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Abstract 11 

The preservation of genetic diversity is an important aspect of conservation biology, since small 12 

populations frequently suffer from inbreeding and loss of genetic diversity that can increase their risk 13 

of extinction. Here, we report changes in various measures of genetic diversity over 12 years in a 14 

declining population of corncrake Crex crex, a grassland bird species of high conservation concern 15 

throughout Europe. Despite a twofold demographic decline during the same period, we found no 16 

evidence for a reduction of genetic diversity. The maintenance of genetic diversity is an opportunity 17 

that may help the implementation of effective conservation actions.  18 
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Introduction 19 

The preservation of genetic diversity is recognised as an important aspect of conservation biology 20 

(Haig et al. 2016). Small populations frequently suffer from inbreeding and loss of genetic diversity. 21 

Inbreeding reduces survival and fecundity as a result of an increase in the frequency of deleterious 22 

alleles or a reduction of heterozygote advantage, thus directly increasing the extinction risk of small 23 

populations (Reed & Frankham 2003). On the long-term, maintaining sufficiently high genetic 24 

variation within species and populations is key to make them able to adapt to new environmental 25 

conditions (Crandall et al. 2000). In an era of rapid environmental changes driven by human activity, 26 

the observed decline of many populations is expected to reduce their adaptive potential and 27 

jeopardises their long-term persistence. Hence, monitoring temporal changes in the genetic diversity 28 

of wild populations can serve to prioritize management actions and as an indicator of the strength of 29 

human impact.  30 

The corncrake Crex crex is a grassland bird species of high conservation concern throughout 31 

Europe (Schäffer & Koffijberg 2004). Its main threat is the intensification of agricultural practices , 32 

and especially early mowing, that strongly reduces the survival of fledglings (Tyler et al. 1998). It has 33 

resulted in a severe population decline in several western European countries (Koffijberg et al. 2016), 34 

such as France that experienced a 90% reduction of corncrake numbers in the last 30 years (Hennique 35 

et al. 2013). So far, we ignore whether this demographic decline of corncrake populations has affected 36 

their genetic diversity. Reduced population sizes and demographic bottlenecks are usually associated 37 

with a loss of allelic richness and a reduction of heterozygosity (Reed & Frankham 2003), but 38 

incoming gene flow from larger, not genetically depleted, populations may contribute to maintaining 39 

genetic diversity. In the corncrake, a recent population genetic study revealed high genetic diversity 40 

within, and large levels of gene flow among, European populations (Fourcade et al. 2016). However, 41 

temporal changes in genetic diversity have not been investigated. It is therefore unknown whether the 42 

most threatened corncrake populations gradually lose genetic diversity as a result of their 43 

demographic decline. 44 
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In this study, we examined the changes in genetic diversity that occurred over a 12-years 45 

period in a corncrake population in western France that experienced a 2-fold decline during the same 46 

period. Individuals were sampled and genotyped in 2000, 2011 and 2012, and we estimated allelic 47 

richness, heterozygosity and effective population size in each year to test for a decline in genetic 48 

diversity over this period. We also analysed temporal population structure to assess whether this 49 

population became gradually genetically different over time. 50 

Methods 51 

The corncrake is a migratory bird that breeds in floodplain meadows and extensive grasslands across 52 

the Palearctic. The mechanisation of mowing and the abandonment of traditional haymaking practices 53 

has led to a decline of corncrake populations throughout western Europe during the last century 54 

(Schäffer & Koffijberg 2004). In France, a national monitoring scheme of singing males implemented 55 

from the 1980s revealed that, at the national level, the number of individuals declined from ca. 2000 56 

calling males in 1983 to ca. 200 in 2016. At the same time, the national distribution of corncrakes 57 

became highly fragmented and contracted in the floodplain meadows around the city of Angers (-58 

0.1154°W, 47.4216°N, see Figure 1) in western France, which now host the majority of breeding 59 

corncrakes in France. In this region, the number of singing males has severely declined in the past 60 

decades, from ca. 500 in 1983 to only ca. 60 in 2016 (Figure 1). 61 

We used 55 blood samples of male corncrakes collected respectively from 25 and 30 62 

individuals in 2011 and 2012 around Angers, and previously used to assess the genetic structure of 63 

populations at the European scale (Fourcade et al. 2016). We also analysed 24 new blood samples 64 

collected in 2000. Birds were captured using playbacks between May and July as described in 65 

Fourcade et al. (2016). All birds were ringed which ensured that no individual was sampled twice in 66 

this study. We extracted genomic DNA from blood samples using a salt extraction protocol and 67 

genotyped all individuals at 15 microsatellite markers, including eight corncrake-specific markers 68 

(Gautschi et al. 2002) and seven markers conserved across many bird species (Dawson et al. 2010; 69 
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Dawson et al. 2013). The full genotyping procedure followed the protocol described in Fourcade et al. 70 

(2016).  71 

We computed the observed and expected heterozygosity, as well as the rarefied allelic 72 

richness, of each locus in each sampling year, using the “hierfstat” R package (Goudet 2005). 73 

Effective population size was estimated using the linkage disequilibrium approach implemented in 74 

NEESTIMATOR 2.1 (Do et al. 2014), excluding rare alleles with frequency < 0.05. Additionally, we 75 

tested for a temporal differentiation of the sampled population. First we computed pairwise indices of 76 

population differentiation between sampling years: G’’ST, an unbiased and standardized analogue of 77 

FST (Meirmans & Hedrick 2011), and D (Jost 2008), a measure of population differentiation based on 78 

the number of alleles instead of on heterozygosity. Confidence intervals around these indices were 79 

calculated based on a bootstrap approach with 10000 permutations as implemented in the “diveRsity” 80 

R package (Keenan et al. 2013). Finally, we implemented the clustering algorithm of the program 81 

STRUCTURE (Pritchard et al. 2000), which uses a Bayesian approach to assign to each individual a 82 

membership probability to an a priori number of genetic clusters. We ran 10 STRUCTURE replicates 83 

for K = 1, K = 2 and K = 3 clusters with the following settings: admixture model with correlated allele 84 

frequencies (Falush et al. 2003), and 100 000 burn-in steps followed by 500 000 iterations. We also 85 

turned the LOCPRIOR option on, which makes use of prior information to facilitate the detection of 86 

weak genetic structures, usually the sampling location (Hubisz et al. 2009). Here, instead, we used the 87 

years of sampling as prior genetic clusters. 88 

Results 89 

There was no evidence for a decline in genetic diversity over time (Figure 2). Observed 90 

heterozygosity was 0.70 (± 0.07 s.e.m) in the oldest sample (2000), then 0.62 (± 0.05 s.e.m) in 2011 91 

and 0.68 (± 0.06 s.e.m) in 2012. Similarly, there was almost no difference between sampling years in 92 

terms of expected heterozygosity, with a mean of 0.70 (± 0.07 s.e.m) in 2000, 0.76 (± 0.04 s.e.m) in 93 

2011 and 0.75 (± 0.05 s.e.m) in 2012. There was a weak decrease in allelic richness over time, from 94 

9.50 (± 1.44 s.e.m) alleles per locus in 2000 on average, to 9.15 (± 0.10 s.e.m) in 2011 and 8.87 (± 95 
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1.08 s.e.m) in 2012. Finally, although the mean estimate of effective population size was highly 96 

variable between years (183.3 in 2000, 60.5 in 2011 and 643.9 in 2012), the upper confidence interval 97 

was always infinity, showing that there was no signal of linkage disequilibrium in our data that can 98 

distinguish it from being indeterminably large. 99 

Pairwise measures of genetic differentiation between years were not significant, as bootstrap 100 

confidence intervals always included zero (Table 1). However, we note that G’’ST and D calculated 101 

between the samples collected in 2000 and those collected in 2011 or 2012 were considerably larger 102 

that between 2011 and 2012 (Table 1). STRUCTURE provided no evidence for a temporal genetic 103 

structure neither, as shown by a larger likelihood for one genetic cluster and an estimated membership 104 

of individuals to two or three genetic clusters that did not match the temporal structure of the data 105 

(Supplementary material, Figure S1). Nevertheless, we observed that samples collected in 2011 and 106 

2012 were more closely related with each other than with the 2000 sampling. For instance, assuming 107 

K = 2, samples from 2000 were assigned to the red cluster of Figure S1 by 80 % on average, while the 108 

mean membership for this cluster was 62 % both for the samples collected in 2011 and in 2012. 109 

Discussion 110 

We demonstrated that, despite a strong and continuous demographic decline, the corncrake population 111 

of Western France did not simultaneously face a reduction of its genetic diversity. Not only did 112 

genetic diversity remained stable, it was also remarkably high for a population estimated around 180 113 

males (in 2012). There is generally a strong correlation between microsatellite heterozygosity and 114 

population size in birds (Evans & Sheldon 2008). At first, it is therefore surprising to observe that 115 

genetic diversity did not reflect the population drop recorded in the field. Several hypotheses can 116 

explain this result, which have profound implications for the management of this endangered 117 

population. 118 

In light of the available data, the most likely scenario is that genetic diversity was maintained 119 

by gene flow from distant populations that have not suffered from the same demographic decline. 120 
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Although the available evidence remain scarce, there are records of occasional, within-season, long-121 

distance movements (up to 1,500 km) revealed by ring recoveries (Schäffer & Koffijberg 2004; 122 

Koffijberg et al. 2016) and song analyses (Mikkelsen et al. 2013). We also previously described large 123 

levels of gene flow among European populations of corncrakes that we attributed to the dispersal of 124 

individuals from the most productive sites of eastern Europe to the declining western European 125 

populations (Fourcade et al. 2016). (Koffijberg et al., 2016)(Koffijberg et al., 2016)In this regard, the 126 

estimates of effective population size estimates could not be distinguished from infinity, suggesting 127 

that the samples originated from a larger population than the few hundreds individuals recorded in the 128 

study area. We also observed what might be a sign of a slow temporal differentiation. It may reveal 129 

the gradual change in the genetic characteristics of the original population, in agreement with the 130 

hypothesis that the maintenance of genetic diversity was achieved by regular immigration events. 131 

The fact that the extreme decline of corncrake numbers was not followed by a similar 132 

decrease of their genetic diversity is good news in a conservation perspective. For example, it is 133 

known that low levels of heterozygosity, when they reflect a reduced genetic diversity at immune-134 

related loci, can result in a higher susceptibility to pathogens (Hawley et al. 2005). In this regard, we 135 

already observed that western European corncrake populations, including France, did not suffer from 136 

higher malaria prevalence than the larger populations of eastern Europe (Fourcade et al. 2014). It 137 

suggests that, as the population is not genetically depleted, it may be able to recover successfully if 138 

effective management actions are implemented.  139 

Longer genetic monitoring may however be needed to rule out the possibility that a slow 140 

decline of genetic diversity is occurring. Indeed, it is possible that the population decline was still too 141 

recent to result in a reduction of heterozygosity and that in a clear genetic signal will be detectable 142 

later. In the absence of annual monitoring between 1998 and 2006, it is also unknown whether 143 

population decline started before or after 2000 (Figure 1). Samples from the 1980s or earlier, when 144 

corncrake numbers where high both at the local and national levels (Hennique et al. 2013), would help 145 

identifying the association between demography and genetic diversity in corncrake populations. 146 

Interestingly, here, allelic richness showed a slight trend towards decline, which might be an early 147 
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warning of a loss of genetic diversity, since allelic richness is usually more sensitive to a decrease of 148 

population size than heterozygosity (Allendorf 1986).(Reif & Vermouzek 2018) Accordingly, 149 

previous analyses using approximate Bayesian computation suggested that contemporary genetic data 150 

were compatible with a scenario of ongoing population decline (Fourcade et al. 2016). So far, the 151 

agri-environmental schemes implemented to protect the corncrake in the region have failed to halt its 152 

decline. Future environmental policies should now take advantage of the fact that genetic diversity has 153 

been maintained to implement effective conservation strategies that may reverse the unfavourable 154 

demographic trend. 155 
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Tables 220 

Table 1: Pairwise genetic differentiation between sampling years, expressed as G’’ST below diagonal 221 

and D above diagonal. Numbers in brackets show the 95% confidence intervals obtained through 222 

10000 permutations. 223 

 2000 2011 2012 

2000 -- 0.0145 [-0.0216 - 0.0632] 0.0054 [-0.0270 - 0.0469] 

2011 0.0474 [-0.0105 - 0.1132] -- 0.0010 [-0.0285 - 0.0440] 

2012 0.0297 [-0.0148 - 0.0761] 0.0115 [-0.0345 - 0.0735] -- 

  224 

  225 
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Figures 226 

Figure 1: Location of sampling site in France shown as a black rectangle, with the estimated 227 

European distribution of the Corncrake represented in light blue (left); population trend in the study 228 

region based on the number of singing males recorded during annual surveys (right). For visualisation 229 

purpose, the blue line shows the estimated trend ± confidence interval according to a Poisson 230 

generalized additive model with k = 4 for the smooth term. The years of sampling (2000, 2011 and 231 

2012) are represented as arrows. 232 

 233 

 234 

Figure 2: Change in genetic diversity between sampling years, expressed as estimates of observed 235 

heterozygosity, expected heterozygosity, allelic richness (mean across loci ± standard error), and 236 

effective population size based on linkage disequilibrium (± 95% confidence intervals).  237 

  238 
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Supplementary material 239 

 240 

Figure S1: Results of the STRUCTURE analysis. A: Likelihood of the data to belong to one, two or 241 

three genetic clusters (mean and standard deviation across 10 replicates). B: Estimated membership of 242 

each individual (represented as vertical bars) to two (top) or three (bottom) genetic clusters. 243 

 244 


