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Abstract

The spring bloom dominates the annual cycle of phytoplankton abundance in large 

regions of the world oceans. The mechanisms that trigger blooms have been studied for 

decades, but are still keenly debated, due in part to a lack of data on phytoplankton stocks in 

winter and early spring. Now however autonomous underwater gliders can provide high-

resolution sampling of the upper ocean over inter-seasonal timescales and advance our 

understanding of spring blooms. In this study, we analyze bio-optical and physical 

observations collected by gliders at the Porcupine Abyssal Plain observatory site to 

investigate the impact of atmospheric forcing and light conditions on phytoplankton blooms 

in the temperate North Atlantic. We contrast three hypotheses for the mechanism of bloom 

initiation: the critical depth, critical turbulence, and dilution-recoupling hypotheses. Bloom 

initiation at our study site corresponded to an improvement in growth conditions for 

phytoplankton (increasing light, decreasing mixing layer depth) and was most consistent with 

the critical depth hypothesis, with the proviso that mixing depth (rather than mixed layer 

depth) was considered. After initiation, the observed bloom developed slowly: over several 

months both depth-integrated inventories and surface concentrations of chlorophyll a 

increased only by a factor of ≈2 and ≈3 respectively. We find that periods of convective 

mixing and high winds in winter and spring can substantially decrease (up to an order of 

magnitude) light-dependent mean specific growth rate for phytoplankton and prevent the 

development of rapid, high-magnitude blooms.

Keywords: phytoplankton; spring bloom; glider; atmospheric forcing; mixing regimes; 

critical depth; critical turbulence; dilution-recoupling; North Atlantic Ocean
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Introduction

The annual cycles of phytoplankton in the temperate and subpolar North Atlantic 

Ocean are characterized by pronounced blooms in spring (Yoder et al. 1993). The timing and 

intensity of spring blooms may have important consequences for the pelagic ecosystem 

(Townsend et al. 1994; Platt et al. 2003), sequestration of atmospheric CO2 in the ocean 

interior (Martin et al. 2011), surface ocean gas transfer (Codispoti et al. 1982) and ocean 

temperature (Stramska and Dickey 1993). Despite their importance, the conditions necessary 

to trigger phytoplankton spring blooms remain uncertain even after more than 60 years of 

study (Sathyendranath et al. 2015). To date, three main hypotheses have been proposed: the 

critical depth hypothesis, critical turbulence hypothesis, and dilution-recoupling hypothesis 

(Behrenfeld and Boss 2014).

The critical depth hypothesis (CDH) (Sverdrup 1953) was the first conventional 

framework that described the necessary conditions for initiation of phytoplankton spring 

blooms in the temperate and subpolar North Atlantic. According to CDH, the start of the 

phytoplankton spring bloom corresponds to shoaling of the ocean mixed layer depth 

(hereafter ) above a critical depth (hereafter ), a threshold based on solar radiation, mixedz crz

light attenuation in the water column and algal losses from various sources (Smetacek and 

Passow 1990). The hypothesis assumes that nutrients are replete during the pre-bloom period 

due to deep winter mixing and that improving light conditions for phytoplankton is the main 

factor for triggering spring blooms. Sverdrup suggested that the critical depth criterion could 

be achieved during seasonal restratification of the upper layer in spring when the mixed layer 

is rapidly shoaling. This definition of the mixed layer is relevant to the CDH framework if 

gradients in the vertical distribution of phytoplankton match strong gradients in density 

profiles. However, subsequent studies (Brainerd and Gregg 1995) showed that mixed layer 
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depth, conventionally defined using a temperature or density threshold (de Boyer Montegut et 

al. 2004), is an imperfect proxy for the depth of the layer where mixing is currently active 

(hereafter ). If upper ocean mixing is driven by surface cooling, convective cells mixingz

penetrate to the pycnocline and the entire mixed layer is actively turbulent. However, when 

surface cooling subsides, mixing of the water column is mainly generated by wind energy. 

Under wind-driven mixing conditions the layer of active mixing can become shallower than 

the remnant mixed layer, which may still register diagnostically as the mixed layer depth due 

to weak vertical gradients in hydrographic profiles. In this case, phytoplankton are likely to 

be well mixed to  (Chiswell 2011), as opposed to .  Since the defining mixingz mixedz

mechanism of the CDH is that the bloom is initiated when the phytoplankton are no longer 

regularly mixed below , we here compare zcr to , rather than .  Shoaling of crz mixingz mixedz

 above  has been found to be a more precise criterion for the onset of phytoplankton mixingz crz

blooms than the traditional critical depth framework and can be achieved before the 

development of seasonal stratification (Brody and Lozier 2014; Franks 2014). 

A second proposed mechanism is known as the critical turbulence hypothesis (CTH).  

According to this hypothesis, the spring bloom can initiate in an arbitrarily deep layer due to 

changes in mixing intensity rather than in mixing depth (Huisman et al. 1999). Relaxation of 

turbulence due to weakening atmospheric forcing allows phytoplankton growth near the 

surface to outpace mixing and a bloom develops, resulting in an uneven vertical distribution 

of phytoplankton within the mixing layer. The CTH can be expressed in terms of relevant 

time scales (Taylor and Ferrari 2011). In this framework, a low mixing rate can result in 

accumulation of phytoplankton near the surface if

                                                             (1)m gt t



5

where  is the mixing time scale defined as mixing layer depth divided by a characteristic mt

turbulent velocity scale and  is the phytoplankton growth time scale. gt

A third mechanism, the dilution-recoupling hypothesis (or the disturbance-recovery 

hypothesis; hereafter DRH) (Behrenfeld 2010; Behrenfeld et al. 2013), proposes that 

decreasing grazing pressure is the main factor controlling bloom onset. According to the 

DRH, the phytoplankton bloom starts in winter when the ocean surface is cooling and mixing 

is strong. Despite these conditions accumulation of phytoplankton is possible due to reduced 

encounter rates of phytoplankton with grazers, i.e. a dilution effect due to winter deep 

mixing. During the recoupling phase, changes in phytoplankton stocks are determined by the 

balance between light-dependent phytoplankton specific growth rates and losses due to 

grazing (Behrenfeld and Boss 2014). The DRH is supported by observations of positive net 

accumulation rate of phytoplankton, defined as changes in chlorophyll a (Chl a) inventories 

derived from satellite ocean colour (Behrenfeld et al. 2013) and Bio-Argo float datasets (Boss 

and Behrenfeld 2010) during deep winter mixing and low surface light intensity. 

The above outlined hypotheses predict the onset of phytoplankton blooms under 

different forcing conditions: (i) subsiding ocean surface cooling and/or weakening wind 

forcing, associated with a reduction in mixing layer depth and/or a reduction in mixing 

intensity (CDH and CTH) or (ii) periods of strong surface cooling and/or strong wind forcing 

associated with deep mixing layer depths (DRH). It remains uncertain which conditions 

trigger spring blooms in the North Atlantic Ocean. 

Progress on determining the mechanisms initiating blooms has been hampered by a 

lack of high temporally and vertically resolved observations across winter and spring. In this 
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regard, autonomous platforms (such as gliders and Bio-Argo floats) represent a powerful tool 

for studying phytoplankton dynamics due to their ability to obtain frequent depth-resolved 

profiles of bio-optical and physical properties for long (inter-seasonal) periods of time, even 

under challenging weather conditions.  Changes in surface concentrations of Chl a as well as 

depth-integrated inventories can be quantified by measuring vertical profiles of Chl a 

fluorescence (Frajka-Williams et al. 2009; Swart et al. 2014; Thomalla et al. 2015; Bol et al., 

2018; Erickson and Thompson, 2018), thus overcoming limitations of satellite ocean colour 

data.  Gliders, in particular, provide a unique opportunity to study the initiation and 

development of phytoplankton blooms.  Firstly, glider data provide a high temporal 

resolution (up to 6 profiles per day in this study) picture of variability in bio-physical 

properties.  In addition, gliders provide information on the vertical distribution of Chl a, 

which cannot be achieved from satellite data.  Finally, gliders can operate throughout the 

winter when ship-board operations are difficult and satellite Chl a data are often affected by 

cloud or low sun angle.  Bio-Argo floats also overcome some of the limitations of satellite-

derived or ship-based Chl a data, but typically operate with lower temporal resolution than 

gliders (typically 5-10 days; e.g. Mignot et al., 2016; Boss and Behrenfeld, 2010; Lacour et 

al., 2019).  

In this study we use glider observations and surface forcing from atmospheric 

reanalyses to study how meteorological and light conditions can affect the onset and 

development of the spring bloom in the temperate Northeast Atlantic. The objectives of this 

study are two-fold. First, we analyze which of the three hypotheses (CDH, CTH and DRH) 

can explain the observed variability in phytoplankton (represented by Chl a fluorescence). 

Specifically, we aim to answer the following questions: 
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Can bloom onset be explained by shoaling of  above the critical depth  ? mixingz crz

(test of CDH) 

Can bloom onset be explained by decreasing mixing intensity, which leads to an 

increase in mixing time scales ? (test of CTH) mt

Can we detect positive net accumulation rates of phytoplankton during strong 

cooling of the ocean surface and/or during strong wind mixing before light 

conditions start to improve? (test of DRH) 

Second, we examine how atmospheric forcing can influence bloom development after 

initiation through its effect on mixing layer depth and improving light conditions experienced 

by phytoplankton. 

In the following Data and Methods section, we provide details of the glider missions, 

a description of the data processing and an overview of the theoretical framework used to 

evaluate mixing regimes in the water column. The Results section shows the evolution of 

phytoplankton dynamics from October 2012 to May 2013 and its relation to light conditions 

and atmospheric forcing. Examination of the three hypotheses and of the impact of 

atmospheric forcing on bloom development are presented in the Analysis section. The 

Discussion section relates our results to previous findings and presents our conclusions 

regarding the processes of bloom initiation and subsequent development in our dataset. 

Data and methods

Glider missions

As part of the UK NERC Ocean Surface Mixing Ocean Submesoscale Interactions 

Study (OSMOSIS), pairs of autonomous ocean gliders were simultaneously deployed 40 km 
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southeast of the Porcupine Abyssal Plain sustained observatory (PAP site; Fig. 1). The full 

dataset is reported in Damerell et al. (2016) and archived as Damerell et al. (2018). The PAP 

site is situated between the subtropical and subpolar gyres and is far enough offshore not to 

be influenced by the circulation over the continental slope to the east; therefore mean flows 

are weak (Lampitt et al. 2010a). According to a classification of biogeographical provinces in 

the North Atlantic Ocean (Longhurst et al. 1995), the PAP site is located within the 

“Westerlies domain”. This domain is characterized by deep mixing and nutrient replete 

conditions in winter representing a suitable site for testing the hypotheses for spring bloom 

initiation in the temperate North Atlantic Ocean.

During OSMOSIS, the gliders collected measurements over a sampling area between 

48.69° N and 48.75° N and between 16.10° W and 16.19° W (Fig.1). The gliders followed 

“bowtie” and “hourglass” shaped trajectories (Fig. 1b; patterns as defined in Alkire et al., 

2014). On average each glider provided 10 to 12 vertical profiles per day (5 to 6 descents and 

5 to 6 ascents). Over the course of the mission, the gliders maintained the pre-defined 

trajectories well: 88 % of vertical profiles considered in this study were obtained within the 

intended sampling area (Fig. 1). The gliders were each equipped with a Seabird CT-Sail 

(conductivity, temperature) sensor, a Wetlabs Triplet ECOpuck (BBFL2VMT configuration 

measuring Chl a fluorescence and optical backscatter) and a Biospherical Instruments 

photosynthetically available radiation (PAR) sensor. Vertical sampling resolution of the bio-

optical sensors ranged from 2 to 10 m depending on battery constraints. The maximum 

sampling depth was 200 m in autumn and increased to 500 m in winter and spring. PAR 

sensors sampled every 2 m down to 200 m depth. Further details on the sampling strategy, 

CT sensor calibration and physical conditions at the PAP site are given by Damerell et al. 
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(2016).

Glider data processing

Chl a fluorescence

Raw data from the ECOpuck is output in digital counts. Conversion of the sensor output to 

scientifically usable units required subtracting dark fluorescence (sensor output in the 

absence of phytoplankton and light) and multiplying the difference by a scale factor. Dark 

fluorescence was determined as the median value over the bottom 10 meters of each Chl a 

fluorescence profile. The most frequent value of dark fluorescence for each glider 

deployment was used for calibration. Time series of dark fluorescence determined from 

individual glider profiles showed no statistically significant changes in time throughout the 

glider deployments (95% confidence interval for the regression slopes included zero) 

indicating that the fluorescence sensors did not drift during each mission.

Erroneous data, such as negative fluorescence readings and values outside the realistic 

range for the sampling site (> 6 mg m-3; threshold defined using Chl a estimates from 

MODIS-Aqua satellite records), were removed by implementing the quality control 

procedure described in D’Ortenzio et al. (2010). Daytime fluorescence profiles were 

corrected for quenching using profiles of optical backscatter following Sackmann (2008).  

Quenching occurs during periods of high irradiance as a mechanism to protect the 

photosynthetic apparatus of phytoplankton (e.g. Muller et al., 2001), and is clearly seen as a 

decrease in fluorescence near the surface (example profiles in Fig. S1).  The depth of 

maximum fluorescence-to-backscatter ratio within the mixed layer was determined for 

daytime fluorescence profiles (Swart et al., 2014).  It was assumed that above this depth a 

fluorescence profile was affected by quenching. The part of the profile affected by quenching 
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was corrected using the mean nighttime fluorescence-to-backscatter ratio within the upper 20 

m. The mean nighttime ratio was calculated from the previous/following night for daytime 

fluorescence profiles obtained before/after midday. The quenching correction significantly 

decreased the observed offset between the surface fluorescence for daytime and nighttime 

profiles (Fig. S1). After applying the quenching corrections, the Chl a vertical profiles were 

gridded into 5-m vertical bins.

The scale factor for calibration was obtained using in situ Chl a samples collected 

from CTD Niskin bottles during OSMOSIS process cruises at the start of the glider campaign 

(October 2012; 64 samples) and near the end of the period considered in this study (April 

2013; 135 samples). In situ Chl a concentrations from water samples were determined 

following the method of Welschmeyer (1994). The scale factor for calibration was 

determined using linear regression from co-located CTD casts and glider profiles. For each 

CTD cast, glider profiles collected within a time period of less than a day and within a 

distance less than 30 km were selected. For each depth of the CTD profile, the corresponding 

value of glider-measured fluorescence was calculated as the distance-weighted mean of all 

fluorescence values measured at that depth. The averaged scale factor was applied to 

calibrate the entire time series. A varying relationship between Chl a concentrations and 

fluorescence can introduce uncertainties into the calibration of glider fluorometers. However, 

this study investigates relative changes in Chl a, rather than its absolute magnitude.

Mixed layer depth

Mixed layer depth ( ) estimates were derived from glider profiles of temperature and mixedz

salinity (Damerell et al. 2016). The definition of  was based on that of de Boyer mixedz

Montegut et al. (2004) and calculated using two criteria: a change in temperature of 0.2 °C 
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relative to the value at 10 m depth and a change in density of 0.03 kg m-3 relative to the value 

at 10 m depth. For each profile, the shallower value of the two was chosen for . mixedz

Euphotic depth, light attenuation coefficient and surface PAR

Estimates of the light attenuation coefficient and surface PAR were obtained using the glider 

factory-calibrated PAR sensor. Euphotic depth, defined here as the depth of 1 % of surface 

irradiance, was estimated from PAR profiles assuming Lambert-Beer’s relationship:

 (2)𝐸(𝑧) = 𝐸0𝑒 ―𝐾𝑧

where K is the vertical attenuation coefficient of irradiance, E0 is irradiance just below the sea 

surface and z is depth. By fitting an exponential curve (eq. 2) to daytime light profiles, K and 

E0 were obtained. By substituting E with 0.01E0 in eq. (2), the euphotic depth was estimated 

as 4.6/K. Time of sunset and sunrise were determined using ephem Python module 

(https://pypi.python.org/pypi/pyephem/, version 3.7.6.0). Following Thomalla et al. (2015), 

exponential curves were fit only to the part of the profiles above 100 m in order to avoid 

overfitting to data points in the aphotic layer. Following the fitting procedure, vertical PAR 

profiles with R2 <0.9 (1% of daytime profiles) were excluded from the subsequent analysis. 

Daily mean surface PAR was obtained from individual glider observations throughout a day 

using the adjusted sinusoidal interpolation method described by Wang et al. (2010). The 

obtained values of daily mean surface PAR correlated well (R2 = 0.7, slope = 0.99) with the 

satellite-derived daily mean PAR (MODIS-Aqua Level 3 Daily Products) averaged over the 

sampling site.  The time series of surface PAR and K are plotted in Fig. 2d and Fig. S2, 

respectively.

Satellite-derived data sets and reanalysis data

https://pypi.python.org/pypi/pyephem/


12

Daily surface heat flux was obtained from the NCEP/NOAA reanalysis project 

(Kalnay et al. 1996) with a spatial resolution of 2 degrees. Net surface heat flux was 

calculated as the sum of net longwave radiation, net shortwave radiation, sensible heat flux 

and latent heat flux. Heat flux components were extracted for the grid point centered on 48.6° 

N, 16.8° W, the closest pixel to the sampling site. A time series of wind stress on a regular 

grid of 0.25 degrees was derived from the Daily Advanced Scatterometer Surface Wind 

Fields (DASCAT) product (Bentamy and Fillon 2012). The methodology of wind stress 

estimation from scatterometer surface wind retrievals was described by Milliff and Morzel 

(2001). The wind data were extracted for a grid point centered on 48.75° N, 16.25° W. 

Turbulence regimes, mixing depth and mixing time scales

We characterize turbulence in convective boundary layers with an applied wind stress 

by calculating the Monin-Obukhov length scale (Monin and Obukhov 1954):

                                                          (3)
3
*

MO
0

uz
kB

 

where  is the friction velocity,  is a seawater reference density,  is the wind 
1/2

*
0

u 


 
  

 
0 

stress,  is von Karman’s constant, and   is the surface buoyancy flux, where  is k 0
p 0

Q gB
c




 Q

the surface heat flux,  is the thermal expansion coefficient,  is the acceleration due to  g

gravity and  is the heat capacity of water. A list of variables and constants is provided in pc

Table 1.  Previous studies (Schmitt et al. 1989) demonstrated that the haline contribution to 

the surface density flux in the temperate-subpolar North Atlantic Ocean is an order of 

magnitude lower than the thermal contribution. This was confirmed at the OSMOSIS site by 
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Thompson et al. (2016). Therefore, we assume that the surface buoyancy flux is 

predominantly regulated by the surface heat flux . Q

We classify the effects of convection and wind stress on mixing in the ocean surface 

layer based on the framework described by Thorpe (2005):

Case 1: Wind mixing regime:  <  or , ; mixedz 1 MOC z 0Q  1 0.3C 

Case 2: Convective mixing regime:  > and . mixedz 1 MOC z 0Q 

Under the wind mixing regime (Case 1), the depth of active mixing ( ) can be mixingz

shallower than (Franks 2014). The depth of wind mixing can extend to the base of the mixedz

Ekman layer and so  can be scaled asmixingz

                                                              (4)*
mixing

2

uz
C f



where is the Coriolis parameter and  is a dimensionless constant. Eq. 4 was f 2 2C 

implemented to estimate  under Case 1 conditions during negative surface heat flux (mixingz

). During surface warming ( ),  is additionally suppressed by a positive 0Q  0Q  mixingz

buoyancy flux. Zilitinkevich et al. (2002) provided the theoretical framework for scaling of 

the stably stratified Ekman boundary layer in this situation. The scaling was subsequently 

implemented in numerical studies of phytoplankton spring blooms, e.g. Enriquez and Taylor 

(2015), in the following form:  

                                                 (5)
   

2
0

2 22 2
mixing 3 * 4 *

1 fBf
z C u C u

 

where  and  are prescribed dimensionless constants. The scaling incorporates 3 1C  4 0.57C 

an increase of  with increasing  and decrease of  due to surface heating mixingz *u mixingz
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(increasing ). Values of  and  were determined by Enriquez and Taylor (2015) 0B 3C 4C

using the output of a large-eddy simulation (LES) model.  

The mixing time scale can be defined as a ratio between characteristic length and 

turbulent vertical velocity scales. During the wind mixing regime, the vertical turbulent 

diffusivity is assumed to be constant down to and  represents the characteristic mixingz *u

velocity scale. The vertical mixing time scale associated with wind mixing (  ) can be m,windt

estimated as:

                                                         (6)mixing
m,wind

*

z
t

u


When surface cooling is the main source of turbulence in the water column (Case 2: 

convective mixing regime), convective cells develop even under weak surface cooling 

(Taylor and Ferrari 2011). Under these conditions, the mixed layer depth can be used as the 

depth of active mixing. In the convective mixing regime, the vertical turbulent diffusivity is 

assumed to be constant throughout the whole mixed layer and the mixing time scale (

) can be estimated as:m,convectiont

                                            (7)mixed
m,convection 1/3

5 mixed 0( )
zt

C z B


where  is a prescribed dimensionless constant. The scaling for the turbulent velocity 5 1C 

during the convective mixing regime (the denominator in eq. 7) was adopted from Deardorff 

(1972).  Sensitivity tests show that the choice of constants (C1, C2, C3, C4 and C5) in these 

equations does not affect the main conclusions derived from the analysis (Supplementary 

Information; Fig. S4 and S5).

  



15

Phytoplankton specific growth rate

Phytoplankton specific growth rate depends on nutrient abundance, light conditions, 

and temperature. For the glider sampling site, the World Ocean Atlas 2009 gives winter 

surface nitrate concentrations of 7 µM, concentrations of 5 µM in May, and limiting values 

(<1 µM) in June.  Observations taken during a cruise to the PAP site in June of the 

OSMOSIS project found upper ocean (< 10 m) nitrate values to be, on average, 3.4 µM 

(minimum 0.97 µM). Therefore, the sampling site is considered nutrient replete in winter and 

spring.  

In the following, we assume that phytoplankton are homogeneously distributed in the 

mixing layer. The specific growth rate was estimated for the observed temperature conditions 

assuming a suboptimal light regime and nutrient replete conditions in a similar way to 

Edwards et al. (2013). The maximum specific growth rate as a function of temperature under 

abundant light and nutrient conditions was evaluated following Bissinger et al. (2008):

                                                   (8)0.0631
max 0.81 Te 

where  is the maximum phytoplankton growth rate (in d-1) and  is the temperature max T

averaged over the mixed layer (in °C).

Following Evans and Parslow (1985) the phytoplankton specific growth rate as a 

function of light was determined as:

                                           (9)
chl

max
2 chl 2 2
max

( )( )
( ) ( )

z
E zz

E z
  

  




where  is the chlorophyll-specific slope of the phytoplankton-irradiance curve,  is the chl 

cellular chlorophyll-to-carbon mass ratio (a conversion factor between productivity and 

phytoplankton specific growth rate), and E(z) is the vertical profile of light as defined in eq. 
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2. From eq. 9, the daily mean division rate for phytoplankton evenly distributed over a layer 

of depth  can be estimated as:L

                             (10)𝜇𝑚𝑒𝑎𝑛 =
1
𝐿∫𝐿

0
𝜇𝑚𝑎𝑥𝛼𝑐ℎ𝑙𝜃𝐸(𝑧)

𝜇2
𝑚𝑎𝑥 + (𝛼𝑐ℎ𝑙𝜃)2𝐸(𝑧)2𝑑𝑧

Evaluation of μ involves specification of physiological parameters for phytoplankton, 

 and , which are not measured by gliders and can vary depending on phytoplankton chl 

physiology and species composition. To take into account potential variations in  and , chl 

we estimated the probability distribution of  for each day based on the potential ranges mean

of values for  and , where the typical ranges of values for  and  (Table 1) were chl  chl 

taken from Marañon and Holligan (1999) and Sathyendranath et al. (2009) respectively. 

Based on the probability distribution, the mean and standard deviation of  were mean

determined for each day.

Phytoplankton net accumulation rate

To characterize temporal changes in phytoplankton populations, a time series of net 

accumulation rate of phytoplankton (r) was constructed. Sustained periods of r > 0 indicate 

bloom conditions. The net accumulation rate of phytoplankton was calculated using water 

column integrated Chl a inventories, I(Chl a), and surface Chl a concentrations, S(Chl a), 

calculated as the mean over glider measurements above 20 m depth. We follow the method 

described by Behrenfeld (2010), taking into account potential decoupling between the mixed 

and mixing layers. If zmixing is deepening (zmixing(t1) > zmixing(t0)) and  is deeper than the mixingz

euphotic depth (zmixing(t1) > zeu(t1)):

                                               (11)t1

t0

(Chl )ln /
(Chl )

I ar t
I a

 
  

 

and if zmixing is shoaling or zmixing(t1) < zeu(t1):
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                                               (12)t1

t0

(Chl )ln /
(Chl )

S ar t
S a

 
  

 

where r is the net accumulation rate over the time interval . We calculate r using 1 0t t t  

Chl a data averaged in time over 1 day. In this study, we implement a chlorophyll-based 

approach for calculating phytoplankton net accumulation rate similar to that followed by 

Boss and Behrenfeld (2010). However, optical backscatter can be considered as another 

proxy for phytoplankton biomass (Stramski et al. 2004; Boss and Behrenfeld 2010). Our 

calculations suggest that the net accumulation rate calculated based on Chl a is consistent 

with that calculated based on the optical backscatter data (R2 = 0.72, Fig. S3). Consistent 

temporal patterns of r evaluated using the two optical proxies for phytoplankton biomass 

indicate that the gliders provided reliable estimates of phytoplankton net accumulation rates.

Critical depth

According to Sverdrup’s model, the critical depth, , can be defined by the implicit crz

relationship:

                                                 (13)cr c

cr 0

1 (1 )Kz Ee
Kz E

 

where  is the compensation irradiance. We calculated  for two different  values cE crz cE

(0.96 and 1.75 mol m-2 d-1; Table 1) previously obtained for the temperate and subpolar North 

Atlantic Ocean by Siegel et al. (2002) from an analysis of spring bloom timing using satellite 

and hydrographic data sets. Note that the model in eq. 13 assumes that phytoplankton growth 

is linearly proportional to incoming radiation and that the compensation irradiance is constant 

in time.  For the first assumption, we note that for the period under primary study here (i.e. 

winter to early spring), mixing layer average PAR levels are below typical values of the light 

saturation parameter for the Northeast Atlantic (≈ 10 mol m-2 d-1; Smyth et al., 2004).  After 
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mid-April, this assumption is no longer met, however this period is not the focus of our 

bloom initiation study.  For the second assumption, compensation irradiance is unlikely to be 

constant in time as phytoplankton loss rates vary.  The implications of this assumption are 

considered in the Discussion.

Results

The temporal evolution of Chl a, mixed and mixing layer depths, euphotic depth, 

atmospheric forcing and surface PAR observed between mid-October and mid-May is shown 

in Fig. 2. The mixed layer gradually deepened from mid-October until the end of January 

(Fig. 2a). During this time the surface heat flux was predominantly negative (Fig. 2e). This 

was also a period of frequent passage of atmospheric fronts associated with strong wind 

forcing ( > 0.4 N m-2; Fig. 2f) and gradually decreasing surface PAR (Fig. 2d). A convective 

mixing regime dominated during this period (Fig. 2e). At the beginning of the time-series 

S(Chl a) and I(Chl a) were approximately 0.7 mg m-3 and 40 mg m-2 respectively (Fig. 2b, 

2c). Following the mixed layer deepening in September -December, S(Chl a) and I(Chl a) 

decreased to 0.1 mg m-3 and 25 mg m-2 respectively in January. 

From February until late April the mixed layer remained relatively deep (100 – 250 

m; Fig. 2a) with occasional shoaling and deepening events. The net cooling of the ocean 

surface significantly subsided; the frequent passage of storms persisted. Conditions of wind 

mixing and associated divergence between the mixed and mixing layers were more frequent, 

occasionally interrupted by periods of stronger convective mixing, such as in mid-March 

(Fig. 2e). Between the 1st of February and the 30th of April, generally positive trends in 

integrated and surface Chl a were observed coinciding with gradually increasing surface PAR 
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(Fig. 2d). Over this period, I(Chl a) increased by a factor of 2.3, from 30 mg m-2 in February 

to 70 mg m-2 at the end of April. S(Chl a) increased by a factor of 3, from 0.2 to 0.6 mg m-3.

The mixed layer remained consistently deeper than the euphotic depth until the end of 

April when a rapid transition to a shallow stratification was observed. Springtime 

stratification developed in two phases (Fig. 2a). First, the mixed layer shoaled from 200 m to 

50 m in 5 days (19-23 April). Second, the mixed layer deepened below the euphotic zone 

again for a short period of time (30 April – 1 May) and subsequently shoaled again above 50 

m. Previous studies at the PAP site suggested that the onset of seasonal stratification can be 

defined as the date on which the mixed layer shoals above 100 m for more than a week 

(Lampitt et al. 2010b). According to this definition, during the year of the OSMOSIS mission 

the onset of seasonal stratification occurred on 22nd April. Strong surface heating and weak 

wind forcing (Fig. 2e, 2f) promoted development of seasonal stratification: surface heat flux 

generally exceeded 100 W m-2 and wind stress noticeably decreased after 18th April compared 

with the rest of the time series (  < 0.2 N m-2).  During restratification, S(Chl a) initially 

reached 0.6 mg m-3 and subsequently peaked at 1.5 mg m-3 on 1st May (Fig. 2b). Chl a 

inventories decreased during this period from 60 mg m-2 to 30 mg m-2 and peaked again at 

100 mg m-2 at the beginning of May (Fig. 2b, 2c). 

Analysis of bloom initiation hypotheses

The phytoplankton bloom evolved slowly in weakly-stratified conditions over several 

months before the onset of the seasonal stratification (Fig. 2a). Below we examine the 

hypotheses for spring bloom onset and analyze how atmospheric forcing could affect the 

observed bloom dynamics. 
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The analysis was performed in a one-dimensional framework, interpreting the 

observations as a time series following Damerell et al. (2016). Data from both gliders 

deployed at a given time were used in the analysis. Investigation of spatial heterogeneity 

within the sampling box is presented in the Supplemental Information, which shows that 

temporal changes in S(Chl a) and I(Chl a) are consistent between different parts of the 

sampling area (Fig. S6 and S7). It is acknowledged that lateral density gradients and 

associated submesoscale dynamics can drive increased growth of phytoplankton due to short 

term (< 1 day) restratification of the ocean mixed layer (Mahadevan et al. 2012; Lacour et al., 

2017) and significant losses in phytoplankton inventories due to export of organic material 

along isopycnal surfaces to the ocean interior (Omand et al. 2015). The presence of 

submesoscale features during the OSMOSIS study is discussed by Thompson et al. (2016). 

The potential impact of these processes on the sub-daily distribution of phytoplankton is 

beyond the scope of the study since we aim to describe Chl a variability over inter-seasonal 

time scales.  For an evaluation of the phytoplankton response to short-term restratification 

events associated with submesoscale dynamics revealed in this dataset, see Erickson and 

Thompson (2018). 

Assessment of the critical depth hypothesis

According to the CDH, improving light conditions and shoaling of the mixed layer 

above a critical depth prompts the onset of the spring bloom.  Here we adapt this definition, 

for reasons explained in the introduction, to shoaling of the mixing layer above a critical 

depth (following Brody and Lozier, 2014; Franks, 2014).  A comparison of the estimated 

range of with  is shown in Fig. 3a. Fig. 3b shows the time series of r derived from crz mixingz

the glider data using eq. 11-12. The critical depth criterion ( < ) was generally met mixingz crz

from February onwards when a period of mostly positive r was observed (Fig. 3b). In 80 % 
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of cases when positive net accumulation rates of phytoplankton were observed, the mixing 

layer depth was shallower than the estimated critical depth (Fig. 3a). Due to gradually 

increasing surface PAR (Fig. 2d) the critical depth was sufficiently deep (100-500 m) to 

allow a net accumulation of phytoplankton to occur for several months before the seasonal 

restratification (Fig. 3b). Moreover, both the cumulative sum of r (Fig. 3c) and phytoplankton 

specific growth rate (Fig. 3d) start to increase consistently from the beginning of February.  

Prior to February, the cumulative sum of r is essentially flat indicating that the ecosystem 

was in near equilibrium state.  This is consistent with an analysis of net community 

production derived from the gliders’ oxygen dataset which suggests that net autotrophy 

begins in early February (Binetti et al., this issue).  Our results indicate that the period of 

positive net accumulation of phytoplankton was associated with improving light conditions 

for phytoplankton.  Therefore, the observed accumulation of phytoplankton in deep mixed 

layers is broadly consistent with the critical depth hypothesis, provided that mixing depth, 

rather than mixed layer depth, is considered.

Assessment of the critical turbulence hypothesis

According to the CTH, a spring bloom can start when phytoplankton growth time 

scales are shorter than mixing time scales. The test of this hypothesis was conducted by 

comparing estimated mixing (eq. 6 and 7) and growth time scales (  and  respectively). mt gt

We used the values of specific growth rate near the surface ( ; eq. 9) to estimate the ( 0)z 

minimum growth time scale ( ) that can be achieved under the observed light g,min
1

( 0)
t

z




conditions. In reality, the growth time scales are also affected by various loss factors, 

therefore . For both wind and convective mixing regimes, turbulent mixing time g g, mint t

scales are approximately an order of magnitude smaller than calculated growth time scales 
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(Fig. 3e). This suggests that for the observed meteorological conditions, the critical 

turbulence criterion for bloom initiation expressed in terms of relevant time scales (i.e.

) was not met.  The scaling arguments used here to assess the critical turbulence g, min mt t

hypothesis carry their own uncertainties, however the order of magnitude difference we find 

between the growth and mixing time scales gives confidence that our general conclusion is 

robust.

Assessment of the dilution-recoupling hypothesis

DRH associates the bloom onset with decreasing loss rates in winter due to dilution of 

zooplankton in deep mixed layers. Positive net accumulation rates during the periods of 

deepest mixing can indicate the dilution effect and provide support for the hypothesis (as 

previously shown by Behrenfeld, 2010). From December until the end of January, the 

convective mixing regime dominated and deepening of the mixed layer was observed (Fig. 

3a, 3f). During this time, average net accumulation rates were close to zero (  = 0.02 d-1 r

(standard deviation = 0.1 d-1; Fig. 3b). The cumulative sum of  is relatively constant during r

December and January (Fig. 3c), the period when mixing was the deepest and when 

phytoplankton specific growth rate was low (Fig. 3d). Positive net accumulation rates were 

mainly observed from early February onwards and corresponded to gradually improving light 

conditions and increasing (Fig. 3d). There is no clear evidence that bloom onset occurs mean

due to the dilution effect in the OSMOSIS glider dataset.

Impact of mixing regimes on the bloom development

Our dataset demonstrates that positive r was detected before upper ocean 

restratification in spring when mean specific growth rates for phytoplankton started to 

increase due to improving light conditions. Of the three hypotheses examined, CDH best 
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explains the observed variability in Chl a (Fig. 3d). However, the observed increase of S(Chl 

a) and I(Chl a) was only a factor of 3 and 2 respectively from February (when r > 0 was 

detected) to the end of April (when seasonal stratification developed). Therefore, the question 

remains: why did shoaling of zmixing above zcr not result in a rapid and pronounced 

phytoplankton bloom? Even though a bloom can be defined as an onset of net growth, some 

studies (e.g. Platt et al. 1991) consider the rapid accumulation of biomass an essential 

signature of phytoplankton spring blooms. We now discuss how atmospheric forcing over the 

winter-spring period and the associated mixing regimes in the ocean boundary layer 

influenced  and bloom progression. mean

The depth of active mixing determines light conditions experienced by phytoplankton 

cells and influences  (eq. 10).  was calculated using eq. 10 for mean surface PAR mean mean

(20 mol m-2 day-1) and mean light attenuation coefficient (0.066 m-1) observed during 

February – April (Fig. 4a).  When the mixing depth is shallower than the euphotic depth, 

 increases abruptly. Mean specific growth rates evaluated for the wind and convective mean

mixing regimes as a function of wind stress and surface heat flux are shown in Fig. 4b. 

During the convective mixing regime, convective cells penetrate the whole mixed layer 

resulting in relatively low  (0.1-0.3 d-1). Under the wind mixing regime is low mean mean

(0.1-0.5 d-1) for relatively strong wind forcing (  > 0.2 N m-2) and significantly higher (

 > 0.5 d-1) for calm weather conditions (  < 0.2 N m-2). Therefore, in weakly stratified mean 

conditions, shoaling of the mixing layer can significantly increase  when wind forcing mean

is weak. 
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Transition to a wind mixing regime can have a two-fold effect on phytoplankton 

inventories. First, division rates are significantly increased for the part of the community 

trapped within zmixing due to increased light exposure. Second, algae are trapped within the 

remnant layer, below zmixing. A decaying mixing intensity below zmixing increases the residence 

time of phytoplankton within the remnant layer (Franks 2014) and potentially below the 

euphotic zone, where conditions are unfavorable for phytoplankton growth. As an example, if 

zmixed is 250 m, shoaling of zmixing to 50 m can lead to 80 % of the population being trapped in 

the aphotic zone (if  < 50 m) and being permanently lost from the surface layer. However, euz

the enhanced growth near the surface rebuilds phytoplankton inventories at the same time.

To demonstrate this, we use a simple model for phytoplankton accumulation:

,                                                (14)( , ) ( , )dP z t z t P
dt



where  is phytoplankton concentration at time  and depth z. Eq. 14 omits vertical P t

diffusion and assumes that the initial vertical distribution of phytoplankton is depth-

independent over the mixed layer. In the case of an actively turbulent deep mixed layer, the 

evolution of phytoplankton concentration at any depth within  can be described by the mixedz

following equation:

,                                                  (15)zmixed
mixed 0( ) tP t P e

where  is the average division rate in . When the turbulence structure changes zmixed mixedz

under the wind mixing regime, only the part of the community within  grows, albeit mixingz

with a higher specific growth rate ( ) due to increased light exposure:zmixing

,                                               (16)zmixing
mixing 0( ) tP t P e
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where  is phytoplankton concentration within . If , phytoplankton mixingP mixingz mixing euz z

also accumulates between  and , although this region is not actively mixed and, mixingz euz

therefore, the specific growth rate is not uniform. An example of a vertical profile of µ 

demonstrates changes in the specific growth rate with depth (Fig. 5a).

Fig. 5b demonstrates the estimated changes in phytoplankton inventories for the range 

of zmixing values observed in the glider data (25, 50, 75, 100 and 150 m) as well as for  mixingz

= (= 250 m) (Fig. 5b). In the case of the shallowest zmixing, the fastest increase of mixedz

phytoplankton concentration occurs, i.e. weak wind forcing conditions result in rapid 

phytoplankton growth near the surface.

To illustrate the effect of mixing regimes on phytoplankton inventories using in situ 

data, we contrast Chl a variability at the end of February, when net surface heat flux was 

approaching zero and wind speed was low, with a period of strong convective mixing in 

March (the selected periods are marked as E1 and E2 respectively in Fig. 2). During E1 and 

E2 vertical profiles of temperature are relatively uniform within  (Fig. 6b and Fig. 6e). mixedz

The first period, E1, is characterized by a significant difference between mixed layer depth (

 = 250 m) and mixing layer depth (  = 25 m) (Fig. 6a). Averaged vertical profiles mixedz mixingz

for E1 show surface intensified vertical distribution of Chl a within the hydrographically 

defined mixed layer (Fig. 6a). Phytoplankton are relatively well mixed down to mean  mixingz

during E1. For E2, when mixing is driven by convection, the Chl a distribution is relatively 

uniform within the mixed layer (Fig. 6d). During E1, phytoplankton inventories gradually 

decrease below the euphotic depth (Fig. 6c), because the divergence between  and mixingz

 during the wind mixing regime significantly increases the residence time of mixedz
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phytoplankton in the aphotic zone prompting phytoplankton losses. The opposite effect is 

observed for the phytoplankton population within the euphotic zone (Fig. 6c). As a result, 

overall phytoplankton inventories increase slightly (Fig. 6f). For E2, the changes in water 

column integrated Chl a correspond to integrated Chl a below the euphotic zone (Fig. 6f), as 

the vertically homogeneous turbulent mixed layer results in relatively uniform light 

conditions for phytoplankton cells. 

Thus a convective mixing regime is generally associated with low  for the mean

phytoplankton community. Our results imply that the shift to a wind mixing regime can 

significantly increase , especially in the case of weak wind forcing, but at the same mean

time a significant part of the phytoplankton community can be trapped in the aphotic layer 

and potentially lost.  Intermittent mixed layer restratification by submesoscale activity, which 

is active in the study region (Erickson and Thompson, 2018), may play a similar role to 

intermittent wind forcing in bloom development by giving rise to rapid shoaling of the 

mixing layer.

Discussion

Simultaneous physical and biogeochemical observations from ocean gliders have 

been used to study the impact of atmospheric forcing on phytoplankton spring bloom 

dynamics and to test which of three commonly discussed hypotheses for bloom initiation in 

the North Atlantic (CDH, CTH, or DRH) can best explain the observed phytoplankton 

dynamics. The glider observations do not support the hypothesis that blooms initiate in 

midwinter prior to the seasonal increase in light as predicted by DRH.  In a test of the CTH, a 

comparison of mixing and growth time scales indicated that decreasing mixing intensity was 

unlikely to be driving enhanced phytoplankton growth in winter and spring, consistent with 
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our observation that the mixed layer does not permanently restratify until early May.  Instead, 

our data suggest that the positive net accumulation rates of phytoplankton were mainly 

observed when the shoaling mixing layer became shallower than the estimated critical depth 

threshold, and mean phytoplankton growth rate was gradually increasing due to improving 

light conditions.  Our analysis therefore supports the CDH, with the proviso that mixing, 

rather than mixed layer, depths are considered.  Our analysis also showed that seasonal 

patterns of bloom development are shaped by atmospheric forcing through their effect on 

mixing layer depth and light conditions experienced by phytoplankton.  

Of the hypotheses considered in this study, the observed phytoplankton variability 

was most consistent with the CDH framework. However, it is important to note that the 

estimates of critical depth depend greatly on the value of compensation irradiance. Sverdrup 

(1953) assumed the compensation irradiance to be a constant value that reflected the loss 

rates of phytoplankton due to respiration, grazing, sedimentation and other factors during the 

pre-bloom period. In reality, the compensation irradiance is likely to be a dynamic parameter 

that varies depending on grazing pressure and other loss factors. Slow spring bloom 

development can cause an immediate response in the grazing community as shown by 

Waniek (2003) using a mixed-layer model coupled with an NPZD model and discussed by 

Behrenfeld and Boss (2014). In this regard, the framework explaining seasonal phytoplankton 

variability involves some aspects of both the CDH and the DRH. In particular, initiation of 

phytoplankton biomass accumulation is driven by improving light conditions, consistent with 

the CDH. However, the subsequent development of the bloom can be affected by the balance 

between light-dependent specific growth rates and loss rates that may be variable. The latter 

violates the assumptions of CDH regarding constant losses and is better explained by the 

“recoupling” part of the DRH. Potential variability in loss rates can, in part, be addressed by 
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investigation of the phytoplankton spring bloom through a modeling framework (e.g. Lévy 

2015) since gliders do not provide measurements of grazing pressure.  

In their examination of the critical depth framework, Platt et al. (1991) concluded that 

“the Sverdrup criterion is necessary but not sufficient” for rapid phytoplankton accumulation 

in spring. Simply put, the criterion can only indicate if the net growth of phytoplankton can 

occur, but not how rapidly the bloom will progress. Platt et al. (1991) suggested that the 

frequent occurrence of storms prevents the rapid accumulation of phytoplankton biomass. In 

this study, the analysis of the mean specific growth rates under the wind and convective 

mixing regimes shows how meteorological conditions can affect the development of the 

spring bloom. For the convective mixing regime, phytoplankton accumulation occurs over 

the entire mixed layer, but relatively slowly due to low mean specific growth rates. When a 

shift to a wind mixing regime takes place, the part of the phytoplankton population within the 

mixing layer grows more rapidly, but at the same time, losses from the remnant layer can 

slow down the vertically-integrated accumulation of phytoplankton biomass. It is important 

to note that this source of losses is not included in the critical depth model. Rapid growth 

near the surface can build phytoplankton inventories rapidly (over about 4 days; Fig. 5). High 

winds can interrupt the rapid development of the phytoplankton spring bloom. Interestingly, 

the effect of wind mixing on phytoplankton blooms in the North Atlantic Ocean is different 

for spring and autumn. In autumn, phytoplankton growth is limited by nutrient availability 

(Martinez et al. 2011) and intensified mixing associated with an autumnal storm can deliver 

nutrients to the euphotic layer and trigger enhanced phytoplankton growth (Rumyantseva et 

al. 2015). Here we show that windy conditions in spring can prevent the development of 

rapid phytoplankton spring blooms by decreasing light-dependent mean specific growth rates 

for the phytoplankton community. 
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The correlation between spring bloom characteristics and wind conditions in spring 

has been noted before. Analysis of satellite data (Ueyama and Monger 2005; Henson et al. 

2009) has shown late, low magnitude phytoplankton spring blooms in the North Atlantic 

during the positive phase of the North Atlantic Oscillation, commonly associated with strong 

westerly winds in winter-spring. Waniek (2003) demonstrated that windy weather in spring 

results in low magnitude interrupted phytoplankton blooms, similar to the one captured 

during the OSMOSIS mission. The passage of weather systems varies inter-annually and 

might be affected by future changes in the North Atlantic climate (Gillett et al. 2003). 

Predicted changes include increasing sea surface temperature (Allen et al. 2014), increased 

net surface heat flux and increasingly positive North Atlantic Oscillation conditions (Osborn 

2004) that would change basin-scale wind forcing patterns. In this study, it has been shown 

that atmospheric forcing and associated mixing regimes have a profound impact on 

phytoplankton growth rates and the development of algal blooms.

Concluding remarks

Autonomous underwater gliders deployed at the PAP site provided a unique data set 

capturing the development of the 2012 phytoplankton bloom in the temperate Northeast 

Atlantic. Motivated by the long-running debate around Sverdrup’s critical depth hypothesis, 

this study concludes that the bloom onset corresponded to improving light conditions and was 

mainly consistent with the critical depth hypothesis, provided the divergence between the 

mixed layer depth and the active mixing layer is considered. The subsequent development of 

the bloom was affected by the meteorological conditions through their effect on the light 

environment experienced by phytoplankton. The observed low magnitude of the bloom was 
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explained by the frequent passage of high winds and periods of convective mixing after the 

seasonal onset of net phytoplankton growth.
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Figure legends

Figure 1. a) Location of the OSMOSIS sampling site (red circle) and bathymetry. B) Glider 

dive locations. The total number of profiles (both upcasts and downcasts) obtained during the 

period considered in this study is 4718. Stars indicate corners of the gliders’ sampling area.

Figure 2. Time series of a) Chl a concentration (mg m-3) with overlaid lines corresponding to 

daily-mean  (±std; black), (black stars) and daily mean   (±std; violet), as mixedz mixingz euz

defined in the Methods section, b) daily-mean glider surface Chl a concentration, calculated 

as the mean over the upper 20 meters (±std; blue), c) daily-mean glider integrated Chl a 

inventory (±std; red), d) daily mean surface PAR, e) net surface heat flux and f) surface wind 

stress. Blue and red circles on panels e) and f) indicate the wind and convective mixing 

regimes respectively. Vertical shaded areas (E1 and E2) on panel b-f correspond to specific 

examples from the time-series considered in the Analysis section. Separate figures for three 

time periods (15th of October – 15th of January, 15th of January – 15th of March and 15th of 

March – 15th of May) are shown in the Supplementary materials (Fig. S8 – S10).  

Figure 3. Time series of a) ,  and , b) net accumulation rate of phytoplankton crz mixingz mixedz

( ) calculated using Chl a data from the gliders, c) cumulative sum of , d) mean specific r r

growth rate ( ) over (gray shaded area shows an estimated range of uncertainty mean mixingz

associated with the choice of values for αchl and θ), e) growth time scales (  ) and mixing gt

time scales for the convective ( ) and the wind ( )  mixing regimes, f) surface m,convectiont m,windt

buoyancy flux . Separate figures for three time periods (15th of October – 15th of January, 0B

15th of January – 15th of March and 15th of March – 15th of May) are shown in the 

Supplementary materials (Fig. S8 – S10).  
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Figure 4. a) Mean specific growth rates ( ) as a function of mixing layer depth ( ).mean mixingz

 was calculated for  = 20 mol m-2 d-1 and  = 0.066 m-1 (corresponding to euphotic mean 0E K

depth ≈ 70 m; eq.10; vertical red line). b)  (colours) as a function of wind stress ( ) mean 

and net surface heat flux ( ). Circles and squares correspond to wind mixing and convective Q

mixing regimes respectively.

Figure 5. a) Example vertical profile of phytoplankton specific growth rate ( = 25 m) mixingz

used to investigate changes in phytoplankton stocks. b) Normalized changes in phytoplankton 

stocks ( ) assuming an actively turbulent  (black line) and a range of  values IP mixedz mixingz

(coloured lines on the plot). values were normalized by , the initial phytoplankton stock IP 0IP

before switching to wind mixing regime. Shaded area indicates additional accumulation of 

phytoplankton between  and , if  . mixingz euz mixing euz z

Figure 6. Examples of phytoplankton dynamics during wind mixing regime (24-27th 

February; E1 on Fig. 2) and convective mixing regime (15-19th March; E2 on Fig. 2). Panels 

(a) and (d) show combined mean vertical profiles of Chl a (black solid line) and standard 

deviation (dashed lines) during E1 and E2 respectively. Panels (b) and (e) show mean vertical 

profiles of temperature (black solid line) and standard deviation (dashed lines) during E1 and 

E2 respectively. Red, blue and green lines show , , and respectively.  Panels mixingz mixedz euz

(c) and (f) show absolute changes in Chl a stocks over the whole water column (black line), 

above the euphotic depth (red line) and below the euphotic depth (blue line) during E1 and 

E2.



41

Tables

Table 1. List of parameters and constants used in the study

Symbol Value

20Reference seawater density  0 1030 kg m-3

von Karman constant  k 0.41

Acceleration due to gravity  g 9.8 m s-2

Coriolis parameter (at 49° N latitude)  f 10-4 s-1

Chl a specific slope of phytoplankton irradiance curve*  chl 6-17 (mol m-2)-1

Chl a-to-carbon mass ratio**   0.01-0.05 (gChl/gC)

Compensation irradiance (photon flux)+  cE 0.96 - 1.75 mol m-2 d-1

Scaling constants for zmixed and zmixing
++ C1

C2

C3

C4

C5

0.3

2

1

0.57

1

*Adopted from Marañon and Holligan (1999) (range of values for 49° N; Fig. 5 in their 

paper). Similar values were obtained by Uitz (2006) for micro- and nano- plankton.

**Adopted from Sathyendranath et al. (2009).

+ The range of values of the middle and high latitude North Atlantic Ocean was taken 

from Siegel et al. (2002). 
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++ Adopted from Thorpe (2005), Zilitinkevich et al. (2002), Enriquez and Taylor (2015) 

and Deardorff (1972).
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Figures

Figure 1. a) Location of the OSMOSIS sampling site (red circle) and bathymetry. B) Glider 

dive locations. The total number of profiles (both upcasts and downcasts) obtained during the 

period considered in this study is 4718. Stars indicate corners of the gliders’ sampling area.
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Figure 2. Time series of a) Chl a concentration (mg m-3) with overlaid lines corresponding to 

daily-mean  (±std; black), (black stars) and daily mean   (±std; violet), as mixedz mixingz euz

defined in the Methods section, b) daily-mean glider surface Chl a concentration, calculated 

as the mean over the upper 20 meters (±std; blue), c) daily-mean glider integrated Chl a 

inventory (±std; red), d) daily mean surface PAR, e) net surface heat flux and f) surface wind 

stress. Blue and red circles on panels e) and f) indicate the wind and convective mixing 

regimes respectively. Vertical shaded areas (E1 and E2) on panel b-f correspond to specific 

examples from the time-series considered in the Analysis section. Separate figures for three 

time periods (15th of October – 15th of January, 15th of January – 15th of March and 15th of 

March – 15th of May) are shown in the Supplementary materials (Fig. S8 – S10).  
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Figure 3. Time series of a) ,  and , b) net accumulation rate of phytoplankton crz mixingz mixedz

( ) calculated using Chl a data from the gliders, c) cumulative sum of , d) mean specific r r

growth rate ( ) over (gray shaded area shows an estimated range of uncertainty mean mixingz

associated with the choice of values for αchl and θ), e) growth time scales (  ) and mixing gt

time scales for the convective ( ) and the wind ( )  mixing regimes, f) surface m,convectiont m,windt

buoyancy flux . Separate figures for three time periods (15th of October – 15th of January, 0B

15th of January – 15th of March and 15th of March – 15th of May) are shown in the 

Supplementary materials (Fig. S8 – S10).  



48

Figure 4. a) Mean specific growth rates ( ) as a function of mixing layer depth ( ).mean mixingz

 was calculated for  = 20 mol m-2 d-1 and  = 0.066 m-1 (corresponding to euphotic mean 0E K

depth ≈ 70 m; eq.10; vertical red line). b)  (colours) as a function of wind stress ( ) mean 

and net surface heat flux ( ). Circles and squares correspond to wind mixing and convective Q

mixing regimes respectively. 
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Figure 5. a) Example vertical profile of phytoplankton specific growth rate ( = 25 m) mixingz

used to investigate changes in phytoplankton stocks. b) Normalized changes in phytoplankton 

stocks (IP) assuming an actively turbulent  (black line) and a range of  values mixedz mixingz

(coloured lines on the plot). IP values were normalized by IP0, the initial phytoplankton stock 

before switching to wind mixing regime. Shaded area indicates additional accumulation of 

phytoplankton between  and , if  . mixingz euz mixing euz z
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Figure 6. Examples of phytoplankton dynamics during wind mixing regime (24-27th 

February; E1 on Fig. 2) and convective mixing regime (15-19th March; E2 on Fig. 2). Panels 

(a) and (d) show combined mean vertical profiles of Chl a (black solid line) and standard 

deviation (dashed lines) during E1 and E2 respectively. Panels (b) and (e) show mean vertical 

profiles of temperature (black solid line) and standard deviation (dashed lines) during E1 and 

E2 respectively. Red, blue and green lines show , , and respectively.  Panels mixingz mixedz euz

(c) and (f) show absolute changes in Chl a stocks over the whole water column (black line), 

above the euphotic depth (red line) and below the euphotic depth (blue line) during E1 and 

E2.
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Highlights:
- Unique, 8 months-long, high-resolution glider dataset used to investigate 

phytoplankton bloom initiation

- 3 hypotheses for the mechanism of spring bloom initiation are examined: critical 

depth, critical turbulence, and dilution-recoupling 

- Results are most consistent with critical depth hypothesis, provided mixing depth is 

accounted for
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