective, the cycle is all of X. Now suppose X is infinite.
Let z € X. Consider f%(z) = z, f(2), f*(z),..., f"(2),.. for n € N. If
fr(z) = f*(z) for some r, s € N, and r # s, then by the previous argument,
X is finite. So all f™(x) are distinct for n € N. There are two cases. If there
is o € X which is not in the image of f, then X is {zo, f(x¢), ..., f"(x0), ...},
ie, X = {f"(x) : n € N} which is a copy of N. Otherwise, choosing any
r € X, f~}(z) exists and is unique. So we get f~"(z) € X for each n € N
and for any n,m € Z, f"(x) # f™(z) unless n = m. So, X is a copy of
7. O

The number of copies of each connected component in A plays an
important role in classifying injective unars. So we will define a sequence

of A depending on the number of copies of the connected components in

A.

Definition 5.4. Let (A, f) be an injective unar. Define 0(A) = (k;)renufoo}
a sequence of cardinals, where kg and k., represents the numbers of copies
of N and Z respectively and k, represents the number of copies of cycles

with period r for r € N*.

We need to know the condition for two injective unars to be isomorphic.
This will be helpful to prove the completeness of the theory T, of injective

unar.



Chapter 5: Classification of injective unars 37

Proposition 5.5. Suppose A and B are injective unars such that o(A) =
o(B). Then A= B.

Proof. Suppose o(A) = o(B). We need to show that A = B. For r = 0,
enumerate the 0s elements of the copies of N in A as a?, ..., ago and the Os

elements of the copies of N in B as 1Y, ..., by, . Define

where N and NP are the ith copy of natural numbers in A and B
respectively, by mo(a?) = b0 and mo(f"(a?)) = f(b)) where i = 1, ..., ko and
n € N. For r € N* choose an element from each cycle of length r in A
and enumerate these elements as ay, ..., a;, . Choose an element from each

cycle of length 7 in B and enumerate them as 07, ..., 0}, . Define

Ty - U Cfi‘ — U CS,
i=1 i=1
where O;? and C’ff_ are the ith copy of the cycle of length r in A and B
respectively, by m.(a]) = b and 7w,.(f"(a})) = f"(b}) where i = 1,...,k,
and n € N. For r = 0o, choose an element from each copy of Z in A and
enumerate these elements as a°, ..., ap’ . Choose an element from each copy

of Z in B and enumerate them as b7°,...,b3° . Define
koo koo
oot | JZ1 — | 27,
i=1 i=1

where Z:* and Z5 are the ith copy of integers in A and B respectively, by
Too(a$) = b3° and oo (f"(af®)) = f™(b3°) where i = 1,...,ks and n € Z.

i

From the definition of 7, where r € NU {oo}, m, is well defined and is a
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bijection. Let 7 : A — B be a map such that

= U =

reNU{oco}

where 7w(al) = m.(al). Now 7 is a bijection as each 7, is a bijection. Also,

m(f"(ai)) = 7. (f"(af)) = f(b]) = fH(m(a])) = f*(7(af)). So 7 commutes

with f and hence is an isomorphism. m

5.1 The theory of an injective unar

Given a unar A, especially a strongly minimal unar, we want to give an

axiomatization of its complete first-order theory, Th(.A).

Definition 5.6. For r € N*_ let ¢,(x) be the formula

The formula 1, (z) defines the set of points which lie on a cycle of period r.

Lemma 5.7. Let A be an injective unar.

1. If ko < 0o, then A = F=Foz[-Ty[f(y) = z]].
2. If ko is infinite, then A = 32"z[-3y[f(y) = z]] for each n € N*.
3. If k. < oo, then A = F™"x[¢).(z)] where n = k,.r.

4. If k, is infinite, then A | 3="z[¢),(z)] for each n € NT.
Proof. Immediate from the definition of k. O]

Lemma 5.7 says that the values of ko(A) and k,(A) for r € Nt can be

determined by the first-order theory of A if these values are finite. However,
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if these values are infinite, the first-order theory of A can only says these
values are infinite but it cannot determine which infinite value ko(A) or
k.(A) is. The sequence o(.A) is a sequence of cardinals and it gives ko (A)
but k. (A) cannot be determined in the first-order theory of .A.

Definition 5.8. Given a sequence o = (k;),ey where each k. € NU {oo},

let T, be the theory axiomatized by

L Vaylf(z) = fly) — z =]

2. If kg is finite, then I=*oz[-Ty[f(y) = z]].

3. If ko is infinite, then 32"z [-Jy[f(y) = z]] for each n € N*.

4. For each r € NT_ if k,. is finite, then 3="z[¢),(x)] where n = k,.r.

5. For each r € NT | if k, is infinite, then 3="z[¢),(z)] for each n € N*.

6. If kg = 0 and there is N € N such that for all » > N, k., = 0 and
N N
> k, is infinite, then Vz \/ ¢;(z).

i=1

r=1
7. For each n € Nt, 32"z [z = z].
Lemma 5.9. Suppose A is a strongly minimal injective unar. Then o(.A)

satisfies the following:

1. kg is finite.

2. If some k, is infinite for » € NT, then kg = 0, koo = 0 and Y k&, is
q#r
finite.

Furthermore, T,(4) € Th(A).

Proof. 1. Let ¢(x) be the formula Jy[f(y) = z]. Since f is injective,
©(x) defines an infinite subset of A. As T, is strongly minimal, —p(z)
defines a finite set. Each element which satisfies —¢(x) is the zero of
a connected component which is a copy of N. So kg is the size of the

set =p(A) which is finite.
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2. Suppose k, = oo for some r € N*. Then A = 9,(a) if and only if

a is in a cycle of length r. Now ,(.A) is the union of the infinitely

many cycles of length r so is an infinite definable subset of A. As A

is strongly minimal, =, (x) is finite. So kg = 0,kee = 0 and > k, is
finite. i

To show that T4y € Th(A), axioms 1,2,4,5 and axiom 7 are immediate

from Definition [5.8] We just need to check axiom 6. Suppj(\)]se that kg =0

and there is N € N such that for all » > N, k. = 0 and >_ k, is infinite.

r=1

Let U(x) be the formula \]_\}1 Yp(x). So U(x) defines the set of points on
any finite cycle. Since g:lkzr is infinite, |¥(.A)| is infinite so it is cofinite. So
|=W(A)| is finite. Suppose =¥ (.A) is non-empty. So Elm[;v\l —1);(x)]. So there
is at least one copy of Z, contrary to strong minimality. So Vz \A} Yi(x). O

=1
The Upward Lowenheim-Skolem Theorem indicates that for every infinite
L-structure and cardinal x > |L| there is an elementary extension of
cardinality at least . In L = (f), we will prove that T, with certain
conditions is complete. This is important as it will help to capture the

models of T,.

Proposition 5.10. Suppose o satisfies properties 1 and 2 from Lemma |5.9}

Then T, is categorical in all uncountable cardinals and is complete.
Proof. There are four cases.

Case 1: ko(c) > 0. So for all r € N, k,(0) is finite. If A |= T, then k,.(A) =
k.(o) for all r € N. Let A = koo(A) and write A, for this A. Then
the models of T, are exactly A, for A any cardinal. Then, |A,| =
No - ko(o) + D>, r-k.(o)+A-Ryg = Ng+ A So T, is uncountably

reN+t
categorical and not countably categorical.
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Case 2: ko(0) = 0 and some k(o) is infinite for r € NT. So Y k(o) is
finite. So there is N € N such that if » > N then kr(aq)#: 0. So
T, Vz \A} ¥i(1). So koo(A) = 0. Let A = k,(A) and write Ay, for this
A
So | Ay = Ng - ko(o) + > q - ky(o) + X -7+ 0- Ry = X because A is
infinite. So T, is totallyqaé;tegorical.

Case 3: If ko(0) = 0and > k(o) is finite, then for A = T, we have ko(A) =
0 and k,.(A) = ?CE:\E;). There is N € N such that if » > N then
k. = 0. Let ¥(x) be the formula \A} Yy (z). Given A = T,, U(A)
is finite. Since A is infinite, ﬁ\IJ(.;lz)l is non-empty. So there is at
least one copy of Z. Let A = koo(A) and write A, for this A. Then,
Ay =RNo- 04+ > r-k.(0) + A -Rg =g+ A. So T, is uncountably

reN+t
categorical but not countably categorical.

Case 4: ko(o) = 0 and no k(o) is infinite for r € Nt and Y k(o) is infinite.
reN+t
Then, |A\| = No-0+ > r-k.(0)+A-Rg = Ng+A. So T, is uncountably
reN+t
categorical but not countably categorical.

By axiom 7, 7, has no finite model. In all cases, T, is uncountably

categorical, so by the Los -Vaught test, T}, is complete. O

5.2 Quantifier Elimination

For the rest of this section, we assume o satisfies the conditions in Lemma
H.9

We need to prove that 7T, admits quantifier elimination. However, the
elements in (N, succ) cannot be defined without using quantifiers. Thus we
need to expand the language Ly = (f) to Ly r = (f, (Rn)nen) in order to

eliminate the quantifiers.
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Definition 5.11. The language Lyr = (f, (Ry)nen) consists of a unary

function symbol f and unary relation symbols R,, for each n € N.

Given a model of T,, we make an expansion-by-definitions to an
L g-structure which is a model of T}, r as follows where R, names the set

of all numbers n’s in copies of N.

Definition 5.12. Let 7}, p be the theory axiomatized by the axioms of 7T}

in addition to the axioms

L. Va[Ro(z) < —Jy[f(y) = =]].

2. Vx[R,(z) + Jy[z = f™(y) A Ro(y)]] for each n € N*.

We need to examine the 1-types in T, . We will show that the principal
formulas in T, p are R,(x) for n € N, and ¢, (x) for r € N*. Each of these
principal formulas gives a complete 1-type in 7}, . We also need to examine
non-principal 1-types in 7, zp. We will show there is only one such 1-type.

To prove these statements we will use automorphisms.

Automorphisms of A:

For a given sequence of cardinals ¢ = (k;)renufoo}, take the model A, to be

({0} x ko x N)U | ({r} x kv x Cr) U ({00} X koo x Z)
reN+
where k, means {i € Ord|i < k,}. An element of A, is then a triple (r,i,n)
where r € NU{o0},i=0,1,...,k, — 1 (if k, is finite) and n € Nor n € Z or
n € C, ={0,1,...,r — 1} considered as an r-cycle. To specify m € Aut(A,),
we need the following: For each r € NU {oc0}, we choose a permutation p,
of k,. For each r € N*, and each i < k,, we choose m,,; € {0,1,...,7 — 1}.

For each 1, k, we choose m,; € Z.
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Proposition 5.13.

;

(0, po(7),n) ifr=0
m(r,i,n) =9 (r, pr(i),n + my(modr)) if r € N*

(00, poo(t), n + my;) if r =00

\

defines an automorphism of A,. Furthermore, every automorphism of A,

is of this form.

Proof. Each 7 is bijective and preserves f. So it is an automorphism. The
“furthermore” part seems clear, but we do not give a proof because we do

not need to use it. O

1-Types in 1; g:

Proposition 5.14. 1. Foreachn € N, if ky # 0 then R, (z) is a principal

formula.
2. For each r € NT if k, # 0 then ¢,.(z) is a principal formula.

3. pz ={-R,(z) : n € N}U{-.(z) : r € NT} is the type of an element

in a copy of Z.

There are no other complete 1-types of T} g.

Proof. 1. Let n € N. Suppose a,b € A, such that A, = R,(a) and
Ay = R, (b). So there are i,7 < ko and n € N such that a = (0,4, n)
and b = (0, 7,n). By Proposition there is m € Aut(A,) such that
m(a) = b. So tp(a) = tp(b). So R,(x) is a complete type.

2. Letr € N*. Suppose a,b € A, such that A, = ¢,.(a) and A, = 1¥,(b).

So there are i,j < k, and n,m € {0,...,r — 1} such that a = (r,i,n)
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and b = (r, j,m). By Proposition there is m € Aut(A,) such that
m(a) =b. So tp(a) = tp(b). So 1.(z) is a complete type.

3. Suppose a,b € A, such that A, = pz(a) and A, = pz(b). So there
are i, j < ks and n,m € Z such that a = (c0,i,n) and b = (oo, j, m).
By Proposition there is 7 € Aut(A,) such that 7w(a) = b. So
tp(a) = tp(b). So pz(z) is a complete type.

Every element of any model A |= T, i has one of these types, so there are

no other types. O]

Quantifier elimination plays an important role in studying definable sets as
definable sets which are defined by quantified formulas can be complicated.
If an L-theory has quantifier elimination this means that every L-formula

is equivalent to a quantifier-free L-formula.

Definition 5.15. Suppose M = T, r, and A is an Ly g-substructure of
M. The connected hull of A in M, denoted by ConHullp(A) is the Ly p-

substructure of M consisting of all the connected components of M which

meet A. Equivalently, ConHully(A) = {(fM)"(a) : n € Z,a € A}

Lemma 5.16. Suppose M,N | T,r, and A is a common
L g-substructure of M and N. Then ConHullp(A) = ConHully (A).

Proof. Let a € A and let E, be the connected component of A containing

a. We need to define an isomorphism
7 ConHullp(A) — ConHully(A)

such that
T = U Ty

and

7o : ConHullp(a) — ConHully(a).
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If B, is a cycle C, for r € N*, then E, is a cycle in M and N. So
take m, to be the identity on FE,. If E, is in a copy of N, then there
is n € N such that M = R,(a). As A is an Ly g-substructure of M,
A E R,(a). As A is an Ly g-substructure of Ny, N' = R,(a). So since
M, N = T, g, the connected components of a in M and A are copies of N,
and a is the (n + 1) element. So define 7, by 7, (f*)™(a) = (fV)™(a) for
m > —n. So 7, is an isomorphism from ConHully(a) to ConHully(a). If
E, is in a copy of Z, then M = —(R,(a) V ¢,(a)) for all n € N,r € N*,
As A is an Ly g-substructure of M, A = =(R,(a) V ¢,(a)). As Ais an
L g-substructure of N'; N' = = (Ry(a) V ¢,.(a)). Since M,N = T, g, the
connected components of a in M and N are copies of Z and a can be
any element of these copies. So define 7, by 7, (f*)™(a) = (f)™(a) for
n € Z. So m, is an isomorphism from ConHullpy(a) to ConHully(a). Thus
ConHullpm(A) =2 ConHully (A). O

Lemma 5.17. Suppose M, N |= T, g, and let ¢(Z,y) be a quantifier-free
L p-formula and a € A where A is a common Ly g-substructure of M
and N. Then either |¢(a, M)| and |¢(a, N)| are finite or |=p(a, M)| and
|-¢(a, N)| are finite. In other words, the size of the set defined by ¢(a,y)

depends on T, not on the models of 7.

Proof. First we consider the case where ¢ is an atomic formula 6. Atomic
formulas in Ly g are R,(y) for n € N, y = f™(a) for m € Z and a € A, and
f"(y) =y for r € N*.

Case 1: O(a,y) is the formula R,(y) for n € N. In T, ko is finite. So R,(y)
defines a finite set of size ky. So |0(a, M)| = |6(a,N)| = ko.

Case 2: 6(a,y) is the formula f"(y) = y for r € N*. We have two possibilities.
First, if k, is finite for all s € Nt then f"(y) = y defines a finite set
of size > s ks. So |0(a, M)| = |0(a,N)| = > s ks. Second, if k; is

s|r s|r
infinite for some ¢t € N*, then kg = 0 and ) k, is finite. So f"(y) =y
q#t
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defines an infinite set for r such that ¢|r and a finite set of size > s- ks
s|r
if ¢t 4 r. If t|r then the set defined by —[f"(y) = y| has size > q -k,
atr
which is a finite sum. So |-0(a, M)| = |[-0(a,N)| = > q - k,.
atr
Case 3: 0(a,y) is the formula y = f™(a) for some m € Z. So 6(a,y) defines a

singleton. So |0(a, M)| = |6(a,N)| = 1.

So either |f(a, M)| = |0(a,N)| is finite or |=0(a, M)| = |-6(a,N)| is
finite. So the size of the sets defined by 6(a,y) depends only on T5.
Now we consider an arbitrary quantiﬁer—free formula ¢. In disjunctive

normal form, ¢(a,y) can be written as \/ /\ wri(a,y) where /\ vr(a,y)
k=11=
is a finite conjunction of atomic or negated atomlc formulas. So 1f at least

one of the ¢y (a,y) for I =1, ..., s, defines a finite set then both of

Sk sk
| ﬂ g%l(c’z,/\/l)‘ and | ﬂ <Pk,l(5l7/\/)| have size < my

=1 =1

where
my, = min{n;|n; is the size of finite sets defined by ¢y, (a,y)}.

If all of ¢y (a,y) define cofinite sets then

Sk Sk
ﬂ@k,l(d,/\/l) and ﬂgpkvl(d,/\/') are cofinite .

=1 =1

So, if all of ﬁ ¢r1(a,y) define finite sets then both of
=1

’Oﬂ@kl&/\/l and!OﬂgoklaN‘havesme <ka_

k=11=1 k=11=1
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Sk
If at least one of () ¢x,(a,y) define a cofinite set then
=1

T Sk T Sk

U ﬂ ¢ri(a, M) and U ﬂ vr.(a, N') are cofinite

k=11=1 k=11=1

So the size of the sets defined by ¢(a,y) depends on 7.

Theorem 5.18. T, r has quantifier elimination.

Proof. Suppose M,N = T, g, and A is a common Ly g-substructure of
M and N. By [12, Corollary 3.1.6], we need to show that if ¢(Z,y) is a
quantifier free formula and @ € A and there is b € M such that M |= ¢(a, b),
then there is ¢ € N such that N |= ¢(a,c). In some cases we define an

isomorphism
7 ConHullp (AU {b}) — ConHully(AU{c})

such that 7 [conmun(a) is the identity and 7(b) = c. Then since p(Z,y) is a
quantifier-free Ly p-formula and ConHully(A U {b}) is an
Ly g-substructure of M, ConHullp(A U {b}) E ¢(a,b). Then by the
isomorphism  m,  ConHully(A U {c}) = p(a,c) and as
ConHully (AU {c}) CN, we get N = ¢(a,c). We have three cases for b.

Case 1: If b € ConHull(A), by Lemma we can take ¢ = b.

Case 2: If b ¢ ConHullyy(A) but M = R,,(b) for some m € N. Then it is
in a copy of N which is in M \ ConHully(A). Choose a copy of N
from N\ ConHully(A). This exists as ko(N) = ko(M). Let ¢ be
the element in this copy of N such that N' = R,,(¢). Define 7 by
T [ConHulin(4) 18 o and 7(f7(b)) = f"(c) where r > —m. Then 7 is

an isomorphism.
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Case 3: If b ¢ ConHullp(A) but M = 9,.(b) for some r € N*. Then it is in a
cycle of length r which is in M\ ConHullpy(A). If k,(0) is finite, then
k.(N) = k.(M). So choose a cycle of length r from N\ ConHullx(A)
and let ¢ be in this cycle. If k(o) is infinite, then it is not necessarily
the case that k.(N) = k.(M). However, there are only finitely many
cycles of length r which contain some a € A. So choose a cycle of
length r from N\ ConHully(A) and let ¢ be an element in this cycle.
Define m by 7 [contui, 4y is mo and w(f7(b)) = f"(c) where r € N.

Then 7 is an isomorphism.

Otherwise, b is in a copy of Z not in ConHully(A). If N has a copy of Z
which is not in ConHully(A), then choose ¢ to be an element in this copy
of Z. If N does not have any such copy of Z, we need to use the formula
o(a,y). We will construct an automorphism 7 of M. Define 7 : M — M
by

(o) = x if © ¢ ConHullp(b) |
f(z) if x € ConHullp(b)
Then 7 is an automorphism of M over A. So 7(b) € ¢(a, M) and 7" (b) €
o(a, M) for all r € Z. So ¢(a, M) is an infinite subset of M. So ¢(a, M) is
cofinite. So, by Lemmal[5.17], ¢(a, N) is cofinite. As A is infinite, ¢(a, N)is
infinite. So choose ¢ in this set. Then N |= ¢(a, c).

Theorem 5.19. Suppose o satisfies the following:

1. kg is finite.

2. If some k, is infinite for r € N, then ky = 0 and ) k, is finite.
q#r

Then T, is strongly minimal, and has quantifier elimination in the language

Ly g.
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Proof. By Theorem [5.18, T,z has quantifier elimination. So every L
formula is equivalent to a quantifier-free formula in L . So every definable
subset of M is defined by a quantifier-free L g-formula. By Lemma ,
the subset of M defined by an L z-quantifier-free formula ¢(a, y) fora € A

is finite or cofinite. So T, is strongly minimal. O



Zariski (Geometry on Strongly

Minimal Injective Unars

In the previous chapter, we worked on the theory of injective unars T, and
proved that T, with certain conditions is strongly minimal. In this chapter,
we define a topology on a strongly minimal injective unar A and show that
A is a Noetherian topological structure which satisfies the axioms for a
Zariski geometry.

The first part of this chapter is devoted to topologizing A. In order to
topologize A and prove this topology is Noetherian, we first introduce the
notion of a characteristic of A and we introduce the closed sets C,. Then
we define the notion of a formula being in special form which is important
in defining the irreducible closed sets. We also define the dimension and
rank of the irreducible closed sets which are defined by a formula in special
form.

In the second part of the chapter we prove that the topology on A with
assumption (*) satisfies the Zariski geometry axioms.

This chapter is similar to chapter 4, except that the presence of f in the
language means that the closed sets are more complicated than when the
language is empty. However, the dimension and rank of closed sets, and

Noetherianity, are to some extent similar to those in chapter 4.
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6.1 Topology on Injective Unars

In this section, we will introduce the topology on A.

6.1.1 Characteristic of A and Assumption (*)

Definition 6.1. Let A be a strongly minimal injective unar. Then A is
said to have positive characteristic r if k,.(.A) is infinite for some r € NT.
Otherwise A is said to have characteristic co. We write char(A) for the

characteristic of A.

Definition 6.2. We define assumption (*) by: either char(A) = oo or
char(A) = r where r € N* and for all ¢ € N, k, = 0 unless ¢|r.

Example 6.3. If kg(A) is infinite, then the formula z; = f%(z;) defines an
infinite, hence cofinite set which we need to be open. But it is a positive
formula, so we also want the set to be closed. Also the formula z; = f*(z;)

where 6 | s defines an infinite set as well.

Remark 6.4. If (*) holds and r = char(.A), then the formula f"(x;) = z;

is equivalent to x; = z;.

Example 6.5. Again back to Example the formula z; = f%(z;) is
equivalent to x; = z; as we have all k, = 0 for ¢ € N* except ki, k2 and ks,

and for any x where z is in either a cycle of length 1,2 or 3, x satisfies the

formula z = f9(x).

Lemma 6.6. If A is a strongly minimal injective unar then after removing

finitely many points it satisfies (*).

Proof. Suppose A is a strongly minimal injective unar then by Lemma[5.9

there are two cases:

Case 1: ko and k, are finite for all € N*. So char(.A) is oo, so (*) holds.
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Case 2: k, is infinite for some r € N*. So char(A) = r. Let X be the subset
of A defined by the formula z; # f"(z;). The size of X is > ¢ - k, which is
afr

a finite sum as we have ) k, is finite. So A\ X satisfies (*). O
aFr

6.1.2 Definition of The Closed Sets C,

In L = (f), the closed sets are the sets defined by a positive quantifier-free

formula.

Definition 6.7. For n € N*, let C,, be the collection of subsets of A™ which
are defined by a positive Boolean combination of atomic L ;-formulas (with

parameters), and let C = J C,.
neN+t

This chapter is devoted to the proof of the following theorem.
Theorem 6.8. Assume A is a strongly minimal injective unar which

satisfies (*), then the following hold:
(i) For each n € N, C, is the set of closed sets of a topology on A",
(ii) The topology is Noetherian.

(iii) The topologies satisfy the axioms (Z0), (Z1), (Z2), and (Z3), which

make A into a Zariski geometry.

The proof of Theorem [6.8] will take the whole of this chapter.

A positive quantifier -free formula is built from atomic formulas using A and
V only. The atomic formulas are z; = f(z;) for m € Nand 4,j = 1,...,n,
or r; = a; for i = 1,...,n and a; is a parameter from A, in the structure
(A, f). For m € NT we write z; = f~"(z;) to mean f"(z;) = z;. This
makes sense because f is injective. If f is not injective, then we also need to
consider the atomic formula f"(z;) = f™(x;) forn,m € Nandi,j =1,...,n

as well.
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Lemma 6.9. Let A be an injective unar, and ¢(T) an atomic
L;(A)-formula. Then ¢(Z) is equivalent to a formula of the form

x; = f™(x;) for some m € N, or z; = a for some a € A.

Proof. By injectivity of f4, f™i(z;) = f™i(x;) is equivalent to z; = f™i (z;)

where m;; = m; —m; and m; > m,. O

We refer to Definition 1.10] and Lemma 4111

Let S C A™ be in C,. Then, by the Disjunctive Normal Form Lemma 77,

r Sk
S can be written in the form \/ A ¢ri(T) where ¢ (T) are atomic
k=11=1
formulas and r,s; € N. The set S corresponds to the finite union of S

Sk
where Sy is defined by A ¢x,(T). Hence, it is sufficient to describe sets of
=1

the form Si. In this case S will be defined by A ¢i(T).
=1

Proposition 6.10. Let A be a strongly minimal injective unar. Then:

(i) Every S € C, is definable with parameters.

(ii) Every definable (with parameters) subset S C A™ is a finite Boolean

combination of sets in C,,.

Proof. (i) Immediate by definition of C,.

(i) By Theorem T, has quantifier elimination in L;p. So S is
defined by a finite Boolean combination of Ly g-atomic formulas. So
it is enough to show that L r-atomic formulas define subsets in C,,

or finite Boolean combination of them.

Case 1: If the L g-atomic formula is R,(z;), we list the set R,(A) as

a1, ..., agya). Then R, (z;) defines the same subset of A" as

ko(A)
\V z; = a;, which is in C,.
=1
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Case 2: Otherwise, the atomic formula is an L-atomic formula which

defines a set in C,, by definition.

6.1.3 Formulas In Special Form

In theory of algebraically closed fields, definable sets are converted to
ideals where ideals allow the use of the Hilbert Basis Theorem to show the
topology is Noetherian. In the theory of unars, we need to find an
analogue for the Hilbert Basis Theorem. The special form formulas ¢

which define irreducible closed sets play the same role as prime ideals.

Definition 6.11. Let Fiz be a subset of {1,...,n}. For each i € Fix, let
a; € A. Let ~ be an equivalence relation on {1,...,n} \ Fiz. For each i,

where i ~ j let m;; € Z be such that the following holds:

(i) If char(A) = oo and i ~ j and j ~ k then m;; + mjx = myy.

(ii) If char(A) =r where r € N* then all m;; € {0,...,r — 1} and if i ~ 5

and j ~ k then m;; + mj, = my(modr).

Given the above data, we define the formula gz ~m(Z) to be

/\ Ti = a; N\ /\ xy = f"(x5).
i€Fix {(,9)]i~g,i<5}
Any formula ¢(z1, ..., ,) is in special form if there are Fiiz,a, ~ and T such

that p(21, ..., Tn) = Priza~m-

Proposition 6.12. Suppose that S C A" is non-empty and defined by

a conjunction of atomic formulas. Then there are finitely many subsets
t

Si,...,S; of S such that S = [J Sk and each Sy is defined by a formula in
k=1

special form.
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Proof. Suppose S C A" is non-empty and defined by a conjunction ¢ =
N

/\ @1 of atomic formulas. We need to find formulas 6, ..., 0, with each 6y
=1

of the form ¢riz a.~m-

Define Fixz C {1,...,n} by
Fizy = {i| for some a € A, p - x; = a},

Fizy = {i| for some ¢ € N" and r{ ¢, ¢ - x; = f4(z;)} if char(A) =r,

or
Fizy = {i| for some ¢ € N*, p - x; = f(z;)} if char(A) = oco.

Then define Fix = Fixqy U Fix,.
Define ~ on {1,...,n} \ Fiz by i ~ j if and only if there is m;; € Z such
that ¢ F (z; = f™(x;)). This also defines the m,;.
Let
Pim = /\ zi = f"9(x;).

{(7'7.7)‘7’<]77'N.7}
So o pom.
Now we define the number ¢ and the tuple ay.

For each i € Fixq, set

ti:ZS'ks,

slg;
where ¢; € NT is the least such that ¢ F z; = f%(x;).
Since S # @, t; # 0. Let

t= ][ t

i€Fixo
Then we choose the a;, for ¢ € Fizy and k =1, ..., to list all the ¢ tuples
from A with

N (air) = i

i€EFixo

For i € Fizq, set a;) to be the a € A such that ¢ F z; = a, for each
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k=1,..,t. Then for k =1,....¢, let 0y be

Prm N /\ Ty = Q4.

i€Fix

Let Sk = 0;(A). We need to show that

t
S = U S,..
k=1

First we show that

S

N

t
U Sk

k=1

Suppose a = (ay, ...,a,) € S. So A = ¢(a). Since p - pum, A = oom(a).
If i € Fizy, then ¢ F x; = a;, for all k. For each i € Fixg, o b f%(x;) = x;,
so A = f%(a;) = a;. So by the choice of the a;x, there is k € {1, ..., ¢} such
that A= A a; = a;x. So then a € Si. So

i€ Fizo

Now we show that

Let a € S for some k. We must show that A = }V\ @i(a). By Lemma
[6.9] there are three possibilities for ¢, up to equivall:;lce under T,. If ¢,
is x; = a for some 7 and some a € A then, by definition of Fixy, i € Fix,
and a = a; . So A = ¢i(a). If ¢, is x; = f™9(x;) for some 7 # j and some
mi; € N, then oz ¢ So O F . So A = ¢i(a). If ¢ is z; = f4(z;) for

some ¢; € Nt then i € Fize. So f%(a;r) = a;. So A= ¢i(a). So

t
UJsics
k=1
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as required. Hence

t
S=J S
k=1

[]

Example 6.13. (i) If char(A) = oo, then k, is finite for each r € N.
Let S C A* and S be defined by the formula

w1 = fHws) Axg = f(x1) A xg = f2(24).
So S is also defined by
w1 = [ 1) Axg = f(x1) Axg = f2(2a).

Suppose k3 = 2 and we list the elements on 3-cycles as a; 1, ..., a16.

5
a13 a2
V’\/
M
Q16 a5
V’\/

Then the special form is equivalent to
— _ _ 5
T = Q1 A T3 = a3k A To = f (l‘4)

for k =1,...,6 and a3y = f(a1x). So S will be defined by the formula

6
\/ [xl =1 ANTs=agp A\ To = f5(a:4)] .
k=1

(i) Let char(A) =6. So k¢ = oo, and ki, k2, k3 are finite and each k, = 0
for r € NT\ {1,2,3,6}. So if S is defined by the formula z; = f%(z;)
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then the special form will be z; = z; as all the elements in S satisfy

the formula z; = f%(z,).

6.2 Dimension and Rank of Closed Sets in

Injective Unars

The dimension of sets defined by formulas in special form is needed so we
can determine the rank of these sets. We can use the number of equivalence

classes in the formula in special form to define their dimension.

Lemma 6.14. Suppose S C A" is defined by ¢piz 5.~ in special form. Let

d be the number of equivalence classes for ~. Then

(i) S is in definable bijection with A<.
(ii) The Morley rank, M R(S) = d

(iii) The Morley degree, M Deg(S) = 1.

Proof. (i) For each ~ — class, choose j such that m;; > 0 for all ¢ such
that ¢ ~ j. Let ji,...,74 be the set of these representatives of the
~ — classes. Then 7 : S — A¢ given by 7(zy,...,2,) = (zj,, ..., Tj,)
is a bijection. To show this, define # : A? — S as follows: Let
(by,...,bq) € Ad. Define 0(by, ..., bq) = (e1, ..., e,) where

S if i € Fix
" fmir(b,) if i ~ j, for some r =1, ..., d.
Then 0(m(x1,...,z,)) = 0(xj,,...,x;,) = (z1,...,2,). So fom = Idg.
Also w(0(by,....bq)) = m(er,...,en) = (€j,,-.,€5,) = (b1,...,04). So
mo6 = Ida. Thus 7 is a bijection. Parts (ii) and (iii) follow from (i)

because A is strongly minimal.
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]

Classifying closed sets is important as we can then determine the irreducible
closed ones which is important in proving the Zariski geometry axioms as
well as Noetherianity. This can be done by defining their rank. We write
dim(S) for M R(S).

Definition 6.15. Given ¢ = @pi;z.~m in special form, defining S, define
the rank of ¢ and of S to be rk¢ = rkS = w9,

Definition 6.16. Given S € C, and ¢ defining S, with ¢ = \/ ¢, where

k=1
r

each ¢y is in special form, define rkp = > rkyy, such that rkp; > rkps >
k=1
... > rkpy. Define rkS = min{rkey|p is of the above form and ¢ defines S}.

Remark 6.17. In Definition it is important that rky; > rkes >

... > rkyy as the ordinal sum is not commutative.

Example 6.18. We will take a closed set S in A% as an example. Suppose

o(x1, x9, x3) is the formula
x1 = f(x2) V (x2 = ag A x3 = ag),
and ¢'(x1, z9, x3) is the formula
(21, To,23) V (1 = a1 Axg = ag A3 = a3) V (21 = f(x2) Azo = f3(3)).
Both ¢(x1, 29, x3) and ¢'(z1, 9, x3) are in special form. So
k(o) = w® + w

and

rk(¢) = w? 4+ 2w + 1.

Note that ¢(zy, 22, 23) and ¢'(z1, 72, z3) define the same subset S of A3,
Therefore rk(S) = w? + w.



Chapter 6: Zariski Geometry on Strongly Minimal Injective Unars 60

Lemma 6.19. If Sl, S2 € Cn then Tk'(Sl U SQ) < rkSl + T’/{ZSQ.

Proof. Let S1,S; € C,. Choose 1, @9, disjunctions of formulas in special
T1 T2

form, o1 = \/ 1 and @2 = \/ e with each 1; in special form such that
k=1

k=1
01(A) = 51 and @3(A) = Sy and 7kS; = rky; and rkSy = rkgy. S; U Sy is
defined by

Y =@1V s

T1 T2
=\ v v\
k=1 k=1

So
rke = Z rkr + Z rkibis
=rke1 + rkes
= rk;51 + T/{?SQ
Therefore

rk(S1 U Sy) < rky

In the theory of algebraically closed fields, the descending chain condition
for closed sets is proved first by converting the definable sets to ideals then
by using the Hilbert basis theorem. In the theory of injective unars, the
special form of formulas plays the role of the prime ideals and Proposition

plays the role of the Hilbert basis theorem.

Lemma 6.20. Suppose C, S € C,, and S is defined by a formula in special
form,and C' C S. Then rkC < rkS.

Proof. Let C' C S. Suppose S is defined by the formula ¢ in special form.
We need to show rkC < rkS. Suppose C' is defined by ¢ = \/ Y, where
each v, is in special form. Let Cy, = ¢ (A), k= 1,...,7. So C = C’1U U,
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Since CY is a proper closed subset of S, A E Vay, ..., 2, [k (T) — ©(T)]. So
we can assume all conjuncts in ¢ (atomic formulas) are also in ¥y. As Cy
is a proper subset of S, there must be at least one more atomic formula,
say 0 in 1. So we have A F VZ[Yr(Z) — (6(T) A ¢(T))]. So we can
assume ¥, = 6 A . So 0 is either z; = a; for some i ¢ Fiz(p), then
all j in the equivalence class of i in ~, are in Fliz(1);) and the number of
equivalence classes of ~, is the number of equivalence classes of ~, —1; or

0 is x; = f™(x;) such that i =, j. Then [i]., U [j]., = [il., . That is, the

7}
equivalence classes of ¢ and j under ~, are contained into one equivalence
class under ~,, . So the number of equivalence classes for ~, is the number
of equivalence classes for ~, —1. Let m = dimS. Then rkS = rky = w™.

For each k, rkC), = rkiy, = w®C% but dimC), < m, so rkCj < w™ ' So

by Lemma | 6.19]

rkC < ZrkC’k < rwm™ < W™ = rkS.

k=1
So rkC < rkS. O]

Lemma 6.21. If S € C, is defined by a formula in special form then S is
irreducible: If C1,Cy € C, and S = Cy U (5 then either C; = S or Cy, = S.

Proof. Suppose S = C1UC, with C7,Cy € S, and S is defined by a formula
in special form. By Lemma [6.20, rkC, < rkS. By Definition rkS =
w@™S) where dim(S) € NT. Now rkC\,rkCy € Nw], say

dim(S)—

(8)-1
rkC; = Z yiw' < wdm(S)
i=0

and
dim(S)—1

rkCy = Z Siw' < wdmS),
i=0
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So, by Lemma [ 6.19]

dim(S)—1
rk(Cy U Cy) < (i + 6)w' < whm™S) = k8.
1=0
So Cy Uy # S, a contradiction. Thus, S is irreducible. O

It follows from Proposition that C,, contains @ and A™ and is closed
under finite unions and finite intersections. To show it is a topology we

must show it is closed under infinite intersections.

Proposition 6.22. If S} C Sy C A" with 51,9 € C,. Then rk(S;) <
Tk(SQ)

Proof. Suppose S; C Sy C A™ are in C,,. First we consider the case where Sy
is defined by formula in special form. So by Corollary[6.21], S, is irreducible.
So by Lemma [6.20] rkS; < rkS;. Now we consider the case where Sy
is defined by a disjunction of formulas in special form, then, say S, has

dimension D and decomposition Sy = S{U...US;US; ; U...US,. Then

v~ ~~
dim=D dim<D

either dim(S;) < D, so rk(S1) < wP < rk(S,), or dim(S;) = D. Then the
irreducible components of S; of dimension D are some of S}, ..., S). If not
all S7,..., 8 are subsets of S then rk(S;) < wP.d < rk(S;). Otherwise,
STU...US), C Sq. So let r be the largest number such that there is an \S] in
the irreducible decomposition of Sy which is not in S; of dimension r. Then
rk(Sy) =wP.d+ ... +wttk+wrl+... and rk(S)) =wP.d+ ... + Wk +
W'+ ... where I" < [. So rk(S1) < rk(S2). O

Proposition 6.23. An infinite intersection of members of C, is in C,.
Furthermore, C, is the set of closed subsets for a Noetherian topology on

Am.

Proof. Let S; € C,, fori € I. So .S; C A", for all « € I. Each S; is defined by

a positive quantifier free formula. We want to show there is a finite Iy C I
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such that ﬂ S; = ﬂ S;. Assume that [ is an ordinal. Let C, = [ Ss.
Also C QlGCI’Q D C;GS ... . Using Lemma [6.20] we have rkC} > reréKg
So, since rk is ordinal valued, there are only finitely many ¢ € I such that
rkCi_1 > rkC;, say iy, ...,i. Let Iy = {y|l =1,...,k}. So rkC;, = rkC; for
all j > i, and C;, = C; for all j > 4. So () S;, = () Si. So C,, is closed

i1€lp el
under infinite intersections, so is a topology and it is Noetherian. O

We will now prove that the irreducible closed sets are exactly those defined

by a formula in special form.

Proposition 6.24. Let S C A", and S # @. Then S is closed and

irreducible if and only if S is defined by a formula in special form.

Proof. 1f S is defined by a formula in special form then by Lemma S
is irreducible.

Suppose S is closed and irreducible. Since S is closed, by the DNF theorem,

it is defined by a formula of the form \/ /i i, (T) where each ¢ (T) is
k=11=1
atomic. Let Sy be defined by /’{ i (T). Then S = |J Sk. By Proposition
=1 k=1

tr
6.12 each Sy is of the form S, = |J Sk ; such that each Sy ; is defined by
7j=1

t

r k

a formula in special form. So S = |J | Sk;. But S is irreducible, so is
k=1 j=1

equal to one of the S ;. So S is defined by a formula in special form. [

6.3 Zariski Geometry Axioms on Injective

Unars

This section is devoted to proving that the structure of injective unars with
the condition (*) satisfies the Zariski geometry axioms.
The definition of Zariski geometry was given in Definition [ 4.6l We repeat

it here for convenience.
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Definition 6.25. [12, p.306] A Zariski geometry is an infinite set A and a
sequence of Noetherian topologies on A, A%, A%, ... such that the following

axioms hold.

(Z0) i) If m#: A" — A™ is defined by 7(z) = (mi(x), ..., mn(x)) where
each m; : A" — A is either constant or coordinate projection,

then 7 is continuous.

ii) Each diagonal A, = {z € A" : x; = x;} is closed.

(Z1) (Weak QE): If C' C A™ is closed and irreducible, and 7 : A" — A™

is a projection, then there is a closed F' C 7(C) such that 7(C) 2
n(C)\ F.

(Z2) (Uniform one-dimensionality):

i) A is irreducible.

ii) Let C C A™ x A be closed and irreducible. For a € A", let
C(a) = {x € A: (a,z) € C}. There is a number N such that,
for all a € A", either |C(a)| < N or C(a) = A. In particular,

any proper closed subset of A is finite.

(Z3) (Dimension theorem): Let C' C A™ be closed and irreducible. Let W
be a nonempty irreducible component of C'N A};. Then dimW >

dimC — 1 where dim is the same as Morley rank.

We recall from Definition some notation for the projection maps in

axiom (Z0).

Definition 6.26. Given a function o : {1,....,m} — {1,...,n}, we can get
a projection map 7, : A" — A™ given by 7, (21, ..., n) = (To(1), -, To(m))-
As we need to consider each map which is a co-ordinate projection or a

constant, and show it is continuous, we define

ZTa(i) if OJ(Z) S {1, ,n}
a if a(i) =a,a € A

Tai(T1y ey Tp) =
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where  « ; {1,....m} — {1,...,n} U A So

Tol(T1, ooy Tn) = (M1 (T), ooy Tam(T)) where T = (21, ..., Ty).

Lemma 6.27. (Z0) holds for (A, f).

Proof. i) Let ¢(T) be the negation of atomic formulas

ii)

=z = f"(z;)] for m e Z

or

where 7,5 € {1,...,n},a € A. Any open set U C A™ can be defined by

r Sk
a positive boolean combination \/ A ¢y(Z) of basic open sets. Now
k=11=1
r Sk
m (U) ={@ e A" \/ )\ Yra(ma(@))}.
k=11=1

So we need to see that ¢y, (7, (7)) is an open set. But ¢y, ;(7,(T)) is the
formula —[z; = f™(x;)] or =[x; = a;] with substitution of terms r, ; for
z; and 7, ; for z;. So it is —[7ma,(T) = f"(74,;(T))] or —[7a,i(T) = ak,).
These are negations of atomic formulas, so they are basic open sets.

Thus, 7, is continuous.

The diagonal A7; is defined by the atomic formula x; = z; which is

in special form. So A7, is closed.

Therefore, axiom (Z0) holds for (A, f). O

Lemma 6.28. (Z1) holds in (A, f).

First we give proof for the easier case m =n — 1.

Proof form =n — 1: Let C' C A" be irreducible closed set. If C = @ then

7(C) = @ which is closed. Otherwise let ¢(Z) be a formula in special form
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defining C. Let m: A" — A" ! and 7(xy,...,2,) = (21, ..., ¥n_1). Then we

will have the following cases:

Case 1: If n € Fix, then 7(C) is defined by

N wi=an N w=m0)

i€Fiz\{n} {(@5)]i~gi<5}
which is in special form. So 7(C) is closed and we can take F' = @.

Case 2: If n ¢ Fix, then write ¢'(z1, ..., ,_1) for the formula

/\ T; = a; N\ /\ xi:fmij(mj)-

i€Fix {(i.)li~,i<j<n}

Then ¢(7) is the formula

901(*%17 e .1’7171) A /\ €T, = fmm(l’n)

{i]i~m,i<n}

So 7(C') is defined by 3z, (T), which is equivalent to

Qpl(;pb” Tn—1 /\Hxn[ /\ Ty = fmm xn)] :

i~ I<n

The formula

g e

i~n,i<n

is equivalent to
[ /\ T, = fmr xl)]
i~n,I<n

If some m,,; > 0, then the projection will be defined by eliminating x,,
and m(C) will be defined by ¢'(z1, ..., z,—1) which is in special form.
So 7(C') is closed and we can take F' = @. Also if char(A) # oo, then
f is surjective and again we can eliminate x,, in the projection and

7(C) will be defined by ¢'(z1, ..., ,-1). So w(C') is closed and hence

F = @. Now suppose all m,; < 0. Choose [ such that m,; is smallest.
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So
SO,(II)" Lp— 1 /\ Hl'n [ /\ T; = mzn n)]

i~m,i<n

is equivalent to

O(x1y oy 1) A Ty, [ = [ ()]

which is equivalent to

mlnfl
O(@1y ey Tpo1) A \/ R;(z).
§=0
So take F' to be the set defined by
mln—l

gol(xl”"’x”_l)/\ \/ Rj(l'l)

which is closed. Hence, n(C) = n(C) \ F. We can also see that 7(C)
is defined by ¢'(z1, ..., Tp_1).

Example 6.29. Suppose C' defined by the formula
r1 = f2(x3) Axg = f2(14).
So the special form is
w1 = f2(x3) Ay = fT(x4) Ay = f*(xa).
So the projection of C' from A* to A3 will be defined by

Ir1 = f5(l'3) VAN EL’E4 [1'4 == f_7($1) A Ty = f_2(173)}
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We choose the least my; which is my; = —7. So we get for the projection
6
Ty = fS(Ig) A= \/ Rj(xl).
j=0

Now we will examine the projection 7w : A" — A™ where w(z1,...,z,) =

(1’1, ,ZL‘m)

Proof for arbitrary m: Let C C A™ be an irreducible closed set. If C' = &
then 7(C) = @ which is closed. Otherwise let ¢(Z) be a formula in special

form defining C'. Write ¢'(x1, ..., ,,) for the formula

/\ T; = a; N\ /\ xz:fmu(xj)

i€Fian{1,...,m} {(5.5)li~gyi<j<m}

Then ¢(Z) is the formula

O(T1,y ey ) A /\ T =a; A\ /\ x; = [ (ay).

i€FizN{m+1,...,n} {(i,k) i~k i<k,k>m}

Let K ={ke{m+1,..,n}|Fi € {1,...,m} such that i ~ k}.
Then ¢(T) is the formula

(p/(,xl,...,l‘m)/\ /\ T = a; A\
i€FizN{m+1,...,n}

/\ x; = f"*(x) A /\ x; = fMF(xg).

{GR)j<m keK jrk} {(i,k)€{m+1,...n}2|ink i<k}

Then under projection, the conjunctions

i€FizN{m+1,...,n}

and

A\ wi = [ ()

{(i,k)e{m+1,....n}2|i~ki<k}
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are eliminated.

List K as kq, ..., k.. So w(C) is defined by
O(T1y ooy ) A TTpy s oo, T, /\ xj = fMik(xy)
{GR)i<m,keK,j~k}

The formula

ks ey T, /\ xj = f"ik(xy)

{GR)j<m.keK j~k}

is equivalent to

zg,, .., T /\ xy = [ ()

{(k.g)li<m.keK,j~k}

If char(A) # oo then f is surjective. So 7(C') is defined by ¢'(x1, ..., Ty)
which is in special form so 7(C') is closed and we can take F' = @&. Otherwise
for each my; > 0 we eliminate such my; in 7(C) and for each my; < 0 we

choose [ such that my,; is smallest. Define
J={je{l,...,m}:3k e {m+1,..,n} such that j ~ k}.

Then 7(C') is defined by

O (1, ey ) A Ty, ooy L/\ /\ = [k (xy)

€J kEK knj

For each j € J, let I(j) € K such that mj,) is greatest. Let

J ={jeJ:mjyy >0}
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Then 7(C') is defined by

mja)—1

O'(T1, ey Tyg) A \/ \/ R,(z;)

jeJ’  q=0
So we may take F' to be the set defined by

mj)—1

\/ \/ Ry(x;)

jeJ  ¢=0

which is closed. Hence, 7(C) = 7(C) \ F.

Therefore, (Z1) holds in (A, f).
Example 6.30. Let C' be defined by the formula
x1 = f(x2) Aas = f*(x4) A a5 = g
Axyy = [ (21) Arp = flan)

NT13 = f_l(x{g) Nxyy = f_5((L'13)

Axys = f2(216) A w17 = f(a7).
and take m = 10. So ¢'(x1,...,x10) is equivalent to
x1 = f(22) A3 = f2(24) A x5 = 6.
Then (1, ..., x17) is equivalent to

QOI(.CL’l, ceey $10) A [Il = fZ(IH) A\ I = f(l‘u) VAN To — fg(l’n)
Axy = f2(212) A1y = f(213)
Aty = fO(x14) Ay = f2(213)

Ay = f8(x14) N7 = [ (217)].
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So F' will be given by

go’(xl, ...,.1310) A [Ro(LUl) V Rl(ﬂfl) V Ro(.CCQ) V Rl(.TQ) V Rz(.%g)\/

\/ Ri(xs) v \/ Rj(xa)]

J=0 J=0

Lemma 6.31. (Z2) holds in (4, f).

Proof. i) By Lemma|6.21] A is irreducible.

ii) Let C C A" x A be closed and irreducible. Consider the projection
7 A" — A" For a € A", let C(a) = {z,41 € A|(a, 2,11) € C}.
Let ¢ be a formula in special form defining C. If a ¢ 7(C) then

C(a) = @. Assume a € 7(C'). Then we will have the following cases:

Case 1: If n+ 1 € Fiz then 7 [¢: C — 7(C) is a bijection. Therefore,
[Cla)] = 1.

Case 2: If n+ 1 ¢ Fix and there is i < n + 1 such that i ~ n + 1 then
C(a) = {f ™=+ (a;)}. Therefore, |C(a)| = 1.

Case 3: If n+1 ¢ Fiz and there is no ¢ < n+ 1 such that i ~ n+ 1 then
the same ¢ defines 7(C) we get dim(w(C)) = dim(C) — 1. Thus
C=n(C)x Aand C(a) = A for all a € 7(C).

Hence Z2 holds in (A4, f). O

Lemma 6.32. (Z3) holds in (4, f).

Proof. Let C C A" be closed and irreducible. Let ¢ be a formula in special
form defining C. Let i,j € {1,..,n} and ¢ # j. Let W be non empty
irreducible component of C'N A}, where A7, = {z € A" : 7; = x;} and let
6 be the formula ¢ A (x; = ;). We are examining the intersection of the
diagonal with the irreducible closed sets. If C'= A" then W = A" N A}, =
Al Sodim(W)=n—1=dim(C)—1. If C =@ then W =g NA}, =
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but we assumed that W is not empty. If C' # A" then we will have the

following cases:

Case 1:

Case 2:

Case 3:

Case 4:

If i, 7 € Fize then we will have the formula z; = a; Azj = a; in . If
a; # aj then W = @ but we assumed that W # &. So a; = a;. So
W =C. So dim(W) = dim(C).

If i € Fizeg and j ¢ Fixe then we have the formula z; = a; in ¢. So

0 is equivalent to

N we=aA N\ o= f"(a N =)

keFizc k~cj k~olkcg k<l

So i,j € Fizy. So Fizy = FizcU{the ~c — equivalence class of j}
and C' N A7, is irreducible as ¢ in special form.

So dim(~w) = dim(~¢) — 1. So dim(W) = dim(C) — 1.

If i,j ¢ Fize and i ~¢ j then ¢ will imply the formula z; = ™ (z;).

So 6 will imply the formula x; = f™i(z;) A z; = ;. If m;; = 0 then

W = C. If m # 0 then 6 will imply the formula x; = f™9(x;). By the
t

proof of proposition(6.12) CNA}; = |J C}, where each C}, is irreducible
k=1

and given by ¢ A x; = a; for som(;aj,k € A. Thus j € Fixy. So
Fizw = Fizxc U {the ~c — equivalence class of j} which means that

dim(~w) = dim(~¢) — 1. So dim(W) = dim(C) — 1.

If 1,5 ¢ Fize and i %¢ j then 6 is equivalent to

/\ CCZ — CLZ/\ /\ fmkl xl)/\ /\ xk‘ frd fmki+mjl (IZ)
i€Fixc k~cl k<l {(k,1):k~i,l~g,k<1}
So 7 ~y j. So i and 7 will become in one equivalence class in W.
As the above formula is in special form, C'N A, is irreducible. So
the number of equivalence classes of ~y is equal to the number of

equivalence classes of ~¢o —1. So dim(W) = dim(C') — 1.

Thus (Z3) holds in (A", f). O



Classification of all Strongly

Minimal Unars

In this chapter we work towards the classification of strongly minimal unars
(not necessarily injective ones). We will assume through this chapter that

T is strongly minimal and A is a saturated model.

Definition 7.1. We say « is an infinite point if {z € A : f(z) = a} is

infinite.

Lemma 7.2. Suppose Th(A) is strongly minimal. Then there is at most

one infinite point in A.

Proof. Suppose Th(.A) is strongly minimal. Let ¢(z) be the formula f(x) =
y. As Th(A) is strongly minimal, then either {y € A : f(y) = a} is finite
or cofinite. If it is infinite, then for any b € A where b # a, {y € A: f(y) =
b}n{ye A: f(y) =a} =@ as f is a function. So {y € A : f(y) = b} is

finite. [l
N
Recall that a theory T is limited if T F Va[ \/ (f"(z) = f**(x))] for
n,m=1

some N € N, and T is not limited otherwise.

Lemma 7.3. Suppose Th(A) is strongly minimal and limited and has no
infinite point. Then every connected component of A is finite and all but

finitely many connected components are cycles of the same length m.
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Proof. Suppose the set {y € A : f(y) = a} is a finite set for all a €
A. As Th(A) is strongly minimal, .4 has uniform finiteness. By uniform
finiteness, there is Ny € N such that Th(A) E Vy3sNoz[f(z) = y]. Let
C' be a connected component of A. Since T is limited, for some Ny, T =
V| J{/l f™(x) = f™"(z)] and C contains at least one periodic point, say

n,m=1

a. Then for every b € C, there is m < 2N; — 1 such that f™(b) = a. So
2N -1

C= U f™a). So
m=0
IC| <14 Ny + No> + ...+ No* 7! < 0.

So each connected component has a finite size.

Recall that the formula t,,(z) is equivalent to

Now consider the formula 6,,,(x) for m,r < N; which is equivalent to
r—1

the formula ¢, (f"(x)) A A\ “Un(f*(x)). If 0,,,.(A) is infinite for some
5=0

m,r € N*, then 0,,0(A) is infinite. Then by strong minimality, 7 = 0. So

all but finitely many connected components are cycles of length m. O

Any point satisfies the formula 6,,,(z) for some m,r € N* is called a pre-

periodic point.

Lemma 7.4. Suppose Th(A) is strongly minimal and not limited. Then

there is no infinite point and not every point is pre-periodic.

Proof. Suppose there is a € A such that |f~!(a)| is infinite. So the set
{zr € A:z = fa)} is cofinite in A. So A\ f~'(a) is finite. As f is
a function, for any b € (A\ f~!(a)) and b # a we will have A = 6,,,(D)
for some m,r € N*. So if a is a pre-periodic then Th(A) is limited. But
we assumed that Th(A) is not limited. So a is not a pre-periodic point.

Also any copy of N in A is infinite and can have at most one element in
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common with f~(a), a contradiction to strong minimality. So no point
has an infinite pre-image. As A is not limited then for each N € N,

Th(A) = 32| /]\< fM(x) # f™(x)] . So by saturation of A, not every

n,m=1
point is pre-periodic. O
Definition 7.5. If |f~1(a)| = k, we say that a is a k-branching point.
We say that A is k-branching almost everywhere if every point in A is

k-branching except for finitely many points.

Definition 7.6. For k € NT, we define T}, to be a connected component in

which no point is pre-periodic and every point is k-branching.

Proposition 7.7. Suppose A and B are connected unars which are both
k-branching and have no pre-periodic points. Then A = B. So T}, is unique

up to isomorphism.

Proof. We will define the isomorphism 7 : A — B inductively. Choose
a € Aand b€ B. Define m1(a) = b and m(f"(a)) = f*(b) for n € N.

We will show that m is a partial isomorphism. The
dom(m) = {f"(a) : n € N}. Since A has no pre-periodic point, a is not a
pre-periodic point. So, if f"(a) # f™(a) then n # m. Then as B has no
pre-periodic point, b is not a pre-periodic point. So f"(b) # f™(b). So
m(f"(a)) # m(f™(a)). So m 1is injective. Also m respects f by
construction. So m; is a partial isomorphism.

Assume we have a partial isomorphism m,, : A — B. Define m,,,1 by
dom(mpms1) = {z € A|f(z) € dom(my,)}. For x € dom(m,), define
Tm+1(2) = T (z). For each z € dom(m,,) enumerate the x € A such that
flz) =z as zy,..,r, where xzy,...x. €&  dom(m,) and
Tpi1,y -y T € dom(my,). Enumerate the y € B such that f(y) = m,(z) as
Y1, .-, Y where yi,...,ys & Im(my,) and ysiq, ..., yx € Im(m,). As both A
and B are k-branching and 7, is a partial isomorphism, r = s. Define
Tm+1(zi) = y; for i = 1,...,7. We do this for each z € dom(m,,).

Now we will show that m,,; is partial isomorphism. Suppose
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z,x' € dom(mpyy1) are such that m,,1(x) = myue1(2’).We will have two

cases:

Case 1: © € dom(m,,). By the construction of 1, if ' ¢ dom(m,,) then

Tm+1(2') & Im(my,). So ' € dom(mw,,), but m, is injective, so z = z’.

Case 2: z ¢ dom(mp,). By construction,
m(f(@)) = f(Tma(2) = f(mma(a)) = 7(f(2). Since my, is
injective, f(z) = f(2’). By construction, z, 2’ are two from the list
x1, ..., o, corresponding to z = f(z), and 7, is injective on this

list. So x = «'.

So 7,41 is injective, and it respects f by construction. So m,,,1 is a partial
isomorphism.
So by induction on m, 7, is a partial isomorphism for each m € N.
Define 7 = |J m,,. Then 7 is also a partial isomorphism.
meN

Since A is connected, 7 is defined on all of A. Since B is connected, 7 is

surjective. So 7 is an isomorphism. O

Proposition 7.8. Suppose that A is a connected unar such that one point

a € A is pre-periodic. Then all points in A are pre-periodic.

Proof. Suppose a is a pre-periodic point of period m € N*. Then A |
Opr(a) for some r € N*. Let b € A. As A is a connected unar, there
are ¢,n € N such that f9(a) = f*(b). Let 7' = r + ¢+ n. Then f(b) =
frHda) = frrarm(a) = f(0). So A O (f9(a)). So A G (f(D)).

So every point in A is pre-periodic. O

Definition 7.9. For k € N* and m € N*, we define P, . to be a connected
component which is pre-periodic of period length m and is k-branching

everywhere. Note that P, is just a cycle of length m.

Proposition 7.10. Let A be a strongly minimal unar. Then there is k € N
such that A is k-branching except at finitely many points.
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Proof. Let Bi(x) be the formula 3=%y[f(y) = ], which defines the set of

k-branching points. We have three cases:

Case 1:

Case 2:

Caes 3:

There is an infinite point a. So a is infinitely-branching. Then a does
not satisfy g, for any k& € N. However, {y : f(y) # a} is finite. So only
finitely many x € A have non-empty pre-image. So A is 0-branching

almost everywhere.

There is no infinite point, but Th(.A) is limited. Then, by Lemma
all but finitely many points are on cycles. So A is 1-branching

almost everywhere.

Th(A) is not limited. By Lemma there is no infinite point, so
every point is k-branching for some k£ € N. So the sets defined by
Br(x) for k € N give a partition of A into definable sets. As T' is
strongly minimal, A has uniform finiteness. By uniform finiteness,
there is N € N such that every point is at most N-branching. So we
get a finite partition of A into y(A), ..., By (A), each of which is finite

or cofinite. So exactly one, say [i(A), is cofinite.

]

Definition 7.11. If A is k-branching almost everywhere and a € A is not

k-branching, we say that a is a defective point. 1f B is a connected

component which has at least one defective point, we say that B is a

defective component.

Corollary 7.12. Suppose B is a defective component. Then B has only

finitely many defective points.

Proof. Immediate from Proposition [ 7.10] O

Now we classify the models in Case 3 in Proposition | 7.10]
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Lemma 7.13. Let A be a strongly minimal unar which is not limited. Let
k € N* be such that A is almost everywhere k-branching. Then A consists
of:

i) Finitely many defective components.(Possibly none)
ii) For each m € NT, finitely many copies of Py, x.

iii) Some number of copies of T. (Possibly none)

Proof. 1) By Proposition | 7.10} there are only finitely many defective

points. So there are only finitely many defective components.

ii) If the formula t¢,,(x) is cofinite then A is limited. But A is not
limited, so each t,,(z) defines a finite set. So there are only finitely

many copies of P, x for each m € N*.

iii) Suppose a € A is not a pre-periodic point and it is not on a defective

component. Then by Proposition [7.7] a is on a copy of T.

In the classification of strongly minimal unars, we can find a finite
substructure which we will characterise it so that we can prove the

completeness of the theory of strongly minimal unars.

Definition 7.14. Let A be a strongly minimal unar. Let Ay C A such
that Ay is finite, say of size N for N € N*. Enumerate Ay as ay, ..., ay.
Define x4,(%1,...,xx) = /\{f(:cz)N: zjli,j =1,..,N, and Ay = f(a;) =
a}N N wmFaan N AN(f(@) # )

1<i<j<N {i:f(ai)¢Ao} j=1

We will axiomatize the theory of all strongly minimal unars and will use

the Los-Vaught test to prove that this axiomatization is complete.

Axiomatization of A in Case 1 where A is 0-branching almost

everywhere:
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As A is 0-branching, then almost all points x satisfy the formula £y(x).
Also there is an infinite point a; € A. So, almost all points = satisfy the
formula f(z) = a1 A Bo(z). Let a(z) be the formula f(z) = a3 A Bo(x).
So a(A) is infinite. So cofinite. Let Ay be —a(A). So A, is finite, say of
size N. Enumerate Ag as aq,...,ay. So Ay = xa,(a1,...,ay). As we are
axiomatizing A, we need to avoid the use of the parameter a;. So let ¢(2)
be the formula 3>Yy[f(y) = 2] where N = |Ay|. Now, »(A) gives {a;}. So
rewrite o(z) to be the formula 3z [FNy[f(y) = 2] A f(z) = 2] A Bo(z).

Take o to be the axiom

N
Elxh cs TN X.AO(I17 ) CUN) A QO(ZUl) A Vy[\/y =z;V O[(y)]
i=1
Proposition 7.15. If A = o and B | o and both have the same
cardinality, then A = B.

Proof. Suppose A,B |= o and |A| = |B|] = k. Let ay,...,ay € A and
bi,...,by € B be witnesses to . So B |= x4,(b1, ..., b5) A p(b1) /\Vy[\/

b; V a(y)] So |a(B)| = k. Define 7 : A — B by w(a;) = b; for i = 1: , N
and 7 [44) is any bijection from a(A) to a(B). Let a € A. If a € Ay, say
a = a;, then f(a) = a; € Ay for some j € {1,...,N}. So xa,(ai,....,an) F
f(a;) =a;. So B f(b;) =b;. Sow(fA(a)) = fB(r(a)). If a € A\ Ap then
fA(a) = a; and A = a(a). So fB(r(a)) = b = n(f(a1)) and B | a(n(a)).
So 7(fA(a)) = fB(w(a)). So 7 is an isomorphism. O

Axiomatization of A in Case 2 where A is 1-branching almost

everywhere and every point is pre-periodic:

Let v (x) be the formula

Yle) A=\ F) =2 A N (@) £ 5]

So A E v,,(z) if and only if the connected component of = is a cycle of
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length m. By Lemma 7.3 7,,(A) is cofinite. Let Ay be =y, (A). So Ay is
finite, say of size N. Enumerate Ag as aq,...,ay. So Ag = x4,(a1,...,an).

Take o to be the axiom

N
321, s oy [Xo (1, 28) AVY\ Y = 22V ()]

i=1
Proposition 7.16. If A = o and B = o and both have the same
cardinality, then A = B.

Proof. Suppose A,B |= o and |A| = |B| = k. Let ay,...,ay € A and
bi,...,by € B be witnesses to 0. So B = x4,(b1, ..., bn) /\Vy['\]\} y="bV
Ym()]. So |vm(B)| = k. Define 7 : A — B by w(a;) :l:bli for i =
1,..,N and 7 [,,, (4 is any isomorphism from 7,,(A) to v, (B). Let a € A.
If a € Ay, say a = a;, then f(a) = a; € Ay for some j € {1,...,N}.
So Xu.(a,...,an) & f(a;) = a;. So B = f(b;) = b;. So 7(fA(a)) =
fB(w(a)). Ifa € A\ Ap then 7(f*(a)) = fB(w(a)) by choice of 7. So 7 is

an isomorphism. O

Axiomatizing Case 3 is more complicated as we have some defective
components and F,, ; and due to lack of time we have managed so far only
to axiomatize Case 1 and Case 2 in Proposition [ 7.10l In future work, we

are planning to axiomatize Case 3.



Bibliography

1]
2]

[7]

8]

M. Atiyah. Introduction to commutative algebra. CRC Press, 2018.

O. V. Belegradek. Almost categorical theories. Siberian Mathematical
Journal, 14(2):191-198, 1973.

E. Bouscaren. Model Theory and Algebraic Geometry: An introduction
to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture.
Springer, 2009.

E. Hrushovski. A new strongly minimal set. Annals of pure and applied

logic, 62(2):147-166, 1993.

E. Hrushovski and B. Zilber. Zariski geometries. Bulletin of the
American Mathematical Society, 28(2):315-323, 1993.

E. Hrushovski and B. Zilber. Zariski geometries. Journal of the

American mathematical society, pages 1-56, 1996.

A. Ivanov. Complete theories of unars. Siberian Mathematical Journal,

27(1):45-55, 1986.

A. Ivanov. Totally transcendental theories of unars.  Siberian

Mathematical Journal, 33(1):41-47, 1992.

J. Kirby. An Invitation to Model Theory. Cambridge University Press,
2019.



Bibliography 82

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Kline. Mathematical Thought From Ancient to Modern Times:
Volume 3, volume 3. OUP USA, 1990.

D. Marker. Strongly minimal sets and geometry. In Proceedings Logic

Colloquium’95. Springer Lecture Notes in Logic, 1998.

D. Marker. Model theory: an introduction, volume 217. Springer
Science & Business Media, 2006.

V. Pati. Hilbert’s nullstellensatz and the beginning of algebraic
geometry. Resonance, 4(8):36-57, 1999.

Y. E. Shishmarev. Categorical theories of a function. Mathematical

notes of the Academy of Sciences of the USSR, 11(1):58-63, 1972.
D. Van Dalen. Logic and structure. Springer, 2004.

M. Ziegler. An exposition of hrushovski’s new strongly minimal set.

Annals of Pure and Applied Logic, 164(12):1507-1519, 2013.

B. Zilber. Zariski geometries: geometry from the logician’s point of

wview, volume 360. Cambridge University Press, 2010.



	Abstract
	Acknowledgements
	Introduction
	Background Material
	Geometry of Strongly Minimal Sets
	Morley Rank And Morley Degree In Strongly Minimal Theories

	Papers Review
	Zariski Geometry on a Pure set
	Introduction
	Zariski Geometry on a Pure set
	Topology on "426830A X, ="526930B 
	Zariski Axioms on "426830A X, ="526930B 


	Classification of injective unars
	The theory of an injective unar
	Quantifier Elimination

	Zariski Geometry on Strongly Minimal Injective Unars
	Topology on Injective Unars
	Characteristic of A and Assumption (*)
	Definition of The Closed Sets Cn
	Formulas In Special Form

	Dimension and Rank of Closed Sets in Injective Unars
	Zariski Geometry Axioms on Injective Unars

	Classification of all Strongly Minimal Unars

