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Abstract

Biomolecular interactions underpin many of the processes that make up life. Molecular

docking is the study of these interactions in silico. Interactive docking applications

put the user in control of the docking process, allowing them to use their knowledge

and intuition to determine how molecules bind together.

Interactive molecular docking applications often use haptic devices as a method

of controlling the docking process. These devices allow the user to easily manipulate

the structures in 3D space, whilst feeling the forces that occur in response to their

manipulations. As a result of the force refresh rate requirements of haptic devices,

haptic assisted docking applications are often limited, in that they model the inter-

acting proteins as rigid, use low fidelity visualisations or require expensive propriety

equipment to use.

The research in this thesis aims to address some of these limitations. Firstly,

the development of a visualisation algorithm capable of rendering a depiction of a

deforming protein at an interactive refresh rate, with per-pixel shadows and ambient

occlusion, is discussed. Then, a novel approach to modelling molecular flexibility

whilst maintaining a stable haptic refresh rate is developed.

Together these algorithms are presented within Haptimol FlexiDock, the first

haptic-assisted molecular docking application to support receptor flexibility with high

fidelity graphics, whilst also maintaining interactive refresh rates on both the haptic

device and visual display.

Using Haptimol FlexiDock, docking experiments were performed between two

protein-ligand pairs: Maltodextrin Binding Protein and Maltose, and Glutamine Bind-



3

ing Protein and Glucose. When the ligand was placed in its approximate binding site,

the direction of over 80% of the intra-molecular movement aligned with that seen in

the experimental structures. Furthermore, over 50% of the expected backbone motion

was present in the structures generated with FlexiDock. Calculating the deformation of

a biomolecule in real time, whilst maintaining an interactive refresh rate on the haptic

device (> 500Hz) is a breakthrough in the field of interactive molecular docking, as,

previous approaches either model protein flexibility, but fail to achieve the required

haptic refresh rate, or do not consider biomolecular flexibility at all.



It’s the job that’s never started

as takes longest to finish - J.R.R Tolkien
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Chapter 1

Introduction

Proteins can be considered the building blocks of life. They are complex molecules

which perform a critical role in all of the body’s functions and they are involved in all

of the biochemical reactions taking place in its cells. They are required for structure,

function and regulation of every organ, tissue and cell within the body.

Proteins rarely act alone. Molecular processes are often carried out by molecular

machines that are built from a large number of protein components which are organized

by how they interact with other proteins. Protein interactions also form a key part of

the inter-cellular communication1 process within the body. Receptor (generally the

larger biomolecule of an interacting pair) proteins have binding sites which interact

with a specific ligand, which can trigger a change of conformation in the receptor

protein. This change in conformation can then trigger further changes within a cell.

Since the 1920s50, microbiologists have studied these interactions in order to gain

understanding of the processes involved, and use the information to find novel drugs

and determine the causes of diseases.

A recent study by Pradeepkiran and Reddy 115 highlights the benefits of under-

standing biomolecular interactions. The authors use structure based drug design

and molecular docking, both of which are highly dependent on the understanding

of biomolecular interactions, to identify five possible ligands that have the potential
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to help in the battle against Alzheimer’s disease; a disease which will effect 1 in 3

born today, and which currently has no cure. Furthermore, understanding molecular

interactions has assisted in the discovery of new compounds that provide favourable

protection against HIV68, treatment for prostate cancer48 and reduce pain87.

With the rise of drug-resistant bacteria in recent years, the search for new viable

drugs is becoming more important. Computing can be used to accelerate the process of

discovering new drug candidates by quickly discounting non-viable molecules whilst

highlighting likely candidates. Molecular docking is one of the tools used to achieve

this.

1.1 Motivations and Research Objectives

Molecular docking is the process of computationally simulating the binding of two

molecular structures into a single stable complex. It is a tool commonly used within

structure-based drug design, as it can demonstrate how two molecules, the receptor

and ligand, fit together (Illustrated in Figure 1.1). This is useful, because many drugs

work by fitting into a “target” protein and in doing so, inhibit another molecule from

binding, or trigger a separate series of events.

One can classify molecular docking into two types: automated and interactive. For

automated docking, pose selection algorithms are employed to search for possible

binding poses6,100,107,158. This can result in a large number of conformations, which

are then scored with a scoring function. Most scoring functions use a physics based

force field to estimate the energy of the calculated pose. A low amount of energy

indicates a more stable system, and therefore a potential binding interaction. Interactive

systems put the user in charge of the docking process, allowing them to use their

knowledge and intuition to find a docked pose52,58.

One way of enhancing interactive docking is to use a haptic device. Haptic-assisted

interactive docking systems make use of haptic feedback devices to aid the docking
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docking

Target (Receptor) Ligand Complex

docking

Fig. 1.1 Molecular docking is the practice using computational methods to determine if,
and how, two biomolecules bind together. Top row: receptor (Blue) and ligand (yellow)
bind together to form a stable complex. In this example, the receptor deforms to better
fit the shape of the ligand. Modelling this conformation change within molecular
docking remains challenging. The bottom row shows the same process, but with real
biomolecules (Maltodextrin binding protein and maltose).

process. These systems allow the operator to use their sense of touch to guide the

ligand into a docked pose. The interaction forces that occur during the docking session

are transmitted to the user via the haptic device. Besides offering an environment to

rapidly test new ideas and hypotheses, haptic-assisted interactive docking systems can

be used in conjunction with automated systems to allow experts to test high scoring

poses and either improve them or reject them91,118. Interactive docking systems

have been shown to improve the users’ understanding of the process of molecular

binding16,111.

One of the difficulties with using a haptic device with a docking application is

the refresh rate demanded by the haptic device: for continuous, smooth and stable

kinaesthetic and tactile responses, haptic technology requires the haptic feedback

cues to be updated at a refresh rate greater than 500 Hz, ideally at 1 kHz, due to the

sensitivity of the human haptic system33,96. When this rate is not met device vibrations

and force discontinuities can occur limiting practical use.
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As a result of this, the majority of current interactive docking systems simplify the

simulation by not modelling the conformational change that can occur to a protein

upon ligand binding, and is required in order to accurately simulate many molecular

interactions.

In a haptic-assisted interactive docking application, the haptic device typically

works in tandem with the visual display. The visual display contains a depiction

of the ongoing docking scenario, informing the user of the relative position of the

ligand and receptor, and their respective topographies. The user is reliant on the visual

representation in order to identify possible binding sites, which are often indicated by

surface features like pockets and crevices, before steering the ligand toward them with

the haptic device.

When the interacting biomolecules are modelled as rigid, it is possible to under-

stand the topography of each of the structures by viewing them from multiple angles

during the docking session. If the molecules are continually deforming in response to

their current poses, viewing them from different angles becomes difficult. Therefore, a

clear visualisation that allows the user to understand the relative depth of parts of the

topography of the structures is important.

Current haptic-assisted interactive docking applications prioritise the haptic render-

ing side of the application, as a result of the strict refresh rate requirements imposed

by the haptic device55, because of this, the visual rendering is often basic, and lacking

lighting techniques which can enhance the perception of depth within the scene.

1.2 Research Aims

The objective of this thesis is to address some of the limitations of current haptic-

assisted interactive docking applications, by answering the following research ques-

tions:
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• Is it possible to render, in real-time, on consumer grade hardware, a deforming

biomolecular structure with per-pixel lighting effects?

• Is it possible to calculate the deformation of a biomolecule within the time frame

imposed by a haptic device, using consumer grade hardware?

The force calculation algorithm developed by Iakovou et al. 56 utilises a regular

grid in order to support interactive docking of large biomolecules in haptic time. In

order for it to continue to work, algorithms for reconstructing regular grids in real time

need to be investigated. Therefore, the additional research question “Is it possible to

rebuild or update a regular grid within the 2 ms time frame imposed by the haptic

device?” needs to be answered.

1.3 Contributions

The primary research contributions of this thesis are incorporated within the applica-

tions Haptimol Protein Trajectory Viewer89 and Haptimol FlexiDock90. Haptimol

Protein Trajectory Viewer combines the result of the comparative review of graph-

ics processor (GPU) based grid construction algorithms (Chapter 3) with per-pixel

lighting effects that rely heavily on a spatial partitioning structure, in order to render

large protein trajectories with high fidelity graphics at an interactive refresh rate, on a

desktop PC, for the first time (Chapter 4). ProteinViewer is shown to achieve real-time

frame rates whilst rendering the trajectory of a large flagella biomolecule, comprising

314k atoms. The methods used to generate the lighting effects are designed to be

compatible with the molecular docking application, Haptimol FlexiDock.

Haptimol FlexiDock is the first haptic-assisted interactive molecular docking

application that supports receptor flexibility whilst maintaining a viable haptic-refresh

rate. This is achieved by using a novel GPU-based algorithm to compute the receptor’s

deformation as a response to the current interaction forces.
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The effectiveness of Haptimol FlexiDock is demonstrated by simulating a docking

scenario involving the maltodextrin binding protein (MBP) and maltose, and the glu-

tamine binding protein (GlnBP) and glutamine. Results show that the poses generated

by Haptimol FlexiDock, when the ligands are placed close to their experimentally

determined binding sites, are similar to the experimentally determined ligand-bound

poses.

The development of Haptimol FlexiDock resulted in further contributions to the

field, including use of an iterative approach to applying the calculated deformation and

integration of a colour scheme used to increase understanding of the ongoing docking

scenario.

1.4 Publications

The work presented in this thesis is published in the peer reviewed journal articles:

Matthews, N., Easdon, R., Kitao, A., Hayward, S., & Laycock, S. (2017).

High quality rendering of protein dynamics in space filling mode. Journal of

Molecular Graphics and Modelling, 78, 158–167.

Matthews, N., Kitao, A., Laycock S., & Hayward, S. (2019) Haptic-assisted

interactive molecular docking incorporating receptor flexibility. Journal of

Chemical Information and Modelling, DOI: 10.1021/acs.jcim.9b00112

1.5 Thesis Outline

The research presented in this thesis comprises three distinct topics: GPU based grid

construction, molecular trajectory rendering and haptic-assisted molecular docking

with receptor flexibility. As a result, there is a large amount of existing literature that

is relevant to various parts of this thesis. Therefore, each content chapter, Chapters 3 -

5, begin by reviewing literature that is relevant to the research presented within it.
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Chapter 2 provides a general background of molecular docking, biomolecular inter-

actions and working with haptics. The topic of GPU programming is also necessarily

touched upon, due to the dependence of this project on GPU hardware.

Chapter 3 investigates rapid reconstruction of a spatial partitioning structure, a

regular grid, on the GPU. Three algorithms are defined, implemented, optimised, tested

and compared. The algorithms presented here are pivotal to the rendering system

described in Chapter 4.

In Chapter 4, a novel method of rendering Molecular Dynamics (MD) trajectories

with ray cast shadows and per pixel ambient occlusion is presented. The methods are

implemented in the rendering software ‘Haptimol Protein Trajectory Viewer.’

Chapter 5 describes a novel approach to modelling receptor flexibility during

molecular docking. The methods discussed are included in the software Haptimol

FlexiDock. The approach used is formally presented, tested and discussed, including

verification that the rendered motions are close to those that are experimentally derived.

At the end of the chapter, the rendering algorithm presented in Chapter 4 is included

in FlexiDock.

Chapter 6 discusses the work presented in the thesis and highlights the next steps

required in order to achieve the final goal of simulating fully flexible docking.



Chapter 2

Background

2.1 Molecular Docking

The term ‘molecular docking’ describes the methods used to determine how two

structures bind together to form a stable complex in silico. The aim of docking is to

determine the alignment, conformation and orientation of a molecule when it binds

with another to form a complex. Figure 2.1 shows a typical docking scenario.

Complex formation occurs when the free energy, the energy available to do work

such as driving a chemical reaction, is at a minimum, and the receptor and ligand

conformations complement each other strongly, both geometrically and chemically.

Using computational methods to determine these conformations is the aim of molecular

docking84.

Figure 2.1 shows a docking scenario made up of a ligand: maltose, and a recep-

tor: maltodextrin binding protein (MBP). The receptor is usually a protein or other

large biomolecule, and the ligand is usually a smaller structure, for example a drug

comprising few atoms, although larger molecules could be used101.

During the docking process, the receptor and ligand deform their structures into

conformations that favour binding. The induced conformational change could be

limited to minor side chain rotations, or could include major backbone movements,
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Molecular Docking

Automated 

1) Computationally 
search for viable 
binding positions

2) Score positions

3) Ligand is fitted to 
receptor

ReceptorLigand

New complex

Interactive 

1) User locates 
viable binding 

positions

2) User fits ligand to 
receptor

or

Fig. 2.1 Molecular docking. Using computational methods, the binding conformation
between a receptor and ligand is found. Within interactive docking the user guides the
docking process. In automated docking, computational methods are used to find, and
then score, potential binding poses.

depending on the proteins being docked. In the docking scenario depicted in Figure

2.1, for example, the receptor undergoes a domain motion, transforming from an “open”

to a “closed” conformation around the ligand.
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Identifying how a receptor and ligand bind together can be a key step in developing

new methods for treating illnesses. If, for example, an infection was reliant on a

foreign molecule binding to a specific biomolecule within the body, researchers could

use molecular docking to identify how the pathogen binds to the host’s biomolecule,

and then scan a large library of ligands in order to identify one that has the potential to

disrupt the infections processes’101.

One can classify molecular docking into two categories: automated and interactive.

In automated docking, pose selection algorithms are employed to search for possible

binding poses6,107,158. Both virtual screening (VS), a tool used to rapidly scan a large

library of potential ligands to find those that bind to the target protein148, and also

computer aided drug design, where scientists test how well their synthetic molecules

will bind to the target receptor104, utilise automated molecular docking. Ruling out

a large number of potentially viable ligand candidates in silico, rather than experi-

mentally, reduces costs and improves the efficiency of novel drug design, making it

attractive to pharmaceutical companies. Automated docking has also been used during

the process of bioremediation to find enzymes that have the potential of breaking down

target pollutants138.

Automated docking has limitations, primarily that current approaches are not very

accurate82, and the fact that the docking process can take a considerable amount of

time even when using a computer cluster82.

Interactive docking is different in that it places the user in charge of the docking

process, allowing them to judge when a biomolecule is docked, rather than solely

using a scoring algorithm. Although the overall aim of docking is the same for

both interactive and automated docking approaches, they should not be viewed as

in competition. Interactive approaches are designed to allow the user to focus the

search, and potentially improve the docking pose based on their knowledge and

expertise106,137, rather than testing a large number of potential ligands for docking

affinity. Furthermore, in the recent community-wide benchmarks for protein-protein
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docking85, the methods which allowed for human intervention/refinement proved the

most successful when performing docking on a difficult target.

Therefore, automated and interactive docking approaches should be used in tandem,

with interactive docking potentially being used to refine the results of an automated

docking session, potentially eliminating some of the false positives in silico, rather than

in the lab. A common way of enhancing interactive docking is to use a haptic device to

both position the ligand relative to the receptor, and also to convey information about

the current docking pose to the user, through their sense of touch.

2.2 Working with Haptics

Haptic devices interface with the user through their sense of touch by generating forces

and vibrations that they then feel. Haptic devices have been used to enhance interactive

docking. In interactive docking, the haptic device is typically “connected” to the

ligand, allowing the user to easily position the ligand in 3D space whilst simultaneously

providing feedback, through their sense of touch, of the forces occurring between the

receptor and ligand.

Haptic devices were first investigated for use in project GROPE20, which started

in 1965. Initial results were good, with the haptic device demonstrably enhancing

perception and improving the performance of simulated simple motor tasks. The

researchers found however, that the computational power available in the day was not

sufficient to calculate the forces present in all but the most simple simulations.

In 1986 the computational power available was found to be sufficient to conduct

more in-depth experiments, including the first complex molecular docking task. The

molecular docking experiment carried out by Brooks Jr et al. 20 was designed to test

whether or not haptic feedback reduced the amount of time it took to successfully

dock a ligand. The results showed that providing haptic feedback improved docking

performance, when compared to simply using the haptic device as a 3D mouse,
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although the average docking time was not substantially improved. However, after

removing thinking time from the overall docking time, the docking times with haptic

assistance were found to be 1.75 times quicker.

Brooks Jr et al. 20 note that the time saving is not the only driving factor of using

haptics. Haptic devices result in improved situation awareness. Chemists using

GROPE reported getting better comprehension of the force fields in the active sites

of the molecules, and gained understanding of exactly why each candidate drug

docked well or poorly20. Brooks Jr et al. 20 then hypothesised that with the improved

understanding of the docking process, researchers will be able to form better ideas for

new candidate drugs.

Since project GROPE, a number of haptic assisted interactive docking applications

have been published by the research community (See Chapter 5, Section 5.2 for an in

depth review of these applications), however, these approaches are limited because

molecular flexibility has yet to be adequately addressed.

The primary reason for this is related to the refresh rate demanded by the haptic

device. In order in insure that smooth kinaesthetic feedback is felt by the user, the

haptic feedback device needs to be “refreshed” at a minimum rate of 500 Hz, ideally 1

kHz33,96. This refresh rate places a time limit of 2 ms on any computation required

between haptic frames; a very small amount of time in which to compute intermolecular

forces, calculate any conformation changes and update relevant models.

A state of the art interactive molecular docking application is HaptimolRD57.

HaptimolRD utilises the GPU in order to calculate the interaction forces between

very large molecules during the docking session. The pre-computation performed

in HaptimolRD is limited to the creation of a spatial partitioning structure, either a

regular grid or an octree, containing the ligand. This structure is then used to eliminate

atom pairs that are far enough apart that they contribute a negligible amount to the

total interaction force, reducing the computational cost of computing the net force,

when the interacting molecules are large. In order for HaptimolRD to support ligand
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flexibility whilst maintaining its support for large structures, the spatial partitioning

structure used during the force calculation must be rebuilt in minimal time.

Despite the potential benefits of using an interactive docking system, including

increased situational awareness of the ongoing docking scenario and the ability for a

user to use their own intuition during docking, uptake has been poor. The reason for

is likely related to the limitations of interactive systems. Currently, the majority of

interactive docking systems do not model flexibility, and those that do are limited in

other ways (See Section 5.2), limiting how effective they are at modelling molecular

interactions.

Although the haptic device is a key component of the interactive docking system,

the visual render of the ongoing interaction is equally important. Current interactive

docking systems limit themselves to basic rendering, with little or no lighting effects.

This is unfortunate, because directional lighting has been shown to improve the depth

perception of three dimensional scenes150,151. Figure 2.2 illustrates how directional

shadowing can help highlight pockets and crevices within proteins. In Figure 2.2

(A), the protein looks almost flat, whilst in Figure 2.2 (B) deeper parts of the proteins

topography are clearly revealed.

It is important that the user is aware of the locations of pockets when performing

molecular docking, as they are often sites into which a ligand binds. Presently,

HaptimolRD uses a basic rendering algorithm because of the computational expense

of adding advanced lighting55. When performing rigid docking, this is acceptable,

as it is possible to view the structure from multiple angles in order to understand its

topography. When the structures can deform however, this becomes more difficult, as

parts of the protein will move relative to one another, often in a short space of time.

Therefore, to improve the ergonomics of the application, a rendering approach that

improves the depth perception of the image is important (See Chapter 4).



2.3 Molecular Interactions 28

A B

Fig. 2.2 Rendering of a protein, with A) directional lighting only and B) directional
lighting, shadows and ambient occlusion. Note how the lighting effects enhance the
topography in B), when compared with A).

2.3 Molecular Interactions

Molecular docking aims to determine whether two biomolecules, a receptor and

ligand, will successfully bind together when in close proximity to one another. This

is determined by calculating the interaction energy and the forces between the two

structures. A receptor and ligand are deemed to be bound when the free energy in the

overall system is at a minimum.

There are two types of interactions: bonded and non-bonded. Bonded, or covalent,

interactions relate to the bond stretching, bond angle and torsion angle potentials that

occur when a protein changes conformation. These interactions do not need to be

considered when the interacting molecules are modelled as rigid. Non-bonded, or

non-covalent, interactions occur between atoms which are not linked by a covalent

bond. There are four types of non-bonded interaction, which are listed in Table 2.1.

Although individually each of the non-bonded interactions is weak in comparison to

a covalent bond, combined they can provide sufficient force to bind the ligand to the

receptor.
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Electrostatic interactions These interactions occur between charged atoms. Oppositely
charged atoms attract one another, whilst atoms with the
same charge repel one another.

Hydrogen bond A hydrogen bond is a partially electrostatic attractive force
between a hydrogen atom that is bound to an electronegative
atom (the donor), and another adjacent atom that bears a
lone pair of electrons (the acceptor)8.

Hydrophobic interactions Hydrophobic interactions are the non-covalent forces that
occur where non-polar molecules tend to cluster in water
in order to decrease the overall interfacial area between
the hydrophobic area and water. They are important when
modelling protein folding.

Van der Waals (vdW) Van der Waals forces’ is a general term used to define the at-
traction of intermolecular forces between molecules. There
are two kinds of Van der Waals forces: weak London Disper-
sion Forces and short-range repulsive forces which prevent
the electron clouds of non-bonded atoms from overlapping.

Table 2.1 Non-bonded interactions that occur between biomolecules

In an interactive docking environment, the interaction energy and forces need to

be determined in real-time. Most current molecular docking applications simplify the

docking problem by modelling both biomolecules as rigid, removing the requirement

for incorporating bonded interactions, and then exclusively model van der Waals

(vdW) interactions13,52,77, or vdW and Coulombic interactions39,83,106,137,155. The

vdW interactions can be modelled using the Lennard-Jones (LJ) potential. The function

E⃗EEV DW =
N

∑
i=1

M

∑
j=1

4ε

[(
σ

r

)12
−
(

σ

r

)6]
(2.1)

can be used to approximate the vdW energy potential between a ligand comprising M

atoms, and a receptor comprising N atoms, whilst the function

F⃗FFV DW =
N

∑
i=1

M

∑
j=1

((
24εi j
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i j

r13
i j
−
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can be used to calculate the vdW interaction force between the same.

In Equations (2.1) and (2.2) εi j and σi j are LJ parameters that depend on the

characteristics of the interacting atoms, ri j is the distance between the two interacting

atoms and⃗̂rrri j is the unit vector in the direction of atom i to atom j.

To utilise Equations (2.1) and (2.2), the LJ parameters of each of the atoms involved

in the docking scenario need to be known. Forcefields can be used to determine these

values. The forcefields, including AMBER31, GROMOS105, and CHARMM145,

contain experimentally derived values for ε and σ for a large number of atoms. These

forcefields are used by molecular dynamics (MD) applications when performing

simulations131, and also by molecular docking applications58.

The vdW forces comprise an attractive and repulsive component. The first part of

the equation,
2σ12

i j

r13
i j

, describes the repulsive component of the force. These forces occur

as a result of the overlap of the interacting atom’s electron clouds, and are only effective

at a very short range. The second component of the equation,
σ6

i j

r7
i j

, equates to the long

range attractive vdW forces. Figure 2.3 (B) shows how the forces change rapidly from

an attractive force to a repulsive force, as the distance between the interacting atoms

reduces to less than σ
6
√

2. Figure 2.3 shows the vdW energy potential and force profile

between two oxygen atoms. The force diagram, Figure 2.3 (B) shows how rapidly

the LJ force moves from an attractive force to a highly repulsive force as the distance

between the interacting atoms becomes very small.

When the ligand is more distant, the electrostatic effect produces a stronger re-

sponse than the LJ interactions. These electrostatic interactions, as included in some

docking applications, are often calculated with Coulomb’s law, The electrostatic energy

between two biomolecules can be calculated with the function

E⃗EEES =
N

∑
i=1

M

∑
j=1

qiq j

4πε0εri j
(2.3)
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Fig. 2.3 LJ energy potential (A) and interaction force (B) between two oxygen atoms.
σ = 0.295992 ε = 0.87864. Note how the force between the atoms quickly becomes
strongly repulsive as the distance between the atoms becomes less than ε

6
√

2. σ

describes the distance at which the interaction energy becomes greater than 0, whilst ε

describes the minimum energy.’

whilst the electrostatic interaction force is calculated with the similar function

F⃗FFES =
N

∑
i=1

M

∑
j=1

qiq j

4πε0εr2
i j

⃗̂rrri j (2.4)

In these Equations, qi and q j are the atomic charges of the two atoms, extracted

from a forcefield, ε0 is the permittivity of free space and ε is the relative permittivity

dependent on the dielectric properties of the solvent.

Some molecular docking applications use the function

E⃗EEV DW+ES = E⃗EEV DW + E⃗EEES (2.5)

to calculate the total electrostatic and vdW interaction energy between two biomolecules,

and

F⃗FFV DW+ES = F⃗FFV DW + F⃗FFES (2.6)

to calculate the interaction forces. These equations do not consider the hydropho-

bic interactions, and although these factors are highly relevant to the strength of the
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binding, studies suggest that, when addressing rigid-body docking problems106,137,

Equations 2.5 and 2.6 provide a good approximation of the total energy and force

involved. Furthermore, there have been no significant studies that model the hydropho-

bic interactions that occur within biomolecules. Therefore, as with other docking

applications, they will not be included in the work within this thesis.

Within an interactive docking application, these forces need to be determined in

real-time. A number of techniques have been used to achieve this, including using pre-

computed force grids13,15,19,77,83,136,155 and performing the calculations in real-time

between all of the atom pairs39,52,58,102. This is discussed further in Chapter 5, Section

5.2. Iakovou et al. 56 presented an GPU based algorithm to calculate the vdW and

Electrostatic interactions between two rigid molecules in haptic time. The algorithm

presented by Iakovou et al. 56 will be used to calculate the interaction forces within the

molecular docking approach used within this thesis.

2.3.1 Flexibility in Proteins

The majority of interactive docking applications model the proteins as rigid, in order

to reduce the computational difficulty of the docking problem. However, proteins

are flexible: in order to function, their conformation often has to change. It has been

observed that a conformational change is often prompted when a ligand bonds to a

receptor41. There are two main theories relating to how this conformational shift

occurs: the “induced fit” and “selected fit” hypotheses. Figure 2.4 shows how these

theories differ.

The induced fit hypothesis states that the ligand binding induces conformational

change in the receptor, whilst selected fit states that the ligand selects and stabilises

the receptor into a complementary fit, and then binds to it.

A biomolecule, restrained so it cannot translate or rotate globally, has 3N-6 degrees

of freedom (DoF), where N is the number of atoms in the biomolecule. It is the

large dimensionality of molecular flexibility that makes it the most challenging aspect
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Fig. 2.4 Four state diagram showing the two main theories as to how conformation
change occurs during binding. E1 is the starting conformation of the protein, E2 is
the protein in its binding conformation, E1L and E2L are the same poses, but with a
ligand bound. On the induced-fit route, the ligand binds to the receptor in its starting
pose, then the receptor changes conformation to match. Within the selected-fit pose,
the receptor deforms to a conformation that corresponds to the shape of the binding
ligand, then the ligand binds. Based on diagram presented by Weikl and Deuster 152

of modelling molecular interactions. Nevertheless, it is widely acknowledged that

molecular flexibility improves the quality of poses found via molecular docking, and

so, creating a tool that can model it in real time could be widely beneficial. In Chapter

5, a method to model receptor flexibility that works in haptic time is presented.

2.4 GPU Programming

The key to the goal of interactively modelling protein interactions with full flexibility

at an interactive refresh rate is the GPU. GPUs provide a way to perform a large

number of calculations in parallel, allowing a huge amount of computation to be
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performed in very little time. Iakovou et al. 57 demonstrated that by performing protein

interaction calculations on the GPU instead of the CPU, they achieved a 90x speed-up

in performance.

General-purpose computing on graphics processing units (GPGPU) became popu-

lar in 2001, when programmable shader support was implemented for graphics cards.

These early applications were limited however, because the shader APIs were designed

for graphical rendering, not general purpose computation. Consequently, in order to

implement general algorithms on the GPU, they had to be transcoded for use with

graphics primitives.

In 2006 Nvidia corporation launched CUDA, which allowed programmes to be

written in C and then compiled for execution on the GPU. CUDA added general

programming features, like the ability to perform scattered read and write memory

operations to the GPU for the first time. This resulted in a more diverse range of

algorithms being implemented.

The earliest implementations of CUDA were somewhat limited, notably lacking

features that can be pivotal when performing multi-threaded computation; atomic

functions being an example of this103. In later versions these features were added,

and combined with advancements in graphics hardware, have made the GPU a very

versatile and powerful computing device. In 2009, OpenCL, an open source alternative

to CUDA was released. OpenCL is advantageous in that it can be executed on any

mainstream manufacturers GPU and also on the majority of CPUs, however, some of

the features incorporated in CUDA are unavailable in OpenCL at present.

Despite the increase in available features, writing an application that utilises a

GPU requires a different approach to algorithm design, compared to programming

for execution on a CPU. These differences stem from the hardware design: the GPU

is generally a Single Instruction Multiple Data (SIMD) processor: best performance

is achieved when all of the threads are performing the same instruction. The code to

be executed on a GPU is contained within individual kernels. The kernel describes
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the code to be executed by a single thread. When a kernel is started a large number

of threads are launched, which execute the code in parallel. The number of threads

required is specified when the kernel is launched. The threads are divided up into

work groups, Nvidia GPUs sub-divide the work groups into blocks of 32 threads,

called warps. Communication between threads in work groups is possible, although

it comes with a performance penalty. Communication between threads that are in

different work groups is more challenging, and should be avoided. Best performance

is achieved when all the threads are performing the same operation, therefore code

branches should be avoided, because if even a single thread in a work group branches,

all of the threads in that group “stall” until that one thread has finished its branch. This

can be detrimental to application performance.

The memory model on GPUs is also different to that of the CPU. Firstly, GPU

memory is currently separate from system memory (although there has been progress

toward having a unified memory model), therefore, GPU memory buffers have to be

allocated separately to system memory. Communication between host memory and

device memory is achieved with API calls. The device is the GPU, the host is the CPU

and accompanying system memory. Copying memory between the host and device is

a time consuming operation, and therefore should also be avoided during time critical

sections of code.

There are six different memory spaces on the GPU. Generally, the more space

available in any specific memory bank, the slower it is. Figure 2.5 shows the memory

hierarchy of the GPU.

• Registers: Registers are the fastest memory space on the GPU. Each thread has a

limited number of registers which are typically used to store frequently accessed

thread-private variables. Registers are typically thread private, although it is

possible to pass their contents directly to another thread within the block. The

fewer registers utilised by a thread, the more warps can execute concurrently.
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Fig. 2.5 Diagram showing the memory hierarchy of the GPU. Memory areas that
threads can read and write to are coloured green, read only memory is orange and
memory inaccessible from the GPU kernels is coloured red. Within the diagram, one
thread block and three threads are shown. In reality, each block will have many threads,
and the GPU grid will comprise many blocks. Figure adapted from Cheng et al. 23

• Local Memory: Similarly to registers, local memory is thread private. However,

local memory offers much lower performance than the registers, on a par-with

global memory. It is primarily used for data that will not fit in the registers.

• Shared Memory: A limited amount of shared memory is available per work-

block. All of the threads within a work group can can access the data within it.

As shared memory is on chip, it offers low latency access, and a large amount of

bandwidth. As shared memory is accessed by many threads, writes to it must be

synchronised.

• Constant Memory: constant memory is a cache of dedicated device memory,

which can offer a high amount of bandwidth. It cannot be modified by any
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kernel, and must be declared by the host. Constant memory performs best when

all threads in a warp read from the same memory address.

• Texture Memory: Texture memory is a type of cached read-only global device

memory. Texture memory is optimised for 2D spatial locality, and supports

floating-point interpolation as part of the read process. In some applications, it

offers superior performance to global memory.

• Global Memory: Global memory is the largest and slowest memory bank on the

GPU. It can be accessed from any thread at any time throughout the lifetime of

the application. Coalescing memory accesses to global memory is important in

order to achieve the best bandwidth.

The fastest way to load data from global memory is to coalesce memory accesses

within a thread group. Memory coalescing is a technique used to achieve the best

usage of global memory bandwidth. That is, when parallel threads running the same

instruction access consecutive locations in global memory, the best memory access

pattern is achieved.

In summary, to achieve the best performance possible with a GPU, the problem to

be solved needs to be split between a large number of threads, that ideally utilise few

registers. Global memory accesses should be coalesced, and any data used by multiple

threads within a work group should be copied to shared memory where possible.

Furthermore, any data required by the GPU kernels should be loaded into the GPU’s

memory before any time-critical code begins.

2.5 Summary

Molecular docking has proven useful to the pharmaceutical industry, contributing

to the development of novel drugs. Automated docking approaches are useful for

screening a large number of potential ligands for compatibility, but are limited in that
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they often produce many false positives. Interactive systems are obviously not suited

to screening large libraries as automated approaches do, but rather should be used in

conjunction with them, for example they could be used to eliminate false positives

in silico. Augmenting an interactive docking application with haptics speeds up the

docking process and helps the user comprehend why each candidate drug docked

acceptably or less well. Since project GROPE, there have been a number of haptic-

assisted interactive docking applications released, with a few made freely available for

use.

Despite the potential benefits from using an interactive docking application, uptake

has been poor, compared to automated approaches. This could be a result of com-

parative scarcity of haptic devices, required in order to achieve the best usage of the

software, or the cost of proprietary docking software. However, one of the limitations

of current interactive docking applications is that the majority of applications model

interacting biomolecules as rigid, when in reality they are flexible structures. This

could be a contributing factor for the poor uptake of interactive applications.

The next few chapters discuss the development of a haptic-assisted interactive

docking application that supports molecular flexibility. The development is two

fold, initially the visual representation of the biomolecules within the application

is developed, then an approach to calculating molecular flexibility in haptic time is

developed.



Chapter 3

GPU Grid Construction

3.1 Introduction

The main contributions of this thesis, high quality molecular rendering of deforming

proteins and haptic-assisted interactive molecular docking with flexibility, require

a spatial acceleration structure to achieve real-time performance. The acceleration

structure, a regular grid, divides the Cartesian space of a 3D scene into cells which

can be accessed directly. Each cell of the grid stores references to the objects that

occupy that area of space; information that is accessible in near constant time. This

information can then be used to reduce the number of queries performed by algorithms

that are dependent on spatial information, which can result in reducing their runtime.

The main drawback of using a regular grid is that they can be costly to construct.

This is often done as a precomputation step prior to use. However, pre-constructing

the grid prevents it from being used in conjunction with a dynamic scene, because as

the objects being rendered move, the contents of each cell change.

In order to use the regular grid in conjunction with a deforming molecular structure,

the grid has to be updated, or rebuilt, every time the scene changes. When utilising

the regular grid to accelerate the calculation of the intermolecular forces between

molecules, whilst working with haptics, this could be as often as once every millisec-
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ond, with an upper time limit of 2 ms. Therefore, for the grid to be used for such a

purpose, the grid construction must be fast enough to complete within this time frame,

whilst leaving time for any other computation required.

Within this Chapter, previous attempts to rapidly construct regular grids are in-

vestigated. The fastest construction methods are then taken, optimised for molecular

data, and then benchmarked. The benchmarks show that reconstructing the grid at a

haptic-frame is possible, even for comparatively large proteins.

3.1.1 Contributions

This chapter’s main contributions are:

• A review of current methods for constructing a regular grid, using a graphics

processing unit.

• In depth analysis of three regular grid construction algorithms, including how

long they take to construct and their performance in use.

• Testing in this chapter demonstrates, for the first time, that it is possible to

reconstruct a regular grid in less than 2 ms, using consumer grade hardware.

3.2 Background

The regular grid was proposed as an acceleration structure in 198638, specifically for

ray tracing. Since then, the structure has been used in other projects including: fluid

dynamics122, collision detection144 and molecular docking57. A regular grid can be

used to accelerate almost any N-body problem because it can be used to aggregate

many intersection (or proximity) tests into a single operation. Other spatial data

structures can be used to achieve the same thing. Tree-based structures are especially

useful for reducing the number of tests performed during an N-body simulation, as

multiple cells (or nodes) can be excluded with a single intersection test.
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A Bounding Volume Hierarchy (BVH) is a tree-based data structure commonly

used within ray-tracing applications, to reduce the number of ray-object intersection

tests performed. In a BVH, all geometric objects are wrapped in bounding volumes,

which form the leaf nodes of the tree. These nodes are then collected into sets and

placed into larger bounding boxes. This continues in a recursive fashion, until the

entire scene is in the same volume; this is the root node of the tree. During use,

intersection tests are only performed on nodes whose parents were found to intersect

with the ray, effectively reducing the time complexity of the algorithm from O(N) to

O(log(N)).

In comparison to tree-based spatial partitioning structures, the regular grid has

two distinct advantages. Firstly, accessing each cell of the grid is an O(1) operation.

Secondly, regular grids are also more straightforward to construct, requiring only basic

spatial decomposition, which results in fast build times65. These advantages come at

the price of a larger memory footprint: Because grid structures divide the scene into

equally sized cells, empty space is split up at the same resolution, leading to empty

cells. Furthermore, the uniform cell size affects the traversal speed of the grid, because

rather than just crossing empty regions in one step, as you can with a tree, many steps

are required60.

Regular grids are ideally suited for use with static scenes because they are straight-

forward to construct but difficult to update efficiently. Regular grid construction and

reorganisation has been widely researched, however only a small number of discrete

construction algorithms have been published and none of them have been shown to

run in haptic time.

Two approaches to filling the grid can be taken: the grid can be “tight” or “loose”9.

In the tight version of the grid each of the elements being inserted are placed into every

cell that they touch. If you are placing large objects into a fine grid, this can lead to

many references pointing at the same object, resulting in many more insertions into

the grid. This can be detrimental to the grid’s build performance, depending on the
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intended use9. However, taking a tight approach can provide substantial benefits when

using the grid later on, especially if it is being used for a data comparison application,

like collision detection. The alternative placement method is known as the “loose”

approach. In a loose grid, only one reference per object is placed in the grid. Which

cell it is placed in depends upon the implementation, but the centre of the object or a

specified vertex could be used9.

Despite the difficulties involved with modifying a grid structure after construction,

especially if an object moves beyond the bounds of the existing grid, dynamic grid

structures have been presented in the literature. Two algorithms were presented by

Reinhard et al.116. The first system utilised a system of two bounding boxes, a logical

box and a physical box. When objects in the scene moved out of the physical box,

rather than rebuild the physical grid structure, the logical box is extended to encompass

them. The object would then be placed in the physical grid, as if the grid wrapped

around. Therefore, the grid can be expanded without performing any costly memory

reallocations. Objects were tagged if they were in physical or logical space, so as to

accelerate ray traversal. Figure 3.1 shows how the logical box expands the grid.

Fig. 3.1 Expanding a regular grid by using a logical grid. When an object moves (in
this case a blue circle) out of the grid (indicated by the black mesh), the logical grid
(indicated by red dots) is expanded to incorporate the object. Rather than reconstruct
the entire grid, the object is then placed into the original grid as if it wrapped around.
In this case, the blue circle is placed into the shaded cells.
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The second structure Reinhard et al. 116 proposed is described as a hierarchical

grid, designed to ensure that large objects placed within the grid did not occupy

a large number of cells (Reinhard’s structures were both presented as tight grids),

leading to a large number of cells needing to be updated if the object moved. The

concept is like an octree in that each cell of the grid is a leaf node of the data structure,

however, Reinhard’s implementation allows objects to be placed in non-leaf nodes if

they are resident in all of the cells below that node, effectively reducing the number of

insertions/deletions into the grid.

When compared with a regular non-dynamic grid, both of Reinhard et al. 116

systems were shown to suffer a performance penalty whilst rendering a static scene,

owing to a more complicated grid traversal algorithm. The dynamic grids were shown

to render an animation in real time, but the frame rate was adversely effected after a

moderate number of grid modifications took place.

Other researchers25,65,147 found that because of simplicity and speed of rebuilding

the grid, using a dynamic structure is unnecessary. This has led to research into the

best way to quickly rebuild a grid.

3.2.1 Parallel Construction

To achieve the fastest construction time possible, the grid will be built in parallel.

One of the main difficulties with parallelising grid construction algorithms is dividing

the work load evenly amongst a large number of threads - potentially thousands on a

modern graphics card. Different approaches have been taken to accomplish this.

An early parallel grid construction algorithm, designed for the CPU, was presented

by Ize et al. 60 . Ize et al. 60 describe several methods of parallelising regular grid

construction designed for use with a conventional multiprocessing architecture, rather

than the SIMD architecture used within most GPUs. Ize et al. 60 focused on the

insertion of triangles into the grid, as they used the structure for ray tracing. Three

approaches were described:
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• Sort-First: Each cell is assigned a thread, which locates the triangles that are

resident within it and stores them. The primary advantage of this approach is

that no write-conflicts occur, because each cell will only be written to by one

thread. The disadvantage is that every triangle within the scene will be tested

by every thread, leading to a large number of memory accesses that are avoided

using the other approaches.

• Sort-Last: Each thread is assigned a set of triangles, and calculates which

cells they are resident in. This approach counters the disadvantage of the first

approach - each triangle is only accessed once, however write-conflicts are

now possible; if many threads try to write to the same cell, the memory will

bottle-neck, reducing the algorithms performance.

• Sort-Middle: The middle ground between the sort-first and sort-last approaches.

Each thread is responsible for a set of triangles, which it divides into parts. The

triangles are then passed to whichever thread is responsible for the cells to which

they are assigned, which performs the insertion. This approach combines the

advantages of the sort-first and sort-last methods - each triangle is only accessed

once and each cell will only ever be accessed by one thread. The drawback

of this approach is the buffering fragments between the threads, which can be

costly.

Of the three methods presented by Ize et al. 60 , the best performing algorithm

was the sort-middle approach, because load balancing is straight forward, and no

scattered read/writes occur, which is ideal for the architecture they used. It is unlikely

that a GPU implementation of the same algorithm will yield the same results due to

architectural differences.

The other approaches will port to the GPU rather better, however sort-last is likely

to give the best overall performance on a GPU because it provides the finest granularity
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of parallelism; it is unlikely that there will be more cells than objects to be placed

within the grid, although this depends on the grid resolution.

Sorting has been explored as a method of creating regular grids. The broad

idea presented by Kalojanov and Slusallek 65 and Lagae and Dutré 76 , with a GPU

implementation demonstrated by Green 44 is simple - have an array of objects, work

out which cell of the grid they should be in and specify that as the object’s “cell ID.”

All that is then required is to sort the list of objects by cell ID and sweep along the

array storing the indices at which each cell starts and ends.

Green 44 presented a second construction algorithm, that utilises atomic operations

to construct the grid. Within the second algorithm, a fixed amount of memory is

allocated per cell, and a second “cell-counter” array, equal in length to the number of

cells within the grid, keeps track of how many objects are in each cell. Each object

to be inserted in the grid atomically increments the cell counter, giving it a position

within the respective cells buffer. The object’s index is then recorded in the correct

position in the grid (This algorithm is discussed in detail in Section 3.4.1). Green’s

implementation produced a loose grid that utilised features of the dataset: a number of

equally sized spheres which never overlapped, to keep the memory consumption low.

By setting each side of the cell to be equal in size to the diameter of the spheres used

within the grid, each cell will only contain the centre points of four spheres at most.

Barbieri et al. 9 presented an algorithm to construct a regular grid on the GPU.

The grid is implemented as a matrix of linked lists. The authors declare an array of

length equal to the number of cells in the grid they are creating. This array is called

the head. To place an object in the grid, an atomic exchange function is used on the

relevant cell’s head. The old cell head is stored with the point itself, and the index of

the point performing the operation replaces it. In this way, each cell will be pointing to

a linked list which can then be traversed to access the points within that cell. Barbieri

et al. 9 showed that the linked list construction algorithm outperformed both of the

approaches presented by Green 44 during a particle simulation. Note, however, that the
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contents within the grid cells are not contiguous in memory, which could adversely

effect runtime performance in some applications.

3.2.2 Hierarchical Data Structures

As mentioned previously, hierarchical data structures can also be used to divide 3D

space. These structures organise data into a tree-like layout. The most primitive tree

structure can be defined as a collection of nodes linked together in such a way that no

node is duplicated in the tree, each node has only one parent, and no node references its

parent or any of its grandparents. Tree structures have been used to accelerate a variety

of applications, including interactive molecular docking57, collision detection156 and

ray tracing157. The main advantage trees have over conventional lists is an average

case time complexity of log(n) for search, insertion and deletion. This is a result of

only having to follow one path from the root node to the required leaf node, rather

than scan all of the elements in an array.

When used to partition 3D objects, the tree is used to divide up the spatial area into

smaller areas. Generally, this allows empty space to be traversed more quickly than it

would be in a regular grid, as the grid resolution of the empty space is lower than the

resolution of space with an object in it. Trees do suffer a poorer access time than the

regular grid (worst case O(N) vs O(1)) and are also more complicated to build.

The use of hierarchical data structures is common in graphics applications, there-

fore there has been some research into using them with moving 3D scenes.

BVH

The first GPU-based construction algorithm for creating a BVH was presented by

Lauterbach et al. 80 . They coined their data structure the “Linear Bounding Volume

Hierarchy.” First they compute a Morton index code from each objects position in

space, then they sort the geometry based on the bits of their Morton codes. Next, they

calculate the dividing lines between the nodes, in parallel, and order them such that
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they have a list of splits at each level in the tree. Finally, they convert this list into a

form that is usable as a top-down hierarchy, during which they compute the correct

bounding boxes for each node. An investigation by Karras and Aila 67 demonstrates

that this LBVH construction method can complete within 2 ms, however they also

highlight that LBVHs suffer a performance penalty when used, compared to true

BVHs.

Other GPU-based BVH construction algorithms have been presented, including

the work by Garanzha et al. 40 and Karras and Aila 67 . The algorithm presented by

Karras and Aila 67 was fast: their approach involved constructing a low quality LBVH,

and then optimising it in parallel. Despite being fast to construct, and providing

a significant speed up in their ray-tracing project, none of their construction tests

demonstrated construction completing in under 1 ms, even using the powerful Nvidia

Titan.

Octree

Another tree based spatial partitioning structure which has been demonstrated as

effective in the field of molecular docking57, is the octree. An octree is a tree in which

each non-leaf node must have eight children nodes. It is used in 3D space to subdivide

an area into eight equally sized smaller areas. Figure 3.2 shows how an octree divides

Cartesian space up.

Karras 66’ method for creating an octree on the GPU is similar to the BVH con-

struction algorithm presented by Lauterbach et al. 80 , Karras 66’ algorithm requires the

Morton keys, assigned to each triangle, to be sorted. They they construct a binary radix

tree in parallel. Once this tree has been created, a parallel prefix sum is performed

in order to allocate tree nodes, and then the parent of each node is found, resulting

in an octree. This method has proven to be exceptionally quick on modern graphics

hardware, as a result of very little synchronisation between threads. Despite this, how-

ever, Karras 66’ results show that the construction time is still an order of magnitude
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Fig. 3.2 How an octree divides up space. Each non-leaf node has 8 children.

slower than this projects target of 2 ms. Because of this, and also as a result of Iakovou

et al. 57 , demonstrating that the intermolecular force calculation that will utilise the

data structure executes more quickly when used with a regular grid, rather than with a

tree based structure, development of a fast construction algorithm for a hierarchical

data structure is not undertaken here.

In the following section, three different ways a regular grid can be stored in memory

are presented, and construction algorithms for each method are formally described.

The linked list system presented by Barbieri et al. 9 and the atomic grids described

by Green 44 are included. Following this, each of the grid construction methods will

be benchmarked with molecular data in order to determine which will offer the best

performance for the use intended in this thesis.

3.3 Methods

One of the major differences between each of the grid construction algorithms is the

memory layout of the final structure. The simplest memory layout is pictured in Figure
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3.3. This memory representation will be referred to as the fixed grid throughout the

rest of this thesis. Within a fixed grid, the capacity of each of the cells is the same.

This allows each cell in the grid to be accessed directly, through use of Equation 3.1.

Fig. 3.3 A representation of a one dimensional fixed grid containing eight elements
(a1...a8). Note how each cell is the same size. -1 denotes unused allocated memory
within the grid.

The function

ci = (z× xcc×∗ycc)+(y× xcc)+ x (3.1)

can be used to calculate the memory index of an object in a one dimensional array

from its three dimensional grid cell coordinates: ci denotes the memory address of

cell xyz. xcc and ycc denote the number of cells in the x and y planes of the grid.

This equation allows each cell to be accessed with one operation; useful in both the

build and use stages of the application. The drawback to the fixed grid is memory

inefficiency; because all the cells have to be the same size, they all have to be the size

of the cell containing the most elements. This results in a large amount of allocated

memory being unused. Green 44 utilised this method within a particle system (See

Section 3.2.1)).

A more memory efficient solution was presented by Lagae and Dutré 76 . The

compact grid, shown in Figure 3.4, is a structure consisting of two arrays. The first

array acts as a lookup table for the cell start indices within the second array. To access

any individual cell of the grid, first the cell start location has to be read from the

lookup array and then the data array accessed to retrieve the information. This data

representation is more memory efficient and less expensive to enlarge if necessary,

however during construction and use the structure is less operation efficient. Green 44

suggested a method for creating a loose compact grid on the GPU, again utilising
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atomics. This compact grid algorithm requires two passes of the data; the first pass

counts how many atoms are in each cell, the second pass uses this data to construct the

grid. Compact grids can also be created by sorting the data and then finding the points

in the sorted list at which the cells change.

Fig. 3.4 A representation of a compact grid containing eight elements (a1...a8). Note
how the grid is closely packed, leaving no wasted space. Also the figure highlights the
two step lookup method, demonstrating the potential inefficiency of the structure.

Barbieri et al. 9 presented an algorithm in which the regular grid is represented as

linked lists, and demonstrated how to construct it on the GPU. The linked list grid

(pictured in Figure 3.5) utilises two arrays. The first array contains a pointer to the

first object within that cell. The second array contains all the data contained within the

grid. Each element in the data array also contains both the data within the grid and a

pointer to the next element in the linked list.

Fig. 3.5 A visualisation of a linked grid containing eight elements (a1...a8). Note how,
like the compact grid, the linked grid is closely packed, leaving no wasted space.
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To achieve the best possible overall performance, a balance between grid construc-

tion time and how quickly the grid can be queried must be found. Video memory

is also a scarce resource in all but the most expensive modern graphics cards. For

this reason memory efficiency should also be considered when analysing each of the

regular grids. Each of the structures presented has limitations: the fixed grid is not

memory efficient, the compact grid requires multiple passes of the data to construct

and the information in the linked grid is not stored sequentially in memory.

In this project, the regular grid will be used with molecular data. In order to limit

the number of insertions into the grid, a design decision was made to set the minimum

cell size to 2Sr, where Sr is the radius of a Sulphur atom, which is 1.8 Å. Sulphur was

chosen as it has the largest radius of the most commonly found atoms within PDB

files, therefore, setting the minimum cell size to 2Sr insures that the majority of atoms

will be resident in at most 8 grid cells.

3.4 Implementation

Three implementations of the grid were tested, one for each type of grid. All the

different algorithms begin in the same way. These steps are formally described in

Algorithm 1.

Algorithm 1 prepareForGridConstruction(atoms,n,cs) return mins, slen
Require: atoms {list containing XYZ coordinates of n atoms, in protein.}
Require: cs {Desired cell size of constructed grid.}

1: [mins,maxs]←parallelMinMax(atoms) {minimum and maximum in x,y and z
planes}

2: slen← maxs−mins {Length of bounding box sides}
3: for i← 1 to 3 do
4: slen(i)← ceil(slen(i)/cs)*cs {Round side lengths to next multiple of cs }
5: end for
6: numCells← product(slen)
7: return [mins, slen]

The function parallelMinMax is described in Appendix A.
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3.4.1 Fixed Grid

Both the tight and loose fixed grid construction algorithms are broadly similar. The

only difference is how the atoms are placed within the grid structure.

Algorithm 2 createFixedGrid(atoms,n,cs,alloc) return f ixedGrid, cellAtomCounts
Require: atoms {list containing XYZ coordinates, and radius of each atom in pro-

tein.}
Require: cs {Desired cell size of constructed grid.}
Require: n {length of list atoms.}
Require: alloc {Capacity of each cell.}

1: [mins, slen]← prepareForGridConstruction(atoms,n,cs)
2: for i← 1 to numCells in parallel
3: cellAtomCounts(i)← 0
4: end for
5: for all Atoms a in atoms in parallel
6: sr← 1 + (floor(a.radius/cs))
7: Cellmid ← (a.xyz−min.xyz)/cs
8: for i←−sr to sr do
9: for j←−sr to sr do

10: for k←−sr to sr do
11: cellX ←Cellmid.x+ i
12: cellY ←Cellmid.y+ j
13: cellZ←Cellmid.z+ k
14: if isValidCell(cellX , cellY , cellZ, cs, mins) then
15: cMin← getCellMinPoint(cellX ,cellY,cellZ,cs,mins)
16: cMax← getCellMaxPoint(cellX ,cellY,cellZ,cs,mins)
17: if sphereWithinCell(a,cMin,cMax) then
18: cellId← (cellZ * slen.x * slen.y) + (cellY * slen.x) + cellX ;
19: gridIndex← atomicAdd( cellAtomCounts[cellId],1)
20: gridIndex ← getGridPosition(

cellX ,cellY,cellZ,alloc,gridIndex,slen)
21: f ixedGrid(gridIndex)← aindex
22: end if
23: end if
24: end for
25: end for
26: end for
27: end for
28: return f ixedGrid, cellAtomCounts

Algorithm 2 describes how to create a tight fixed grid, (shown pictorially in Figure

3.3). The loose grid algorithm would be identical, but without the for loops on lines 8,
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9 and 10. Memory is allocated in order to allow aspects of the scene to move beyond

the initial bounds of the regular grid. Allocating sufficient memory for the fixed grid is

difficult, because all the cells have to be the same size as the largest and the number of

atoms within the largest cell will not be known until runtime. The decision was taken

to allocate a block of memory (how much memory being dependant on the number of

atoms in the loaded structure), and divide it by the required number of cells. Within

our implementation, the amount of memory allocated was enough to ensure that no

cell will ever become full. In its worst case, this algorithm has a run time complexity

of 9N, making it an O(N) algorithm, where N is the number of objects to be placed

into the grid.

Algorithm 3 getGridPosition( cellX ,cellY,cellZ,mem,cellPos,slen) return
gridIndex
Require: cellX {Cell index on X axis}
Require: cellY {Cell index on Y axis}
Require: cellZ {Cell index on Z axis}
Require: mem {amount of memory allocated per cell}
Require: cellPos {Position the atom is to be placed inside the cell}
Require: slen {Number of cells in each side of the grid}

1: gi← (cellZ * mem * slen.x * slen.y) + (cellY * mem * slen.x) + (cellX * mem) +
cellPos

2: return gi

GetGridPosition (Algorithm 3) is a formal description of Equation 3.1, as used

within the grid construction algorithms.

3.4.2 Compact Grid

The compact grid construction algorithm consists of multiple kernels, with global

synchronisation points between them. Each step is listed in Algorithm 4.

Within Algorithm 4, parallelPrefixSum is called, this algorithm is defined in

Appendix A. The other algorithms are presented within this section. Again, all memory

is allocated before execution and sufficient memory is allocated to allow for atom

movement beyond the initial bounding box.
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Algorithm 4 createCompactGrid(atoms,n,cs) return cellStartPoints,compactGrid
Require: atoms {list containing XYZ coordinates of each atom in protein.}
Require: cs {Desired cell size of constructed grid.}
Require: n {length of list atoms.}

1: [cellAtomCounts, mins, slen]← prepareForGridConstruction(atoms,n,cs)
2: [atomsInEachCell, atomCellPairs]← calcCellContents() {Algorithm 5}
3: cellStartPoints← parallelPrefixSum(atomsInEachCell)
4: compactGrid← copyIntoCells(cellStartPoints, atomCellPairs, n) {Algorithm

6}

Algorithm 5 describes how the number of atoms resident in each cell is calculated.

After it has been determined that an atom is within a cell, an atomic add operation

is performed on that cells “count”. This value, and the cellId are then stored as a

pair, to accelerate filling the grid structure later, after the cell start points have been

calculated. This part of the compact grid’s construction algorithm is, in its worst case

O(N), where N is the number of atoms within the scene.

The final part of the compact grid’s construction is copying the atoms into the grid.

This is achieved with Algorithm 6. Algorithm 6 uses the cell ID and location pair,

stored within Algorithm 5, to rapidly copy the atom information into the grid. Storing

the information from the earlier method uses more memory, but removes the need to

perform any further atomic operations. In its worst case, Algorithm 6 is also an O(N)

algorithm. This, combined with the O(Mlog(M)) operations, where M is the number

of cells in the grid, from the prefix scan stage makes, the compact grid a worst case

O(N+Mlog(M)) algorithm, with a complete run-time complexity of 17N+Mlog(M), a

higher order algorithm than both the fixed and linked grids.

3.4.3 Linked Grid

The final algorithm implemented is the linked grid algorithm, defined originally by

Barbieri et al. 9 . Like the fixed grid, a linked grid can be constructed with a single

kernel, described in Algorithm 7. As with the other two algorithms, memory is

allocated beforehand, including enough to allow for an increase in the number of cells.
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Algorithm 5 calcCellContents(atoms,n,cs,alloc) return cellAtomCounts ,
atomCellPairs
Require: atoms {list containing XYZ coordinates of each atom in protein.}
Require: cs {Desired cell size of constructed grid.}
Require: n {length of list atoms.}
Require: alloc {Capacity of each cell.}

1: for i← 1 to numCells in parallel
2: cellAtomCounts(i)← 0
3: end for
4: [cellAtomCounts, mins, slen]← prepareForGridConstruction(atoms,n,cs)
5: for all Atoms a in M in parallel
6: Cellmid ← (a.xyz−min.xyz)/cs
7: sr← 1 + (floor(a.radius/cs))
8: acPairWid← aindex ∗8
9: for i←−sr to sr do

10: for j←−sr to sr do
11: for k←−sr to sr do
12: cellX ←Cellmid.x+ i
13: cellY ←Cellmid.y+ j
14: cellZ←Cellmid.z+ k
15: if isValidCell(cellX , cellY , cellZ, cs, mins) then
16: cMin← getCellMinPoint(cellX ,cellY,cellZ,cs,mins)
17: cMax← getCellMaxPoint(cellX ,cellY,cellZ,cs,mins)
18: if sphereWithinCell(a,cMin,cMax) then
19: cellId← (cellZ * slen.x * slen.y) + (cellY * slen.x) + cellX ;
20: gridIndex← atomicAdd( cellAtomCounts[cellId],1)
21: atomCellPairs(acPairWid) = [cellId, gridIndex]
22: acPairWid = acPairWid + 1
23: end if
24: end if
25: end for
26: end for
27: end for
28: end for
29: return cellAtomCounts, atomCellPairs

The atomicExch function used within Algorithm 7 is an inbuilt function in the CUDA

library. The function works by taking an item in an array and swapping it with the

value specified in a single operation. The original value is then returned. As with the

fixed grid, the linked grid construction algorithm has a run-time complexity of 9N,

making it an order O(N) algorithm in its worst case. This means that in the build stage,
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Algorithm 6 copyIntoCells(atoms, cellStartPoints, atomCellPairs) return
compactGrid
Require: atoms {list containing XYZ coordinates of each atom in protein.}

1: for all Atoms a in M in parallel
2: acPairWid← aindex ∗8
3: for i← 0 to 8 do
4: pair← = atomCellPairs(acPairWid + i);
5: if pair.x != -1 then
6: index← cellStartPoints[pair.x] + pair.y
7: compactGrid[index]← aindex
8: else
9: break

10: end if
11: end for
12: end for

the fixed grid and linked grid should perform similarly, with the compact grid taking

longer.

3.5 Method Analysis

There are three main areas that need to be assessed in order to determine which of

the regular grid construction algorithms will offer the best performance for the uses

intended in this thesis. They are: How long each structure takes to construct, the

performance of each structure when it is used and the memory consumption of each of

the structures.

Construction time To determine the execution time of each of the construction

algorithms, the run time of each algorithm will be recorded ten thousand times, and

the average determined.

As the cell size used within the grids is likely to have an effect on the performance

of the structure, multiple cell sizes will be tested. The cell sizes used within the tests

will be a multiple of the radius of a Sulphur atom (1.8 Å), starting at two. This ensures

that the majority of atoms are placed in at most eight cells. For all of the structures

tested within this section, memory is preallocated where possible, however if buffers
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Algorithm 7 createLinkedGrid(atoms,n,cs) return listStartAddresses, linkedGrid
Require: atoms {list containing XYZ coordinates of each atom in protein.}
Require: cs {Desired cell size of constructed grid.}
Require: n {length of list atoms.}
Require: alloc {Capacity of each cell.}

1: [cellAtomCounts, mins, slen]← prepareForGridConstruction(atoms,n,cs)
2: for all Atoms a in M in parallel
3: sr← 1 + (floor(a.radius/cs))
4: Cellmid = (a.xyz−min.xyz)/cs
5: acPairWid = aindex ∗8
6: for i←−sr to sr do
7: for j←−sr to sr do
8: for k←−sr to sr do
9: cellX =Cellmid.x+ i

10: cellY =Cellmid.y+ j
11: cellZ =Cellmid.z+ k
12: if isValidCell(cellX , cellY , cellZ, cs, mins) then
13: cMin← getCellMinPoint(cellX ,cellY,cellZ,cs,mins)
14: cMax← getCellMaxPoint(cellX ,cellY,cellZ,cs,mins)
15: if sphereWithinCell(a,cMin,cMax) then
16: cellId← (cellZ * slen.x * slen.y) + (cellY * slen.x) + cellX ;
17: gridBody(2∗acPairWid)← aindex
18: gridBody(2 ∗ acPairWid + 1) ←

atomicExch((listStartPointers[cellID]), acPairWid);
19: acPairWid = acPairWid +1
20: end if
21: end if
22: end for
23: end for
24: end for
25: end for
26: return f ixedGrid, cellAtomCounts

need resetting to zero at the start of every build, the time taken to do this is included

within the total runtime.

The execution time of each algorithm will be measured using the high-precision

timer provided within the windows library, to insure any overheads resulting from

launching the GPU kernels are included in the runtime.

Overall performance The construction time of the grid only tells half the story. The

grids must also be efficient in use, in order to be useful for accelerating algorithms.
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Therefore, to establish which of the grid structures provides the best overall perfor-

mance, a simple locality search test was performed. The test involved counting how

many atoms were within a set cut-off distance of each of the atoms within the scene.

This test will be repeated multiple times, in order to determine how searching a larger

number of smaller cells compares with searching a small number of large cells.

Using a locality search as a performance test will provide insight into how well

each structure will perform if used in conjunction with the interaction force algorithm

presented by Iakovou et al. 56 , as the access patterns will be very similar.

Within these tests a tight grid is constructed because it is the more computationally

expensive structure to build; if a tight grid can be constructed in haptic time, a loose

grid can be as well.

Memory consumption As GPU memory is a scarce resource, the final aspect that

will be assessed is the memory consumption of each grid. This can be determined

using the NVIDIA profiling tools.

3.6 Results

Biomolecules taken from RCSB Protein Data Bank (PDB) will be used to perform the

tests described in Section 3.5. PDB data is used as it will provide a realistic idea of the

performance of the grids when used for the purposes intended in this thesis.

Table 3.1 lists the eleven proteins were taken from the RCSB protein data bank14

for use within testing. These biomolecules were chosen because they vary widely in

size and the number of atoms they contain per unit area; some contain hydrogen atoms

which effectively increase the density of the structure, conversely, some only contain

Cα atoms, which reduces the number of atoms resident in each grid cell. Together they

should provide a reasonable idea of how well each grid will perform in the majority of

use cases.
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PDB Code Number of Atoms
1ANF 2860
1OMP 5737
5E0T 5804
1AF6 10050
1XI4 15300
4A97 25020
3E76 53970

1AON 58674
3JCU 59354
1FFK 64268
1HTQ 90672

Table 3.1 Information relating to the proteins used within the grid performance testing.

A desktop workstation equipped with an Intel i7 processor, 16 GB of RAM and an

Nvidia GTX 980 GPU was used to perform the benchmarks presented in this Chapter.

3.6.1 Construction Time

For an initial, broad understanding of each algorithm’s performance, the results of

each of the cell sizes from the construction time test were then averaged together. The

results can be seen in Figure 3.6.

1CRN 1OMP 5E0T 1AF6 1XI4 4A97 3E76 1AON 3JCU 1FFK 1HTQ
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Fig. 3.6 Average grid construction times for each structure (blue: fixed, red: compact,
brown: linked) when constructed over 11 different proteins.

Initial results show that, on average, the linked grid is the quickest to construct,

closely followed by the fixed grid, with the compact grid taking the longest of all:
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2Sr (3.6 Å ) 8Sr (14.4 Å)
Read (MB) Write (MB) Read (MB) Write (MB)

Fixed 0.95 27.95 0.95 7.72
Compact 19.43 48.17 2.46 19.38
Linked 0.96 37.75 0.95 9.70

Table 3.2 Table showing total kernel global memory accesses in MB, for the different
approaches, when constructing a grid for 3JCU. Two cell sizes are shown, 2Sr (3.6 Å)
and 8Sr (14.4 Å).

twice as long as the linked grid in some of the tests. All of the grid construction

algorithms complete in well under 1 ms, for all of the proteins tested, leaving at least

1 ms in which to perform computation with the grid, when using it with a haptic

environment.

Part of the cause of the compact grid’s comparatively poor performance is high-

lighted in Table 3.2. Because the algorithm requires two passes of the data to complete,

rather than the single pass required by the other two algorithms, far more memory

accesses are performed during grid construction. As highlighted in Section 2.4, mem-

ory operations, especially non-coalesced scattered read and writes, are comparatively

slow operations. This, compounded with the fact that the compact grid construction

algorithm does comparatively more work, results in a longer construction time.

To determine if the grid cell sized used during grid construction has a significant

effect on performance, the build times of the largest cell sized used (14.4 Å) were

subtracted from those of the smallest (3.6 Å), giving the difference. The results can be

seen in Figure 3.7.
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Fig. 3.7 Graph shows the time difference between constructing a grid with a cell size of
3.6 Å (2Sr) and one with cells 14.4 Å (8Sr) big, measured with the NVIDIA profiling
tool.

Figure 3.7 shows that when the protein structure is small, the time difference

between using a small and large cell size is minimal. When considering the larger

structures, the compact structure does show a performance difference - using a larger

cell size results in a shorter build time. The cause of this is visible in Table 3.2. The

larger cell size results in fewer insertions into the grid, reducing the number of memory

operations, leading to a better overall runtime. However, the inverse is likely to be true

when using the structure, as each cell will contain more references. The larger cell size

will result in more atoms being queried per cell traversed, potentially increasing the

execution time of the algorithm using the grid.

Figure 3.7 shows a large construction time delta for the protein 1XI4. As Table 3.1

shows, 1XI4 only contains 15300 Atoms, far fewer than 1HTQ and 1FFK. Table 3.3

shows the dimensions of each protein’s bounding boxes.

Table 3.3 shows that 1XI4 is a spatially larger structure than all of the others tested;

the file used during testing only contains the Cα atoms of the structure. The result of

this is a grid containing a large number of cells, each cell containing few atoms. The

compact grid’s performance suffers the most because of the second part of its runtime
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PDB Code (Atoms) X Y Z
1ANF (2860) 63.36 52.00 61.05
1OMP (5737) 53.41 58.85 74.40
5E0T (5804) 90.25 85.56 80.51
1AF6 (10050) 84.99 88.39 72.51
1XI4 (15300) 387.95 350.85 432.21
4A97 (25020) 246.24 256.47 121.06
3E76 (539708) 151.94 152.71 155.53
1AON (58674) 145.66 227.9 224.02
3JCU (59354) 204.21 236.99 114.75
1FFK (64268) 178.76 223.65 215.85
1HTQ (90672) 223.11 152.17 215.19

Table 3.3 Table shows the lengths of each side of each protein’s bounding box.

complexity function - there is Mlog(M) additional work performed in comparison to

the other structures.

A note on a sorting based approach: Within Section 3.2, it was mentioned that the

compact grid can be created by calculating which cells each object is a resident of,

and then sorting the list by the cell ID. This approach is not implemented, as an early

investigation showed that the time taken to place and sort even a modest list of atoms

was too long for use with a haptic device. Figure 3.8 shows the time taken to perform

the placement and sorting stage, using the GPU based thrust library, of a sort based

tight compact grid construction algorithm for each of the test proteins. The atomic

based compact grid discussed in Section 3.4.2 results are included for comparison. A

cell size of 2Sr was used in both cases.
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Fig. 3.8 Graph compares the first stage of the sorting based compact grid construction
with the total runtime of the atomic based compact grid approach

The results in Figure 3.8 show that the sorting approach is comparatively slow,

even when excluding the final stage of the build algorithm. All of the larger proteins

failed to complete the sort stage in 2 ms, and all of the results show a longer run time

than the entire atomic based compact grid construction algorithm. For this reason,

continual development of the sort-based approach was dropped.

3.6.2 Overall Performance

The locality search test was run with three different cut off distances: 1.5 Å, 6.0 Å

and 12.0 Å. Using 1.5 Å as a cut-off distance means that for all grids, a maximum

of one cell in each direction needed to be searched. The larger cut-off distance of 12

Å was selected because it is often used as a cut-off distance in MD114. A 6 Å test

was also run, as it falls nicely between the two other test sizes. Figure 3.9 shows the

average results of all the tests. These results show that the compact grid offers the best

performance in use. Therefore, it is likely that, should the grid be used more than once

per reconstruction, the compact grid will offer the best all round performance, despite
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Fig. 3.9 The average run runtime of the nearest neighbour search time across all
structures, for each of the different search radii.

being the slowest to construct. Figures 3.10 to 3.20 show the test run times added to

the respective grid build time, for each of the tested proteins.
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Fig. 3.10 Results for protein 1ANF - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.11 Results for protein 1OMP - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.12 Results for protein 5E0T - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.13 Results for protein 1AF6 - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.14 Results for protein 1XI4 - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.15 Results for protein 4A97 - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.16 Results for protein 3E76 - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.17 Results for protein 1AON - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

2
S
r

3
S
r

4
S
r

5
S
r

6
S
r

7
S
r

8
S
r

0

10

20

30

40

Fixed Fixed FixedCompact Compact CompactLinked Linked Linked
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Fig. 3.18 Results for protein 3JCU - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.19 Results for protein 1FFK - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.
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Fig. 3.20 Results for protein 1HTQ - Graph shows the build and use time for all tested
combinations of grid type and construction cell sizes. Three search radii are shown:
1.5 Å, 6.0 Å and 12.0 Å.

The results of all the proteins reveal the same pattern: The smallest cell size that

is greater than the search radius is the fastest to build and run, regardless of the grid

construction algorithm used or the protein that is being placed into the grid. This fact

is most clearly evident in the results of the 6 Å test - there is a clear reduction of time
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between the cell size of 3Sr (5.4 Å) and 4Sr (7.2 Å). The same behaviour is evident

in the 12 Å test: a clear reduction in run time is visible between the cell sizes of 6Sr

(10.8 Å) and 7Sr (12.6 Å). From these tests, it is suggested that the cell size used has a

larger impact on the overall performance of the structure than the grid construction

algorithm - tuning the cell size to the application, in order to limit the number of cells

searched during use is therefore important.

Comparing the performance of each of the grids in the local atom count experiment

shows that, when the protein is small, the linked grid marginally outperforms the

other two algorithms, although the overall performance of the three structure is similar.

When the protein and search radius are larger, the compact grid yields the better result

by a fair margin. This demonstrates that the compact grid is more efficient to use than

the linked and fixed grids. As a “one size fits all” structure, the compact grid is the

most appropriate, as the time penalty for using with smaller structures is less than the

increase in run time resulting from use the linked grid with larger structures.

The overall performance of each of the grids is very similar, however of the three,

the performance of the fixed grid is most unexpected; as each cell can be accessed

in O(1) time, it should be the fastest. Instead, it is the slowest of the three grids.

Further analysis suggests that the memory layout of the fixed grid is to blame. Owing

to the fact the grid is comprised a large block of memory, with the data interwoven

with empty space, the limited on chip cache is used ineffectively because unused cell

memory cannot be distinguished from utilised cell memory. The effect of this can be

seen in Table 3.4.

Table 3.4 shows the total amount of data transferred between the video memory and

the GPUs L2 cache and the efficiency of the transfer, as a percentage of the theoretical

maximum, for the 12 Å querying test with a grid cell size of 2Sr, as reported by the

NVIDIA GPU profiler. The efficiency column indicates how efficiently the memory

bus was utilised. When the structures are smaller, the efficiency of the transfers is

low because there isn’t enough simultaneous data access transactions to maximise the
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PDB Code (Atoms) Fixed Compact Linked
Transfers (MB) Efficiency (%) Transfers (MB) Efficiency (%) Transfers (MB) Efficiency (%)

1ANF (2987) 2.9 0.26 6.5 0.59 6.7 0.63
1OMP (5737) 8.4 0.47 3.8 0.22 8.2 0.48
5E0T (6043) 2.9 0.29 6.2 0.67 2.5 0.28
1AF6 (10520) 6.1 0.30 3.6 0.35 7.0 0.68
1XI4 (15317) 69.0 3.21 12.0 3.31 41.0 10.83
4A97 (25300) 74.0 2.40 13.0 0.94 32.9 1.89
3E76 (54478) 260.0 4.76 14.2 0.52 778.0 17.75
1AON (58891) 249.0 5.17 18.0 0.68 716.0 17.00
3JCU (59354) 275.0 4.01 23.0 0.80 792.0 18.60
1FFK (64296) 361.0 5.45 123.0 3.60 1550.0 23.00
1HTQ (90696) 478.0 4.93 65.0 1.30 1850.0 21.20

Table 3.4 Table shows the amount of data moved from the GPUs main memory to its
cache, in MB, during the 12 Å querying test. Grids with a cell size of 2Sr (3.6 Å) were
used. The efficiency columns show the percentage utilisation of the GPUs memory
bus, according to the NVIDIA profiling tool.

data bus. When the structures are larger, more data is transferred, and the efficiency is

slightly better, however still low. This is a result of the access patterns used during

the proximity queering test; the random access patterns that are required to search the

cells of the grid do not fully utilise the cards memory bus.

The table shows that although the linked grid transfers far more memory between

the RAM and the cache, these transfers are performed more efficiently, utilising

more of the available bandwidth than the fixed grid. Both the fixed and linked grids

transfer considerably more data than the compact grid, demonstrating an area where

the compact grid has a performance edge over the other structures.

3.6.3 Memory Consumption

Each of the different grid structures utilises video memory differently. Table 3.5 shows

how much memory is allocated for each structure, for each of the test proteins when

the grid cell size is 2Sr. All of the structures have additional memory allocated to

them, in order to allow an increase in the number of cells within the grid.

Two main points can be drawn from the data in Table 3.5: 1) The fixed grid uses

the most memory, by a considerable margin and 2) The Linked and Compact grids

memory consumption is more dependent on the distribution of atoms, rather than the

number of atoms in the grid.
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PDB Code (Number of Atoms) Fixed (MB) Compact (MB) Linked (MB)
1ANF (2860) 150.1 0.8 0.4
1OMP (5737) 150.2 1.5 0.6
5E0T (5804) 150.2 1.8 0.8
1AF6 (10050) 300.4 2.8 1.2
1XI4 (15300) 300.6 53.3 26.4
4A97 (25020) 300.9 12.1 5.6
3E76 (53970) 301.9 15.3 6.7
1AON (58674) 302.1 19.6 8.8
3JCU (59354) 302.1 18.0 8.0
1FFK (64268) 302.3 22.1 9.9
1HTQ (90672) 303.3 26.8 11.8

Table 3.5 Table showing the amount of memory allocated for each grid type, when the
grid cell size is 2Sr (3.6 Å), for each of the different proteins. Values are in megabytes.

The fixed grids memory consumption is a result of each cell within the structure

being of equal size. As stated in Section 3.4.1 To ensure that no cell runs out of

memory, the original allocated memory pool is large, leading to a high overall memory

consumption. This approach, as opposed to allocating a small amount of memory and

then increasing the size of the buffers if required, was taken because of the performance

penalty of increasing the size of GPU memory buffers during execution.

The linked and compact grids also allocate all required memory before execution,

with room for expansion. Owing to the nature of the structures, doing this is far less

memory intensive than with the fixed grid. By utilising the fact that each atom will be

in at most 8 cells, the grid buffer will never be longer than eight times the number of

atoms within the structure. The only arrays that are of an indeterminate length are the

arrays that contain the cell start pointers, which, at 4 bytes per cell, are comparatively

cheap to over allocate. The linked grid uses less memory than the compact grid because

of its single stage build algorithm; the compact grid’s additional memory consumption

is a result of having to calculate cell start points and then copy the atoms into the grid

in two separate stages, requiring buffers to store the intermediate data.

Table 3.5 shows the memory consumption of each grid when a cell size of 2Sr, the

smallest tested cell size, is used. If a bigger cell size was used, there would fewer be
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cells in the grid, leading to a drop in memory consumption for all three grid types, as

the arrays used to point to, and keep track of the contents of each cell, would reduce in

size.

3.6.4 Discussion

This chapter set out to prove that regular grids could be constructed in less than 2 ms,

with time left over for some computation. For most of the smaller structures: 1ANF,

5E0T, 1AF6 and 1XI4, the results show that, in all tested cases, this is achieved by

each of the different grid algorithms, when the grid cell size is properly tuned. When

considering the larger structures: 3E76, 1AON, 3JCU, 1FFK and 1HTQ, they only

meet the time requirement when the neighbour search radius is small and the cell size

is optimum. However, if we interpolate the forces on the haptic device, allowing a

reduction in refresh rate to 500 Hz, or an update every 2 ms, only the largest three

proteins fail to meet this goal target and only when using performing the nearest

neighbour search with a 12 Å search radius.

The linked grid could be argued to be the best construction algorithm, because it

is the fastest to construct and has the smallest memory footprint of all of the tested

structures. However, the grid querying testing showed that there is a performance

penalty when using the linked grid, when a large number of cells are searched.

The fixed grid construction time took slightly longer than the linked grid, and the

overall performance was shown to be the slowest of the three. This was unexpected, as

the fixed grid should be much faster in the querying test than the linked grid, and faster

than the compact grid, owing to the O(1) access time of each of the cells. The slow

down is a result of the pockets of empty space between the cells leading to sub-optimal

memory access patterns during execution.

The compact grid took the longest to construct, but proved the fastest to query, by

a large margin, in the case of the biggest proteins. If the grid is used multiple times

per-rebuild, the compact grid will provide the best overall performance, despite being
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slower to construct. If the structure is small, marginally better performance may be

achieved with the linked grid.

Tests demonstrated that setting an appropriate cell size had a larger effect on

overall grid performance than changing the grid construction algorithm. It is therefore

important that the grid cell size is tuned for its proposed application.

The focus of this chapter has been on reconstructing a spatial data structure

from scratch. Alternatively, one could attempt to update an existing data structure

with the new positions of its constituents. Reinhard et al. 116 demonstrated this was

possible with regular grids, although the performance was not brilliant, and after a few

alterations, real-time performance was lost.

It would be trivial to create a modifiable fixed grid, as there is free memory within

each cell of the structure. One would simply have to identify those atoms which have

moved, test them to see if they’ve moved out of their original cells, and if so determine

which cell they’ve moved into, and add them to those cells, whilst removing them

from any cells that they’re no longer in. With the compact grid this process is more

complicated as there is no spare memory between cells, however, if there were only a

few changes to the structure during usage, it could be worth doing.

The problem that arises is, during molecular docking, the vast majority, if not all, of

the atoms move between frames; if the cell size is small, many of these atoms will have

moved into, and out of cells they were not touching previously. Therefore, attempting

to modify the structure may well lead to spending time identifying those atoms which

have moved out of a cell, or into another cell, before effectively reconstructing the

data structure anyway.

3.7 Conclusion

To conclude, it has been shown that it is possible to create and use a regular grid in less

than 2 ms. All of the grid algorithms presented complete their build stages in under
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1 ms for all of the proteins tested, and when the cell size is tuned to the application

correctly, all of the grid structures complete the build and the 1.5 Å and 6.0 Å query

tests within the 2 ms/500 Hz time limit.

When the protein structure is large, the compact grid provides the best overall

performance, owing to its more efficient memory layout. For the smaller proteins,

there is very little time between the slowest and fastest structures; the linked grid may

give the best performance, but it will be marginal. For this reason, the compact grid

will be utilised within both the rendering and the molecular docking stages of this

project.

In the next chapter, the compact grid is utilised within a molecular trajectory

rendering system, to allow per-pixel shadows and ambient occlusion to be calculated

in real time, on a deforming protein.



Chapter 4

Rendering Deforming Proteins with

Advanced Lighting

4.1 Introduction

In an interactive molecular docking environment, the “haptic” render is three dimen-

sional, as haptic devices allow exploration with the X, Y and Z axes. The “visual”

render however, is a two dimensional perspective projection of 3D geometry, as the

majority of Visual Display Units (VDUs) are limited to rendering in two dimensions

(although head-mounted displays and 3D VDUs are becoming more common). The

problem with viewing a protein in 2D is understanding the relative depth of different

parts of the topography; surface features may not be obvious to the user. When the

proteins involved in the docking scenario are static, this can be mitigated by viewing

the structures from multiple angles, both before and during docking. Such an approach

may not be practical whilst modelling flexibility, as during the docking process, the

topography of the proteins changes, often in a short space of time.

Lighting effects, including ambient occlusion95 and shadowing, can be used to

enhance depth perception within a three dimensional scene. Ambient occlusion

is a technique which calculates how exposed a point is to ambient lighting; more



4.1 Introduction 77

enclosed portions of the scene are rendered with less illumination than more open

areas. Ambient occlusion has been shown to be an effective method of highlighting

crevices within a protein’s topography46. Shadows have been shown as an effective

method of showing how an object moves, relative to another object, in 3D space151.

Therefore, the combined effect of both should nicely enhance the three dimensionality

of the biomolecule being rendered.

The problem is that these effects are computationally expensive to generate and

render. A common approach to reducing the computational cost is to calculate the

lighting on a per-vertex level shading (often known as Gouraud shading43), and then

interpolate the results. However, the resulting effect can be of low quality with little

detail, especially when the number of vertices is low, or the distance between them

is large. The alternative to this is calculating the lighting of each pixel independently

(known as Phong shading113), which, although more computationally expensive than

per-vertex, ensures that the lighting is as detailed and consistent as possible. Computing

per-pixel shading on a deforming scene, in real time, presents a significant challenge,

owing to the amount of computation required per-frame.

Nevertheless, to ensure the accuracy and consistency of the lighting effects within

the interactive molecular docking environment, per-pixel lighting effects will be used.

In this chapter, a novel approach to adding shadows cast as a result of directional

lighting and ambient occlusion to a deforming protein rendered in space-filling mode

is presented. As a proof of concept, the algorithm is implemented in the software

“Haptimol Protein Trajectory Viewer,” before being included in Haptimol FlexiDock at

the end of the next Chapter.

4.1.1 Contributions

In this chapter, a novel method of rendering a deforming biomolecule with per-pixel

ambient occlusion and ray-cast shadows is presented. The discussed method does not

perform any pre-computation, and can be used to render a freely deforming structure,
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as required for interactive molecular docking software. It is shown that real-time

performance is maintained whilst rendering these effects on a deforming biomolecule

up to 75 thousand atoms in size on consumer grade hardware; a first in the field of

biomolecular rendering.

4.2 Background

Research into graphical rendering has produced a number of methods that can be

used to add advanced lighting effects to a computer generated scene. Rendering can

be performed before the video is required (pre-rendering) or in real time (real-time

rendering). This chapter is concerned with real-time rendering, as the developed

methods are intended for use in an interactive environment.

4.2.1 Shadows

Shadowing occurs when an object blocks, or partially blocks, illumination from a light

source from falling on another surface. The light rays that cause shadows are generally

considered to have been cast from a defined origin, and travel in a set direction. Ray

tracing is the most elegant way to produce realistic shadows within a three dimensional

scene, however it is computationally expensive. Alternative algorithms have been the

subject of extensive research since the 1970s. The algorithms developed primarily fall

into two broad categories: shadow volumes and shadow mapping.

Shadow mapping153 has proven to be the dominant method used to generate real-

time shadows in interactive applications, including the molecular graphics applications

QuteMol141 and RasMol121. Rendering with a shadow map is a two stage process.

Firstly, the scene is rendered from the light’s point of view, with the depth buffer

(or depth map), saved to a texture. The scene is then re-rendered from the camera’s

viewpoint. After the scene has been projected into the correct coordinates, each pixel

is tested against the depth map. If the z-value is greater than the stored value in the
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depth map, the object can be considered to be obscured from the light source, and

therefore is in shadow.

The accuracy of shadows generated with shadow maps is limited to the resolution

of the shadow map used, which is limited by the size of the texture. This inaccuracy can

often be seen as aliasing at the edges of the shadows. Furthermore shadows generated

with shadow maps have to be rendered once per light, which is time consuming,

especially when a scene is illuminated by many lights. Often, when scenes are lit

with many lights, the shadow mapping is limited to the main light source, for example

the sun. Shadow mapping has been the subject of a large amount of research, with

algorithms developed to tackle some of these limitations. Some approaches88,133,154

increase the resolution of the shadow map when rendering parts of the scene near the

camera, and reduce it for more distant objects. This reduces aliasing, but does not

eliminate it. Another area of shadow map research also built on the idea that points at

different distances from the camera need different shadow map densities. Developed

by Zhang et al. 161 and later improved by Dimitrov 29 , the cascaded shadow map

method works by splitting the viewing frustum, allowing each shadow map to focus

on a smaller area and therefore provide a better match between sampling frequencies

in view space and texture space. These algorithms can produce an alias free shadow,

however the shadow effect produced is hard.

A further development in shadow mapping, called ‘Variance Shadow Maps’, was

presented by Donnelly and Lauritzen 30 . Variance Shadow Mapping aimed to allow

shadow maps to be efficiently filtered, allowing them to take advantage of features

included in modern graphics hardware, namely mip-mapping and anisotropic filtering.

The method worked acceptably, but suffered from light bleeding. Further research has

been undertaken to fix this issue by Lauritzen and McCool 79 and Annen et al. 3 . The

results are real-time, all-frequency soft shadows, however the issues have not been

completely eliminated.
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Although the shading effects produced by shadow mapping can be of very high

quality, aliasing often occurs, which detracts from the visual acuity of the scene. An

alternative method to generating shadows, developed by Crow 27 is to create a shadow

volume instead of a shadow map. The method calculates the geometry of the area

occluded from a light source, defining these as shadowed areas. The basic process

to calculate the shadow volume is to first find all the silhouette edges, the edges that

separate front and back oriented faces, and extend these edges away from the light

source toward infinity. The volume is then capped, at either the front or the back,

depending on the implementation. If a point lies within this generated volume, then it

is in shadow, otherwise it is illuminated.

Shadow volumes have proven to be less computationally expensive than pure

ray-tracing and more visually pleasing than shadow mapping. This is largely because

shadow volumes are per-pixel accurate, whereas shadow maps tend to suffer from

aliasing. This method of shadow generation does have its drawbacks however, mainly

that the additional geometry needed for the shadow volumes is costly to generate and

then render. Also, there are issues when the shadow caster does not have a mesh that

accurately represents an objects shape - for example, when billboards are used. Finally,

shadow volumes are not natively compatible with soft shadows, which are often seen

in the real world. Improvements have been made to the original algorithm including

work by Heidmann 49 and Everitt and Kilgard 35 but these limitations are still present.

Although shadow volumes offer per-pixel accuracy, as desired for our molecular

docking tool, the representation of the protein will be constructed using billboarding

(Section 4.3.1), therefore, they cannot easily be incorporated in our application.

Real-time ray tracing has been included in a molecular renderer before, with excel-

lent visual results, however the frame rate achieved was low99. BnsView, presented

by Knoll et al. 72 is a CPU based renderer designed for running on multi-core CPU

architectures, the visual results displayed are impressive, demonstrating interactive

performance on a data set with 15 million atoms, but the hardware used during testing,
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a computer equipped with two 8-core Intel Xeons, a co-processor with 61 cores as well

as an NVIDIA K20, cannot be considered consumer grade. Similarly, Stone et al. 135

presents an immersive molecular visualisation tool that utilises remote GPU clusters

to present a high definition render of a trajectory to a head mounted display.

Ray casting can also be used to generate a shadowed effect. Demonstrated by

Easdon 32 in his static protein viewer, shadows can be added to a render by casting a

ray toward the light source from all of the pixels in the scene that contain geometry.

As the ray traverses the scene, it performs intersection tests with other geometry. A

spatial partitioning structure is used to eliminate distant geometry from testing. If the

ray reaches the light source, it is illuminated, otherwise, it is in shadow. The limitation

of the algorithm used by Easdon 32 is that it requires pre-computation: the shadow

computation is heavily reliant on a regular grid, which is computed before rendering

begins.

In Chapter 3, it was shown that it is possible to reconstruct a regular grid in less

than 1 ms; fast enough for it to be suitable for use with a haptic device. Therefore, it

follows that it is also suitable for use with a visual display, as the required frame rate

is much lower. In this chapter, it is utilised in order to render ray-cast shadows on a

deforming protein.

4.2.2 Ambient Occlusion

Ambient occlusion is a technique used for calculating how exposed each surface is to

ambient light from the environment. For example, on an overcast day, the inside of

a tunnel will be darker than the outside because it is more occluded from the diffuse

light of the environment, than its exterior. Ambient occlusion attempts to simulate this

darkening effect.

Ambient occlusion shading is a popular way of enhancing the depth of a three

dimensional scene. The most straightforward and accurate way of calculating ambient

occlusion is with ray tracing. Rays are cast from a point, and intersection tests are
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performed with other objects in the scene. After many rays have intersected the

hemisphere of that point, a high quality approximation of the ambient occlusion is

produced. The main limitation of this approach is the amount of computation required

to produce a smooth model, although recent developments in GPU hardware are

helping to overcome this24.

Ambient occlusion can be calculated in object-space or screen-space. The first

approach, object-space ambient occlusion, computes an occlusion value from the ge-

ometry within the scene. The later method, screen-space ambient occlusion, calculates

ambient occlusion on a per-fragment basis.

An early technique to render ambient occlusion in object space was presented by

Pharr and Green 112 . The algorithm described uses a preprocessing step to calculate

how much of the external environment can be seen from each point on a model, then

uses this information to compute the visible lighting of that point. The preprocessing

step is too expensive to consider integrating into the display loop.

Sattler et al. 120 presented a hardware accelerated ambient occlusion algorithm

that worked by constructing a visibility matrix. Although the authors highlight that

the method can be applied to dynamic scenes, it is limited in that it is applied per

vertex rather than per pixel. This results in artefacts caused by under sampling, which

can be seen as aliasing at the shadow edges. A similar approach was used by Tarini

et al. 141 within QuteMol: An offscreen rendering pass computes a shadow map, then

this shadow map is used to calculate the light for each fragment within the scene. The

performance of these approaches is dependent on the number of vertices within the

scene, meaning performance will suffer with large, dynamic data sets.

An alternate idea, first presented by Bunnell 21 and later improved by Hoberock and

Yuntao 51 , works by approximating an accessibility value of each element in the scene.

This is achieved by calculating the solid angle of an oriented disk which is then used

to calculate the amount an object shadows another object. The algorithm presented

utilises a hierarchical data-structure to reduce the resolution of the occlusion as the
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object being rendered becomes more distant. As noted by Hoberock and Yuntao 51 , the

presented method does have limitations, namely, discontinuities may be visible within

the ambient occlusion and often the resulting occlusion is biased toward darkness.

Another method, published by Kontkanen and Laine 74 , computes inter-object AO

in real time. For each occluder, a grid surrounding the object is computed. The grid

contains an approximation of the occlusion caused by that object. This information is

then used within the fragment shader at run-time to determine an occlusion value on a

receiving object. Although real-time performance is achieved, this method suffers from

a long pre-computation time and has the potential to use a large amount of memory,

especially if the number of objects within the scene is large.

Density volumes have also been used to achieve ambient occlusion in real time46,108.

The methods work by storing occlusion information inside a volume. Grottel et al. 46

presented a volume based ambient occlusion algorithm for use when visualising

particle-based data, molecular dynamics simulations for example. Their algorithm,

implemented in MegaMol, uses a volume composed of cells to determine the intensity

of light at different areas within the scene. During the rendering, the volume of each

sphere resident within a voxel is added to that voxel’s value. Tri-linear interpola-

tion of the volume is then used to determine the “occlusion factor” at each fragment

within the scene. This approach is computationally inexpensive, and can be used to

approximate ambient occlusion in very large particle datasets, however it also has

some fundamental limitations. Firstly, the quality of the ambient occlusion is highly

dependent on the resolution of the volume. If the resolution is low, the calculated

ambient occlusion is global: large pockets are highlighted, whilst smaller crevices are

not. When the resolution is high, the inverse is true. Therefore, the resolution of the

volume needs to be carefully tuned according to the dimensions of the molecule being

rendered; this is done by the user within MegaMol. A further limitation of MegaMol’s

rendering ambient occlusion method is that when planes of spheres are not aligned



4.2 Background 84

with the volume, artefacts can occur in the occlusion effect. These limitations make

the algorithm unattractive for use within an interactive docking system.

A further ambient occlusion algorithm, presented by Staib et al. 132 , used cone

tracing to create a realistic ambient occlusion effect, considering even distant geometry.

Similarly to the algorithm presented Grottel et al. 46 , the algorithm is dependent on

a three-dimensional density texture, and suffers the same drawback: the lower the

texture resolution, the more interpolation is required, reducing the accuracy of the

lighting estimation. The authors note that artefacts occur when the rendered spheres

overlap, owing to the use of point-based rendered spheres.

At a similar time Favera and Celes 36 presented another cone-tracing based algo-

rithm. The algorithm they presented follows a similar process to the others described

above: the scene is voxelised into a regular grid, then during rendering the hemisphere

around each visible point is sampled by a set of cones. The algorithm approximates

the volume of the cones using spheres. The amount of occlusion applied to a point is

dependent on how obstructed each sphere within the cone is. An earlier cone-tracing

algorithm was presented by Crassin et al. 26 . The earlier algorithm generates a low

resolution sparse voxel octree rather than a regular density texture.

An analytical object-space ambient occlusion algorithm was presented by Skånberg

et al. 129 . The algorithm described exploits the fact that all the geometry in the

scene is spherical, and uses the solid angle formula to determine the fraction of any

neighbouring spheres that are visible from a point. This is then used to compute the

ambient occlusion contribution of the neighbouring sphere to the point in question.

The technique used produces a realistic-looking ambient occlusion effect, however

it is highlighted within the paper that there are limitations to this approach, mainly

relating to the fact that a large search neighbourhood will result in poor performance,

and a smaller one will result in a poor estimation of ambient occlusion.

Screen space ambient occlusion (SSAO) is generally less expensive than object

space occlusion because the amount of work completed by the algorithm is dependent
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on the resolution of the render, rather than the number of objects in the scene. However,

compared with object space occlusion, it suffers from some disadvantages, namely, the

technique is view dependent, and is consequently unable to take into account geometry

that is not rendered to the screen.

The first major development in screen space ambient occlusion was developed by

Mittring 97 . The technique described calculates a per-fragment occlusion value using

the depth buffer. Each pixel calculates its own occlusion value by randomly sampling

different points around itself and computes the amount of occlusion applied to it based

on differences in depth. The resulting approximation is reasonably successful in adding

an ambient occlusion effect to a scene in real time, and has proven to be a popular

choice for interactive applications. However, this early presentation of the technique

suffered from incorrect shadowing caused by self-occlusion. This was resolved by

Filion and McNaughton 37 , who, instead of generating random sampling vectors in a

sphere around the test point, generated vectors around a hemisphere which is centred

around the normal of that point in the screen.

Horizon Based Ambient Occlusion (HBAO) was introduced by Bavoil et al. 12 and

then improved by Bavoil and Sainz 11 . HBAO uses the depth buffer as a height map

to find the horizon, defined as the average slope in the height field around a point.

Heavily occluded points were shown to have a steep horizon angle. The resulting

occlusion effect is shown to be higher quality than standard SSAO, but the effect is

more expensive to compute.

Many other screen space ambient occlusion algorithms have been presented, includ-

ing work by Shanmugam and Arikan 124 who presented an approximation to ambient

occlusion that works in real time by separating near and distant ambient occlusion

and rendering the near occlusion with a high level of detail, and Kajalin 64 who built

on Mittering’s work. Despite these improvements in SSAO, object space ambient

occlusion produces a higher quality image because it considers the entire scene, as

opposed to only considering what is visible through the view frustum.
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Therefore, an object-space Ambient Occlusion algorithm will be investigated

for rendering deforming proteins. Of the methods discussed, an adaptation of the

analytical method used by Skånberg et al. 129 is likely to offer high quality ambient

occlusion whilst maintaining a real time refresh rate. Although only suitable for local

occlusion, the effect produced is of high quality and calculated per-pixel, therefore

meeting the criteria set out in the introduction.

4.3 Methods

As stated in the introduction, the objective of this chapter is to develop an approach

to rendering per-pixel lighting on deforming molecular structures in real-time. The

shadowing portion of the lighting algorithm used in this chapter builds on the work

done by Easdon 32 , adapting it for use on a dynamic scene. The ambient occlusion

algorithm used is similar to that presented by Skånberg et al. 129 although it is modified

for effective use alongside the ray-cast shadows.

The end result is a novel approach to rendering shadows and ambient occlusion on

a deforming scene, with methods efficient enough to be used to render large deforming

molecular structures.

4.3.1 Sphere rendering

A common way of rendering a sphere is to generate a mesh of triangles, as an approxi-

mation of a sphere. When the number of triangles is high, the approximation can look

reasonably accurate (Figure 4.1 (C)), however when rendering a protein comprising

many atoms, the total number of triangles within the scene becomes large. This results

in high memory usage and rendering time, and so is not a viable approach for the

proposed application, in which keeping overall computation time to a minimum is

important. Using fewer triangles reduces the computational footprint, at the expense

of image quality (Figure 4.1 (B)), making it undesirable for use with per-pixel lighting.
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A B C

Fig. 4.1 An oxygen atom rendered using (A) ray-casting and a triangle mesh made up
of (B) 84 and (C) 420 triangles

Fig. 4.2 A ray with position P0 intersecting a sphere with centre C and radius r at
points P and P′. (Easdon 32)

Smooth spheres can be created using ray casting. The algorithm, originally pre-

sented by Gumhold 47 , then improved by Sigg et al. 127 , works by generating a billboard

equal in size to the bounding box of the desired sphere, and then culling all of the

pixels from the billboard that fall outside of the sphere. In order to determine whether

or not a pixel is within the sphere, whilst ensuring the sphere remains perspectively

correct, ray-casting is used (Figure 4.2).

When the billboard has been positioned in screen space, a ray is cast from the

camera through each pixel, or fragment, within it. This is achieved by substituting

the parametric equation of a ray: P = P0 + tv̂, into the equation for a sphere: |P−

C|2− r2 = 0, which results in |(P0+ tv̂)−C|2− r2. This is equivalent to the quadratic
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equation:

v̂2t2 +2v̂ · (P0−C)t + |P0−C|2− r2 = 0, (4.1)

which is solved for each pixel using the quadratic formula. If, for any specific pixel,

there is no real solution to the equation, the pixel is discarded, as it lies outside of the

sphere.

The resultant sphere, pictured in Figure 4.1 (A), is not only accurate to the pixel,

but has also been shown to offer better performance than the conventional triangle

mesh comprising many triangles32. A similar approach to generating spheres is used

in the software MegaMol45 and VMD54. This approach to generating spheres will be

used in the rendering algorithms presented in this chapter.

4.3.2 Shadow casting

Given a rendered scene, shaded areas can be determined by casting a ray from each

fragment toward the light source. If the ray intersects with other geometry in the scene,

the pixel it was cast from is in shadow (Figure 4.3). Although ray-casting produces

shadows that are accurate to the pixel, it is a computationally intense approach to

use, as each ray in the scene has to perform intersection tests with all of the geometry

pictured in the render.

In order to reduce the number of intersection tests performed by each ray, a spatial

partitioning structure can be used to quickly eliminate geometry that is well remote of

the path of each ray. However, use of this acceleration structure ordinarily limits the

use of ray casting to static scenes. In Chapter 3, GPU based regular grid construction

algorithms were demonstrated to be fast enough for use with a haptic device. Therefore,

it follows that they are also suitable for use with visual rendering, as the refresh rate

requirements for smooth video are much lower than those demanded by a haptic

device.
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Fig 1 -  A two dimensional model of a protein inside a Fig. 4.3 A two dimensional model of a protein inside a grid, together with examples
of light-path detection rays used to determine the illumination for four points on the
model. Rays α and δ are uninterrupted, so the pixel will be fully illuminated. Ray β

shows a completely interrupted ray so pixel b will be completely in shadow. Ray γ

shows a partially obscured ray. This results in a slightly darkened, but not completely
shaded pixel, resulting in a soft shadow effect.

Start

1) Construct regular
grid over molecule.

2) Create spheres
using raycasting

3) For each fragment
containing geometry,

perform shadow casting

4) Update sphere
positions if necessary.

Fig. 4.4 Flowchart describing the algorithm used to render ray-cast shadows on a
deforming protein.
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Figure 4.4 shows the algorithm used in order to generate the shadow effect. To

achieve a high frame rate, it is important that each of the steps is completed in the min-

imal amount of time. Therefore, wherever possible, the computation will be performed

on the GPU, thus avoiding data transfer backward and forward between the GPU and

CPU. Memory buffers can be shared between CUDA and OpenGL, so transferring the

regular grid and updated atom positions between the two is straightforward, however,

there is a performance penalty when doing so. The shadow calculation portion of the

algorithm, Step 3 in Figure 4.4, is described in Algorithm 8.

Algorithm 8 Shadow calculation algorithm
1: for all pixels containing geometry in parallel
2: R← N ·L
3: SphereID←AtomID pixel is part of
4: if R > 0 then
5: if SphereID> 0 then
6: Calculate grid index of ray origin
7: while inside grid do
8: for spheres in grid cell do
9: if ray intersects sphere then

10: Pixel is in shadow
11: break
12: end if
13: Advance to next cell
14: end for
15: end while
16: end if
17: end if
18: end for

Algorithm 8 shows the method each fragment in the scene uses to determine

whether or not it is in shadow. Again, it is crucial that each step completes in the

smallest amount of time possible.

As shown in Chapter 3, the cell size of the regular grid can have a large impact

on the performance of the algorithm using it. Therefore, a balance needs to be found

between the size of each cell and the number of cells that need to be traversed by each

ray. During ray-casting, it is likely that the smallest cell size will offer the highest

performance. This is investigated in the results section of this chapter.
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A B

Fig. 4.5 Rendering with (A) hard and (B) soft shadows

When used with a point light source, the described ray casting technique produces

hard shadows (Figure 4.5 (A)). In the real world, the boundary between the shaded

and illuminated portions of the scene is less well defined (Figure 4.5 (B)). To achieve

this with ray casting, an area light source could be used. However, if the size of the

light source is increased, more than a single ray per-pixel will be required to generate

the desired effect, which will increase the amount work required per-frame, resulting

in a reduced frame rate.

A straightforward method to approximate the soft shadow effect whilst using

a point light source was presented by Parker et al. 109 . The algorithm calculates

approximate soft shadows from a point light source by using an enlarged sphere.

Figure 4.6 depicts how the method by Parker et al. 109 works.

Each atom which potentially shades the fragment being tested is enlarged. If the

fragments’ ray collides with the original atom, the pixel is in full shadow. If the ray

collides with the enlarged atom, it is partially in shadow. The level of shadow applied

to the pixel is dependent on how close the ray is to intersecting the original sphere.

The closer the ray passes to the sphere, the darker the pixel is. Any subsequent spheres

that the ray intersects will contribute to the shadow intensity of the pixel. The resulting

soft shadow effect can be seen in Figure 4.6 (B). Approximating shadows in this way

is unlikely to significantly extend the computation time of the lighting.
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Atom

Enlarged Atom

Full shadow

Partial Shadow

C

P

Fig. 4.6 A diagram demonstrating how an enlarged sphere is placed over an atom to
create a soft shadow effect. The shadow intensity at point P is half of the full shadow
intensity, because its ray passes the atom halfway between the atom and enlarged atom.

The algorithm described in Figure 4.4 describes an approach to producing quality,

per-pixel shadows in real time. Provided the algorithm is fast enough, it could be

used in an interactive molecular docking application to help improve the perception of

depth of the rendered protein. The capabilities of the algorithm are assessed in Section

4.6.1 of this chapter.

4.3.3 Ambient Occlusion

The protein representation used in this thesis comprises spheres. This can be exploited

in order to calculate how occluded any individual fragment of the scene is. An

approach similar to the one described here is used by Skånberg et al. 129 in their

molecular interaction visualisation tool. Figure 4.7 pictorially describes the algorithm

used to determine how shaded any individual fragment is. The algorithm works by

computing the solid angle (ω) of the visible proportion of the neighbouring spheres.

The solid angle (Ω) of sphere B from point f is Ω = 2π(1− cos(θ)), however only

the fraction of the solid angle visible above the horizon is required. Therefore, t is
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Fig. 4.7 Diagram showing how the AO contribution to point f on sphere A, by sphere
B is calculated.

calculated as t = v ·n where n is the unit normal of the fragment f , and v is the distance

between Cb and f . The equation p = t + rb is then used to give the proportion p of

sphere B that is above the horizon of fragment f . To calculate the AO contribution of

that fragment, p is clamped to [0,2rb] and then normalised to give pnorm. Therefore, the

amount of atmosphere that is not occluded is given by AO = 1− pnorm · (1− cos(θ)).

The final intensity of the lighting at fragment f is calculated by summing the ambient

occlusion (AO) contribution of all of the atoms local to the fragment being tested,

clamping it to between 1 and 0, and taking that value from 1129.

The resulting illumination is a good approximation of local ambient occlusion that

has a smooth fall off. However, it is an approximation, as it does not take into account

the fact that the solid angle does not change in a linear fashion as the occluder grazes

the horizon129. Furthermore, in closely packed portions of the scene, it is possible that

atoms that provide no occlusion to a fragment are included in the illumination (Figure

4.8), as no visibility check is performed. This can lead to over occlusion within the

scene, detracting from the quality of the render.
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A B

Fig. 4.8 Demonstrating over-occlusion within the analytical ambient occlusion method.
(A) shows the ambient occlusion calculated when a small cut-off is used. The occlusion
between each of the spheres is roughly the same. In (B), an area of influence large
enough to incorporate the left hand sphere within the occlusion calculation for the right
hand one, and vice versa. This results in far more extreme occlusion on the respective
spheres, than on the central one.

The algorithm as presented by Skånberg et al. 129 utilises a regular grid, with a

cell size set to the desired area of influence, the area around each sphere within which

neighbours are considered within the occlusion calculation, in order to determine local

occluders. The result of this is that each fragment performs a neighbourhood search

to determine potential occluders, which is expensive. Also, should a larger area of

influence distance be desired, the grid will comprise very large grid cells, reducing the

effectiveness of the grid structure.

In the approach used within PTV, to allow the grid created for the shadow-casting

algorithm to also be used for the ambient occlusion, a list containing all of the atoms

within the set area of influence is generated for each of the atoms in the protein. These

lists are generated using CUDA.

By performing proximity querying once per cell, rather than once per fragment,

a larger cut-off distance can be used, potentially offering a more global AO effect.

In order to counter the over occlusion effect that occurs when using a large area of

influence, an AO scaling factor is used. The scaling factor can be used to reduce the

effect each occluder has on a fragment.

4.4 Implementation



4.4 Implementation 95

The described rendering algorithms are implemented using a deferred rendering ap-

proach, written in OpenGL 4.3. The rendering pipeline can be seen in Figure 4.9. Up

until Step 5, a standard GLSL rendering pipeline is followed. Step 5 uses a ray-tracing

approach to compute the points of intersection between the camera and billboard to

determine if the point of intersection is on the sphere. These points of intersection are

then stored in an off-screen buffer, and are used later in Steps 6 and 7 to render the

lighting.
1 // calculate Ambient Occlusion
2 float calcAO(vec3 pos , float sphereID , vec3 norm)
3 {
4 //if sphere does not exsist , return default value.
5 if (sphereID < -0.5)
6 return 0.7f;
7

8 // determine lookup index of occluder list
9 int id = int(sphereID) * maxOccluders;

10 float ao = 0.0;
11

12 for (int i = 0; i < maxOccluders; i++)
13 {
14 //load occluder sphere ID.
15 int occluderSphereID = int(aoDATA[id + i]);
16

17 //if ID < 1, all occluders tested , break loop.
18 if (occluderSphereID < -0.5){
19 if (i == 0){ //If no occluders in list , return constant

.
20 return 0.7f;
21 }
22 break;
23 }
24

25 //load occluding sphere from SSBO.
26 vec4 sphere;
27 int lookupId = int(occluderSphereID) * 4;
28 sphere.x = spherePositions_ssbo[lookupId ];
29 sphere.y = spherePositions_ssbo[lookupId + 1];
30 sphere.z = spherePositions_ssbo[lookupId + 2];
31 sphere.w = spherePositions_ssbo[lookupId + 3];
32

33 // position sphere in space.
34 vec4 sphereEye = mvMatrix * vec4(sphere.xyz , 1.0);
35

36 // calculate vector between occluding and original sphere.
37 vec3 dir = pos - sphereEye.xyz;
38 float len = length(dir);
39 float sphereLen = sphere.w / len;
40 float sqrtV = 1.0 - (sphereLen * sphereLen);
41 sqrtV = (sqrtV < 0) ? 0 : (sqrtV > 1) ? 1 : sqrtV;
42

43 // Determine occlusion contribution (Section 4.3.3)
44 float t = dot(norm , dir);
45 float AOProportion = (clamp((t + sphere.w), 0.0, 2 *

sphere.w)) / (2 * sphere.w);
46 ao += 1.0 - (AOProportion * sqrt(sqrtV));
47 }
48 // calculate final occlusion
49 return clamp (1.0 - (ao * aoIntensity), 0.0, 1.0);
50 }
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Construct acceleration structure using the current position of 
each sphere.

For each atom, use the acceleration structure to identify all 
neighbouring atoms within a set cut off distance.

Vertex shader: Each sphere’s quad (or billboard) is positioned in 
space.  

Geometry shader: Visibility buffer is tested to determine which 
atoms are visible. If an atom is visible, a primitive is generated, and 

the sphere created within the fragment shader.

Fragment shader: Shader uses Equation 4.1 to eliminate the 
fragments in the billboard that fall outside of the sphere. For 

fragments within the sphere, the position, colour and normal are 
saved for use in the light pass.

Preprocessing

Vertex shader: Determines the position and light direction for each 
vertex.

Fragment shader: Calculates the lighting for each fragment that falls 
within a sphere. For each fragment, the level of ambient occlusion 
to be applied is calculated using the lists generated in Step 2. Then 
a shadow ray is cast from the pixel toward the light source. As the 

ray traverses the grid, collision tests are performed with the 
spheres contained in each of the cells the ray passes through. If the 

ray collides with one, the casting fragment is in shadow.

Render pass 1 – Geometry Pass

Render pass 2 – Light Pass

6

7

5

4

3

2

1

Fig. 4.9 Diagram shows the rendering pipeline as used by Haptimol Protein Trajectory
Viewer. A purple background indicates the regular grid is used at that stage of the
rendering algorithm.
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Listing 4.1 Method used to determine ambient occlusion of each fragment in scene.

Step 2, the generation of the occluder lists uses a locality search identical to the one

tested in Chapter 3 to find all of the neighbouring atoms within the nearest n. Rather

than simply count these neighbours, as the search does in Chapter 3, the ID of each is

saved to memory for use within Step 7.

The lighting for each fragment is calculated in Step 7 of Figure 4.9. The ambient

occlusion factor is calculated first, then the shadow calculation is performed. Listing

4.1 shows the method used to determine the amount of darkening applied to each

visible fragment. Occluding atoms for each atom are arranged in the global array

aoData, which can hold a set number of occluders for each atom. This list is iterated

over, with the ao contribution of each sphere added together into the variable ao. ao is

then multiplied by the customisable intensity multiplier aoIntentsity and taken from

1.0. The result is then clamped between 0 and 1, with 1 equal to no occlusion, and 0

equal to full occlusion. As each sphere will have a different number of occluders, an

early break clause is specified on line 18. At the end of the list of occluding sphereIDs,

‘-1’ is inserted, indicating the end of the list. The array aoData is large enough in size

that no atom will ever run out of space whilst interactive performance is maintained.

The shadow casting algorithm is also performed on every visible fragment of the

scene. Listing 4.2 shows the collision testing process performed for each cell the cast

ray traverses. Lines 6 - 12 are for determining the start and end point of the specified

cell. The final cell in the grid needs a different method to determine this than the rest

of the grid, as it has no subsequent cellStartPoint to use. Therefore, the uniform

totalAtomCount, which contains the total number of items in the array cellId_ssbo, is

used to determine the length of the final cell.

The for loop on line 14 then iterates over the cell, testing each sphere within

it. Within the for loop, lines 33-49 describe performing the ray-sphere intersection
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Fig. 4.10 Screen capture of FLAG taken during performance testing.

with the loaded sphere. Here also, the soft cell effect described in Figure 4.6 is

produced, if the ray grazes the sphere’s surface. Listings 4.1 and 4.2 describe the most

computationally expensive parts of the light pass fragment shader (Step 7 of Figure

4.9). The complete shader is shown in Appendix B. In the subsequent sections, the

performance of these methods is tested, and the quality of the effect they produce

analysed.
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1 // calculates if the ray intersects with any spheres located
in the grid cell specified by gridCellIndexID

2 void softShadowGrid(vec3 ro, vec3 rd, float sphereID , int
gridCellIndex1D , inout float s)

3 {
4

5

6 int accessId , loopLimit , readId;
7 accessId = cellStartPoint[gridCellIndex1D ];
8 if (gridCellIndex1D + 1 == finalCell){
9 loopLimit = totalAtomCount - accessId;

10 } else {
11 loopLimit = cellStartPoint[gridCellIndex1D + 1] -

accessId;
12 }
13

14 for (int i = 0; i < loopLimit; i++)
15 {
16 float shadowSphereID = cellId_ssbo[accessId ];
17 accessId ++;
18

19 // cellId_ssbo includes values of -1 when the index list
ends

20 if(shadowSphereID < -0.5)
21 break; //break the for loop if no more atoms in grid

cell
22

23 int lookupId = int(shadowSphereID) * 4;
24

25 vec4 sphere;
26 sphere.x = spherePositions_ssbo[lookupId ];
27 sphere.y = spherePositions_ssbo[lookupId + 1];
28 sphere.z = spherePositions_ssbo[lookupId + 2];
29 sphere.w = spherePositions_ssbo[lookupId + 3];
30

31 vec4 sphereEye = mvMatrix * vec4(sphere.xyz , 1.0);
32

33 float t0 = dot(( sphereEye.xyz - ro), rd);
34 float b = 0.020;
35 float R = sphere.w - b;
36 float d = length ((t0 * rd) - sphereEye.xyz + ro);
37

38 if(t0 < 0.0){ //no collision , continue.
39 s = min(s, 1.0);
40 } else {
41 if(d < R){ //collision , break loop
42 s = 0.0;
43 break;
44 } else if(d > sphere.w){ //no collision , continue
45 s = min(s, 1.0);
46 } else { //close , simulate soft shadow.
47 s = min(s, smoothstep (0.0, 1.0, (d - R) / b));
48 }
49 }
50 }
51 }

Listing 4.2 Testing the contents of each cell for a collision.
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4.5 Method Analysis

There are two main aspects of the render algorithms described above that need to be

assessed: how well they perform in a real-time rendering environment, and the quality

of the final effects. To assess the performance of the methods, and determine whether

they are fast enough for use in an interactive molecular docking environment, a variety

of biomolecules will be rendered, and the achieved frame rate will be recorded. A

frame rate of 24 frames per second (FPS) or high, constitutes real time rendering.

To determine whether these algorithms achieve this refresh rate, each biomolecule

will be rendered with diffuse lighting, ambient occlusion, shadows and then all three

together. During the rendering tests, the biomolecules will be positioned so that they

fill the screen, to ensure the majority of pixels are filled (See Figure 4.10), and rotated

on the spot. Each test will involve rendering the biomolecule as it rotates upon the

spot, for at least 5 minutes. These tests will be repeated at least twice. The compact

grid (Chapter 3, Section 3.4.2) was used as the spatial partitioning structure in these

tests, because of its low memory consumption and fast query time.

The most computationally expensive part of the shadow casting algorithm will be

performing the shadow-casting on a per-fragment level. Therefore, it makes sense to

tune the regular grid cell-size to that stage of the algorithm. Consequently, 5 different

grid-cell sizes will be tested, in order to determine which cell size offers the best

performance. As in Chapter 3, to ensure the majority of atoms are placed in at most

eight cells, the formula nSr was used to calculate each cell size, Sr is equal to the

radius of a sulphur atom (1.8 Å), and n a multiplier, starting at 2. Furthermore, the

frame rate will be measured whilst reconstructing the regular grid and whilst rendering

a static biomolecule.

The performance of the described analytical AO algorithm is dependent on the area

of influence: the area within which neighbouring atoms are considered to contribute to

lighting of the pixel. A smaller cut-off distance will result in better performance but

will produce a more local approximation of AO, when compared to a larger cut-off
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PDB Code Number of Atoms
1CRN 327
1OMP 5737
5E0T 6,040
3E76 54,464
3JCU 75,994
1HTQ 97,872
FLAG 316,404

Table 4.1 The number of atoms that make up each of the proteins tested.

distance (See Section 4.3.3). Therefore, testing will be performed using three different

cut-off distances: 3Å, 6Å and 10Å. Again, the test will be performed whilst rendering

both a static and a dynamic biomolecule.

In addition to testing the performance of the algorithms, the visual quality of

each method needs to be assessed. To do this, renders generated using the described

techniques will be compared to other molecular rendering applications which support

similar effects.

4.6 Results

Table 4.1 contains information relating to the biomolecules used in testing. All of the

structures except for FLAG were sourced from the protein data bank14. FLAG was

provided by another research group. All of the tests were run on a desktop computer

equipped with an Intel i7 processor, 16GB of RAM and an Nvidia GTX 980 graphics

card. The rendering tests were performed at resolution of 1080p.

4.6.1 Method Performance

The benchmark test was rendering the biomolecule with diffuse lighting (See Figure

4.11). The results can be seen in Figure 4.12. The results show that without any

advanced lighting effects, real-time rendering is easily achieved for all of the test

proteins.
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Fig. 4.11 Biomolecule rendered without any lighting effects.
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Fig. 4.12 Graph showing the average frame achieved whilst rendering each of the test
proteins with no shadows or ambient occlusion.
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n = 2
n = 3
n = 4
n = 5
n = 6

Fig. 4.13 A graph showing the achieved frame rate when rendering seven static proteins
with ray cast shadows. Five different values of n were tested.

Shadows

Figure 4.13 shows the frame rate achieved when rendering each of the tested biomolecules

with diffuse lighting and shadows, whilst using an acceleration structure comprised 5

different grid cell sizes.

Figure 4.13 shows that although real-time performance is achieved for all of the

tested biomolecules and grid-sizes, the performance penalty for using a large grid

cell-size is massive; in the case of 1OMP, using a grid cell size of 6Sr instead of 2Sr

halves the frame rate. This makes sense, because smaller cells will, on average, contain

fewer atoms than larger ones, reducing the number of intersection tests performed by

each ray. Therefore, a cell size of 2Sr will be used for the subsequent tests.

A test was also run to determine the performance penalty of using soft shadows

rather than hard shadows. The test found that over three tests, whilst rendering FLAG,

the flagella filament, the frame rate achieved whilst rendering soft shadows was 0.98

FPS lower on average than when rendering hard shadows. As this penalty is small,

soft shadows will be used in all the subsequent tests.

The results in Figure 4.13 show the average frame rate achieved without recon-

structing the regular grid used to accelerate the shadow casting. Figure 4.14 shows the
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Fig. 4.14 Graph showing the frame rate achieved whilst rendering ray cast shadows
and reconstructing the regular grid, as would be required when rendering a deforming
protein. A grid cell size of n = 2 was used.

frame rates achieved whilst performing all of the additional work needed to render a

deforming protein, primarily reconstructing the regular grid every frame.

The results in Figure 4.14 show that real-time performance is achieved for all of

our test proteins, whilst rendering shadows and reconstructing the regular grid every

frame. This demonstrates that the proposed shadow algorithm is fast enough for use

in dynamic scenes, therefore, it could be used in an interactive molecular docking

application. The increase in per-frame rendering time is negligible, because the grid

construction algorithm consumes so little time compared to the shadow casting portion

of the algorithm.

Ambient Occlusion

Figure 4.15 shows the achieved frame rate when rendering each of the test proteins

with ambient occlusion, whilst using four different cut-off distances. In this first test,

the data structures required to produce the ambient lighting effect were not refreshed,

in order to determine the effect a larger area of influence has on the frame rate.

The results in Figure 4.15 show that although, for all tests performed, an interactive

frame rate was maintained, increasing the cut off has a drastic effect on the frame
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C/O = 3Å
C/O = 6Å

C/O = 10Å
C/O = 15Å

Fig. 4.15 Graph showing the achieved frame rate when rendering seven static proteins
with analytical ambient occlusion. C/O, the cut off distance, equates to the search
radius of potential occluders.

rate. This effect is likely to be exacerbated when reconstructing the data-structures per

frame, as required by a dynamic scene.

Figure 4.16 shows the frame rate achieved whilst rendering ambient occlusion and

reconstructing both the regular grid and occluder lists, as required by a dynamic scene.

When the cut-off distance is very small, 3Å, interactivity is maintained for all of the

tested structures, however, when using a larger cut-off, the frame rate achieved when

rendering the larger structures drops below the required 24 FPS threshold. Interactivity

is maintained for all of the structures apart from the very largest, FLAG, when using

a cut-off of 6Å, which is enough to produce a good approximation of local ambient

occlusion (See Section 4.6.2).

The results suggest that the AO approximation algorithm is fast enough to use

whilst rendering a deforming protein, provided it has fewer than 100,000 atoms. This

is encouraging, as there are a huge number of structures that fall into that category,

and, as GPUs become more powerful, that atom limit will rise.

A pertinent question is “What effect would changing the cell size have on the

performance of the ambient occlusion algorithm?” Whilst rendering the static structure,
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C/O = 3Å
C/O = 6Å

C/O = 10Å

Fig. 4.16 Graph showing the average frame rate achieved when rendering five test
proteins whilst rebuilding the regular grid and occluder lists in order to simulate
rendering a deforming scene. C/O equates to the area of influence used.

changing the grid cell size would have no effect on performance at all, as the list of

local occluders is only constructed once, before rendering begins. However, when

rendering a deforming biomolecule, it would have an effect. As the process of building

the occluder lists uses the regular grid in the same way the locality search performed

in Chapter 3 does, the locality search test results can be used to give some idea of

the affect changing the grid cell size would have. In Chapter 3, it was shown that

setting the grid cell size to be just larger than the area being searched yielded the best

performance, thus, we can assume that the same would be true here.

If using a 6Å area of influence for the ambient occlusion calculation, the optimum

tested grid cell size would be 4Sr (7.2Å), according to the results presented in Chapter

3. Figure 4.17 shows the increase in time taken to render a frame with shadows, with a

grid cell size of 4Sr rather than 2Sr, compared to the increase in time taken to perform

a locality search with a cell size of 2Sr, rather than 4Sr for each of the proteins tested

in both Chapters.

Figure 4.17 shows that for the four smaller proteins, the increase in shadow

calculation time is greater than the reduction in time resulting from using a regular
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Fig. 4.17 Comparing the decrease in the locality search runtime (blue) with the increase
in shadow casting rendering time (red), when using a cell size of 4Sr, rather than 2Sr.

grid tuned for the occluder list construction stage. Therefore, whilst 2Sr may not be

optimum for this stage of the rendering pipeline, in most scenarios that use a small

area of influence, it makes sense to optimise the grid for the shadow casting stage, and

suffer a slight time penalty when calculating the ambient occlusion.

Combined performance

The performance when rendering both ambient occlusion and shadows, whilst rebuild-

ing the data structures required was also measured. The results can be see in Figure

4.18.

Figure 4.18 shows that for the all of the proteins except the largest two, real-

time performance is maintained whilst rendering per-pixel ambient occlusion and

shadows. These performance figures suggest that the described rendering algorithms

are theoretically suitable for use within our interactive docking system, provided the

interacting molecules are not massive.

To demonstrate the effectiveness of the described algorithms, they were imple-

mented in the software Haptimol Protein Trajectory Viewer (PTV). PTV allows the

playback of molecular dynamics trajectories with per-pixel shading and lighting. PTV
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Fig. 4.18 Frame rates whilst rendering each of the proteins with all visual effects
enabled and performing grid reconstruction every frame. A cell size of n = 2, and an
AO area of influence of 6Å was used.

is the first molecular rendering application that supports real-time per-pixel shadows.

A few applications support ambient occlusion, notably MegaMol45.

4.6.2 Visual quality

Shadows

As stated, PTV is the first molecular rendering application that supports rendering

per-pixel shadows on a dynamic scene. However, there are a few molecular renderers

that support some implementation of real-time shadows. Of these, BallView with the

RTFact ray tracer provides the highest quality shadows.

In order to show the effectiveness of the shadow casting algorithm, a flat structure

was generated, with a collection of atoms casting a shadow onto it. This structure was

then rendered with PTV and BallView .

Figure 4.19 shows the resulting render. Both BallView and PTV show a similar

shadow, indicating the shape of the blue cluster of atoms. Comparing the renders, the

shadows generated in BallView (Figure 4.19(B)) suffer from slightly jagged edges in
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A B

Fig. 4.19 Figure shows the ray cast shadows generated by Protein Trajectory Viewer
(A) and RTFact within BallView (B). The light was placed approximately above the
camera within all of the scenes.

places, and the hole in the centre of shadow is not very clear. Figure 4.19(A) shows

the soft shadows included within Protein Trajectory Viewer work as designed, giving a

smoother transition from dark to light than the other approach. The same effect could

be generated using the ray tracing approach with an area light source but this would be

computationally expensive.

Furthermore, PTV achieved 844.4 frames per second whilst rendering the displayed

image, BallView managed 10.5 FPS. Within this test, the images were generated at a

resolution of approximately 1000 × 1000 pixels. The achieved frame rates show that

the render produced by Protein Trajectory Viewer is considerably less costly than that

generated by BallView, whilst achieving similar quality.

Ambient Occlusion

To demonstrate the AO effect used, the contrived structure used to illustrate the

shadowing algorithm was rendered with both the Tachyon ray-tracer included within

VMD and also PTV. The ray-traced rendering (Figure 4.20) shows ambient occlusion

between all of the atoms in the base of the model, and a small amount of ambient
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Fig. 4.20 Test scene raytraced using the Tachyon ray tracer within VMD.

occlusion on the base directly beneath the hexagonal structure. This rendering will

serve as a ground truth as to what a test structure should look like.

Figure 4.21 (B), shows the test structure, rendered by PTV, with a small cut-off

distance of 3Å. When compared with the rendering (A), where there is no AO at all,

a definite darkening can be seen in between each of the atoms in the base, however,

when compared with the ray-traced image in Figure 4.20, the occlusion caused by

the hexagonal structure on the base is absent, and the darkening in the centre of the

hexagon is more intense.

Figure 4.21 (C) shows PTV with a cut-off distance of 6 Å. Again darkening

between the base atoms is shown, although it is more extreme between the atoms in the

centre of the base than those at the edges. Also, the hexagonal structure causes some

occlusion on the atoms immediately below it. Figure 4.21 (D) shows the rendering

with a 10 Å cut-off. Here, the occlusion caused by the central hexagon is extreme,

with considerable darkening occurring between the hexagon in the base. The occlusion

between the atoms in the base is less well defined, as the intensity multiplier had to be

significantly reduced to prevent the scene becoming over occluded; a side effect of the

algorithm used to determine potential occluders.
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A B

C D

Fig. 4.21 Demonstrating the analytical ambient occlusion effect used by protein viewer
with different cut-off distances. (A) No occlusion effect, (B) 3Å, (C) 6Å, (D) 10Å.
The intensity values, i used were (A) 0.0, (B) 0.4172, (C) 0.0946 and (D) 0.0372.
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D E F

Fig. 4.22 GroEL with ambient occlusion only. Renders generated with (A & D) protein
viewer (6Å c/o), (B & E) Taychon ray tracer in VMD, (C & F) Megamol (Volume size
used: 28x28x42) (Unfortunately it is not possible to completely disable directional
lighting within the Tachyon raytracer, so some shadows are cast.).

The over-occlusion effect is exaggerated in Figure 4.21 as a result of the tightly

packed uniform nature of the contrived structure. When rendering a protein the

occlusion effect is good, and comparable to a ray traced protein.

Figure 4.22 shows the AO effect generated by (A) PTV, (B) Tachyon within VMD

and (C) MegaMol when rendering GroEL. The ray traced structure shows the best

global occlusion, with the large hole in the centre clearly darkened. However, the

render was produced using an off-line ray tracer: producing the same effect in real

time is not currently feasible. Figure 4.22 (C) shows the ambient occlusion effect

as generated by the real time rendering software MegaMol. At the chosen volume

size, the occlusion effect generated by MegaMol highlights local pockets of occlusion

very well, with the small crevices clearly highlighted, however the deeper parts of

the structure are not highlighted especially well at all. The same can be said about
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A B

C D
Fig. 4.23 Flagella Filiment rendered with each lighting effect. A) Directional Lighting
only; B) Directional lighting and ambient occlusion; C) Directional lighting and
shadows; D) Shadows, ambient occlusion and directional lighting

the occlusion generated by PTV. The renders produced by PTV and MegaMol are

very similar overall, with the same areas being darkened in both images. However,

the rendering approach used within MegaMol does have the edge performance wise,

achieving 280 FPS, compared to 201 FPS achieved by PTV.

4.6.3 Final Effect

Combining the ambient occlusion effect with ray cast shadows reduces the impact of

some of the short comings of the ambient occlusion algorithm. Figure 4.23 shows

the developed lighting effects side by side. Note how the ambient occlusion is a local

lighting effect, whilst the shadows are more global. Figure 4.24 shows GroEL rendered

using (A) PTV with both shadows and ambient occlusion and (B) the ray-tracer in

VMD.

The final renders are very similar - the smaller pockets within the ring of GroEL are

nicely highlighted by the ambient occlusion, whilst the central hole is clearly shaded
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A B

Fig. 4.24 Figure shows the final graphical effect ProteinViewer (A), Tachyon ray tracer
in VMD (B). The light was placed approximately above the camera within both of the
scenes.

using the shadow casting algorithm. Furthermore, the larger gaps in the outer ring are

highlighted with the shadow algorithm although perhaps not as clearly as they are in

the ray traced structure. Render (A), produced with PTV, achieved a frame rate of 175

FPS, whilst render (B), took 8.6 seconds to complete. The slight drop in quality is

therefore acceptable for the massive increase in performance, allowing for real time

visualisation.

4.6.4 Protein Trajectory Viewer

The algorithms described in this section were implemented within the software “Hapti-

mol Protein Trajectory Viewer” (PTV). PTV allows the molecular trajectories of large

structures to be rendered with high fidelity graphics. A protein trajectory comprises

a large number of different viable poses a biomolecule could exist in. Viewing these

trajectories can give researchers insight into the structure, dynamics and function of

the biomolecule.

Biomolecular trajectories comprise discrete steps, with substantial intra-molecular

movement between each step, owing to the computational cost of calculating each
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Fig. 4.25 Graph showing the effect on the FPS when rendering the flagellar filament
(FLAG) for each of the different supported effects. The x-axis shows the shader mode
selected: A - No effects enabled, B - Directional lighting only, C - Ambient occlusion
only, D - Directional lighting and Ambient Occlusion (no shadows), E - Shadows and
Directional lighting, F - All effects enabled. The biomolecule was positioned to fill
the screen.

time step. Therefore, when rendering a trajectory, a single pose may remain on the

screen for several seconds; the grid structure only needs to be rebuilt when the pose

changes.

Figure 4.25 shows the achieved frame rate when rendering the Flagella filament tra-

jectory, whilst reconstructing the structure every time the biomolecules pose changed.

The trajectory was advanced once every 2 seconds. The biomolecule was positioned

to fill the screen.

Figure 4.25 shows that whilst rendering the trajectory, a real-time frame rate was

achieved for the large flagella, even with all of the graphical effects enabled. In the

implementation tested, the regular grid was reconstructed on demand, resulting in a

reduction in frame rate whilst the structure was being rebuilt. However, if the structure

construction was double buffered, with the subsequent frames acceleration structure

being computed whilst the current frame is rendered, this drop in frame rate could be

reduced.
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4.7 Discussion & Conclusion

The objective set out in the introduction of this chapter was to produce an algorithm that

would allow per-pixel shadows and ambient occlusion to be rendered on a deforming

protein at an interactive frame rate. Within the results section, it was shown that the

described algorithms were fast enough to render proteins up to approximately 75,000

atoms in size whilst simulating a dynamic scene, at a refresh rate greater than 24

FPS. The effectiveness of the algorithms is demonstrated in a MD trajectory viewing

tool, Haptimol Protein Trajectory Viewer (PTV), which allows large trajectories of

biomolecules to be rendered with per-pixel lighting effects.

Adapting ray-casting shadows for use with a dynamic scene proved reasonably

inexpensive, as a result of the optimised grid construction algorithms developed in

Chapter 3. The resulting directional shadows are of similar quality to true ray-traced

shadows, and yet much less computationally expensive to produce.

The ambient occlusion algorithm utilised by PTV produces a good approximation

of per-pixel ambient occlusion in real-time. When compared with MegaMol, the results

are similar, with common areas of occlusion between the two structures. The algorithm

used by PTV provides a good approximation of local ambient occlusion, although

over-occlusion can occur when the cut-off distance is large. The over-occlusion is

caused by atoms which do not have a direct line of sight to the pixel being included in

the occlusion calculation.

To prevent this from occurring, each fragment would need to test each potential

occluder for visibility based on the other atoms within the scene, then scale the

calculated occlusion by that factor. This could be achieved utilising a ray-casting

technique, however it is unlikely this could be achieved in real time, for any but

the smallest structures. When the cut-off distance is small, over-occlusion is not a

significant problem because atoms that are completely obscured from any one pixel

fall outside of the area of influence.
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Within the results of the performance tests, the frame rates achieved whilst ren-

dering 1OMP are noticeably lower than those achieved when rendering 5E0T, despite

each containing a similar number of atoms. This occurs because the model of 1OMP

contains hydrogen atoms, whilst 5E0T does not. As hydrogen atoms are bound tightly

to larger atoms, the number of atoms occupying each cell increases, which results in

more intersection tests during the shadow ray casting, and an increase in the number

of occlusion tests during the AO calculation, resulting in a drop in the frame rate.

Although the AO method used within MegaMol offers higher performance, the

quality of the ambient occlusion effect generated by MegaMol is highly dependent

on the volume size used. To generate the render in Figure 4.22, a volume size of 28

x 28 x 42 voxels is used, a value that was determined empirically. In a molecular

docking application, the dimensions of the protein could change significantly from

one scene to the next, which would require the dimensions of the volume to change,

in order to maintain the quality of the AO. This could prove challenging to automate,

and awkward to do manually whilst performing docking. Therefore, despite the more

local effect of the algorithm presented in this chapter, the AO effect offered is more

consistent, and therefore easier to use in an interactive environment.

The focus of this chapter has been on generating the high fidelity lighting effects,

whilst maintaining real-time performance. The described effects achieve this: the

effects are calculated per pixel, with minimal aliasing in all situations. However,

they are computationally expensive to compute in real-time, and other approaches for

generating these effects could offer better performance, albeit at the expense of quality.

Testing carried out by Easdon32 on his static protein viewer, which used a similar,

but not identical, approach to calculate ambient occlusion, revealed that SSAO was

faster to compute. As the algorithm presented here requires more work than Easdon’s,

in order to support a deforming protein, it follows that the screen space approach

would indeed offer faster performance, however Easdon found that the SSAO approach

produced an extremely local effect, and required a filter pass to ensure the light effects
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were smooth; the final result being less aesthetically pleasing than the analytical and

ray-traced approaches.

Faster rendering times could also be achieved by approximating the shadows using

a shadow map, however again, at the expense of quality, the focus of this chapter. The

best way to improve the quality of both the shadows and the ambient occlusion would

be to perform full ray-tracing on the scene. Recent advances in computer hardware,

namely specialised compute units for ray-tracing, make such a possibility more realistic

than it was even at the start of this project, however that hardware is still expensive, and

not yet widespread. Therefore, the techniques discussed in this Chapter offer a good

balance between quality, accessibility and performance. Also, the primary motive for

developing these techniques is for use within a interactive molecular docking tool. The

methods described here will always be less computationally expensive than full ray

tracing, leaving a greater proportion of the available computing power available for

simulating biomolecular deformations.

Theoretically, the methods described in this chapter offer sufficient performance

to be incorporated directly into interactive molecular docking software, however, this

performance is achieved with near 100% GPU utilisation, leaving nothing in reserve

to perform biomolecular interaction calculations with. With the smaller molecules, the

frame rate could be limited to 30 FPS, freeing up resources to compute the required

interaction calculations. Ideally, a dual GPU system would be utilised, with one GPU

used for rendering, one to perform the molecular-docking related calculations, however

there are difficulties employed with using such an approach, not least the scarcity of

dual GPU systems.

In this chapter, an approach to rendering per-pixel shadows and ambient occlusion

on a deforming biomolecule has been presented, and implemented in the software

“Haptimol Protein Trajectory Viewer.” The presented algorithms produce smooth, high

fidelity lighting and are fast enough to render molecules that change pose every frame,

for structures up to 75k atoms in size.
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In the next chapter, the development of an interactive molecular docking application

that supports receptor flexibility, and can theoretically make use of the rendering

algorithms described here, is presented.



Chapter 5

Interactive molecular docking with

receptor flexibility

5.1 Introduction

The content of this thesis has so far focused on the rendering of a single protein

molecule, with high quality, per pixel, visual effects that can improve depth perception

in a dynamic scene. Within this chapter, the focus moves onto calculating the confor-

mational change a protein undergoes as a response to ligand binding, in real time, for

use within an interactive molecular docking environment.

Currently, the majority of interactive molecular docking applications model protein

interactions as rigid, owing to the computational expense of modelling biomolecular

flexibility. In this chapter, a method for calculating the deformation of a protein at

a haptic refresh rate is presented and incorporated within an application: Haptimol

FlexiDock.

By utilising a feature of the internal motions of proteins, whereby most of the

fluctuation occurs within a so-called “important subspace”2,48,70 Haptimol FlexiDock

calculates a receptor’s conformational change as a response to the forces generated

from interactions with a ligand in real time.
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This chapter is organised as follows: Firstly, a review of the methods used to model

protein flexibility within automated docking is presented, then the current state of the

haptic-assisted interactive docking field is reviewed. Following that, the method used

to reduce the dimensionality of the docking problem is introduced. Then the chapter

describes the implementation of Haptimol FlexiDock and evaluates the effectiveness

of the described techniques. Finally, the graphical effects presented in Chapter 4 are

incorporated into FlexiDock, and benchmarked.

5.1.1 Contributions

This chapter’s main contributions are:

• A GPU based approach for computing the deformation of a biomolecule in real

time.

• The first haptic-assisted interactive molecular docking tool that incorporates

receptor flexibility whilst maintaining a haptic refresh rate of at least 500Hz.

5.2 Background

Molecular docking is a method which predicts the preferred orientation of one molecule

when its binds to a second in order to form a stable complex. Molecular docking is

frequently used in the field of structure-based drug design, as a result of its ability to

determine how small molecules (ligands) bind to compatible target types. See Chapter

2, Section 2.1 for more details.

Molecular docking is primarily concerned with simulating how two biomolecules

interact when they are in close proximity. Ideally, it aims to predict a confirmation

involving the ligand and receptor (or protein), such the the overall free energy, (the

amount of internal energy of a thermodynamic system that is available to perform

work) is minimised.
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There are two sub-fields within the field of molecular docking: Automated docking

and interactive docking. In automated docking, the computer attempts to determine

how two biomolecules fit together, with minimal user input. Interactive docking puts

the user in charge of the docking process, allowing them to use their judgement and

intuition to determine if and how biomolecules fit together.

Automated

Within automated docking, modelling flexibility has been widely explored6,98,107. The

main approaches used to achieve this are reviewed here, in order to determine whether

any of the methods used can be incorporated into an interactive docking system.

Current automated docking algorithms can be said to model flexibility either

explicitly or implicitly. Approaches that explicitly model flexibility actively explore

different protein conformations during the docking process. Implicit methods model

flexibility indirectly, rather than by actively deforming the structure.

There are four main categories of algorithms that model protein flexibility. These

are shown in Figure 5.1. Soft docking and ensemble docking model flexibility implic-

itly, whilst selective and on-the-fly docking model it explicitly.

Soft docking is the least computationally expensive approach to modelling flexibil-

ity61. In soft docking, small overlaps are allowed between the receptor and ligand by

softening the van der Waals (vdW) potentials. By using a more permissive repulsive

term in the Lennard-Jones (LJ) potential, a slightly larger binding site, which simulates

minor conformational plasticity, can be emulated6. As the receptor’s conformation is

not changed, it is an implicit method of modelling flexibility. The main advantage soft

docking has over other approaches is that it costs nothing extra to compute compared

to rigid docking. However, soft docking can only accommodate small, local conforma-

tional changes and not the larger global motions that are often related to functional

movement. Soft docking has been used as in complement with more complex docking

methods126,146.
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A) Soft Docking B) Ensemble Docking

C) Selective Docking D) On-the-fly docking

Fig. 5.1 A diagram showing the four main approaches to modelling flexibility used
by automated docking approaches. (A) Soft-docking. The interaction forces are
softened to increase the size of the docking site. (B) Ensemble docking, docking is
attempted with a number of different receptor poses, generated either computationally
or experimentally. (C) Selective docking: Flexibility in specific protein side chains is
modelled, with the majority of the receptor remaining rigid. (D) On-the-fly docking:
receptor is fully flexible, and its degrees of freedom are explicitly explored during the
docking process. This is the most computationally expensive approach to docking.
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Ensemble docking attempts to dock a ligand to an ensemble of receptor confor-

mations instead of a single pose71. Flexibility is accounted for implicitly, as the

protein will not deform in response to the ligand during the docking process. Studies

have shown that ensemble docking provides significant improvement over rigid dock-

ing18,128. However, others have highlighted that the additional poses can increase the

number of false positives generated during docking10. Furthermore, testing a large

number of poses instead of a single pose increases the amount of computation required

by each docking experiment.

In other docking approaches, receptor flexibility is modelled explicitly. Owing to

the computational cost of exploring all of a proteins DoFs, a number of methods have

been employed to reduce the complexity of the problem.

The earliest approaches, labelled “Selective Docking” in Figure 5.1, modelled

partial, rather than full, flexibility within the receptor, reducing the amount of compu-

tation required81. Rotamer libraries, libraries that contain precomputed viable poses

of side chain conformations, have also been used to reduce the computational cost of

calculating new side-chain positions, however doing so reduces the resolution of the

flexibility to the number of poses within the library6.

On-the-fly docking attempts to explicitly model full molecular flexibility by con-

sidering both the interaction forces, bond angles and each different type of bond

during docking. This is computationally expensive, so various optimisations have been

proposed to reduce the computational cost of the docking process.

One approach, presented by Sherman et al. 126 , is to dock the ligand into the

receptor using soft docking, then, various conformations of the receptor are explored

using rotamer libraries. Other approaches also start with soft docking, however, after

a potential pose has been found, the ligand and receptor poses are optimised using

Molecular Dynamics (MD)143, Monte-Carlo methods17 or energy minimisation7.

Lower-dimensional representations of the receptors internal modes have also been

used to model flexibility. These approaches incorporate only the dominant modes of
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the receptor’s internal motion into the docking process. Both Normal Mode Analysis

(NMA)17,69,160 and Principle Component Analysis (PCA)142,159 have been used as

dimensionality reduction techniques.

These techniques have been shown to be an effective way of reducing the computa-

tional expense of incorporating flexibility: Zacharias 159 incorporated “soft” modes

into the docking process. These modes were generated by performing an MD simu-

lation of the target protein (the receptor), calculating a covariance matrix of atomic

fluctuations and performing PCA on the resultant matrix. The resulting eigenvectors

with large eigenvalues describe flexible degrees of freedom of the motion. These

eigenvectors were then incorporated into Zacharias 159 docking system. It was found

that whilst rigid docking failed to identify a docking site close to the experimentally

derived site, including the modes resulted in a docking pose close to the experimentally

derived pose. Tatsumi et al. 142 notes that Zacharias 159 system ignores local flexibility,

and so demonstrated a hybrid algorithm which uses a similar approach to Zacharias 159

for global motions and conventional MD for local motions. They found that their

hybrid method reproduced global fluctuations that were not present in ordinary docking

simulations.

Interactive Docking

Despite the plethora of ways automated docking has incorporated flexibility, few

interactive approaches model flexible docking. The primary reason for this is related

to the time constraints that come with working at an interactive refresh rate. For a

smooth visual experience, computer displays have to be updated at a refresh rate of at

least 24 Hz. Modern haptic technology requires a higher refresh rate: the haptic device

needs to be updated at a refresh rate greater than 500 Hz, ideally 1 kHz, because of

the sensitivity of the human haptic system33,96. If a refresh rate lower than this is

used, device vibrations and force discontinuities can occur. As a result of this, the
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majority of haptic-assisted interactive molecular docking systems limit themselves to

rigid docking.

Most existing haptic-assisted molecular docking systems make use of precomputed

force grids110 to limit the amount of computation that has to be calculated in real

time. Grid based applications, first proposed by Brooks et al. 19 treat either one,

or both of the interacting biomolecules as rigid, and then pre-compute the desired

interaction forces (usually vdW and electrostatic), around the receptor13,15,19,77,83,136,

or part of the receptor155. These pre-computed forces are then stored in a grid that is

placed around the receptor, and then queried during the docking session to determine

the forces between the receptor and ligand at that point in space. The fundamental

limitation of this approach is that owing to the large pre-computation step, receptor

flexibility cannot be accommodated, as the grid would need to be recomputed after

every deformation step. Further limitations are that rough force transitions can be

felt at grid cell boundaries155, and high memory consumption caused by the use of a

precomputed grid.

Modern CPUs are fast enough to calculate all of the interaction forces between

the receptor and ligand in real time, when the receptor and ligand comprise few

atoms39,52,102. A modern processor can typically achieve a haptic refresh rate of 500

Hz or more, for molecules up to a few hundred atoms in size130. Molecule sizes much

larger than this are impractical on the CPU. Modern GPUs (Graphics Processing Units)

are, however, suited to this problem because they allow a large amount of computation

to be performed in parallel. HaptimolRD, a docking system presented by Iakovou

et al. 57 , made use of the GPU to model rigid docking between two large molecules.

Importantly for this docking approach, in which receptor flexibility is modelled, the

approach by Iakovou et al. 57 computes the interaction forces in real time, rather than

relying on any pre-computation, and as a result, it can be applied to a flexible docking

problem.
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The earliest haptic-assisted docking application that modelled some degree of

flexibility was presented by Brooks Jr et al. 20 . The application allowed users to adjust

flexible bonds within the ligand only, before using a pre-computed force grid during

the haptic session. This early system only supported updating the haptic device at

60 Hz, and was limited to performing docking between small molecules; a receptor

comprising 600, and a ligand comprising up to 60, atoms106. Bayazit et al. 13 and

Lai-Yuen and Lee 77 also presented interactive docking approaches that utilised a force

grid to accelerate docking, whilst also supporting ligand flexibility. Bayazit et al. 13

presented a hybrid system, rather than a fully interactive docking application, in which

the user explored the receptor with the haptic device, then probabilistic roadmap

planning methods were used to dock the ligand. Lai-Yuen and Lee 77 achieved ligand

flexibility by using a conformational search algorithm to determine alternate ligand

conformations during docking. The complexity of the search was reduced by grouping

atoms into clusters, allowing ligand flexibility to be modelled within the time limit

imposed by the haptic device, however grouping the atoms in this fashion limits the

accuracy of the deformation.

Other haptic assisted interactive docking approaches that incorporate a degree

of flexibility include the work by Daunay et al. 28 , Anthopoulos et al. 4 and Zonta

et al. 162 . Daunay et al. 28 developed a system that modelled flexibility by using a

molecular dynamics engine to compute the relevant forces. This approach proved

too costly to compute in haptic time, so wave transformations were used to bridge

any gaps between the rendering and simulation. Zonta et al. 162 presented a system

that modelled ligand flexibility by using a third party library to accelerate the force

computation, however the system only supported small ligands. Anthopoulos et al. 4

incorporated a GPU-accelerated force calculation approach within their molecular

modelling system5. The methods presented by Anthopoulos et al. 5 model receptor

flexibility to some degree, however the forces on the haptic device are only updated
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at the refresh rate of the display: 33Hz, well below that required for a smooth haptic

experience.

Currently, haptic-assisted interactive molecular docking systems that achieve a

haptic refresh rate of at least 500Hz have either limited themselves to docking rigid

molecules, (comprising up to 184k atoms57) or rigid receptor, flexible ligand docking

where the ligand comprises a few atoms162.

In order to model flexibility in a haptic assisted docking environment, an efficient

approach to modelling flexibility is needed. Of the techniques used in automated

docking, soft docking, selective-docking and on-the-fly docking are theoretically

viable to use in an interactive environment. Soft docking would be straight forward to

include within an interactive system, as it is no more computationally expensive than

rigid docking, which has already been solved. However, the conformational change

modelled by soft docking is limited to small local conformation changes, rather than

the full global motion that is often required for successful ligand binding. Although

less computationally strenuous than full, on-the-fly docking, selective docking is

limited in that only a small number of bonds are modelled as flexible, which can limit,

or hide, relevant motion from the user.

The only methods that fully model flexibility are the on-the-fly docking ap-

proaches. Of these, an adaptation of the dimensionality reduction technique utilised

by Zacharias 159 and Tatsumi et al. 142 is most likely to be suited for use in a haptic-

assisted interactive environment, because the dimensionality reduction reduces the

amount of computation that has to be performed.

Dimensionality Reduction

Zacharias 159 reduced the dimensionality of the docking problem in their automated

docking system, by using PCA to extract the dominant fluctuations, which often

contain the functional movement from an MD trajectory, with success. This approach

works as a result of linear response theory (LRT): the structural changes to proteins
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that occur during docking correlate to the fluctuations that occur to it in a ligand free

state.

Ikeguchi et al. 59 confirmed the validity of LRT by performing MD simulations on

three protein systems, and calculating their covariance matrices. Then, they placed

the proteins respective ligands into their experimentally derived binding positions and

calculated the resulting deformation. The results were consistent with observation from

crystal structures; structures that have been determined using x-ray crystallography.

Ikeguchi et al. 59 also confirmed that when PCA is performed on the covariance

matrices, and the largest eigenvectors used in place of the entire covariance matrix,

a large amount of the protein’s experimentally derived movement still occurs, likely

because a protein comprises rigid parts that are joined together, which move collec-

tively48. The subspace within which most of the fluctuation occurs is often referred to

as as the “important subspace2,48,70,” an aspect of protein dynamics that is pivotal for

the proposed system to run at a haptic refresh rate.

HaptimolENM134 is a tool that utilises an elastic network for studying a pro-

tein’s deformation when forces are applied to specific, user specified, atoms. In

HaptimolENM, a haptic device was used as a way to apply forces to the atoms. Hap-

timolENM made use of the important subspace of proteins in order to allow large

proteins to be studied on regular desktop PCs. By using this technique, the memory

consumption and computational cost of calculating the deformation was reduced.

Although HaptimolENM134 utilises a similar dimensionality reduction technique that

will be used in this chapter, there are substantial differences between the approaches

used. Primarily, HaptimolENM uses NMA combined with an elastic network to deter-

mine the motions of a single molecular pose, rather than PCA on a molecular trajectory.

Also, HaptimolENM was designed to model a protein’s response when forces were

applied to a few individual atoms. This allowed optimisations to be made to the

algorithm, reducing the computational cost of computing the flexibility. In this chapter,
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the interactions between two proteins will be modelled, a far more computationally

challenging task.

5.3 Method

In order to model receptor flexibility whilst maintaining a 500Hz haptic refresh rate,

three main tasks have to be completed within a 2 ms time limit:

1. Calculate the current interaction forces between the receptor and ligand.

2. Calculate the receptor’s deformation in response to the interaction force.

3. Apply the conformational change to the receptor.

In addition to these three steps, user input has to be handled and separately, the

visual protein depiction has to be rendered. These steps, forming the haptic loop, are

shown in the flowchart in Figure 5.2.

5.3.1 Force Calculation

Similar to other haptic-assisted interactive molecular docking approaches, only the

vdW and electrostatic interactions between the receptor and the ligand are modelled.

Iakovou et al. 57 presented a GPU accelerated algorithm to calculate both of these

forces between two molecular structures, that is fast enough to be used with a haptic

device. Iakovou’s approach solves the equation

f⃗ff i =
M

∑
j=1

((
24εi j

[2σ12
i j

r13
i j
−

σ6
i j

r7
i j

]
+

qiq j

4πε0εr2
i j

)⃗
r̂rri j

)
, (5.1)

which calculates the interaction force between atom i in the receptor, and all of the

atoms, labelled j, within the ligand, for each atom in the receptor in parallel.

The haptic device “holds” the ligand and transmits the force upon it to the user.

The force on the ligand from the receptor is given by −∑
N
i=1 f⃗ff i. The resulting force is
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Fig. 5.2 Flowchart describing the haptic loop ; All of the steps needs to be completed
within a 2 ms window. Section 5.3.1 describes Step 3 of the loop, Section 5.3.3
describes Step 4 and Step 5.
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then converted into Newtons, and scaled before being transmitted through the haptic

device. Three force scaling profiles, as described by Iakovou et al. 58 , are available for

use. These profiles are used to ensure a good range of forces can be felt by the user.

Within Haptimol FlexiDock the ligand is currently modelled as rigid.

In Equation 5.1 εi j and σi j are Lennard-Jones parameters that depend on the

characteristics of the interacting atoms, ri j is the distance between the two interacting

atoms, qi and q j are the atomic charges of the two atoms, ε0 is the permittivity of free

space, ε is the relative permittivity dependent on the dielectric properties of the solvent

and⃗̂rrri j is the unit vector in the direction of atom i to atom j. Torques are omitted, as it

is not possible to render them on low cost haptic devices.

Within this chapter, parameters for εi j, σi j, qi and q j were taken from the ffamber03

forcefield31, however any forcefield could be used to provide these values. The Lorentz-

Berthelot rules were used to compute εi j, σi j. These rules state that εi j = (εiε j)
1
2 and

σi j =
1
2(σi +σ j), where σi, σ j, εi and ε j are the Lennard-Jones parameters of atoms i

and j, as taken from the forcefield.

The Coulomb constant, 1
4πε0

is set to 138.935485 kJ mol-1 nm e−2 and an approx-

imation of the Coulomb screening potential of water, as described by Mehler and

Solmajer 93 is used for ε .

For the deformation calculation, discussed in Section 5.3.3, the per atom forces are

translated into receptor space, and then rearranged into a column vector, as depicted in

Figure 5.3.

Coulomb screening with implicit water

Usually, molecular interactions occur within a solvent, usually water, rather than in a

vacuum. Explicitly modelling water within the interactive environment would increase

the computational overhead of performing the simulation, and detract from the user

experience: both the ligand and receptor would be obscured with water molecules, in

the haptic and visual (See Figure 5.4) scenes. Although the water molecules could be
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Fig. 5.3 Diagram showing how the three by N matrix of forces is rearranged into a
single column vector.

hidden in the visual render, both collisions with the water and the minor interaction

forces occurring between the water and the ligand would be felt through the haptic

device as noise. Furthermore, computing the interactions between the water molecules

and the ligand would add a significant overhead to the force calculation algorithm.

Although water cannot be modelled explicitly within the haptic simulation, it can

be modelled implicitly, using the equation

ε = A+
B

(1+ ke−XBr)
. (5.2)

Mehler and Solmajer 93 demonstrate that the Equation gives a good approximation of

the electrostatic screening effect of water with minimal additional computational load,

and without the drawbacks of explicitly including it. Therefore, it should be suitable

for use within an interactive docking application.

In Equation 5.2, A = -20.929, B = 99.329, k = 3.4781, X = 0.001787 and r is equal

to the distance between the interacting atom pair. These values were presented by

Mehler and Solmajer 93 . Figure 5.5 shows how ε increases with distance.
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Fig. 5.4 A molecular structure with (A) and without (B) explicit water.
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Fig. 5.5 Graph showing how the value of ε , when calculated with Equation 5.2
increases as the inter-atomic distance increases.
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Implementation - Force calculation

Algorithm 9 describes the core of the force calculation method. A single thread

is created for each receptor atom. This thread then computes the interaction force

between the receptor atom and all of the atoms in the ligand. The per atom interaction

force is then translated into receptor space and stored within an array, perAtomForce,

equivalent to FFF within Equations 5.3 and 5.4. Each of the threads within a work group

then sum their interaction forces together, to give perWorkGroupForce, which is then

copied back to the CPU. All of the work group’s perWorkGroupForce values are then

summed, giving the net force on the ligand, which is then rendered upon the haptic

device.

Algorithm 9 deriveInteractionForce(r, l,nr,nl) return
perAtomForce, perWorkGroupForce
Require: r {Receptor atom information }
Require: l {Ligand atom information.}
Require: nr,nl {number of atoms within the receptor (nr and ligand nl}
Require: groupId {Work group identifier}

1: for all i← 1 to nr in parallel
2: atomForce = (0,0,0)
3: for j← 1 to nl do
4: atomForce← atomForce+ computeInteractionForce(r(i), l( j));
5: end for
6: wi← 3× i
7: perAtomForce(wi)←−atomForce(1)
8: perAtomForce(wi+1)←−atomForce(2)
9: perAtomForce(wi+2)←−atomForce(3)

10: end for
11: perWorkGroupForce(groupId)← parallelSummation(atomForce)

The per atom force array, arranged as depicted in Figure 5.3, is passed to the

deformation calculation kernels, in order to calculate the receptor’s movement in

response to this force.
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5.3.2 Molecular Dynamics

Molecular dynamics (MD) simulations of maltodextrin binding protein (MBP), Glu-

tamine Binding Protein (GlnBP) and B-Raf were started from the structures deposited

in the Protein Data Bank (MBP: PDB ID 1OMP125); B-Raf: Chain A of 1UWH149;

GlnBP: Chain A of 1GGG53). AMBER ff14SB86 was used for the proteins. Each

protein was initially solvated in a cubic box with SPC/Eb water molecules140, and

Na+ (MBP and GlnBP) or Cl- (B-Raf) ions62 to neutralize the systems. The simula-

tion boxes were constructed with a margin of at least 10 Å from the proteins to the

periodic box boundaries. The total number of atoms included the simulated systems

for MBP, B-Raf and GlnBP, including solvent molecules were 80,019, 52,917 and

56,741, respectively. The simulation was conducted with the pmemd.cuda module42

of AMBER1622. The electrostatic interactions were treated with particle mesh Ewald

method34 and the real space cutoff distance was 10 Å. In all cases, after 200 step

energy minimization with positional restraints imposed on experimentally-determined

heavy atoms with a force constant of 1 kcal/molÅ149, system was equilibrated at 300 K

and 1 atm with weaker positional restraints with a force constant of 0.1 kcal/molÅ149.

MD simulations without the restraints were performed for 120 ns and the last 100 ns

trajectories used for the analysis with the linear response calculation.

5.3.3 Linear Response

To use LRT to calculate the receptor’s deformation, induced by interaction forces from

the ligand, the equation:

∆∆∆r =
1

kbT
AAAF (5.3)

(equivalent to Equation 3 within Ikeguchi et al. 59) can be used. To do so, calculation

of the variance-covariance matrix of atomic fluctuations within the MD trajectory is

required. Taking the coordinate trajectory of the protein from the MD simulation,

mass-weighted least-squares best fitting is used to superimpose each frame onto the
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reference structure, which was the starting structure of the MD simulation. The average

structure is then calculated, and the 3N×3N variance-covariance matrix of atomic

fluctuations, AAA.

In Equation 5.3, kb is Boltzmann’s constant, T , the absolute temperature, and ∆∆∆r =

(∆x1 ∆y1 ∆z1... ∆xN ∆yN ∆zN)
t , a column vector of atomic coordinate displacements.

Within the quasi-harmonic approximation, displacements are from the average, but as

this is not a viable structure, the structure from the trajectory which has the smallest

RMSD to the average is used as the initial undeformed structure within the haptic

docking session.

Given a receptor and ligand, the force on each receptor atom is calculated using

Equation 5.1, and then Equation 5.3 is used to calculate the atomic displacements in

the receptor. If the user is allowed to control the position of the ligand, via keyboard

or haptic device, and the above calculations are performed continually, with the

receptor’s deformation updated in real time, the result will be an interactive molecular

docking system that supports realistic receptor flexibility. Note that due to the fitting

procedure used to calculate AAA, whereby global translational and rotational movements

are removed, forces applied to the receptor do not result in its global translation or

rotation.

Reducing the dimensionality of protein fluctuation

Equation 5.3 could be used to calculate the deformation, however, matrix AAA is large -

3Nx3N in size, resulting in 9N2 calculations needed to evaluate Equation 5.3. Even

on a modern GPU, this is unlikely to be possible within the haptic time limit of 2

ms. Furthermore, matrix AAA will consume a large amount of video memory, which is a

scarce resource when compared with main system RAM.

These issues can be overcome by making use of the fact that a large amount

of the total fluctuation of a protein occurs within a small subspace (sometimes this

space is referred to as the “important subspace” or the modes spanning it as “essential
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modes”2,48,70), to reduce both the number of calculations required per frame, and the

memory consumption of the algorithms. This is achieved with the function

∆∆∆r ≈ ∆∆∆rm =
1

kbT
(VVV mmm(ΛΛΛmmm(VVV t

mmmF))), (5.4)

which is equivalent to Equation 4 in Ikeguchi et al. 59

In Equation 5.4, VVV mmm, is a 3N×m matrix of eigenvectors of the covariance matrix

AAA and ΛΛΛmmm is an m×m diagonal matrix of the m corresponding eigenvalues arranged in

descending order. The fact that the ΛΛΛmmm is a diagonal matrix further reduces the number

of multiplications required to calculate the deformation from Equation 5.4. The matrix

multiplications can be performed in any order, however, the parentheses are included

to show the most efficient way to perform the calculation, i.e. from right to left.

By using Equation 5.4 instead of Equation 5.3 to calculate the receptor’s response,

and by performing the calculation in the order shown by the parentheses, the number

of multiplications is required is reduced to m(6N+1). Furthermore, when multiplying

the matrices together in this order, the largest transient matrix will be 3N×1 in size

(although the largest matrix is the matrix of eigenvectors, VVV mmm, which is 3N×m in

size). This means for an appropriate choice of m, use of Equation 5.4 can produce

significant savings in memory and execution time over use of Equation 5.3.

Implementation - Deformation calculation

The deformation calculation must be performed in the smallest amount of time possible.

In this section the algorithm used to solve the equation in less than 2 ms is discussed.

The proposed function is memory-bound, because few computations are performed per

memory transaction, therefore care must be taken to coalesce memory accesses in order

fully utilise the GPU. Also, in some cases, calculations will be performed multiple

times, as opposed to loading additional values from memory or communicating data

between threads. The algorithm to solve Equation 5.4 is outlined in Figure 5.6.
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Fig. 5.6 Diagram showing how Equation 5.4 is calculated within Haptimol FlexiDock.
Within the diagram, m is the number of eigenvalues in use, N is the number of atoms
within the receptor, VVV mmm is a matrix of Eigenvectors, VVV ttt

mmm is its transpose, ΛΛΛ
vvv
mmm is the

diagonal of ΛΛΛmmm, θ is the number of threads per work group, w00 is a subdivision of the
Eigenvector matrix, and indicates the area solved by a single thread work group, b0 is
a subdivision of the force vector ζ is the number of rows of the eigenvector matrices
handled by a work group. The equation is solved from right to left.

The multiplication shown in Figure 5.6 is performed from right to left. The matrix

VVV ttt
mmm is divided up into work blocks, each of which has a work group of threads assigned

to it. The dimension of each block is four times the number of threads (θ ) in the work

group, multiplied by ζ ; 64 was found to be a performant value for ζ . Each thread

within a work group is responsible for solving a 4xζ section of the first matrix. Figure

5.7 shows w00 being multiplied by b0. The diagram shows how each block is divided

up. Thread 0 is responsible for columns 0-3, and rows 0 to (ζ −1) of VVV ttt
mmm.

Within Stage 1, using both row and thread 0 in this example, thread 0 will perform

an element-wise multiplication of [w0 w1 w2 w3] with [ f0 f1 f2 f3] and then sum the

result. When all of the threads in the work group have performed their respective

multiplications, a work group summation is performed, giving a total for that row

of the work block. This row subtotal is then multiplied with the relevant eigenvalue,

and then atomically added to an intermediary accumulation array ready for Stage 2.

This process is repeated ζ times per work group. Enough work groups are launched
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Fig. 5.7 Figure demonstrating how the work assigned to work group W00 is divided
between threads.

to process the entire matrix. It is important to note that ΛΛΛmmm is the diagonal of a

square matrix, so each row needs only an element wise multiplication with the relevant

eigenvalue, rather than a full vector/matrix multiplication. This reduces the complexity

of the calculation.

When all of the work-blocks employed within Stage 1 have completed, Stage 2 can

begin. Again, the matrix is divided up into work-blocks, this time θ x ζ in size. Within

the second stage, each thread handles a column vector of four rows from VVV mmm, and

multiplies them by a single value, taken from the intermediary vector. Although this

increases the number of work blocks required to complete the multiplication, it allows

for greater efficiency when m is small, leading to better performance overall. The

eigenvector matrix is stored within constant memory, in both its original and transpose

state, with the elements each thread is responsible for grouped into float4 memory

blocks to ensure maximum utilisation of the cards memory bus.



5.3 Method 141

Finding a stable state

After calculating the deformation, both the haptic and visual scenes need updating.

The haptic and visual rendering tasks run in independent threads, to ensure that the

visual rendering of the protein does not impact upon the haptic refresh rate. As the

haptic loop completes much faster than the visual loop, it makes little sense to update

the atom’s locations every time they are changed as a result of an interaction force.

Therefore, every time the visual thread completes a loop it requests new atom positions

from the haptic thread. The updated positions are then copied into a separate buffer,

for use by the visual thread. This ensures that the force calculation always has up to

date atom positions and the visual rendering of the protein will always be a complete

snapshot of a protein; conformations will not get muddled together.

An iterative approach is used to apply translations to the receptor atoms. This

approach was taken because in certain binding positions the interaction forces between

the receptor and ligand become unstable. In these positions, the initial interaction

force between the receptor and ligand is such that a conformational change large

enough to noticeably change the interaction force occurs, which in turn alters the

receptor’s conformation again. If these conformational changes do not converge to an

equilibrium, instability occurs. This is illustrated in Figure 5.8.

Within Figure 5.8, the initial force, labelled fs, causes the atoms in the receptor to

move to ∆ri. Because of this, the interaction force changes to fi, causing the atoms

to change position again. In the scenario depicted in the figure the forces and atomic

displacements get larger and larger, never reaching a stable state. When using the

software in combination with a haptic device, this scenario creates severe vibration.

In order to prevent this from occurring, an iterative approach is used. Rather than

apply the entire receptor deformation in one step, a small amount, µ , of the total

calculated deformation is applied, and then the force is recomputed. In this fashion,

the force and receptor response will eventually reach a stable state. This is depicted as

the stepped line from ∆rs to ∆re in Figure 5.8.
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Fig. 5.8 Diagram depicting how using an iterative approach when applying deformation
to the receptor improves stability. The initial ligand receptor interaction occurs at
∆rs. The dotted arrows describe the subsequent sequence of events with the iterative
approach, the solid arrows without it. The solid arrows show that the initial interaction
force, fs, causes the receptor to deform to ∆ri, which in turn changes the interaction
force to force fi, prompting a different response from the receptor. This cycle can
continue ad infinitum. The iterative approach breaks the deformation application up
into smaller steps, re-computing the force after each step. In this way, the interaction
force and deformation response will come into equilibrium. The global positions of
the receptor and ligand are assumed constant throughout the process.
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Deforming the receptor in an iterative manner has further usability advantages.

Firstly, as the deformation happens more slowly, the receptor’s internal movement

becomes visible to the user, providing opportunity to learn about the deformation

process. Furthermore, the reduced deformation speed gives the user opportunity to

respond to tactile and visual cues generated as the protein deforms.

Collision Detection

Detecting collisions between the receptor and ligand is important for the usability of

the application. If an atom within the ligand is allowed to significantly overlap with

one in the receptor, an enormous, unrealistic force will occur. Therefore, collision

detection happens twice per loop: at Stages 2 and 6. At Stage 2, collision detection is

performed to determine whether or not the user has moved the ligand into a state where

it overlaps with the receptor. At Stage 6, it is performed after the deformation has been

applied to the receptor, to determine if it has deformed such that it overlaps with the

ligand. When using the haptic device, the collision detection performed at Stage 2 is

less important, as the user will feel a large repulsive force, before a significant overlap

occurs. As collision detection is performed twice within the loop, it is important that

it takes the smallest possible amount of time. Algorithm 10 formally describes the

method used.

The first stage of the algorithm is performed on the GPU. Each atom in the receptor

tests all of the atoms in the ligand, to see if they are closer in space than the sum of the

atom pair’s radii. If they are, the collisions buffer is incremented. When this stage is

complete, the collisions buffer is copied back to the CPU, and a final total calculated.

If the final total is larger than 0, one of the atoms is in collision.

This approach is suitable for use when the ligand is small. If it were larger, a spatial

partitioning structure may be needed to reduce the number of calculations performed.

Stopping the deformation at first contact between the receptor and ligand was found

to make it very difficult to perform docking with any significant receptor movement,
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Algorithm 10 moleculeCollisionDetection(r, l,nr,nl) return workGroupCollisions
Require: r {Receptor atom information }
Require: l {Ligand atom information.}
Require: nr,nl {number of atoms within the receptor (nr and ligand nl}
Require: groupId {Work group identifier}

1: collisions = (0)
2: for all i← 1 to nr in parallel
3: for j← 1 to nl do
4: minDist← ri.radius - l j.radius
5: distVec← ri.xyz - l j.xyz
6: distSqr← sum(distVec.∗distVec)
7: collisions = 0
8: if (minDist2)> distSqr then collisions+= 1
9: end if

10: end for
11: end for
12: workGroupCollisions(groupId)← parallelSummation(collisions)

as it often prevented the receptor from deforming away from the ligand. Therefore a

small amount of overlap, which is customisable at runtime, is allowed between the

ligand and receptor atoms. This allows the receptor to deform away from the ligand

where it would naturally do so.

The drawback of allowing any overlap is large forces can be generated, especially

if the user forces the ligand through repulsive forces. Therefore, the option to stop

deformation when a large force occurs is also available to the user.

Keyboard controlled docking

Haptimol FlexiDock renders proteins in space-filling mode, using CPK colouring73 by

default. The colour of individual residues can be changed by the user. Although the

application is designed for use with a haptic device, this may not always be feasible,

owing to the comparative expense of haptic devices when compared with conventional

input devices.

In order to improve the usability of the software when used without a haptic device,

a colour system is provided that varies the brightness of individual receptor atoms in
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A B

Fig. 5.9 A receptor-ligand pose rendered in Haptimol FlexiDock with (A) ordinary
colour and (B) force-contribution colouring.

order to highlight those which are contributing the most to the total interaction force.

The effect can be seen in Figure 5.9.

Besides the force-interaction colouring, the interaction energy and forces can be

plotted on a graph in real time, allowing the user some understanding of the force

interactions that are prompting the rendered response. These features are also available

when using a haptic device.

5.4 Method Analysis

There are two main aspects of the described approach that need to be analysed to deter-

mine if the algorithms proposed in this section successfully model protein flexibility

rapidly enough to be used with a haptic device. These aspects are the performance of

the application, and how well the proposed methods model ligand flexibility.

5.4.1 Application Performance

As stated in the introduction, for continuous, smooth and stable force feedback, haptic

devices need updating at a refresh rate greater than 500Hz. To ascertain whether the

described system meets this criteria, whilst using a sufficient number of eigenvalues
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to incorporate the important subspace of any tested molecules, ligand movement

around the protein is simulated, and the execution time of the haptic loop (Figure 5.2)

recorded.

To confirm that reducing the dimensionality of the receptor’s deformation is neces-

sary, the time taken to compute Equation 5.3 was measured, using the highly optimised

cuBLAS library. The execution time of the deformation calculation, Equation 5.4

is also measured for comparison. Owing to the difficulty in accurately timing the

execution time of methods, because processor exclusivity cannot be guaranteed, a

large number of samples will need to be taken for all of the timing experiments.

5.4.2 Deformation Testing

In order to determine how much of the total molecular fluctuation is contained within

the first m modes, the equation

ρ(m) = 100
∑

m
i=1 λi

∑
3N−6
i=1 λi

(5.5)

can be used. ρ(m) in Equation 5.5 measures the percentage of the total fluctuation

that the protein undergoes in its MD trajectory, that is contained within the first m

eigenvectors.

Where λi is the ith eigenvalue of ΛΛΛmmm, 3N−6 is the total number of non-zero eigen-

values and ρ(m) is the percentage fluctuation contained within the first m eigenvalues.

This formula will be used to determine if a sufficient proportion of the total fluctuation

is represented by using m eigenvalues within a docking session. When m = 3N−6,

ρ(m) = 100%.

To assess how well the system models the receptor’s functional movement, experi-

mentally derived ligand-bound and unbound structures will be compared with poses

generated within Haptimol FlexiDock.
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Before performing these comparisons it is important to know how much of the

experimentally derived movement is contained within the high fluctuation eigenvectors.

This is measured in the equation

τ(m) = 100
m

∑
i=1

(
vvvt

i

(
∆∆∆rrrexp

|∆∆∆rrrexp|
))2

, (5.6)

where vvvi is the ith column of VVV mmm, and ∆∆∆rrrexp is a column vector of the experimentally

derived individual atomic coordinate displacements - the movement required to dis-

place each atom from its position in the ligand free structure to its position in the

ligand bound structure, after global superposition. τ(m) indicates the percentage of

the experimental movement that is represented in the space of the first m eigenvectors.

When m = 3N−6, τ(m) = 100%.

There are various methods that can be used to compare a docked pose generated

within Haptimol FlexiDock to the experimentally derived ligand-bound structure. The

most straightforward of these is the root-mean-square deviation of atomic positions

(RMSD).

In addition, the atomic displacements that occur upon ligand docking during the

haptic session can be compared with the experimentally derived displacements.

In equation

p =
∆∆∆rrrt

hap_bb∆∆∆rrrexp_bb

|∆∆∆rrrhap_bb||∆∆∆rrrexp_bb|
, (5.7)

where ∆∆∆rrrhap_bb is a column vector of backbone atom coordinate displacements from

the starting to bound conformations taken from a haptic docking session and ∆∆∆rrrexp_bb

is the experimentally derived individual backbone atom displacements, p indicates

how well the direction of the experimentally derived and haptic movements align;

the closer p is to 1.0, the better the alignment. When calculating ∆∆∆rrrhap_bb the start

structure and haptic docked structure must be globally aligned. Equation 5.7 does not
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consider the relative magnitudes of the displacements, which is quantified by q in

q =
∆∆∆rrrt

hap_bb∆∆∆rrrexp_bb

|∆∆∆rrrexp_bb|2
. (5.8)

Again, only the molecule’s backbone is considered when using this equation. Com-

bined, Equations 5.7 and 5.8 can be used to determine how close a docked ‘haptic’

structure is to the experimentally derived ligand-bound structure; the closer both values

are to 1.0, the closer the movements match.

The distribution of displacements of Cα atoms are also compared, as was previously

done by Ikeguchi et al. 59 . A final metric is ∆L which indicates the distance between

the ligand in its position in the haptic docked pose and the experimental pose. As

the orientation of the haptic-controlled ligand relative to the protein is the same as in

the experimental structure of the protein-ligand complex, this is simply evaluated by

measuring the distance between any atom of the ligand in its two positions.

Together these metrics will give a good picture of how well the haptic-derived

movement compares to the experimentally derived movement.

5.4.3 Testing the Iterative approach

The effectiveness of the iterative approach will also be appraised. To do this, the

receptor and ligand are placed into an unstable conformation. Then, a simulation

long enough for the conformation to stabilise is run, with the total force between the

receptor and ligand recorded at each step. The ligand’s and receptor’s global positions

are held constant throughout. This test is repeated for different values of µ , the step

size. If the iterative approach works as intended, when using a small value for µ , the

net force should stabilise.
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Receptor Name
Receptor PDB
Code (Atoms)

Trajectory
Length

Ligand
Name (Atoms)

Ligand Bound
PDB Code

Maltodextrin
Binding Protein (MBP) 1OMP (5737) 100 ns Maltose (40) 1ANF

B-Raf 1UWH (4263) 100 ns Sorafenib (48) 1UWH
Glutamine

Binding Protein 1GGG (3431) 100 ns Glutamine (20) 1WDN

Table 5.1 Receptor/ligand pairs used within testing.

5.5 Results

The performance testing of the described methods was performed using three different

receptor ligand pairs, as shown in Table 5.1. These pairs were chosen because it

is known that they all undergo a significant and fairly well understood backbone

deformation during ligand binding. Furthermore, there are ligand bound structures

available on the RSCB14 for each of the pairs, which can be used in order to verify the

output of the system.

The topology for MBP was generated using PDB2GMX131, The other topologies

were generated with AmberTools1622 and converted into the GROMACS format

required by FlexiDock using ParmEd139. The ligand unbound version of B-Raf was

generated by removing sorafenib from the bound version. All of the testing was

performed on a desktop computer with an Intel i7 processor and an NVIDIA GTX

1080.

Multiplying the entire covariance matrix

To demonstrate the necessity of the dimensionality reduction technique, the execution

time of Equation 5.3 was recorded. The multiplication was performed with smaller

matrices in order to determine the upper limit of the number of atoms at which

multiplying the entire covariance matrix becomes infeasible, along with the covariance

matrices of the proteins in Table 5.1. Figure 5.10 shows the results.
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Fig. 5.10 Vector-Matrix multiplication on the GPU. Matrices up to approximately
3000×3000 can be multiplied with a vector in less than 2 ms.

The graph shows that the conformational change resulting from a force can be

calculated with the entire covariance matrix in under 2 ms, when the protein comprises

3000 atoms or fewer. However, the time limit for the entire haptic loop is 2 ms so in

reality, the largest protein this approach is currently viable for will be much smaller.

All of our test structures are larger than this. Therefore, the dimensionality reduction

technique described in Section 5.3.3 will be used in order to achieve a real-time haptic

refresh rate in our application.

Eigenvalue Dimensionality Reduction

To demonstrate the effectiveness of the dimensionality reduction technique, the time

taken to calculate the force response using Equation 5.4 was measured for all three of

our test proteins, whilst using a varying number of eigenvalues. The results are shown

in Figure 5.11.

Figure 5.11 demonstrates the effectiveness of the dimensionality reduction tech-

nique. Whilst calculating receptor deformation using the entire covariance matrix is

infeasible for our test proteins, it is easily achievable with Equation 5.4, provided an
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Fig. 5.11 Time taken to calculate the deformation response caused by interactions with
the ligand, using Equation 5.4, with a varying number of Eigenvalues. Blue = MBP,
Red = B-Raf, Green = GlnBP

appropriate number of modes are used. To determine exactly how many modes can

be used, the total execution time of the haptic loop was measured and recorded. The

results can be seen in the lower graphs within Figure 5.12.

The results show a fairly large standard deviation (approximately 300 µs). This

can largely be explained by the fact that during the haptic loop, two paths are taken; if

there is a collision, an extra two steps are performed, adding to the runtime, however

as processor exclusivity during testing cannot be guaranteed: other processes maybe

claiming processor time, elongating the runtime of random loops.

To ensure smooth feedback from the haptic device, it is important that the majority

of haptic loops complete in under 2 ms. By looking at the second standard deviation

of the run time data, the dotted line in the lower graphs in Figure 5.12, it can be seen

that for MBP, using fewer than 550 Eigenvalues (out of a total of 17208 non-zero

eigenvalues), for B-Raf, fewer than 760 (out of 12786 non-zero eigenvalues) and

for GlnBP fewer than 1220 eigenvalues (21.4% of the 10287 non-zero eigenvectors),

97.7% of the calculations are completed in less than 2 ms, meeting this goal.
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To determine whether these values are sufficient to model the protein’s movements,

Equation 5.5 can be used. The results for different eigenvalue counts can be seen in the

upper plots of Figure 5.12, which shows the plot of ρ(m) for the three test proteins.

Figure 5.12 shows that for MBP, ρ(550) = 87%, B-Raf, ρ(760) = 94% and GlnBP

ρ(1220) = 97%. Thus despite only being able to use a relatively small number

of eigenvectors to calculate the deformation during an interactive session, they are

sufficient to span the important subspace.

In the upper parts of Figure 5.12, the important subspace is considered to be the

steep portion of the graph, comprising the first few eigenvalues. The results from the

timing experiments show that for all tested proteins, the important subspace is included

within the number of modes achievable within the 2 ms time constraint. Therefore, dur-

ing a docking session the receptor should undergo its functional movement, provided

the ligand is in the correct position.

Functional movement and space explored in MD trajectory

In this section, docking experiments will be performed in order to determine if the

deformation that a protein undergoes as a response to ligand docking, as seen in

the crystallographic structures, occurs when performing docking with the methods

described in this chapter.

The haptic starting and the experimental docked structures were generated, or

solved, using X-Ray crystallography. In order to do this, a crystal containing the

structure needs to be created. This is achieved using a process known as protein

crystallization92. Crystallographers grow these crystals by slow, controlled precip-

itation from an aqueous solution under conditions that do not denature, or damage,

the protein. A simple means of achieving this is to add a precipitant to an aqueous

solution of the protein, until its concentration is just below that required to precipitate

the protein. Then, the water is allowed to slowly evaporate, which gently increases the

concentration of the protein and precipitant until precipitation occurs117.
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At this point, protein crystals can form, but it is not guaranteed; rather a useless

solid could form. Identifying the ideal conditions for crystals to form can take many

trials, and is as much an art as a science117.

After a crystal has been successfully formed, a beam of x-rays is fired at it, which

then diffract into many specific directions. By identifying the angles and intensities of

these diffracted beams, a three dimensional picture of the electron density within the

crystal can be constructed. From this, it is possible to determine the average positions

of the atoms within the crystal, as well as their chemical bonds117.

In this project, we use structures made available by other research groups. In the

case of 1GGG and 1OMP, ligand bound and ligand unbound structures are freely

available. Comparing these bound and unbound structures provides a picture of how

the unbound structure deforms into the bound structure upon ligand binding, and gives

a good approximation of the location of the ligand binding site. In the case of 1UWH,

no ligand unbound structure was available, making it impossible to perform docking

experiments with it, as its topology in an unbound state, is not known. Before the

MD simulation was performed, sorafenib was removed from the bound structure of

1UWH, in the expectation that the bound structure would relax to an open structure.

However, B-Raf remained largely closed making it impossible to dock sorafenib within

FlexiDock. Therefore, during deformation testing, the analysis is limited to performing

docking with MBP and maltose, as well as GlnBP and glutamine.

In the previous section, it was determined that it is feasible to use 550 eigenvalues

whilst performing docking between maltose and MBP, and 1220 eigenvalues whilst

performing docking between glutamine and GlnBP. In order to find out whether the

functional movement, as derived from the crystallographic ligand-free and ligand-

bound structures, is contained within the high-fluctuation modes from the MD tra-

jectory. Equation 5.6 was used. The results show that for MBP τ(550) = 90.3% of

the experimentally derived functional movement is incorporated within the first 550

eigenvectors, and for GlnBP, τ(1220) = 94.7% of the motion is within the first 1220
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eigenvalues. This shows that the majority of the experimental movement is contained

within the earliest few modes, and therefore, a movement that closely matches the

experimental functional movement would be possible even when comparatively few

eigenvectors are used.

Haptic vs Experimental

Using a 3D Systems Touch haptic device (formally known as the SensAble Phantom

Omni), docking experiments were performed, attempting to dock maltose into MBP

and glutamine into GlnBP. The starting pose, or haptic start structure, is the confor-

mation from the trajectory with the lowest RMSD to the trajectory average structure.

In these experiments, 500 eigenvectors were used to calculate the flexibility for MBP

and 1200 for GlnBP. The ligand was placed into its experimentally determined bound

orientation by superimposing the experimental ligand-bound structure onto the haptic

start structure, reorienting the ligand accordingly. Then, using the metrics outlined

within Section 5.4.2, each of the poses were tested to determine if the calculated

movement aligned with that derived experimentally. The results are shown in Table

5.2.

The results show that for both proteins the calculated receptor deformation, when

the ligand is docked into the approximate binding area (as determined from the

experimental structure), is aligned with the experimentally derived motion. This is

shown both with the RMSD values and the values of p and q.

Initially looking at the RMSD values, it is shown that for most of the test poses,

the haptic docked structure is ‘closer’ to the experimentally derived bound structure

than it is to its starting structure, showing that the deformation modelled has deformed

the structure toward its ligand-bound pose.

The given values for p and q further validate that the calculated movement com-

pares well with the experimental movement. For all of the reported poses q > 0.8, in

order for the starting pose to deform into the experimental ligand-bound pose. Fur-
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MBP
PoseID ∆L (Å) Start RMSD (Å) Docked RMSD (Å) p q
H-MBP1 2.9 2.39 2.23 0.85 0.58
H-MBP2 3.0 2.91 1.99 0.85 0.67
H-MBP3 2.6 2.68 2.11 0.83 0.63
H-MBP4 3.3 2.30 2.47 0.83 0.53
H-MBP5 3.2 2.64 2.25 0.84 0.63

GlnBP
PoseID ∆L (Å) Start RMSD (Å) Docked RMSD (Å) p q
H-GlnBP1 1.5 3.36 3.31 0.85 0.50
H-GlnBP2 3.3 3.43 3.40 0.83 0.49
H-GlnBP3 1.3 4.41 3.09 0.83 0.63
H-GlnBP4 1.6 3.32 3.29 0.86 0.50
H-GlnBP5 1.8 4.34 3.08 0.83 0.62

Table 5.2 Table detailing the quality of the “Haptic” docking poses for MBP and
GlnBP. Start RMSD is the RMSD between the haptic docked pose of the receptor and
the haptic starting pose. Docked RMSD is the RMSD between the haptic docked pose
of the receptor and the experimentally derived docked structure. Both are calculated
between Cα atoms only. p is the result of using Equation (5.7) and q the result
of Equation (5.8). ∆L is the distance between maltose in the haptic pose and the
experimental pose.
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thermore, all of the poses except H-GlnBP2 exhibit at least half of the intra-molecular

backbone movement required to fully displace the atoms from an open position to

a closed position. Together, these metrics show that the described system calculates

and renders a deformation that is broadly aligned with the experimentally derived

movement. Figure 5.13 shows the haptic docked pose superimposed onto its starting

pose, and the experimentally determined closed pose for both GlnBP and MBP. Figures

5.13 (C) and (F) show the displacement of the Cα that occurs between the starting

pose and experimental pose (red) and the starting pose and haptic pose (blue). In both

cases, the lines correlate well, further demonstrating that the deformation calculated

within Haptimol FlexiDock is a good approximation of the experimentally derived

movement.

5.5.1 Reducing the subspace size in Haptimol Flexidock

Figure 5.14 shows ρ(m), (Equation 5.5) and τ(m) (Equation 5.6) for the first 20

eigenvectors of the test proteins, MBP and GlnBP.

For MBP, Figure 5.14 shows that despite within the first 20 eigenvectors, which is

0.1% of the total number, nearly 50% of the total fluctuation occurs within the space

spanned by their corresponding eigenvectors. Furthermore 75% of the experimentally

determined movement is contained within this space. The results are similar for GlnBP.

As a consequence of this, using a small number of eigenvectors will still reproduce

the majority of the movement seen upon maltose binding from the crystal structures.

This will enable Haptimol FlexiDock to work well on less powerful computers, as

reducing the number of eigenvectors used will reduce the computational cost of

calculating the conformational response.

The lower graph in Figure 5.14 shows that for MBP, 71.6% of the movement that

occurs upon ligand binding is incorporated within the first 3 eigenvectors. In order

to allow users to study the resultant effect of adding and removing eigenvectors from

consideration, the facility to modify m during a docking session is provided.
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Fig. 5.13 (A) Structure of MBP from an interactive session where maltose is bound
close to its binding site (magenta - pose: H-MBP2 - see Table 2) superimposed upon
the haptic starting structure of MBP (green). (B) Maltose bound X-ray structure (1ANF
- cyan) superimposed on the haptic starting structure (green). (C) Displacements of
Cα atoms for the Haptic (A - blue) and Experimental (B - red) cases (correlation
coefficient is 0.628) for MBP. (D) Structure of GlnBP from an interactive session
where glutamine is bound close to its binding site (magenta - pose: H-GlnBP5)
superimposed upon the haptic starting structure of GlnBP (green). (E) Glutamine
bound X-ray structure (1WDN - cyan) superimposed on the haptic starting structure
(green). (F) Displacements of Cα atoms for the Haptic (A - blue) and Experimental
(B - red) cases (correlation coefficient is 0.761) for GlnBP. (A),(B),(D) and (E) were
generated using PyMOL123.
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Fig. 5.14 Upper graph shows ρ(m), the percentage of the total fluctuation contained
within the space of the first m eigenvectors and τ(m), the percentage of the experimen-
tal movement contained within this space.
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Fig. 5.15 The effectiveness of the iterative approach. With a small value of µ (the step
size), the interaction force stabilises, conversely when it is larger, it does not.

Haptimol FlexiDock also incorporates other features, including the option to select

and remove side chains from the interaction force calculations whilst still rendering

them graphically (“ghostify”) and to switch different force components (van der Waals

or electrostatic) on and off.

5.5.2 Iterative approach

To demonstrate the effectiveness of the iterative approach, maltose and MBP were

placed into an unstable conformation (See Section 5.3.3). A simulation was then

allowed to run for 150 iterations. The results can be seen in Figure 5.15.

The results show that when µ , the step size, is small, the forces peak at 3.4 kj

mol−1 nm−1, before stabilising at -4 kj mol−1 nm−1. The smaller the value of lambda,

the longer the force takes to settle, as expected. When µ is larger, the forces do not

settle, they oscillate between a positive and negative force. This instability is visible in

the visual rendering and causes vibration on the haptic device. The stabilisation that

occurs when µ is small indicates the iterative approach is working as designed.
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5.5.3 Advanced Graphics

Figure 5.12 shows that our software supports up using up to 550 eigenvalues whilst

maintaining a haptic refresh rate of at least 500Hz, when performing docking between

the protein MBP, and the ligand maltose; it was possible to use far more, over 1200

eigenvectors, when performing docking experiments with the smaller receptor/ligand

pair GlnBP and glutamine. However, whilst performing these experiments, the vi-

sualisation of the receptor and ligand was basic, incorporating no lighting effects.

In Chapter 4, a molecular rendering algorithm that supports ray cast shadows, and

per-pixel ambient occlusion was presented, and shown to be efficient enough for use

in a real time application. In order to improve the depth perception of the molecules

whilst performing docking, the presented algorithm was integrated into Haptimol

FlexiDock. Figure 5.16 shows the difference between the original rendering algorithm,

as used in HaptimolRD, and the updated rendering algorithm incorporated within

Haptimol FlexiDock.

The rendering adds depth to the image, and can help the user to understand where

the ligand is, in respect to the receptor. However, the additional load on the graphics

processor has a substantial effect on the achieved haptic refresh rate. Figure 5.17

shows the performance achieved during a docking session with advanced graphics

enabled.

The results in Figure 5.17 indicate that the haptic loop takes longer than the 2

ms/500 Hz constraint imposed by the haptic device, for both proteins, when run

with no constraints on the rendering refresh rate. This, and the fairly large standard

deviation, is unsurprising, as the rendering is competing with the force and deformation

calculation for GPU resources. By limiting the refresh rate to 30 FPS and therefore

reducing how often the scene is rendered, the overall computational footprint of the

rendering algorithm is reduced, freeing resources for use by the force and deformation

calculation, resulting in a higher average frame rate. On the test system, limiting

the refresh rate allows the haptic loop to complete, on average, in less than 2 ms for
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A B

Fig. 5.16 Column (A) Original rendering method, as used within HaptimolRD Iakovou
et al. 58 , (B) Haptimol FlexiDock with per-pixel lighting.
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Fig. 5.17 Haptic loop execution time for GlnBP and MBP with advanced graphics
enabled. Blue : MBP, red: GlnBP, green: MBP with the visual refresh rate limited
to 30 FPS, purple: GlnBP with the refresh rate similarly limited. The dotted lines
indicate one standard deviation added to the average runtime.

both proteins. However, when doing so, the standard deviation remains large, as the

rendering work still has to be done, even if it is running less frequently. Therefore,

some instability may still be felt through the haptic device.

When performing a docking experiment with GlnBP and Glutamine, whilst using

20 modes or fewer, 84% of the haptic loops performed complete in under 2 ms. There-

fore, it is still possible to perform a docking experiment with the advanced graphics

enabled. Figure 5.17 shows the process of docking the ligand to GlnBP. Between (A)

and (E) a closing motion occurs, as glutamine is placed into its approximate binding

site.
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E

Fig. 5.17 Five images depicting how glutamine docks into GlnBP. (A) Shows the
starting structure, (E) the “docked” structure. (B), (C) and (D) depict GlnBP in various
stages of closure, from nearly open, to nearly closed. The closing motion, which is
similar to the experimentally derived motion, involves the ligand closing around the
receptor. The ligand is highlighted in green.

5.5.4 Unrealistic distortion of molecular geometry

The main limitation of this approach to modelling flexibility, is that it is possible for

a user to push the model too far. In the most extreme cases, this can result in an

unrealistic distortion of the molecular geometry. This is a result of the linear model

used to calculate the deformation. If the force is greater than occurs naturally, the bond

lengths and bond angles can go beyond feasible limits. The design choices that prevent

overlap between ligand and receptor atoms, and the option to limit the maximum

force permitted before halting deformation, largely prevent this. However, in certain

situations this undesirable effect can still occur as shown in Figure 5.18.
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Fig. 5.18 In some receptor/ligand conformations, atoms that should be closely linked
by a strong bond can be moved apart. This can be seen in the Figure, between the
Nitrogen atom (blue) and the Carbon atom (grey).

Preventing this from occurring during execution, whilst maintaining a haptic

refresh rate, and the level for flexibility that is present is not trivial. Simply halting

the deformation if the distance between two atoms becomes unrealistic is not viable,

as not only will that involve a further computation step every haptic loop, it will also

limit how “deformed” a structure can become. Ideally, it should be addressed at a

more fundamental level.

5.6 Discussion and Conclusion

It has been shown that linear response theory can be combined with real time force

calculations to generate realistic deformation, in response to the presence of a ligand,

at an interactive refresh rate. The test poses show that the movement depicted during

docking is similar to the experimentally determined movement when the ligand is

close to its binding site.

A pertinent question is “What happens to the receptor if the ligand is not at the

binding site, but at another area on the surface of the protein?” In most locations of

the protein, only a small deformation will be seen, in others, a large movement may
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occur. Because of this, it is envisaged that Haptimol FlexiDock will be used primarily

by experts who are already familiar with the molecular structures they are studying,

perhaps using this application in combination with other molecular docking tools.

By using only the eigenvectors spanning a relatively small subspace, it was shown

that the number of multiplications can be reduced considerably without an appreciable

loss of accuracy. For MBP, even though only 3% of the total number of the eigenvectors

(the total number of degrees of freedom of MBP), could be used in order to satisfy the

2 ms time constraint, the subspace they defined contained nearly 90% of the fluctuation

that occurred in the MD simulation. Furthermore, 90% of the functional movement

that occurs upon binding maltose is within this subspace. Reducing the subspace

still further, as necessitated by a slower processor, can still give reasonable results as

demonstrated in Figure 5.14 where it is shown that 70% of functional movement in

MBP is within the space defined by the first three eigenvectors. On the bench system

the 2 ms time was met when using 550 eigenvalues and basic rendering for MBP, and

1220 eigenvalues for GlnBP. In both cases, this is more than sufficient to capture the

important fluctuations of our test receptors.

When including the per-pixel lighting developed in Chapter 4, the 2 ms deadline is

only achieved by limiting the visual refresh rate to 30 FPS, and even then, the average

plus one standard deviation is above the 2 ms cut-off. Furthermore, when zooming

in on the structure, and thereby increasing the fill rate, the performance drops further.

Nevertheless, the resulting visual effect is crisp, and nicely highlights areas of depth in

the receptor.

Of the two theories relating to how conformational change occurs during docking,

the work presented in this chapter supports the induced fit hypothesis. During use, the

ligand is moved into a position, and the receptor deforms around it. It would, in fact,

be impossible for docking to complete using the selected fit theory, as the receptor

would shut, making it impossible for the ligand to move into position.
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The iterative approach incorporated within Haptimol FlexiDock was shown to

stabilise the force during docking, improving the usability of the application.

In this chapter, protein-small ligand docking has been demonstrated. The approach

will scale as the power of computing hardware increases, enabling its use with larger

molecules and whilst incorporating more eigenvalues.

To conclude, in this chapter a haptic-assisted interactive molecular docking system

that incorporates receptor flexibility was presented. Haptimol FlexiDock maintains

a stable haptic refresh rate when performing docking, whilst incorporating enough

of the receptor’s fluctuation space that the receptor’s docking response movement

is accurately depicted when the ligand approaches the binding site. The system is

efficient enough to run on consumer hardware, and as hardware improves, it will allow

docking of larger molecules to be performed.



Chapter 6

Conclusions

The objective of this thesis, as outlined in the introduction, was to address some of

the limitations of current haptic-assisted molecular docking applications. Two main

objectives were outlined: develop a method to incorporate lighting techniques that

can improve the perception of depth in a three dimensional scene, and develop an

approach for modelling receptor flexibility in a haptic-assisted interactive docking

environment. The achievement of these objectives is demonstrated in the software

Haptimol FlexiDock.

Haptimol FlexiDock is a haptic-assisted interactive molecular docking application

that uses linear response theory in order to calculate receptor flexibility in real time.

Furthermore, FlexiDock includes per-pixel lighting effects that highlight crevices

within the receptor and ligand, and includes shadows that can help to show the relative

position between the receptor and ligand. When the visual frame rate is limited, these

effects can be computed whilst achieving the refresh rate demanded by the haptic

device.

The contents of this thesis describe the research into the techniques required for of

Haptimol FlexiDock. After introducing the molecular docking, molecular interactions

and the difficulties of working with haptics: mainly the 2 ms execution time limit
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required for smooth haptic feedback, three stages of research are discussed in Chapters

3-5.

In Chapter 3, regular grid construction algorithms were introduced, developed and

tested. The results presented in Chapter 3 demonstrated that it is possible to reconstruct

and use a regular grid within the 2 ms time constraint, and highlighted that the compact

grid, although being the slowest to construct, is the quickest overall, especially in

scenarios in which the grid is used multiple times per re-construction.

Although the grid construction algorithms presented in Chapter 3 have been

touched upon in literature, the results from the experiments performed in Chapter 3

show for the first time, that GPU based regular grid construction is fast enough for use

with a haptic device.

In this thesis, the described regular grid construction algorithms are heavily utilised

by the rendering algorithms presented in Chapter 4, however that was not the only

motivation for the development of the algorithms. In HaptimolRD, a regular grid is

used to enable interactive docking to be carried out between receptors and ligands

comprising 200,000 atoms each55. This is achieved by using the data structure to

eliminate atom pairs that are sufficiently far apart for their interaction force to be small

enough to omit from the calculation. Although the cut-off is not used within this work,

as the receptor and ligand are both fairly modest in size, it is not inconceivable that

the grid may be needed in order to accelerate flexible docking between two larger

structures, or even a larger structure and a modestly sized ligand.

Indeed, using a cut-off of approximately 30 Å within FlexiDock is unlikely to make

any noticeable difference to the rendered deformation when electrostatic screening

is enabled, because, at that distance the screening will have reduced the electrostatic

force to a negligible value, and the distance will make the vdW interactions similarly

small.

Iakovou 55 demonstrated that a brute force docking approach (calculating the

interaction forces between all of the atoms in the receptor and ligand) was viable for
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biomolecules with up to 1500 atoms on their GPU, compared to 184,000 atoms whilst

using a spatial partitioning structure. Although their experiments were performed on a

less powerful workstation, the premise still holds, albeit with larger values. Therefore,

when performing docking between large structures, using a regular grid to reduce the

number of atom pairs for which the force is calculated could offer a significant speed

up.

Chapter 4 discusses adding per-pixel lighting effects to the visualisation of proteins,

whilst maintaining an interactive refresh rate. The primary purpose of the development

of the rendering algorithm was for inclusion within Haptimol FlexiDock, however the

concept was proven in the software Haptimol Protein Trajectory Viewer (PTV), which

allowed the trajectories of biomolecules up to 300k atoms in size, to be viewed in

real-time, with the developed lighting effects enabled. Testing of the algorithms within

PTV revealed that a visual frame rate of 24 FPS or higher could be maintained whilst

rendering biomolecules up to 75k atoms in size using an Nvidia GTX 980, whilst

reconstructing the acceleration structure every frame, as required within the docking

application, suggesting the algorithms would be usable in an interactive docking

environment.

The methods used to generate the shadows and ambient occlusion are reasonably

straightforward, and are already mentioned in the literature; calculating shaded portions

of the scene with ray-casting is not a new idea, and neither is the ambient occlusion

algorithm; besides the presentation by Skånberg et al. 129 , both approaches were

used within a static protein renderer by Easdon 32 . However, applying the methods

to dynamic molecules in real-time, as is achieved within PTV and FlexiDock, is a

breakthrough in the field of molecular rendering.

As stated, although PTV is a useful piece of software in its own right, the primary

reason for the development of the rendering algorithms was for use within Haptimol

FlexiDock. As seen in Figure 2.2, the lighting effects add depth to the image, and
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highlight the pockets and crevices nicely. Furthermore, the shadowing helps to show

where the ligand is positioned in relation to the receptor.

The inclusion of the rendering algorithms does come at a heavy computational cost

however: a refresh rate of 500Hz on the haptic device is only achieved by using few

eigenvalues and limiting the refresh rate of the visual display to 30Hz or lower. Even

then, there is still a large amount of variation in each loop’s execution time. This is

caused both by the variation in the length of the haptic loop; if a collision is detected,

two additional steps are required before the loop finishes, but also by the rendering

algorithm competing for the limited GPU resources. However, as the performance

of computing hardware improves, it will quickly become feasible to use both the

rendering and deformation calculations in tandem.

Real time calculation of the deformation of a biomolecule during molecular dock-

ing, discussed in Chapter 5, represents the most significant contribution to the field

of haptic-assisted interactive molecular docking within this thesis. The approach

developed in Chapter 5 utilises linear response theory in order to calculate the confor-

mational change induced in a biomolecule in response to the force exerted on it by a

ligand.

When performing docking with a haptic feedback device, calculating the deforma-

tion using the entire variance-covariance matrix of atom fluctuations proved too costly.

Fortunately, a feature of protein dynamics known as the important subspace states

that a large amount of a biomolecule’s fluctuation occurs within a relatively small

subspace. This high fluctuation subspace can be defined by the first m eigenvectors of

the covariance matrix. Doing so allows the flexibility of a receptor to be calculated

within the 2 ms time limit set by the haptic device, a first whilst using consumer-level

computer hardware.

The deformation of structures on ligand binding, calculated by Haptimol FlexiDock,

were compared with crystallographic structures of the docked pose. The results showed
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that backbone movement that occurs when the ligand is docked within FlexiDock,

aligns well with the experimental movement.

There are some limitations to the approach used to modelling flexibility. Firstly,

some of the higher frequency fluctuations are lost. Consequently, some side chain

motion is lost, however, as demonstrated in Section 5.5.1 of Chapter 5, even when using

comparatively few components when compared to the total, a good approximation

of experimentally derived docked poses can be generated, suggesting that the loss of

these modes is not a huge drawback.

The second limitation relates to the haptic device itself. When performing docking,

the haptic device can become unstable, and vibrates violently. The iterative approach

prevents the vibration occurring to some extent, however there is still a limit to how

quickly the device can update the force being rendered. When this limit is reached and

overcome, which can occur when the ligand is placed into an unstable position, the

device can vibrate unpleasantly.

The final limitation relates to the prerequisites of using Haptimol FlexiDock. In

order to model molecular flexibility, FlexiDock requires the PDB and topology files

for both the receptor and ligand, and the eigenvectors and values of the covariance

matrix of atom fluctuations, calculated from an MD trajectory.

As the RCSB hosts many PDB files, these are reasonably straightforward to acquire.

The topology file can often be created from the PDB file, using PDB2GMX, which is

included in the GROMACS package, however if the PDB file contains non-standard

residues, that is to say residues that are not explicitly included within GROMACS,

expert knowledge may be needed to generate the topology.

The most difficult pre-requisite to satisfy is the generation of the eigenvalues and

eigenvectors. In order to calculate them, a molecular dynamics simulation must be

performed. Not only does this take a significant amount of time, expert knowledge

is required to set the parameters of the simulation. Furthermore, once the simulation

has been performed, generating the covariance matrix of intra-molecular atomic
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Fig. 6.1 Haptimol FlexiDock. Small biomolecule on the right is the ligand, larger
biomolecule the receptor. The receptor undergoes conformational change as the ligand
is moved into proximity with it.

fluctuations is a resource heavy computing task; the generation of the eigenvectors for

MBP, a structure of modest size, required 58GB of RAM, using MATLAB to process

the trajectory. Despite this, Haptimol FlexiDock could prove an effective tool for both

computational drug design and education.

The uses of Haptimol FlexiDock

Haptimol FlexiDock (Figure 6.1) could be used within the process of structure based

drug design, with the objective of identifying the ligand which binds most strongly

to a known docking site, perhaps after a separate automated docking approach has

identified potential ligands and binding sites. Haptimol FlexiDock could, at this stage,

allow the user to use their intuition to identify the “best” candidate ligands and rule

out false positives, saving time and resources that may otherwise be used achieving

the same thing in the laboratory.

Although modelling flexibility requires extensive computational effort: performing

an MD trajectory and then generating the covariance matrix, this only has to be

performed once per receptor. This means that after a simulation has been run, any
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Fig. 6.2 User performing molecular docking using a haptic device and Haptimol
FlexiDock

number of ligands can be tested against the receptor, without repeating the computation.

This means that the tool could not only be used for comparative studies on existing

lead compounds but, in expert hands, help foster ideas as to how the ligands might be

improved to enhance binding. In other words FlexiDock could provide an environment

where hypotheses are nurtured and tested.

Haptimol FlexiDock could also be used for education. Lancaster 78 highlights the

difficulties that some young chemists have visualising 3D structures from 2D diagrams,

and how immersive virtual worlds can help understanding. Furthermore the experi-

ments performed as part of project GROPE20 indicated that haptic feedback helped

chemists understand the binding site, and the forcefields surrounding it. Therefore, it

follows that Haptimol FlexiDock should prove to be a useful tool for teaching students

about how molecules bind together, and how the receptor can deform to accommodate

the ligand. Figure 6.2 shows a user performing interactive molecular docking with

Haptimol FlexiDock.
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Lighting effects

The per-pixel lighting effects developed in Chapter 4 were intended to help enhance

the topography of the biomolecules involved in docking. The techniques achieve this:

the ambient occlusion darkens local pockets, whilst the shadow algorithm helps to

show the position of the ligand relative to the receptor, and also how the parts of the

receptor deform in relation to one another.

However, in order for Haptimol FlexiDock to achieve a force feedback refresh rate

of 500Hz or greater whilst performing rendering with advanced lighting, the refresh

rate of the visual render had to be limited to 30Hz. Although this is fast enough to

be considered real time, the movements are not as smooth as they would be at 60Hz,

for example. This leads on to an interesting question: “What is more important, the

graphical visualisation of the biomolecule, or the haptic feedback?”

Rendering vs Haptics

When considering the relative importance of visuals v haptics, it could be argued that

a good visualisation is the most important aspect of the application. The user will use

their sense of sight to view the receptor and ligand, judge their topologies, and form

hypotheses relating to the location of likely binding sites. Then, during the docking

process, they will use their sense of sight to judge and understand the relative position

of ligand and receptor. It is vitally important therefore, that an adequate visualisation

is provided.

However, the importance of the haptic feedback cannot be understated. Early

research20 indicated that performing molecular docking was much quicker with haptic

assistance than without. My own observations agree with this: being pulled into the

docking site, and feeling strong resistance when trying to move the ligand into areas

where repulsive forces are present greatly assists the binding process, and is more

informative than rendering the resulting forces as a number, or indeed as a colour.
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So what is more important? A good visualisation or a high haptic refresh rate? A

high quality visualisation up to a minimum standard - sufficient to be able to quickly

judge relative position and depth, but little more than that; reflections for instance,

would add little to the software as a molecular docking package. With that satisfied,

haptics should be prioritised, as they make for a more ergonomic experience, and offer

a useful way to learn about the protein-ligand interaction.

6.1 Impact

In the field of interactive molecular docking, Haptimol FlexiDock represents a major

step forward. For the first time, the flexibility of the receptor is modelled in real

time on consumer grade hardware, whilst maintaining a haptic refresh rate of 500 Hz

or greater. This represents a significant breakthrough, as, until this point, receptor

flexibility has been ignored, or implemented poorly, in the field of interactive docking.

It is difficult to judge the overall impact Haptimol FlexiDock will have on the

scientific community. FlexiDock was sent to a research group based in Japan, who are

interested in biomolecular interactions, in order for them to try it out and highlight any

missing features that they consider vital for their research.

Feedback was good, and the tool was met with enthusiasm and interest, with one

researcher keen to show it to his employees. This is encouraging, and demonstrates

that the development path is correct, however the overall message was: incorporate

ligand flexibility, and this tool will be very useful. Therefore, that needs to be the

next area of research undertaken. When receptor and ligand flexibility are integrated

together, the potential impact of the tool, in both learning and teaching, could be

massive.

The impact of the presented ideas beyond the field of molecular docking is more

difficult to judge. Although the ideas presented may be transferable, it is unlikely the

developed algorithms will be, without some level of adjustment for a new purpose, as
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they are highly optimised for molecular docking. However interactive exploration of a

problem using haptics could have a variety of uses in engineering.

An interesting idea is the idea of a virtual wind tunnel. The user could explore areas

of high and low pressure using the haptic device, and increase their understanding of

the surface they’re studying, and the affect of adjusting various spoilers. It is likely

computation demands of areas of low and high pressure would, similarly to molecular

deformation, exceed the amount of computational power available on an ordinary

desktop workstation. Therefore, a dimensionality reduction technique would need to

be utilised; whether CFD simulations could be used in the same manor as molecular

docking simulations are used in the work presented in Chapter 5 would need to be

investigated.

The method for calculating the deformation developed in Chapter 5 may also have

uses in other fields. GPUs are highly suited for performing mathematical computations

in parallel, more so than a CPU, which have few computation cores when compared

to a GPU. One of the limitations of using the GPU for general purpose computation

is the overhead caused by having to instruct the GPU to perform computation; every

time a kernel is launched, there is some overhead. The method presented in Chapter 5

reduces the amount of overhead generated, by reducing what would be three calls to a

conventional blas library down to two kernel calls.

A generalisation of matrix multiplication method could perhaps, be useful in some

bespoke applications, as the process allows multiplying a matrix by a vector, and then

a scaler with a single kernel call. It is possible that a field that relies heavily on matix-

vector multiplication may benefit from it – the field of cryptography, for example.

The multiplication process described in Chapter 5 is heavily tuned to perform the

deformation calculation for which it was intended, so it is likely that further changes

would be required in order to achieve optimum performance for a separate application.
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6.2 Future work

6.2.1 Ligand flexibility

The most obvious next step in the development of Haptimol FlexiDock would be the

addition of ligand flexibility. For larger proteins, it is possible that the linear response

method described in detail in Chapter 5 could be used. However, with smaller ligands,

this approach is unlikely to be suitable, owing to the fact that smaller ligands often have

rotatable bonds that can move through 360 degrees which cannot be handled using

LRT. In these situations, energy minimization, the process of finding an arrangement

in space of a collection of atoms where the total inter-atomic force is close to zero,

could be used. Modelling ligand flexibility will increase the amount of computation

required per haptic loop. Nevertheless, incorporating it within Haptimol FlexiDock

will bring the application another step closer to modelling reality.

6.2.2 Unrealistic distortion of molecular geometry

The biggest limitation in the approach to modelling receptor flexibility presented in

Chapter 5 is that in some situations, bonds that link atoms can be stretched, and even

broken (See Chapter 5, Section 5.5.4). Methods to prevent this happening, either

during the haptic session or during a precomputation stage need to be investigated.

6.2.3 User testing and evaluation

In this thesis, there has been no discussion of undertaking formal user testing and

evaluation of Haptimol FlexiDock, beyond discussions with the research groups that

have supported this research. The reason for this is the desire for the application to be

complete before undertaking evaluation. This means that ligand flexibility needs to be

accounted for, and the undesirable distortion of the biomolecular geometry handled

elegantly. The motivation for this is it will require a significant effort to acquire
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feedback from a number of biologists who are involved in the field of molecular

docking – it makes little sense to do this before the software is finished, as the resulting

feedback will likely relate to the limitations that we are already aware of. Better

rather, to have the software complete and ready for use, in order to make a good first

impression of it, and for it to be ready and useful as the wider community become

aware of it.

6.2.4 Automatic Determination of Eigenvalues

In Chapter 5, the number of eigenvalues used during the docking experiments was

determined by hand, after evaluating the performance test results. The optimum value

for use on any one computer could be determined automatically by utilising a simple

benchmark routine, wherein an increasing number of eigenvalues are used until the

average haptic refresh rate drops below a specified threshold. This would improve the

ergonomics of the application, and insure that the maximum number of eigenvalues

are used whilst maintaining the desired haptic refresh rate, regardless of the hardware

used.

6.2.5 Torques

Currently Haptimol FlexiDock does not model the torque that the ligand would ex-

perience during binding. The torque forces would ordinarily make the ligand rotate

upon its axes, into a more optimum orientation. These forces were ignored, largely

because low-cost haptic devices cannot render them. Computing the torque caused by

the interaction forces would add a negligible overhead to the force calculation, and

could improve the user experience, provided their haptic device is 6-DoF capable.
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6.2.6 Molecular Visualisations

In Haptimol FlexiDock, the only molecular visualisation supported is space filling

mode, however this is by no means the only molecular representation. Figure 6.3 shows

some of the other representations available within the molecular graphics package

PyMol. These different representations allow viewing of different aspects of the

biomolecule. For example the path of the protein chain is easier to view using the

“backbone” method than it is with space-fill.

Figure 6.1 (B) shows the solvent excluded surface (SES) of MBP. This visual-

isation shows the surface area of the biomolecule which comes into contact with

the solvent. The SES highlights the topography of the biomolecule, which can be

useful when identifying potential binding sites. Computing the surface of a static

biomolecule of modest size is not too computationally intensive, however computing

it as the biomolecule deforms is not as straightforward. Nevertheless, as a result of

the advantages the surface offers, algorithms have been developed that may allow

computation of the surface in real time.

A promising implementation that could be developed, and then incorporated

within Haptimol FlexiDock was presented by Krone et al. 75 and improved by Jurčík

et al. 63 . Krone et al. 75 demonstrated rendering the SES of a molecular trajectory at

an interactive refresh rate of a biomolecule comprising approximately 10,000 atoms

by calculating the “reduced surface119”, and then ray casting it using OpenGL. The

resulting render is per-pixel accurate, and contains some depth darkening, making it

ideal for use within FlexiDock.

Since the beginning of this project, the number of floating point operations con-

sumer graphics cards can perform per second has more than doubled. This increase

in performance allows more computation to be performed per haptic or visual frame.

Within Haptimol FlexiDock, this translates to performing docking between larger

biomolecules, whilst using more eigenvalues or supporting ligand flexibility. On the

other hand, the increased floating point performance could also allow more advanced
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A B

C D

Fig. 6.3 Four different protein visualisation modes generated with PyMol123. (A)
Liquorice, (B) Surface, (C) Backbone, (D) Sticks

.

rendering techniques: Real time ray tracing, for example, is well on the way to become

possible on regular consumer computer systems94.

If the computational ability of modern graphics cards continues to increase, mod-

elling both ligand and receptor flexibility within the 2 ms time frame imposed by the

haptic device should be achievable. The research presented in this thesis represents

the first step, and although there is a long way to go, the final goal of fully interactive

molecular docking, with molecular flexibility, high fidelity graphics and smooth haptic

feedback should be within reach.
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6.3 Final Remarks

The contents of this thesis push forward the field of interactive molecular docking.

The main contribution to the field is an approach to modelling biomolecular flexibility

whilst supporting a haptic refresh rate of over 500Hz. Also, contributions are made to

the biomolecular rendering field: for the first time, a space filling representation of a

deforming protein has been rendered in real-time, with high quality per-pixel lighting

effects including ray-cast shadows.
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Appendix A

Parallel Scan algorithms

In the grid construction algorithms described in Chapter 3, two different parallel scan

algorithms are used: a parallel prefix sum, and a scan algorithm used to determine

the minimum and maximum of an array. These algorithms make effective use of the

parallel architecture of graphics processors.

For both algorithms, n
2 threads are launched, where n is equal to the number of

items within the array to be scanned. Each thread then performs an operation on

two elements, and stores the result in memory. The result is then used by another

thread, which performs the same operation again with the result of the neighbouring

calculation. This is then repeated until the algorithm is complete.

A.1 Parallel Prefix Sum

Figure A.1 shows how the core of the parallel prefix sum algorithm works. In row one,

each thread adds two neighbouring elements together and stores the solution in shared

memory. Then, in row two, half of the threads in the work group take the summations

calculated in row one, and sum them together. This is repeated until the sum of the

entire array is stored in the right most memory bank (Column 7 in Figure A.1). In the

method used in this thesis, the value is then stored separately for use later.
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Fig. A.1 Graphic describing the parallel prefix sum calculation. Black arrows indicate
an “add” operation has been performed, red arrows indicate a copy operation has been
performed.

After the array total has been stored, the right most value is set to zero. Then, over

the subsequent rows, the addition is repeated in reverse, with an offset that halves each

time. Also at this stage, the solution to the previous summation is copied down the

array with each summation, as indicated by the red arrows in Figure A.1.

When using shared memory, as is required to achieve good performance with a

scan algorithm on the GPU, only threads within the same work group can access the

values calculated by the other threads. As the work group size is limited to 1024

threads on most Nvidia GPUs, this necessitates that further kernels are required in

order to complete the prefix sum calculation for the entire array.

In order to combine the results from each work group, the total for each segment

of the array is saved (Line 4 in Figure A.1), before it is reset to zero. That value is
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F
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0 9 38 56
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E

 = Prefix sum calculated

Block0 Block1 Block2 Block3

Fig. A.2 An overview of the parallel prefix sum algorithm, with a maximum work
group size of 2. A: the un-summed array; B: the array summed at a work group level;
C: the array of work group totals; D: The prefix sum of the work group total array; E:
The prefix sum of the totals is added to work group level values; F: The prefix sum of
the starting array. A group of three arrows indicates that the prefix sum is calculated.

then stored in a global memory, in an array of work group totals (Figure A.2, line C).

The prefix sum of this work group totals array is then calculated (Figure A.2, line D).

The result is the value each work group (from the original summation), needs to add to

each element in that portion of the array, in order to determine the prefix sum for the

full array (Figure A.2, line F).

In the scenario depicted in Figure A.2, the maximum length of an array that can be

summed is 20482, with a work group size limit of 1024. If an array longer than this

needed to be summed, a further reduction step would be required.
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A.2 Minimum and Maximum

To find the minimum and maximum of an array, a scan algorithm is also used. Figure

A.3 shows how the algorithm works at a work group level. In the initial step, each

thread compares two values, and moves the larger to the right hand side of the array,

and the smaller to the left.

Then, each thread compares two further values, and if the “left” value is larger

than the “right” value, they are swapped. In the subsequent rows this is repeated

with an offset that increases with each reduction. The number of threads performing

comparisons is halved at each level, until only two are left. At this point, a final

comparison is performed. The largest element in the array will be the right most value,

and the smallest value will be the left most value.

As with the parallel prefix sum, an additional kernel is needed to combine the

results of each work group. Therefore, the largest and smallest values from each work

group are copied into a separate, intermediate array. The minimum and maximum of

the intermediate array is then found, giving the overall minimum and maximum of the

original array.
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Fig. A.3 work group level depiction of the minimum and maximum algorithm. (A)
original array for which the minimum and maximum is required; (B) smaller values
have been moved to the left hand side of the array, larger values moved to the right;
(C) Each thread compares a pair of values. If the RHS is smaller than the LHS, they
are swapped, as indicated by a green background; (D) The smallest values from (C)
are compared, and swapped again if necessary; (E) Final array - the smallest value
is furthest left, the largest furtherest to the right; In the diagram, the work group
comprises 8 threads. In reality, it comprises of 512 or 1024 threads, necessitating many
more levels per work group.
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Lighting Fragment shader

1

2 // Calculates lighting for the spheres - textures for
positions , colours and normals are filled in the
geometrypass.

3

4 #version 430
5

6 in vec3 ex_LightDir;
7 // textures constructed from the geometry pass to store

positions , colours and normals
8 uniform sampler2D diffuseTexture;
9 uniform sampler2D positionsTexture;

10 uniform sampler2D normalsTexture;
11 in vec2 ex_TexCoord;
12

13 // lighting properties
14 uniform vec4 light_ambient;
15 uniform vec4 light_diffuse;
16 uniform vec4 light_specular;
17

18 // regular grid
19 uniform float gridCellSize;
20 uniform int totalAtomCount;
21 uniform int finalCell;
22 uniform vec3 gridMin;
23 uniform ivec3 gridNumBoxes;
24 uniform float aoIntensity;
25 uniform int maxOccluders;
26

27 //model view matrix for the protein
28 uniform mat4 mvMatrix;
29

30 // output colour.
31 out vec4 colour;
32

33

34 //ssbo structures
35 layout(std430 , binding = 1) buffer grid_data
36 {
37 float cellId_ssbo [];
38 };
39

40 layout(std430 , binding = 2) buffer sphere_positions
41 {
42 float spherePositions_ssbo [];
43 };
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44

45 layout(std430 , binding = 3) buffer cell_lookup
46 {
47 int cellStartPoint [];
48 };
49

50 layout(std430 , binding = 4) buffer ao_data
51 {
52 float aoDATA [];
53 };
54

55 void ToLocal(in vec3 p, in mat4 matrix , inout vec3 newP)
56 {
57 float a = matrix [0][0] , b = matrix [0][1] , c = matrix [0][2];
58 float d = matrix [1][0] , e = matrix [1][1] , f = matrix [1][2];
59 float g = matrix [2][0] , h = matrix [2][1] , j = matrix [2][2];
60 float k = matrix [3][0] , l = matrix [3][1] , m = matrix [3][2];
61 newP.x = a*p.x + b*p.y + c*p.z + (a*-k + b*-l + c*-m);
62 newP.y = d*p.x + e*p.y + f*p.z + (d*-k + e*-l + f*-m);
63 newP.z = g*p.x + h*p.y + j*p.z + (g*-k + h*-l + j*-m);
64 }
65

66 void ToLocalRay(in vec3 p, in mat4 matrix , inout vec3 newP)
67 {
68 float a = matrix [0][0] , b = matrix [0][1] , c = matrix [0][2];
69 float d = matrix [1][0] , e = matrix [1][1] , f = matrix [1][2];
70 float g = matrix [2][0] , h = matrix [2][1] , j = matrix [2][2];
71 float k = matrix [3][0] , l = matrix [3][1] , m = matrix [3][2];
72 newP.x = a*p.x + b*p.y + c*p.z;
73 newP.y = d*p.x + e*p.y + f*p.z;
74 newP.z = g*p.x + h*p.y + j*p.z;
75 }
76

77 vec3 getCellMinPoint(int x, int y, int z)
78 {
79 vec3 cellBoundsMin;
80 cellBoundsMin.x = (x * gridCellSize) + gridMin.x;
81 cellBoundsMin.y = (y * gridCellSize) + gridMin.y;
82 cellBoundsMin.z = (z * gridCellSize) + gridMin.z;
83 return cellBoundsMin;
84 }
85

86 vec3 getCellMaxPoint(int x, int y, int z)
87 {
88 vec3 cellBoundsMax;
89 cellBoundsMax.x = ((x + 1) * gridCellSize) + gridMin.x;
90 cellBoundsMax.y = ((y + 1) * gridCellSize) + gridMin.y;
91 cellBoundsMax.z = ((z + 1) * gridCellSize) + gridMin.z;
92 return cellBoundsMax;
93 }
94

95 bool insideGrid(int x, int y, int z)
96 {
97 return ((x >= 0) && (y >= 0) && (z >= 0)) && ((x <

gridNumBoxes.x) && (y < gridNumBoxes.y) && (z <
gridNumBoxes.z));

98 }
99

100 void IntersectRayAABB(vec3 ro, vec3 rd, vec3 gridMin , vec3
gridMax , out float t0)

101 {
102 vec3 invR = 1.0 / rd;
103 vec3 tbot = invR * (gridMin - ro);
104 vec3 ttop = invR * (gridMax - ro);
105 vec3 tmin = min(ttop , tbot);
106 vec2 t = max(tmin.xx, tmin.yz);
107 t0 = max(t.x, t.y);
108 }
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109

110 struct LightingResults
111 {
112 vec4 ambient , diffuse , specular;
113 };
114

115 // calculates if the ray intersects with any spheres located
in the grid cell specified by gridCellIndexID

116 void softShadowGrid(vec3 ro, vec3 rd, float sphereID , int
gridCellIndex1D , inout float s)

117 {
118

119 //based on the gridCellIndex1D passed in - this could be
swapped out for a different data structure.

120 int accessId;
121 int loopLimit;
122 int readId;
123

124 accessId = cellStartPoint[gridCellIndex1D ];
125 if (gridCellIndex1D + 1 == finalCell){
126 loopLimit = totalAtomCount - accessId;
127 }
128 else {
129 loopLimit = cellStartPoint[gridCellIndex1D + 1] -

accessId;
130 }
131

132 for (int i = 0; i < loopLimit; i++)
133 {
134 float shadowSphereID;
135 shadowSphereID = cellId_ssbo[accessId ];
136 accessId ++;
137

138 if(shadowSphereID < -0.5) // gridDataTexture includes
values of -1 when the index list ends

139 break; //break the for loop as there
are no more atoms in this grid cell

140

141 vec4 sphere;
142 int lookupId = int(shadowSphereID) * 4;
143 sphere.x = spherePositions_ssbo[lookupId ];
144 sphere.y = spherePositions_ssbo[lookupId + 1];
145 sphere.z = spherePositions_ssbo[lookupId + 2];
146 sphere.w = spherePositions_ssbo[lookupId + 3];
147

148 vec4 sphereEye = mvMatrix * vec4(sphere.xyz , 1.0);
149 float t0 = dot(( sphereEye.xyz - ro), rd);
150 float b = 0.020;
151 float R = sphere.w - b;
152 float d = length ((t0 * rd) - sphereEye.xyz + ro);
153

154 if(t0 < 0.0){
155 s = min(s, 1.0);
156 } else {
157 if(d < R){
158 s = 0.0;
159 break;
160 } else if(d > sphere.w){
161 s = min(s, 1.0);
162 } else {
163 s = min(s, smoothstep (0.0, 1.0, (d - R) / b));
164 }
165 }
166 }
167 }
168

169 void traverseGrid(vec3 ro, vec3 rd , float sphereID , inout
float s)

170 {
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171 vec3 rayOrigin;// = (inverse(mvMatrix) * vec4(ro ,1.0)).xyz;
172 vec3 rayDir;
173

174 // transform ro and rd into grid’s local space
175 ToLocal(ro, mvMatrix , rayOrigin);
176 ToLocalRay(rd, mvMatrix , rayDir);
177

178 int indexX = int(( rayOrigin.x - gridMin.x) / gridCellSize);
179 int indexY = int(( rayOrigin.y - gridMin.y) / gridCellSize);
180 int indexZ = int(( rayOrigin.z - gridMin.z) / gridCellSize);
181

182 // if the ray origin doesn’t start inside the grid , adjust
rayOrigin so it does

183 if(! insideGrid(indexX , indexY , indexZ))
184 {
185 float t = 0.0;
186 vec3 gridMax = gridMin + (gridCellSize * gridNumBoxes);
187

188 IntersectRayAABB(rayOrigin , rayDir , gridMin , gridMax , t);
189 rayOrigin += rayDir * t;
190

191 indexX = int(( rayOrigin.x - gridMin.x) / gridCellSize);
192 indexY = int(( rayOrigin.y - gridMin.y) / gridCellSize);
193 indexZ = int(( rayOrigin.z - gridMin.z) / gridCellSize);
194 }
195

196 float tDeltaX = abs(gridCellSize / rayDir.x);
197 float tDeltaY = abs(gridCellSize / rayDir.y);
198 float tDeltaZ = abs(gridCellSize / rayDir.z);
199

200 int stepX = 1;
201 int stepY = 1;
202 int stepZ = 1;
203

204 if(rayDir.x < 0.0)
205 stepX = -1;
206

207 if(rayDir.y < 0.0)
208 stepY = -1;
209

210 if(rayDir.z < 0.0)
211 stepZ = -1;
212

213 vec3 cellBoundsMin = getCellMinPoint(indexX , indexY , indexZ
);

214 vec3 cellBoundsMax = getCellMaxPoint(indexX , indexY , indexZ
);

215

216 float tMaxNegX = (cellBoundsMin.x - rayOrigin.x) / rayDir.x
;

217 float tMaxNegY = (cellBoundsMin.y - rayOrigin.y) / rayDir.y
;

218 float tMaxNegZ = (cellBoundsMin.z - rayOrigin.z) / rayDir.z
;

219

220 float tMaxPosX = (cellBoundsMax.x - rayOrigin.x) / rayDir.x
;

221 float tMaxPosY = (cellBoundsMax.y - rayOrigin.y) / rayDir.y
;

222 float tMaxPosZ = (cellBoundsMax.z - rayOrigin.z) / rayDir.z
;

223

224 float tMaxX = rayDir.x < 0 ? tMaxNegX : tMaxPosX;
225 float tMaxY = rayDir.y < 0 ? tMaxNegY : tMaxPosY;
226 float tMaxZ = rayDir.z < 0 ? tMaxNegZ : tMaxPosZ;
227

228 bool done = false;
229 while(!done)
230 {
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231 int gridCellIndex1D = (indexZ * gridNumBoxes.x *
gridNumBoxes.y) + (indexY * gridNumBoxes.x) + indexX;

232 softShadowGrid(ro , rd, sphereID , gridCellIndex1D , s);
233

234 if(tMaxX < tMaxY)
235 {
236 if(tMaxX < tMaxZ)
237 {
238 indexX += stepX;
239 tMaxX += tDeltaX;
240 } else {
241 indexZ += stepZ;
242 tMaxZ += tDeltaZ;
243 }
244 } else {
245 if(tMaxY < tMaxZ)
246 {
247 indexY += stepY;
248 tMaxY += tDeltaY;
249 } else {
250 indexZ += stepZ;
251 tMaxZ += tDeltaZ;
252 }
253 }
254 //this loop might be able to terminate early if the

shadow is found.
255 done = !insideGrid(indexX , indexY , indexZ) || (s < 0.01);
256 }
257 }
258

259 void directional(in float ao , in vec4 diffuseTexel , in vec4
positionTexel , in vec4 normalTexel , inout LightingResults
colour)

260 {
261 LightingResults col;
262 col.ambient = vec4 (0.0);
263 col.diffuse = vec4 (0.0);
264 col.specular = vec4 (0.0);
265

266 float sphereID = positionTexel.w;
267 vec3 n = normalTexel.xyz;
268

269 // light direction
270 vec3 l = normalize(ex_LightDir.xyz);
271

272 float NdotL = max(0.0, dot(n, l));
273

274 // ambient
275 col.ambient += ao * diffuseTexel * light_ambient * (

normalTexel.z + 1.0);
276

277 if (NdotL > 0.0)
278 {
279 // diffuse
280 col.diffuse += (diffuseTexel * light_diffuse) * NdotL;
281

282 // specular
283 vec3 v = normalize(-positionTexel.xyz);
284 vec3 r = normalize(-reflect(l, n));
285 float RdotV = max(0.0, dot(r, v));
286 col.specular += 0.8 * light_specular * pow(RdotV , 80.0);
287

288 float s = 1.0;
289 traverseGrid(positionTexel.xyz , l, sphereID , s);
290 col.diffuse *= s;
291 col.specular *= s;
292 }
293

294 colour.ambient += col.ambient;
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295 colour.diffuse += ao * col.diffuse;
296 colour.specular += ao * col.specular;
297 }
298

299 void aoOnly(in int index , in float ao, in vec4 diffuseTexel ,
in vec4 positionTexel , in vec4 normalTexel , inout
LightingResults colour)

300 {
301 colour.ambient = ao * diffuseTexel * 1.2 * (1.0 + (0 * 0.5)

);
302 }
303

304 float calcAO(vec3 pos , float sphereID , vec3 norm)
305 {
306 //if sphere does not exsist , return default value.
307 if (sphereID < -0.5)
308 return 0.7f;
309

310 // determine lookup index of occluder list
311 int id = int(sphereID) * maxOccluders;
312 float ao = 0.0;
313

314 for (int i = 0; i < maxOccluders; i++)
315 {
316 //load occluder sphere ID.
317 int occluderSphereID = int(aoDATA[id + i]);
318

319 //if ID < 1, all occluders tested , break loop.
320 if (occluderSphereID < -0.5){
321 if (i == 0){ //If no occluders in list , return constant

.
322 return 0.7f;
323 }
324 break;
325 }
326

327 //load occluding sphere from SSBO.
328 vec4 sphere;
329 int lookupId = int(occluderSphereID) * 4;
330 sphere.x = spherePositions_ssbo[lookupId ];
331 sphere.y = spherePositions_ssbo[lookupId + 1];
332 sphere.z = spherePositions_ssbo[lookupId + 2];
333 sphere.w = spherePositions_ssbo[lookupId + 3];
334

335 // position sphere in space.
336 vec4 sphereEye = mvMatrix * vec4(sphere.xyz , 1.0);
337

338 // calculate vector between occluding and original sphere.
339 vec3 dir = pos - sphereEye.xyz;
340 float len = length(dir);
341 float sphereLen = sphere.w / len;
342 float sqrtV = 1.0 - (sphereLen * sphereLen);
343 sqrtV = (sqrtV < 0) ? 0 : (sqrtV > 1) ? 1 : sqrtV;
344

345 // Determine occlusion contribution (Section 4.3.3)
346 float t = dot(norm , dir);
347 float AOProportion = (clamp((t + sphere.w), 0.0, 2 *

sphere.w)) / (2 * sphere.w);
348 ao += 1.0 - (AOProportion * sqrt(sqrtV));
349 }
350 // calculate final occlusion
351 return clamp (1.0 - (ao * aoIntensity), 0.0, 1.0);
352 }
353

354 void main()
355 {
356
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357 vec4 positionTexel = texture(positionsTexture , ex_TexCoord
);

358 vec4 normalTexel = texture(normalsTexture , ex_TexCoord);
359 vec4 diffuseTexel = texture(diffuseTexture , ex_TexCoord);
360

361 LightingResults colourRes;
362 colourRes.ambient = vec4 (0.0);
363 colourRes.diffuse = vec4 (0.0);
364 colourRes.specular = vec4 (0.0);
365

366 if (positionTexel.xyz == vec3 (1.0))
367 {
368 colour.rgb = vec3 (1.0);
369 colour.a = float(positionTexel.xyz != vec3 (1.0));
370 return;
371 } else {
372 float ao = calcAO(positionTexel.xyz , positionTexel.w+0.5,

normalTexel.xyz) ;
373 directional(ao , diffuseTexel , positionTexel , normalTexel ,

colourRes);
374 }
375

376 colour = colourRes.ambient +colourRes.diffuse +colourRes.
specular;

377 }
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