
Supplementary Information: A mathematical
model for appressorium–mediated plant

infection by the rice blast fungus
Magnaporthe oryzae

1 Description of the mathematical model

We propose a novel geometric partial differential model for the penetration of the
leaf by the rice blast fungus that couples the evolution of the appressorium with
a system of reaction–diffusion equations describing the spatiotemporal dynam-
ics of the molecular species. A related model is presented in [8, 13] in which
the appressorium geometry is modelled in terms of a bioelastic shell. In this
paper the authors show that the basic design of the appressorium is robustly
consistent with mechanical principles and has the ability to withstand enormous
increases in turgor pressure with apparently little change in shape. However the
model considered in [8, 13] is a purely mechanical model of the appressorium
geometry and unlike the model we present in this study, it does not consider any
aspects of the biochemistry of infection.

In the mathematical setup we consider, the boundary of the appressorium is
defined by an evolving closed surface Γ(t) and is assumed to lie on an evolving
bounded surface Υ(t) that defines the leaf cuticle. For the initial configuration
we consider a dome-shaped appressorium with flat face that is in contact with
the leaf surface and a hemispherical region above the leaf, see Figure 1 for a
schematic representation. This initial setup approximates the geometry of the
appressorium 4 hours into a time-course experiment of appressorium develop-
ment, just before melanin deposition begins.

The evolution laws for the two surfaces take the form of a forced mean curvature
flow, see [5] for a mathematical review of such laws, where, in the case of Γ(t),
the forcing depends on the solution of a system of surface reaction–diffusion
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equations that hold on Γ(t). The system of surface reaction–diffusion equa-
tions model the concentration of melanin, the turgor sensor, Septins and F-actin
present at the surface of the appressorium. We denote the surface concentra-
tions of these species by um, uts, us and ua, respectively.

We refer to the concentrations of each of the four species in the interior of the
appressorium as bulk concentrations and we make the assumption that the dif-
fusion of the bulk concentrations is sufficiently fast such that the bulk concen-
trations, denoted by Bm, Bts, Bs and Ba, may be treated as spatially uniform.
An additional modelling assumption we make is that the total amount, i.e. the
combined bulk and surface concentrations, of each species is conserved. We
denote these total amounts by Tm, Tts, Ts and Ta with

Ti(t) := Si(t) +Bi(t), for i = m, ts, s, a (1)

where Si(t) :=

∫
Γ(t)

ui gives the total amount of species i on the surface at time

t.

Following biological observations, we assume that a key determinant of where
species localise in the appressorium is a seeded ring structure, denoted by r.
This structure demarcates the appressorium pore to which Septins are initially
recruited (see [4]) and where the F-actin network forms during appressorium
maturation. Melanin localises only in regions where this seeded structure is ab-
sent and is thus recruited to the dome. Melanin is absent from the appressorium
pore (see [1]). The core Septins, F-actin and the turgor sensor are all recruited
to the seeded ring structure at the appressorium pore.

2 Parameterisation

A description of the parameters used in the model together with their corres-
ponding values is given in Tables 1 and 2. We have attempted, where possible,
to use parameter values that have been measured in the experimental literat-
ure, [1, 3], or in this study, and in the case that such an estimate is available,
the source is provided along with the value in the table. Some of the mechan-
isms we include, such as the rigidity of the fungus surface depending on Septins
and melanin density, are phenomenological in nature, hence, there is no exper-
imental data for the associated parameter values. For such cases, we have
simply fitted the values using the model simulations such that the simulated dy-
namics are qualitatively similar to those observed in experiments. For many of
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the parameters involved in the localisation kinetics, we can only determine them
up to a multiplicative constant which is given by the total amount of each species
present in the appressorium. This is since there is no data on the total amounts
of the species we consider, i.e., melanin, Septins, F-actin and the turgor sensor.
Due to this uncertainty in some of the parameter values used, in Section 7.2 we
report on the results of some basic sensitivity analysis that demonstrates the
model possesses a degree of robustness with respect to the parameters.

Table 1: List of parameters used in the evolution laws together with the values
used, units and their experimental source (where available).

Description Physical Unit
ω0 fungus rigidity coefficient 1.92× 1013kNsm−3 (phenomenological, fitted)
m1 rigidity magnification due to melanin 1000 Dimensionless (phenomenological, fitted)
m2 melanin spatial reference value 1.11× Tm × 109gm−2 (fitted, no data on Tm)
s1 fungus rigidity magnification due to Septins 1000 Dimensionless (phenomenological, fitted)
s2 reference value of Septins for rigidity 8.89 · Ts × 108gm−2 (fitted, no data on Ts)
t̄ reference time period for turgor generation 3.6× 104s (4− 14 hpi [11])
P time pressure coupling constant 6.94× 10−2kNs−1m−2

(fitted with µ for range (2→ 6 MPa [11])
pI pressure at start time 2× 103kNm−2 (2MPa) [11]
µ turgor melanin recruitment coupling 4× (Tm)

−1 × 103kNg−1m−2

(fitted with P to get range, Tm unknown)
a1 F-actin induced magnification factor 10 Dimensionless
a2 F-actin spatial reference value 1.11 · Ta × 109gm−2 (no data on Ta)
d0 repulsive distance reference value 7.5× 10−7m (regularisation)
r0 repulsive potential reference value 3× 10−2kNm−1 (regularisation)
k power factor in obstacle potential 12 (regularisation)
σ fungus surface tension 3× 10−3kNm−1

(≈ 0, regularisation)
σl leaf surface tension 3× 104kNm−1 (phenomenological, fitted)
H̄l threshold value for leaf curvature 2.67× 104m−1 (phenomenological, fitted)
ωl leaf rigidity coefficient 1.92× 1019kNsm−3 (phenomenological, fitted)

3 Geometric evolution laws

In this section, we describe the geometric evolution laws governing the motion of
the dome shaped appressorium and the leaf cuticle. We assume each surface
may be modelled as a fluidic membrane that resists stretching and bending.
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Figure 1: A schematic representation showing the cross-section of the dome-
shaped appressorium lying flat on the leaf surface forming a hemispherical re-
gion above the leaf.

We denote the outward unit normal, the mean curvature and the normal velocity
of Γ(t) by ν, H and V respectively and similarly the downward unit normal, the
mean curvature and the normal velocity of Υ(t) by ν l, Hl and Vl. The motion of
the appressorium is governed by a geometric evolution law for Γ(t) that takes
the form of a forced mean curvature flow, see [5], and is formulated as

ω(um, us)V = p (Sm(t), t)
(
1 + gpa1,a2(ua)

)
−σH+g (Hl, d(x), d0, r0) on Γ(t). (2)

Next we describe the physical meaning of each of the terms involved in the
derivation of the geometric evolution law (2).

(i) The presence of melanin and Septins on the surface of the appressorium
are known to contribute to its rigidity, [4], hence where these species are
present the resistance to motion, of the surface, is increased. The trans-
lation of this biological phenomena into mathematics is obtained via the
rigidity function ω (um, us) := ω0(λm1,m2(um) + λs1,s2(us)) where ω0 is the
magnification factor of the rigidity,

λm1,m2(um) := 1 +
m1

2

(
1 +Hε

(
um −m2

m2

))
,

and the function Hε(α) = tanh (αε−1), with 0 < ε � 1, smoothly approxim-
ates the discontinuous step function

Hα :=

{
1 if α ≥ 0
−1 otherwise.

The term λs1,s2(us) is defined in a similar way with um, m1 and m2 replaced
with us, s1 and s2 respectively.
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(ii) The protrusive force, exerted on the surface of the fungus as a result of the
interior turgor pressure, is assumed to be an increasing function of the total
amount of melanin recruited to the cell wall layer to reduce the cell poros-
ity and thereby retain solute to generate hydrostatic turgor. Its magnitude
is assumed to be increased where F-actin is present on the surface, [4].
Mathematically we model this through the function p(Sm(t), t)(1+gpa1,a2(ua)),
where p(Sm(t), t) models the turgor-generated protrusive force, taking into
account the hypothesis that the amount of turgor generated increases as
more melanin is recruited to the surface. While (1 + gpa1,a2(ua)) models the
magnification, due to F-actin, of this turgor generated protrusive force.

It is observed experimentally, see [2] (Fig.4.(B)) and [11] (Fig.1.), that the
turgor pressure exertion by the appressorium during the formation of the
penetration hypha roughly increases linearly in time and then becomes
constant. We represent these observations mathematically by the function
p1(t) where

p1(t) :=

{
Pt+ pI if t < t̄,

P t̄+ pI if t̄ ≤ t ≤ T,

with pI denoting the pressure at t = 0. Recalling that Sm(t) =
∫

Γ(t)
m, such

that Sm(t) represents the total amount of melanin on the surface of the
appressorium, we set

p(Sm(t), t) := p1(t) + µSm(t),

where µ is a magnification factor. The presence of F-actin on the surface
is mathematically given by gpa1,a2(ua) and we denote the factor by which
its presence magnifies the protrusive force by a1, resulting in the second
function taking the form

gpa1,a2(ua) :=
a1

2

(
1 +Hε

(
ua − a2

a2

))
.

(iii) To model the resistance of the appressorium to stretching we employ the
curvature dependent surface tension force −σH which may be thought of
mathematically as a regularisation of the evolution law.

(iv) We consider a repulsive force, r(d(x)), between the appressorium and the
leaf that ceases to exist once the leaf has ruptured. The rupturing of the leaf
occurs when the protrusive force defined in (ii) grows large enough to result
in the penetration peg significantly deforming the leaf. Mathematically, we
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model these assumptions via the function

g (Hl, d(x), d0, r0) :=

{
0 if ‖Hl‖L∞(Υ(t)) > H̄l,

r(d(x), d0, r0) · ν otherwise

where the rupture of the leaf cuticle occurs when the maximum value of
the mean curvature of the leaf, Hl, exceeds a threshold value H̄l. The
repulsive force is modelled by an obstacle potential that prevents the two
surfaces intersecting and is given by

r(d(x), d0, r0) := r0kd0
kd(x)−k−1∇d(x)

for some large k ∈ Z, where for x ∈ Γ(t) we define d(x) := min
y∈Υ(t)

|x− y|

such that d(x) is the minimum distance of the point x on the appressorium
membrane to the leaf’s surface, r0 is a reference force per unit length as-
sociated with the potential and d0 is some small distance above which the
force becomes negligible.

We assume the leaf is deformable and resists penetration and that its motion is
governed by a geometric evolution law for Υ(t) which takes the form of a forced
mean curvature flow

ωlVl = −σlHl + gl(Hl, dl(y), d0, r0) · ν l on Υ(t). (3)

Here ωl is a constant kinetic coefficient, gl is the interaction force between the
leaf and the appressorium akin to g, such that

gl (Hl, d(x)) :=

{
0 if ‖Hl‖L∞(Υ(t)) > H̄l,

−r(dl(y), d0, r0) · ν l otherwise

with dl(y) := min
x∈Γ(t)

|x− y| such that dl(y) is the minimum distance of the point y

on the leaf’s surface to the appressorium membrane. The curvature-dependent
surface tension force −σlHl models the resistance of the leaf to stretching and
again may be thought of mathematically as a regularisation of the evolution law.

Once the leaf has ruptured, i.e. once the maximum value of the mean curvature
of the leaf, Hl, exceeds a threshold value H̄l, the leaf dynamics no longer influ-
ence the development of the appressorium, hence the geometric evolution law
(3) is switched-off and is no longer required.

Our modelling approach in which the surface of the appressorium is treated as
a biomembrane that resists stretching has been used in a number of works to
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model the deformation of biomembranes of cells and vesicles and is reasonable
to describe the deforming pore. In terms of the deformation of the appress-
orium dome, our model is not justifiable on physical grounds as the physics
is largely governed by the properties of the melanised cell wall which we do
not explicitly model. As mentioned in the introduction, an alternative mechan-
ical model considered in [8, 13] models the appressorium dome as a bioelastic
shell. The model of [8, 13] is valid under the assumption of small deformations
and is only capable of describing equilibrium shapes. Moreover, it is not valid in
the pore region which is continuously deforming and undergoes large deform-
ations, hence it is not directly applicable in the present study. The constitutive
assumptions made on the physics governing the dome in [8, 13] are however not
purely phenomenological in nature and arise from rational physically consistent
assumptions, making extensions of the model of [8, 13] attractive to describe
the deformation of the appressorium dome. An interesting topic for future work
would be to consider a hybrid of the two approaches that models the dome of
the appressorium as a bioelastic shell and the pore as a fluidic membrane.

4 Surface reaction–diffusion equations

We now define the system of surface reaction–diffusion equations that model
the concentrations of melanin, the turgor sensor, Septins and F-actin present
on the surface of the appressorium.

We define the material velocity of points on Γ(t) by v and the material derivative
of a function f with respect to v by ∂•vf := ∂tf + v · ∇Γf . We note that the
material velocity v = V ν+vτ where V is the, previously defined, normal velocity
of Γ(t) and vτ is an advective velocity field that is tangential to the surface of
the appressorium.

From Fig. 1 A,B in [4] we see the toroidal–shaped F-actin network and the
Septins ring assemble colocalise at the appressorium pore. We incorporate
these observations into the mathematical model by introducing a function r(x, t)
that defines a seeded ring structure at the appressorium pore. At the initial time
t = 0 we set

r (x, 0) :=


0, if x3 > 0,

0, if
√
x2

1 + x2
2 > R0,

r1 + r2

√
x2

1 + x2
2, otherwise
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and we assume that r(x, t) does not diffuse around the surface but is simply
transported by the motion of the surface such that

∂•vr + r∇Γ · v = 0 on Γ(t).

Based on biological observations we make the following assumptions as to
where on the surface the species localise, see Figure 2:

(i) As melanin is known to reside on the dome of the appressorium we assume
it is recruited only to regions on the surface away from the pore, i.e. regions
where the seeded ring structure is absent, we denote these regions by Sm
such that

Sm := {x ∈ Γ(t)| r(x, t) = 0}.

(ii) Septins and F-actin localise at the edge of the seeded ring structure, such
that

Ss := {x ∈ Γ(t)| r(x, t) > αs} and Sa := {x ∈ Γ(t)| r(x, t) > αa}

where noting Fig. 1B in [4] we set αs > αa, since at the centre of the pore
the proportion of the concentration of F-actin is greater than the proportion
of concentration of Septins. To reflect low levels of recruitment throughout
the pore of both Septins and F-actin, we denote the whole pore by

Sr := {x ∈ Γ(t)| r(x, t) > 0}.

(iii) Due to the observed localisation of the Sln1-GFP fusion protein at the ap-
pressorium pore we assume the turgor sensor localisation mirrors that of
Septins at the appressorium pore, such that

Sts := {x ∈ Γ(t)| r(x, t) > αts}

with αs > αts. This assumption is subsequently verified experimentally by
the localisation of the Sln1-GFP fusion protein in M. oryzae.

To model the surface concentrations of the four species we employ surface
reaction–diffusion equations of the form

∂•vui+ui∇Γ ·v−∇Γ ·(Di(us)∇Γui) = fi(uj, Bi, Si, Tj)−kiui, for i = m, ts, s, a, (4)

where j ∈ {m, ts, s, a}. The third term on the left hand side of (4) models the
diffusion of species ui around the surface of the appressorium. Since Septins
act as a diffusion barrier to the other species, [4], we set the effective surface
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Figure 2: Seeded ring structure in the appressorium pore

diffusivity of melanin, the turgor sensor and F-actin to be very small (and above
a given value) on the parts of Γ(t) where Septins are present. Mathematically
this translates to the Septins dependent diffusion coefficient

Di(us) :=

{
ds for i = s,

di − diqs
2

(
Hε
(
us−s3
s3

)
+ 1
)

for i = m, ts, a.

The second term on the right hand side of the surface reaction–diffusion equa-
tion (4) models a linear degradation of species ui such that it is reabsorbed into
the bulk at a fixed rate ki, with km = 0 since no melanin is reabsorbed into the
bulk.

The functions fi(uj, Bi,Si, Tj) model the recruitment of the four species from the
interior of the appressorium to its surface. In formulating these functions we
assume the following:

(i) Melanin deposition on the surface is positively correlated with increasing
turgor and is inhibited by the amount of turgor sensor present in the bulk at
the initial time, [3].

(ii) Localisation of the turgor sensor is inhibited by the amount of melanin in the
bulk at the initial time, moreover this recruitment is assumed to take place
only after a certain proportion, qm, of the bulk melanin has been recruited to
the surface, [1]. To this end we define the set T := {t ∈ (0, T )| Bm < qmTm}.

(iii) Significant levels of recruitment of Septins from the bulk to a point x on the
surface requires the turgor sensor to be present at the point x, with uniform
baseline levels of recruitment throughout the pore, [4].

(iv) Significant levels of recruitment of F-actin from the bulk to a point x on the
surface requires Septins to be present at the point x, with uniform baseline
levels of recruitment throughout the pore, [4].

The mathematical translation of these assumptions together with the localisa-
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tion assumptions of each species lead to the following choices for fi(uj, Bi,Si, Tj)

fm(Bm,Sm, Tm, Tts) := Λm
(Bm − qb min(Tm, Tts))

cm + (Bm − qb min(Tm, Tts))
(p(Sm, t)− pI),

fts(Bts, Sts, Tm, Tts) := Λts(Bts − qb min(Tm, Tts))χT,

fs(uts, Bs, Ss) :=
(
Λsχ{uts>0} + βsχSr

)
Bs,

fa(us, Ba, Sa) :=
(
Λaχ{us>0} + βaχSr

)
Ba.

Here qb ∈ [0, 1] denotes the proportion of melanin and turgor sensor that are
“bound” and hence unavailable for recruitment to the surface, [1], and Λi := liχSi
with li denoting the coefficient of recruitment of species i from the bulk of the
appressorium. χSi denotes the indicator function of the set Si such that

χSi(x) :=

{
1, if x ∈ Si,
0, otherwise

and similarly for χT(t). For the recruitment of melanin we use a Michaelis-
Menten formalism. Linear recruitment kinetics alone appear insufficient to model
the differences in behaviour between the mutants lacking the turgor sensor and
the wild type, i.e., the continual increase of turgor in the mutant versus the
maintenance of turgor at a constant level after a certain time in the wild type.
This term is interpreted phenomenologically as a means of accounting for the
complex melanin biosynthesis pathway, here reduced to a single reaction term,
and/or as a simple model for the adsorption of melanin onto the surface. For the
remaining species we observe satisfactory results using linear recruitment from
the bulk and hence in order to avoid unnecessary complications to the model
we adopt linear recruitment kinetics.

The position on the surface at which initial localisation of the different species
occurs is guided by a seeded ring structure. Whilst we are interested in under-
standing why recruitment into an annular region around the pore occurs, this is
beyond the scope of the present work and indeed the basic biological mechan-
isms underlying localisation of the different species are still not fully understood
[4]. Note however, our primary modelling hypothesis that the turgor sensor must
be present at a point on the surface for subsequent recruitment of Septins and
F-actin is not weakened by the inclusion of this ring structure and remains an
important aspect of the modelling that is supported by the experimental data.

Regarding the turgor sensor, the interaction we assume between the sensor
in the bulk and bulk solute levels (i.e., bulk melanin levels under the modelling
simplification) does provide an effective mechanism for turgor sensing due to
the positive correlation between melanin deposition in the cell wall, the level
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of solute (glycerol) present in the appressorium bulk and turgor generation [3].
There are however, other possible mechanisms by which the sensor could mon-
itor turgor levels, for example through sensing mechanical properties of the ap-
pressorium such as wall stress. Further modelling and experimental work is
needed to clarify the precise mechanism by which the sensor measures turgor
generation.

5 Nondimensionalisation

Denoting scaled dimensionless variables with carets we adopt the following
scalings

t̂ = tt0
−1, x̂ = xx0

−1, ŷ = yx0
−1,

T̂i = TiT
−1
i,0 , B̂i = BiT

−1
i,0 , Ŝi = SiT

−1
i,0 , ûi = x2

0uiT
−1
i,0 ,

m̂2 =
x2

0m2

Tm,0
, ŝ2 =

x2
0s2

Ts,0
, â2 =

x2
0a2

Ta,0
, ŝ3 =

x2
0s3

Ts,0
,

V̂ = V t0x
−1
0 , Ĥ = Hx0, V̂l = Vlt0x

−1
0 , Ĥl = Hlx0, T̂ = Tt−1

0 , ˆ̄t = t̄t−1
0

d̂0 =
d0

x0

, σ̂ = σ(x0p0)−1, σ̂l = σl(x0p0)−1, r̂0 = x−1
0 r0p

−1
0 , k̂i = kit0,

d̂i =
dit0
x2

0

, ω̂0 = ω0x0(p0t0)−1, ω̂l = ωlx0(p0t0)−1, µ̂ = µTm,0p
−1
0 , l̂ts,s,a = lts,s,at0x

2
0,

β̂s,a = βs,at0x
2
0, l̂m = lmp0x

2
0t0T

−1
m,0, P̂ = Pp−1

0 t0, ĉm = cmT
−1
m,0, p̂I = pIp

−1
0 , q̂ts = Tts,0T

−1
m,0,

where we have introduced the characteristic scales for length x0, time t0, each
species amount Ti,0, i = m, s, a, ts and pressure p0. Hence, we denote the
scaled appressorium and leaf surfaces as

Γ̂(t) = {x̂|x0x̂ ∈ Γ(t)} and Υ̂(t̂) = {ŷ|x0ŷ ∈ Υ(t)}.

Inserting the scalings above into the evolution laws yields the dimensionless
forms

ω̂0 (λm1,m̂2(ûm) + λs1,ŝ2(ûs)) V̂ =(p̂1(t̂) + µ̂Ŝm)
(
1 + gpa1,a2(ua)

)
− σ̂Ĥ

+ ĝ
(
Ĥl, d̂(x̂), d̂0, r̂0

)
on Γ̂(t̂),

and
ω̂lV̂l = −σ̂lĤl + ĝl

(
Ĥl, d̂l(x̂), d̂0, r̂0

)
on Υ̂(t̂).
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In the above

p̂1(t̂) :=

{
P̂ t̂+ p̂I , if t̂ < ˆ̄t,

P̂ ˆ̄t+ p̂I , if ˆ̄t ≤ t̂ ≤ T̂ ,

with P̂ = Pp−1
0 t0, p̂I = pIp

−1
0 and

ĝ
(
Ĥl, d̂(x̂), d̂0, r̂0

)
:=

0, if
∥∥∥Ĥl

∥∥∥
L∞(Û(t))

> ˆ̄Hl,

r(d̂(x̂), d̂0, r̂0) · ν, otherwise

with ĝl defined analogously and the obvious notation implied for the distance
functions.

For the nondimensionalisation of the reaction–diffusion system, we define the
initial condition for the seeded ring structure on the scaled surface via

r̂(x̂, 0) = r(x0x̂, 0) on Γ̂(0),

and the equation it satisfies is

∂•v̂ r̂ + r̂∇Γ̂ · v̂ = 0 on Γ̂(t̂).

Hence localisation regions on the scaled surface correspond to

Ŝi := {x̂ ∈ Γ̂(t)| r̂(x̂, t̂) > α̂i}, for i = m, ts, s, a,

and
T̂ := {t̂ ∈ (0, T̂ )| Ŝm > qmB̂m}.

The dimensionless reaction–diffusion equations thus read

∂•v̂ûi + ûi∇Γ̂ · v̂ −∇Γ̂ ·
(
D̂i(ûs)∇Γ̂ûi

)
= f̂i(ûj, B̂i, Ŝi, T̂j)− k̂iûi, for i = m, ts, s, a,

where j ∈ {m, ts, s, a} and the function

D̂i(ûs) :=

{
d̂s, for i = s,
d̂i
2

(
1−Hε

(
ûs−ŝ3
ŝ3

))
, for i = m, ts, a,

and the localisation functions are given by

f̂m(B̂m, Ŝm, T̂m, T̂ts) := l̂mχŜm

(
B̂m − qb min(T̂m, qtsT̂ts)

)
ĉm +

(
B̂m − qb min(T̂m, qtsT̂ts)

)((p̂1(t̂) + µ̂Ŝm)− p̂I),

f̂ts(B̂ts, Ŝts, T̂m, T̂ts) := l̂tsχŜtsχT̂(B̂ts − qb min(q−1
ts T̂m, T̂ts))

f̂s(ûts, B̂s, Ŝs) :=
(
l̂sχŜsχ{ûts>0} + β̂sχŜr

)
B̂s,

f̂a(ûs, B̂a, Ŝa) :=
(
l̂aχŜaχ{ûs>0} + β̂aχŜr

)
B̂a.
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6 Numerical approximation

The equations described above result in a complex highly coupled system of
equations in which coupled nonlinear geometric evolution laws are in turn coupled
to semi-linear systems of reaction–diffusion equations, posed on evolving sur-
faces. For such systems, analytical solutions are in general unavailable and one
must resort to numerical simulations to understand the behaviour of the solution.
The numerical method we implement to solve these coupled systems follows
that described in [7], in which the evolving surface finite element method, see
[6], is employed for the approximation of the surface reaction–diffusion equa-
tions together with a finite element approximation of a parametric reformulation
of the evolution laws, see [5]. We will report on a detailed description of the
resulting discretisation elsewhere and hence we do not present further details
here.

7 Simulations

To simplify the coefficients in the dimensionless system we make the choice
x0 = 1.5 × 10−5m, time t0 = 1.44× 105s, and pressure p0 = 2MPa. In all the
simulations the initial conditions are set to be a flat, square leaf surface, with
length L = 1, and the appressorium is taken to be partially spherical with the
dome corresponding to a portion of a sphere of radius R = 0.2 with a flattened
pore, of diameter 2R0 = 0.176. The initial values for all the species (melanin,
Septins, F-actin and the turgor sensor) are such that in the wild type, the total
amount of each species is equal to one with each species only present in the
bulk, whilst in the mutant cases the total amount of the turgor sensor is set to
zero with all other initial amounts unchanged. The parameter values that were
used in each of the simulations are given in Table 3, where we have dropped
the carets for ease of notation.

7.1 Results

We report on the simulations in the attached movies and figures. The movies
Extended Material Movie 1 and Extended Material Movie 2 show the dynamics
of the infection process in the wild type fungus and the mutant lacking the turgor
sensor respectively. Fig. 2a and Fig. 2b show the position of the fungus at the
end-time of the simulations (0.5 in dimensionless time corresponding to a time of
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24 hours post infection), where we have removed the leaf cuticle from the top left
panel of the figures in order to show the base of the appressorium. Fig. 2a and
Fig. 2b show the evolution of the turgor pressure and the maximum curvature of
the leaf against time for both cases. We observe successful penetration of the
cuticle only in the wild type case whilst the threshold curvature value is never
reached in the mutant lacking the turgor sensor. The observed localisation of
the species is consistent with the experimental data in both position and time
scale. Initially, melanisation of the dome occurs in both cases and subsequently
in the wild type case, the turgor sensor, Septins and F-actin are all recruited to
the pore whilst in the mutant no localisation of any species other than melanin
occurs on the surface. In the wild type simulations a penetration peg forms
around t = 0.32 (corresponding to 16.8 hours post infection) and this causes
large curvatures to develop in the leaf surface causing it to rapidly rupture. With
only the low levels of uniform recruitment of Septins and F-actin to the pore,
the peg is not formed in the mutant lacking the turgor sensor, despite the fact
that overall it generates a larger turgor pressure (due to the increased amount
of melanin deposited on the surface). In the mutant, the protrusive force is not
localised by F-actin and the mutant does not puncture the leaf.

7.2 Robustness Analysis

Since we have a large number of parameters in the model and only some of
them come from experimental estimates, we conducted a rudimentary sensitiv-
ity analysis consisting of extra simulations in which we increased and decreased
each of the parameters individually (i.e., one by one) by 10% of their magnitude.
In all cases the qualitative features of the simulations remained unchanged with
penetration and normal polarisation occurring in the wild type case and no pen-
etration and no Septins and F-actin localisation in the mutant lacking the turgor
sensor.
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[9] Garcı́a-Peñarrubia, P., Gálvez, J. J., Gálvez, J. Mathematical modelling and
computational study of two–dimensional and three–dimensional dynamics
of receptor–ligand interactions in signalling response mechanisms. J Math
Biol 69, 1–30 (2013).

[10] Hamer, J. E., Howard, R. J., Chumley, F. G., Valent, B. A Mechanism for
Surface Attachment in Spores of a Plant Pathogenic Fungus. Science 239,
288–290 (1988).

[11] Howard, R. J., Ferrari, M. A., Roach, D. H., Money, N. P. Penetration of
hard substrates by a fungus employing enormous turgor pressures. Proc
Natl Acad Sci USA 88, 11281–11284 (1991).

[12] Linderman, J. J., Lauffenburger, D. A. Analysis of intracellular re-
ceptor/ligand sorting. Calculation of mean surface and bulk diffusion times
within a sphere. Biophys J 2, 295–305 (1986).

[13] Tongen, A., Goriely, A., Tabor, M. Biomechanical model for appressorial
design in Magnaporthe grisea. J Theor Biol 240, 1–8 (2006).

[14] Wilson, R. A., Talbot, N. J. Under pressure: investigating the biology of
plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7, 185–195
(2009).

15



Table 2: List of parameters used in the surface reaction–diffusion equations
together with the values used, units and their related experimental estimates
(when available otherwise fitted).

Description Physical Unit
R0 radius of the ring structure (pore at 4 hpi) 1.32× 10−6m [11]
R initial radius of the appressorium 3× 10−6m [11]
r1 reference value for initial ring structure 0.33 (Dimensionless)
r2 reference value for initial ring structure 1.02× 10−4m−1 (phenomenological)
dm diffusion coefficient of melanin 0m2 s−1

dts diffusion coefficient of the turgor sensor 1.6× 10−15 m2 s−1

da diffusion coefficient of F-actin 1.6× 10−15 m2 s−1

c.f., [9] and [12]
for receptor-complex diffusion

ds diffusion coefficient of Septins 1.6× 10−18 m2 s−1

(Smaller to fit absence from pore )
s3 reference value for Septins mediated diffusion 4.44 · Ts × 108gm−2 (no data, Ts unknown)
qs proportion diffusivity reduction by Septins 0.999 Dimensionless
km degradation rate of melanin 0s−1

kts degradation rate of the turgor sensor 6.9× 10−7s−1

ks degradation rate of Septins 6.9× 10−7s−1

ka degradation rate of F-actin 6.9× 10−7s−1

3 values above fitted
to localisation timescales

lm recruitment coefficient of melanin 4.63× Tm × 102gs−1kN−1 (fitted to
saturation in in wild type, Tm unknown)
and continuous recruitment in mutant)

lts recruitment coefficient of the turgor sensor 3.09× 104m−2s−1

(fitted to localisation time)
ls recruitment coefficient of Septins 3.09× 104m−2s−1

(fitted to localisation time)
la recruitment coefficient of F-actin 3.09× 107m−2s−1

(fitted to localisation time)
βs uniform recruitment coefficient of Septins 3.09× 103m−2s−1

(fitted to match desired profile)
βa uniform recruitment coefficient of F-actin 3.09× 103m−2s−1

(fitted to match desired profile)
cm saturation level of melanin recruitment 10× Tmg (fitted to match desired profiles)
αts coefficient determining turgor sensor localisation 0.3 Dimensionless
αs coefficient determining Septins localisation 0.6 Dimensionless
αa coefficient determining F-actin localisation 0.3 Dimensionless
qb fraction of ’bound’ bulk melanin and turgor sensor 0.55 Dimensionless
qm fraction of melanin for turgor sensor recruitment 0.95 Dimensionless16



Table 3: Dimensionless parameter values used in the simulations.

ω0 m1 m2 s1 s2 t̄ P pI µ
1 1× 103 0.25 1× 103 0.2 0.25 5 1 2

a1 a2 σ σl H̄l k ωl r1 r2

5 0.25 0.1 1× 106 0.4 12 1× 106 0.33 6.66

dm dts,da ds s3 qs km kts, ks, ka lm cm
0 1× 10−2 1× 10−5 0.1 0.999 0 0.1 30 10

lts, ls, la βs, βa αts αs αa qb qm d0 r0

1 0.1 0.3 0.6 0.3 0.55 0.95 0.05 1
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